agg/include/agg_rasterizer_cells_aa.h

743 lines
21 KiB
C++

//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
//
// The author gratefully acknowleges the support of David Turner,
// Robert Wilhelm, and Werner Lemberg - the authors of the FreeType
// libray - in producing this work. See http://www.freetype.org for details.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
//
// Adaptation for 32-bit screen coordinates has been sponsored by
// Liberty Technology Systems, Inc., visit http://lib-sys.com
//
// Liberty Technology Systems, Inc. is the provider of
// PostScript and PDF technology for software developers.
//
//----------------------------------------------------------------------------
#ifndef AGG_RASTERIZER_CELLS_AA_INCLUDED
#define AGG_RASTERIZER_CELLS_AA_INCLUDED
#include <cstring>
#include <cstdlib>
#include <limits>
#include "agg_math.h"
#include "agg_array.h"
namespace agg
{
//-----------------------------------------------------rasterizer_cells_aa
// An internal class that implements the main rasterization algorithm.
// Used in the rasterizer. Should not be used direcly.
template<class Cell> class rasterizer_cells_aa
{
enum cell_block_scale_e
{
cell_block_shift = 12,
cell_block_size = 1 << cell_block_shift,
cell_block_mask = cell_block_size - 1,
cell_block_pool = 256
};
struct sorted_y
{
unsigned start;
unsigned num;
};
public:
typedef Cell cell_type;
typedef rasterizer_cells_aa<Cell> self_type;
~rasterizer_cells_aa();
rasterizer_cells_aa(unsigned cell_block_limit=1024);
void reset();
void style(const cell_type& style_cell);
void line(int x1, int y1, int x2, int y2);
int min_x() const { return m_min_x; }
int min_y() const { return m_min_y; }
int max_x() const { return m_max_x; }
int max_y() const { return m_max_y; }
void sort_cells();
unsigned total_cells() const
{
return m_num_cells;
}
unsigned scanline_num_cells(unsigned y) const
{
return m_sorted_y[y - m_min_y].num;
}
const cell_type* const* scanline_cells(unsigned y) const
{
return m_sorted_cells.data() + m_sorted_y[y - m_min_y].start;
}
bool sorted() const { return m_sorted; }
private:
rasterizer_cells_aa(const self_type&);
const self_type& operator = (const self_type&);
void set_curr_cell(int x, int y);
void add_curr_cell();
void render_hline(int ey, int x1, int y1, int x2, int y2);
void allocate_block();
private:
unsigned m_num_blocks;
unsigned m_max_blocks;
unsigned m_curr_block;
unsigned m_num_cells;
unsigned m_cell_block_limit;
cell_type** m_cells;
cell_type* m_curr_cell_ptr;
pod_vector<cell_type*> m_sorted_cells;
pod_vector<sorted_y> m_sorted_y;
cell_type m_curr_cell;
cell_type m_style_cell;
int m_min_x;
int m_min_y;
int m_max_x;
int m_max_y;
bool m_sorted;
};
//------------------------------------------------------------------------
template<class Cell>
rasterizer_cells_aa<Cell>::~rasterizer_cells_aa()
{
if(m_num_blocks)
{
cell_type** ptr = m_cells + m_num_blocks - 1;
while(m_num_blocks--)
{
pod_allocator<cell_type>::deallocate(*ptr, cell_block_size);
ptr--;
}
pod_allocator<cell_type*>::deallocate(m_cells, m_max_blocks);
}
}
//------------------------------------------------------------------------
template<class Cell>
rasterizer_cells_aa<Cell>::rasterizer_cells_aa(unsigned cell_block_limit) :
m_num_blocks(0),
m_max_blocks(0),
m_curr_block(0),
m_num_cells(0),
m_cell_block_limit(cell_block_limit),
