agg/examples/alpha_gradient.cpp

374 lines
12 KiB
C++

#include <stdio.h>
#include "agg_basics.h"
#include "agg_rendering_buffer.h"
#include "agg_rasterizer_scanline_aa.h"
#include "agg_scanline_u.h"
#include "agg_renderer_scanline.h"
#include "agg_span_gradient.h"
#include "agg_span_gradient_alpha.h"
#include "agg_span_interpolator_linear.h"
#include "agg_span_allocator.h"
#include "agg_span_converter.h"
#include "agg_ellipse.h"
#include "agg_pixfmt_rgb.h"
#include "agg_vcgen_stroke.h"
#include "platform/agg_platform_support.h"
#include "ctrl/agg_spline_ctrl.h"
#define AGG_BGR24
//#define AGG_BGR48
//#define AGG_BGR96
#include "pixel_formats.h"
enum flip_y_e { flip_y = true };
class the_application : public agg::platform_support
{
double m_x[3];
double m_y[3];
double m_dx;
double m_dy;
int m_idx;
agg::spline_ctrl<color_type> m_alpha;
public:
the_application(agg::pix_format_e format, bool flip_y) :
agg::platform_support(format, flip_y),
m_idx(-1),
m_alpha(2, 2, 200, 30, 6, !flip_y)
{
m_x[0] = 257; m_y[0] = 60;
m_x[1] = 369; m_y[1] = 170;
m_x[2] = 143; m_y[2] = 310;
m_alpha.point(0, 0.0, 0.0);
m_alpha.point(1, 1.0/5.0, 1.0 - 4.0/5.0);
m_alpha.point(2, 2.0/5.0, 1.0 - 3.0/5.0);
m_alpha.point(3, 3.0/5.0, 1.0 - 2.0/5.0);
m_alpha.point(4, 4.0/5.0, 1.0 - 1.0/5.0);
m_alpha.point(5, 1.0, 1.0);
m_alpha.update_spline();
add_ctrl(m_alpha);
}
// A simple function to form the gradient color array
// consisting of 3 colors, "begin", "middle", "end"
//---------------------------------------------------
template<class ColorArrayT>
static void fill_color_array(ColorArrayT& array,
color_type begin,
color_type middle,
color_type end)
{
unsigned i;
for(i = 0; i < 128; ++i)
{
array[i] = begin.gradient(middle, i / 128.0);
}
for(; i < 256; ++i)
{
array[i] = middle.gradient(end, (i - 128) / 128.0);
}
}
virtual void on_draw()
{
typedef agg::renderer_base<pixfmt> base_ren_type;
pixfmt pf(rbuf_window());
base_ren_type ren_base(pf);
ren_base.clear(agg::rgba(1,1,1));
agg::scanline_u8 sl;
agg::rasterizer_scanline_aa<> ras;
// Draw some background
agg::ellipse ell;
srand(1234);
unsigned i;
unsigned w = unsigned(width());
unsigned h = unsigned(height());
for(i = 0; i < 100; i++)
{
ell.init(rand() % w, rand() % h, rand() % 60 + 5, rand() % 60 + 5, 50);
ras.add_path(ell);
agg::render_scanlines_aa_solid(ras, sl, ren_base,
agg::rgba(rand() / double(RAND_MAX),
rand() / double(RAND_MAX),
rand() / double(RAND_MAX),
rand() / double(RAND_MAX) / 2.0));
}
double parallelogram[6];
parallelogram[0] = m_x[0];
parallelogram[1] = m_y[0];
parallelogram[2] = m_x[1];
parallelogram[3] = m_y[1];
parallelogram[4] = m_x[2];
parallelogram[5] = m_y[2];
// Gradient shape function (linear, radial, custom, etc)
//-----------------
typedef agg::gradient_circle gradient_func_type;
// Alpha gradient shape function (linear, radial, custom, etc)
//-----------------
typedef agg::gradient_xy gradient_alpha_func_type;
// Span interpolator. This object is used in all span generators
// that operate with transformations during iterating of the spans,
// for example, image transformers use the interpolator too.
//-----------------
typedef agg::span_interpolator_linear<> interpolator_type;
// Span allocator is an object that allocates memory for
// the array of colors that will be used to render the
// color spans. One object can be shared between different
// span generators.
//-----------------
typedef agg::span_allocator<color_type> span_allocator_type;
// Gradient colors array adaptor
//-----------------
typedef agg::pod_auto_array<color_type, 256> gradient_colors_type;
// Finally, the gradient span generator working with the color_type
// color type.
//-----------------
typedef agg::span_gradient<color_type,
interpolator_type,
gradient_func_type,
gradient_colors_type> span_gradient_type;
// Gradient alpha array adaptor
//-----------------
typedef agg::pod_auto_array<color_type::value_type, 256> gradient_alpha_type;
// The alpha gradient span converter working with the color_type
// color type.
//-----------------
typedef agg::span_gradient_alpha<color_type,
interpolator_type,
gradient_alpha_func_type,
gradient_alpha_type> span_gradient_alpha_type;
// Span converter type
//-----------------
typedef agg::span_converter<span_gradient_type,
span_gradient_alpha_type> span_conv_type;
// The gradient objects declarations
//----------------
gradient_func_type gradient_func; // The gradient function
gradient_alpha_func_type alpha_func; // The gradient function
agg::trans_affine gradient_mtx; // Gradient affine transformer
agg::trans_affine alpha_mtx; // Alpha affine transformer
interpolator_type span_interpolator(gradient_mtx); // Span gradient interpolator
interpolator_type span_interpolator_alpha(alpha_mtx); // Span alpha interpolator
span_allocator_type span_allocator; // Span Allocator
gradient_colors_type color_array; // The gradient colors
// Declare the gradient span itself.
