agg/src/ctrl/agg_spline_ctrl.cpp

408 lines
11 KiB
C++

//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
//
// classes spline_ctrl_impl, spline_ctrl
//
//----------------------------------------------------------------------------
#include "ctrl/agg_spline_ctrl.h"
namespace agg
{
//------------------------------------------------------------------------
spline_ctrl_impl::spline_ctrl_impl(double x1, double y1, double x2, double y2,
unsigned num_pnt, bool flip_y) :
ctrl(x1, y1, x2, y2, flip_y),
m_num_pnt(num_pnt),
m_border_width(1.0),
m_border_extra(0.0),
m_curve_width(1.0),
m_point_size(3.0),
m_curve_poly(m_curve_pnt),
m_idx(0),
m_vertex(0),
m_active_pnt(-1),
m_move_pnt(-1),
m_pdx(0.0),
m_pdy(0.0)
{
if(m_num_pnt < 4) m_num_pnt = 4;
if(m_num_pnt > 32) m_num_pnt = 32;
unsigned i;
for(i = 0; i < m_num_pnt; i++)
{
m_xp[i] = double(i) / double(m_num_pnt - 1);
m_yp[i] = 0.5;
}
calc_spline_box();
update_spline();
}
//------------------------------------------------------------------------
void spline_ctrl_impl::border_width(double t, double extra)
{
m_border_width = t;
m_border_extra = extra;
calc_spline_box();
}
//------------------------------------------------------------------------
void spline_ctrl_impl::calc_spline_box()
{
m_xs1 = m_x1 + m_border_width;
m_ys1 = m_y1 + m_border_width;
m_xs2 = m_x2 - m_border_width;
m_ys2 = m_y2 - m_border_width;
}
//------------------------------------------------------------------------
void spline_ctrl_impl::update_spline()
{
int i;
m_spline.init(m_num_pnt, m_xp, m_yp);
for(i = 0; i < 256; i++)
{
m_spline_values[i] = m_spline.get(double(i) / 255.0);
if(m_spline_values[i] < 0.0) m_spline_values[i] = 0.0;
if(m_spline_values[i] > 1.0) m_spline_values[i] = 1.0;
m_spline_values8[i] = (int8u)(m_spline_values[i] * 255.0);
}
}
//------------------------------------------------------------------------
void spline_ctrl_impl::calc_curve()
{
int i;
m_curve_pnt.remove_all();
m_curve_pnt.move_to(m_xs1, m_ys1 + (m_ys2 - m_ys1) * m_spline_values[0]);
for(i = 1; i < 256; i++)
{
m_curve_pnt.line_to(m_xs1 + (m_xs2 - m_xs1) * double(i) / 255.0,
m_ys1 + (m_ys2 - m_ys1) * m_spline_values[i]);
}
}
//------------------------------------------------------------------------
double spline_ctrl_impl::calc_xp(unsigned idx)
{
return m_xs1 + (m_xs2 - m_xs1) * m_xp[idx];
}
//------------------------------------------------------------------------
double spline_ctrl_impl::calc_yp(unsigned idx)
{
return m_ys1 + (m_ys2 - m_ys1) * m_yp[idx];
}
//------------------------------------------------------------------------
void spline_ctrl_impl::set_xp(unsigned idx, double val)
{
if(val < 0.0) val = 0.0;
if(val > 1.0) val = 1.0;
if(idx == 0)
{
val = 0.0;
}
else if(idx == m_num_pnt - 1)
{
val = 1.0;
}
else
{
if(val < m_xp[idx - 1] + 0.001) val = m_xp[idx - 1] + 0.001;
if(val > m_xp[idx + 1] - 0.001) val = m_xp[idx + 1] - 0.001;
}
m_xp[idx] = val;
}
//------------------------------------------------------------------------
void spline_ctrl_impl::set_yp(unsigned idx, double val)
{
if(val < 0.0) val = 0.0;
if(val > 1.0) val = 1.0;
m_yp[idx] = val;
}
//------------------------------------------------------------------------
void spline_ctrl_impl::point(unsigned idx, double x, double y)
{
if(idx < m_num_pnt)
{
set_xp(idx, x);
set_yp(idx, y);
}
}
//------------------------------------------------------------------------
void spline_ctrl_impl::value(unsigned idx, double y)
{
if(idx < m_num_pnt)
{
set_yp(idx, y);
}
}
//------------------------------------------------------------------------
double spline_ctrl_impl::value(double x) const
{
x = m_spline.get(x);
if(x < 0.0) x = 0.0;
if(x > 1.0) x = 1.0;
return x;
}
//------------------------------------------------------------------------
void spline_ctrl_impl::rewind(unsigned idx)
{
unsigned i;
m_idx = idx;
switch(idx)
{
default:
case 0: // Background
m_vertex = 0;
m_vx[0] = m_x1 - m_border_extra;