m_cells(0),
m_curr_cell_ptr(0),
m_sorted_cells(),
m_sorted_y(),
m_min_x(std::numeric_limits<int>::max()),
m_min_y(std::numeric_limits<int>::max()),
m_max_x(std::numeric_limits<int>::min()),
m_max_y(std::numeric_limits<int>::min()),
m_sorted(false)
{
m_style_cell.initial();
m_curr_cell.initial();
}
//------------------------------------------------------------------------
template<class Cell>
void rasterizer_cells_aa<Cell>::reset()
{
m_num_cells = 0;
m_curr_block = 0;
m_curr_cell.initial();
m_style_cell.initial();
m_sorted = false;
m_min_x = std::numeric_limits<int>::max();
m_min_y = std::numeric_limits<int>::max();
m_max_x = std::numeric_limits<int>::min();
m_max_y = std::numeric_limits<int>::min();
}
//------------------------------------------------------------------------
template<class Cell>
AGG_INLINE void rasterizer_cells_aa<Cell>::add_curr_cell()
{
if(m_curr_cell.area | m_curr_cell.cover)
{
if((m_num_cells & cell_block_mask) == 0)
{
if(m_num_blocks >= m_cell_block_limit) return;
allocate_block();
}
*m_curr_cell_ptr++ = m_curr_cell;
++m_num_cells;
}
}
//------------------------------------------------------------------------
template<class Cell>
AGG_INLINE void rasterizer_cells_aa<Cell>::set_curr_cell(int x, int y)
{
if(m_curr_cell.not_equal(x, y, m_style_cell))
{
add_curr_cell();
m_curr_cell.style(m_style_cell);
m_curr_cell.x = x;
m_curr_cell.y = y;
m_curr_cell.cover = 0;
m_curr_cell.area = 0;
}
}
//------------------------------------------------------------------------
template<class Cell>
AGG_INLINE void rasterizer_cells_aa<Cell>::render_hline(int ey,
int x1, int y1,
int x2, int y2)
{
int ex1 = x1 >> poly_subpixel_shift;
int ex2 = x2 >> poly_subpixel_shift;
int fx1 = x1 & poly_subpixel_mask;
int fx2 = x2 & poly_subpixel_mask;
int delta, p, first;
long long dx;
int incr, lift, mod, rem;
//trivial case. Happens often
if(y1 == y2)
{
set_curr_cell(ex2, ey);
return;
}
//everything is located in a single cell. That is easy!
if(ex1 == ex2)
{
delta = y2 - y1;
m_curr_cell.cover += delta;
m_curr_cell.area += (fx1 + fx2) * delta;
return;
}
//ok, we'll have to render a run of adjacent cells on the same
//hline...
p = (poly_subpixel_scale - fx1) * (y2 - y1);
first = poly_subpixel_scale;
incr = 1;
dx = (long long)x2 - (long long)x1;
if(dx < 0)
{
p = fx1 * (y2 - y1);
first = 0;
incr = -1;
dx = -dx;
}
delta = (int)(p / dx);
mod = (int)(p % dx);
if(mod < 0)
{
delta--;
mod += dx;
}
m_curr_cell.cover += delta;
m_curr_cell.area += (fx1 + first) * delta;
ex1 += incr;
set_curr_cell(ex1, ey);
y1 += delta;
if(ex1 != ex2)
{
p = poly_subpixel_scale * (y2 - y1 + delta);
lift = (int)(p / dx);
rem = (int)(p % dx);
if (rem < 0)
{
lift--;
rem += dx;
}
mod -= dx;
while (ex1 != ex2)
{
delta = lift;
mod += rem;
if(mod >= 0)
{
mod -= dx;
delta++;
}
m_curr_cell.cover += delta;
m_curr_cell.area += poly_subpixel_scale * delta;
y1 += delta;
ex1 += incr;
set_curr_cell(ex1, ey);
}
}
delta = y2 - y1;
m_curr_cell.cover += delta;
m_curr_cell.area += (fx2 + poly_subpixel_scale - first) * delta;
}
//------------------------------------------------------------------------
template<class Cell>
AGG_INLINE void rasterizer_cells_aa<Cell>::style(const cell_type& style_cell)
{
m_style_cell.style(style_cell);
}
//------------------------------------------------------------------------
template<class Cell>