// The last two arguments are so called "d1" and "d2"
// defining two distances in pixels, where the gradient starts
// and where it ends. The actual meaning of "d1" and "d2" depands
// on the gradient function.
//----------------
span_gradient_type span_gradient(span_interpolator,
gradient_func,
color_array,
0, 150);
// Declare the gradient span itself.
// The last two arguments are so called "d1" and "d2"
// defining two distances in pixels, where the gradient starts
// and where it ends. The actual meaning of "d1" and "d2" depands
// on the gradient function.
//----------------
gradient_alpha_type alpha_array;
span_gradient_alpha_type span_gradient_alpha(span_interpolator_alpha,
alpha_func,
alpha_array,
0, 100);
// Span converter declaration
span_conv_type span_conv(span_gradient, span_gradient_alpha);
// Finally we can draw a circle.
//----------------
gradient_mtx *= agg::trans_affine_scaling(0.75, 1.2);
gradient_mtx *= agg::trans_affine_rotation(-agg::pi/3.0);
gradient_mtx *= agg::trans_affine_translation(width()/2, height()/2);
gradient_mtx.invert();
alpha_mtx.parl_to_rect(parallelogram, -100, -100, 100, 100);
fill_color_array(color_array,
agg::rgba(0, 0.19, 0.19),
agg::rgba(0.7, 0.7, 0.19),
agg::rgba(0.31, 0, 0));
// Fill Alpha array
//----------------
for(i = 0; i < 256; i++)
{
alpha_array[i] = color_type::from_double(m_alpha.value(i / 255.0));
}
ell.init(width()/2, height()/2, 150, 150, 100);
ras.add_path(ell);
// Render the circle with gradient plus alpha-gradient
agg::render_scanlines_aa(ras, sl, ren_base, span_allocator, span_conv);
// Draw the control points and the parallelogram
//-----------------
agg::rgba color_pnt(0, 0.4, 0.4, 0.31);
ell.init(m_x[0], m_y[0], 5, 5, 20);
ras.add_path(ell);
agg::render_scanlines_aa_solid(ras, sl, ren_base, color_pnt);
ell.init(m_x[1], m_y[1], 5, 5, 20);
ras.add_path(ell);
agg::render_scanlines_aa_solid(ras, sl, ren_base, color_pnt);
ell.init(m_x[2], m_y[2], 5, 5, 20);
ras.add_path(ell);
agg::render_scanlines_aa_solid(ras, sl, ren_base, color_pnt);
agg::vcgen_stroke stroke;
stroke.add_vertex(m_x[0], m_y[0], agg::path_cmd_move_to);
stroke.add_vertex(m_x[1], m_y[1], agg::path_cmd_line_to);
stroke.add_vertex(m_x[2], m_y[2], agg::path_cmd_line_to);
stroke.add_vertex(m_x[0]+m_x[2]-m_x[1], m_y[0]+m_y[2]-m_y[1], agg::path_cmd_line_to);
stroke.add_vertex(0, 0, agg::path_cmd_end_poly | agg::path_flags_close);
ras.add_path(stroke);
agg::render_scanlines_aa_solid(ras, sl, ren_base, agg::rgba(0, 0, 0));
agg::render_ctrl(ras, sl, ren_base, m_alpha);
}
virtual void on_mouse_button_down(int x, int y, unsigned flags)
{
unsigned i;
if(flags & agg::mouse_left)
{
for (i = 0; i < 3; i++)
{
if(sqrt( (x-m_x[i]) * (x-m_x[i]) + (y-m_y[i]) * (y-m_y[i]) ) < 10.0)
{
m_dx = x - m_x[i];
m_dy = y - m_y[i];
m_idx = i;
break;
}
}
if(i == 3)
{
if(agg::point_in_triangle(m_x[0], m_y[0],
m_x[1], m_y[1],
m_x[2], m_y[2],
x, y))
{
m_dx = x - m_x[0];
m_dy = y - m_y[0];
m_idx = 3;
}
}
}
}
virtual void on_mouse_move(int x, int y, unsigned flags)
{
if(flags & agg::mouse_left)
{
if(m_idx == 3)
{
double dx = x - m_dx;
double dy = y - m_dy;
m_x[1] -= m_x[0] - dx;
m_y[1] -= m_y[0] - dy;
m_x[2] -= m_x[0] - dx;
m_y[2] -= m_y[0] - dy;
m_x[0] = dx;
m_y[0] = dy;
force_redraw();
return;
}
if(m_idx >= 0)
{
m_x[m_idx] = x - m_dx;
m_y[m_idx] = y - m_dy;
force_redraw();
}
}
else
{
on_mouse_button_up(x, y, flags);
}
}
virtual void on_mouse_button_up(int x, int y, unsigned flags)
{
m_idx = -1;
}
virtual void on_key(int x, int y, unsigned key, unsigned flags)
{
double dx = 0;
double dy = 0;
switch(key)
{
case agg::key_left: dx = -0.1; break;
case agg::key_right: dx = 0.1; break;
case agg::key_up: dy = 0.1; break;
case agg::key_down: dy = -0.1; break;
}
m_x[0] += dx;
m_y[0] += dy;
m_x[1] += dx;
m_y[1] += dy;
force_redraw();
}
};
int agg_main(int argc, char* argv[])
{
the_application app(pix_format, flip_y);
app.caption("AGG Example. Alpha channel gradient");
if(app.init(400, 320, agg::window_resize))
{
return app.run();
}
return 1;
}