m_vy[0] = m_y1 - m_border_extra;
m_vx[1] = m_x2 + m_border_extra;
m_vy[1] = m_y1 - m_border_extra;
m_vx[2] = m_x2 + m_border_extra;
m_vy[2] = m_y2 + m_border_extra;
m_vx[3] = m_x1 - m_border_extra;
m_vy[3] = m_y2 + m_border_extra;
break;
case 1: // Border
m_vertex = 0;
m_vx[0] = m_x1;
m_vy[0] = m_y1;
m_vx[1] = m_x2;
m_vy[1] = m_y1;
m_vx[2] = m_x2;
m_vy[2] = m_y2;
m_vx[3] = m_x1;
m_vy[3] = m_y2;
m_vx[4] = m_x1 + m_border_width;
m_vy[4] = m_y1 + m_border_width;
m_vx[5] = m_x1 + m_border_width;
m_vy[5] = m_y2 - m_border_width;
m_vx[6] = m_x2 - m_border_width;
m_vy[6] = m_y2 - m_border_width;
m_vx[7] = m_x2 - m_border_width;
m_vy[7] = m_y1 + m_border_width;
break;
case 2: // Curve
calc_curve();
m_curve_poly.width(m_curve_width);
m_curve_poly.rewind(0);
break;
case 3: // Inactive points
m_curve_pnt.remove_all();
for(i = 0; i < m_num_pnt; i++)
{
if(int(i) != m_active_pnt)
{
m_ellipse.init(calc_xp(i), calc_yp(i),
m_point_size, m_point_size, 32);
m_curve_pnt.concat_path(m_ellipse);
}
}
m_curve_poly.rewind(0);
break;
case 4: // Active point
m_curve_pnt.remove_all();
if(m_active_pnt >= 0)
{
m_ellipse.init(calc_xp(m_active_pnt), calc_yp(m_active_pnt),
m_point_size, m_point_size, 32);
m_curve_pnt.concat_path(m_ellipse);
}
m_curve_poly.rewind(0);
break;
}
}
//------------------------------------------------------------------------
unsigned spline_ctrl_impl::vertex(double* x, double* y)
{
unsigned cmd = path_cmd_line_to;
switch(m_idx)
{
case 0:
if(m_vertex == 0) cmd = path_cmd_move_to;
if(m_vertex >= 4) cmd = path_cmd_stop;
*x = m_vx[m_vertex];
*y = m_vy[m_vertex];
m_vertex++;
break;
case 1:
if(m_vertex == 0 || m_vertex == 4) cmd = path_cmd_move_to;
if(m_vertex >= 8) cmd = path_cmd_stop;
*x = m_vx[m_vertex];
*y = m_vy[m_vertex];
m_vertex++;
break;
case 2:
cmd = m_curve_poly.vertex(x, y);
break;
case 3:
case 4:
cmd = m_curve_pnt.vertex(x, y);
break;
default:
cmd = path_cmd_stop;
break;
}
if(!is_stop(cmd))
{
transform_xy(x, y);
}
return cmd;
}
//------------------------------------------------------------------------
void spline_ctrl_impl::active_point(int i)
{
m_active_pnt = i;
}
//------------------------------------------------------------------------
bool spline_ctrl_impl::in_rect(double x, double y) const
{
inverse_transform_xy(&x, &y);
return x >= m_x1 && x <= m_x2 && y >= m_y1 && y <= m_y2;
}
//------------------------------------------------------------------------
bool spline_ctrl_impl::on_mouse_button_down(double x, double y)
{
inverse_transform_xy(&x, &y);
unsigned i;
for(i = 0; i < m_num_pnt; i++)
{
double xp = calc_xp(i);
double yp = calc_yp(i);
if(calc_distance(x, y, xp, yp) <= m_point_size + 1)
{
m_pdx = xp - x;
m_pdy = yp - y;
m_active_pnt = m_move_pnt = int(i);
return true;
}
}
return false;
}
//------------------------------------------------------------------------
bool spline_ctrl_impl::on_mouse_button_up(double, double)
{
if(m_move_pnt >= 0)
{
m_move_pnt = -1;
return true;
}
return false;
}
//------------------------------------------------------------------------
bool spline_ctrl_impl::on_mouse_move(double x, double y, bool button_flag)
{
inverse_transform_xy(&x, &y);
if(!button_flag)
{
return on_mouse_button_up(x, y);
}
if(m_move_pnt >= 0)
{
double xp = x + m_pdx;
double yp = y + m_pdy;
set_xp(m_move_pnt, (xp - m_xs1) / (m_xs2 - m_xs1));
set_yp(m_move_pnt, (yp - m_ys1) / (m_ys2 - m_ys1));
update_spline();
return true;
}
return false;
}
//------------------------------------------------------------------------
bool spline_ctrl_impl::on_arrow_keys(bool left, bool right, bool down, bool up)
{
double kx = 0.0;
double ky = 0.0;
bool ret = false;
if(m_active_pnt >= 0)
{
kx = m_xp[m_active_pnt];
ky = m_yp[m_active_pnt];
if(left) { kx -= 0.001; ret = true; }
if(right) { kx += 0.001; ret = true; }
if(down) { ky -= 0.001; ret = true; }
if(up) { ky += 0.001; ret = true; }
}
if(ret)
{
set_xp(m_active_pnt, kx);
set_yp(m_active_pnt, ky);
update_spline();
}
return ret;
}
}