void rasterizer_cells_aa<Cell>::line(int x1, int y1, int x2, int y2)
{
enum dx_limit_e { dx_limit = 16384 << poly_subpixel_shift };
long long dx = (long long)x2 - (long long)x1;
if(dx >= dx_limit || dx <= -dx_limit)
{
int cx = (int)(((long long)x1 + (long long)x2) >> 1);
int cy = (int)(((long long)y1 + (long long)y2) >> 1);
line(x1, y1, cx, cy);
line(cx, cy, x2, y2);
}
long long dy = (long long)y2 - (long long)y1;
int ex1 = x1 >> poly_subpixel_shift;
int ex2 = x2 >> poly_subpixel_shift;
int ey1 = y1 >> poly_subpixel_shift;
int ey2 = y2 >> poly_subpixel_shift;
int fy1 = y1 & poly_subpixel_mask;
int fy2 = y2 & poly_subpixel_mask;
int x_from, x_to;
int rem, mod, lift, delta, first, incr;
long long p;
if(ex1 < m_min_x) m_min_x = ex1;
if(ex1 > m_max_x) m_max_x = ex1;
if(ey1 < m_min_y) m_min_y = ey1;
if(ey1 > m_max_y) m_max_y = ey1;
if(ex2 < m_min_x) m_min_x = ex2;
if(ex2 > m_max_x) m_max_x = ex2;
if(ey2 < m_min_y) m_min_y = ey2;
if(ey2 > m_max_y) m_max_y = ey2;
set_curr_cell(ex1, ey1);
//everything is on a single hline
if(ey1 == ey2)
{
render_hline(ey1, x1, fy1, x2, fy2);
return;
}
//Vertical line - we have to calculate start and end cells,
//and then - the common values of the area and coverage for
//all cells of the line. We know exactly there's only one
//cell, so, we don't have to call render_hline().
incr = 1;
if(dx == 0)
{
int ex = x1 >> poly_subpixel_shift;
int two_fx = (x1 - (ex << poly_subpixel_shift)) << 1;
int area;
first = poly_subpixel_scale;
if(dy < 0)
{
first = 0;
incr = -1;
}
x_from = x1;
//render_hline(ey1, x_from, fy1, x_from, first);
delta = first - fy1;
m_curr_cell.cover += delta;
m_curr_cell.area += two_fx * delta;
ey1 += incr;
set_curr_cell(ex, ey1);
delta = first + first - poly_subpixel_scale;
area = two_fx * delta;
while(ey1 != ey2)
{
//render_hline(ey1, x_from, poly_subpixel_scale - first, x_from, first);
m_curr_cell.cover = delta;
m_curr_cell.area = area;
ey1 += incr;
set_curr_cell(ex, ey1);
}
//render_hline(ey1, x_from, poly_subpixel_scale - first, x_from, fy2);
delta = fy2 - poly_subpixel_scale + first;
m_curr_cell.cover += delta;
m_curr_cell.area += two_fx * delta;
return;
}
//ok, we have to render several hlines
p = (poly_subpixel_scale - fy1) * dx;
first = poly_subpixel_scale;
if(dy < 0)
{
p = fy1 * dx;
first = 0;
incr = -1;
dy = -dy;
}
delta = (int)(p / dy);
mod = (int)(p % dy);
if(mod < 0)
{
delta--;
mod += dy;
}
x_from = x1 + delta;
render_hline(ey1, x1, fy1, x_from, first);
ey1 += incr;
set_curr_cell(x_from >> poly_subpixel_shift, ey1);
if(ey1 != ey2)
{
p = poly_subpixel_scale * dx;
lift = (int)(p / dy);
rem = (int)(p % dy);
if(rem < 0)
{
lift--;
rem += dy;
}
mod -= dy;
while(ey1 != ey2)
{
delta = lift;
mod += rem;
if (mod >= 0)
{
mod -= dy;
delta++;
}
x_to = x_from + delta;
render_hline(ey1, x_from, poly_subpixel_scale - first, x_to, first);
x_from = x_to;
ey1 += incr;
set_curr_cell(x_from >> poly_subpixel_shift, ey1);
}
}
render_hline(ey1, x_from, poly_subpixel_scale - first, x2, fy2);
}
//------------------------------------------------------------------------
template<class Cell>
void rasterizer_cells_aa<Cell>::allocate_block()
{
if(m_curr_block >= m_num_blocks)
{
if(m_num_blocks >= m_max_blocks)
{
cell_type** new_cells =
pod_allocator<cell_type*>::allocate(m_max_blocks +
cell_block_pool);
if(m_cells)
{
std::memcpy(new_cells, m_cells, m_max_blocks * sizeof(cell_type*));
pod_allocator<cell_type*>::deallocate(m_cells, m_max_blocks);
}
m_cells = new_cells;
m_max_blocks += cell_block_pool;
}
m_cells[m_num_blocks++] =
pod_allocator<cell_type>::allocate(cell_block_size);
}
m_curr_cell_ptr = m_cells[m_curr_block++];
}
//------------------------------------------------------------------------
template <class T> static AGG_INLINE void swap_cells(T* a, T* b)
{
T temp = *a;
*a = *b;
*b = temp;
}
//------------------------------------------------------------------------
enum
{
qsort_threshold = 9
};
//------------------------------------------------------------------------
template<class Cell>
void qsort_cells(Cell** start, unsigned num)
{
Cell** stack[80];
Cell*** top;
Cell** limit;
Cell** base;
limit = start + num;
base = start;
top = stack;
for (;;)
{
int len = int(limit - base);
Cell** i;
Cell** j;
Cell** pivot;
if(len > qsort_threshold)
{
// we use base + len/2 as the pivot
pivot = base + len / 2;
swap_cells(base, pivot);
i = base + 1;
j = limit - 1;
// now ensure that *i <= *base <= *j
if((*j)->x < (*i)->x)
{
swap_cells(i, j);
}
if((*base)->x < (*i)->x)
{
swap_cells(base, i);
}
if((*j)->x < (*base)->x)
{
swap_cells(base, j);
}
for(;;)
{
int x = (*base)->x;
do i++; while( (*i)->x < x );
do j--; while( x < (*j)->x );
if(i > j)
{
break;
}
swap_cells(i, j);
}
swap_cells(base, j);
// now, push the largest sub-array
if(j - base > limit - i)
{
top[0] = base;
top[1] = j;
base = i;
}
else
{
top[0] = i;
top[1] = limit;
limit = j;
}
top += 2;
}
else
{
// the sub-array is small, perform insertion sort
j = base;
i = j + 1;
for(; i < limit; j = i, i++)
{
for(; j[1]->x < (*j)->x; j--)
{
swap_cells(j + 1, j);
if (j == base)
{
break;
}
}
}
if(top > stack)
{
top -= 2;
base = top[0];
limit = top[1];
}
else
{
break;
}
}
}
}
//------------------------------------------------------------------------
template<class Cell>
void rasterizer_cells_aa<Cell>::sort_cells()
{
if(m_sorted) return; //Perform sort only the first time.
add_curr_cell();
m_curr_cell.x = std::numeric_limits<int>::max();
m_curr_cell.y = std::numeric_limits<int>::max();
m_curr_cell.cover = 0;
m_curr_cell.area = 0;
if(m_num_cells == 0) return;
// DBG: Check to see if min/max works well.
//for(unsigned nc = 0; nc < m_num_cells; nc++)
//{
// cell_type* cell = m_cells[nc >> cell_block_shift] + (nc & cell_block_mask);
// if(cell->x < m_min_x ||
// cell->y < m_min_y ||
// cell->x > m_max_x ||
// cell->y > m_max_y)
// {
// cell = cell; // Breakpoint here
// }
//}
// Allocate the array of cell pointers
m_sorted_cells.allocate(m_num_cells, 16);
// Allocate and zero the Y array
m_sorted_y.allocate(m_max_y - m_min_y + 1, 16);
m_sorted_y.zero();
// Create the Y-histogram (count the numbers of cells for each Y)
cell_type** block_ptr = m_cells;
cell_type* cell_ptr;
unsigned nb = m_num_cells;
unsigned i;
while(nb)
{
cell_ptr = *block_ptr++;
i = (nb > cell_block_size) ? unsigned(cell_block_size) : nb;
nb -= i;
while(i--)
{
m_sorted_y[cell_ptr->y - m_min_y].start++;
++cell_ptr;
}
}
// Convert the Y-histogram into the array of starting indexes
unsigned start = 0;
for(i = 0; i < m_sorted_y.size(); i++)
{
unsigned v = m_sorted_y[i].start;
m_sorted_y[i].start = start;
start += v;
}
// Fill the cell pointer array sorted by Y
block_ptr = m_cells;
nb = m_num_cells;
while(nb)
{
cell_ptr = *block_ptr++;
i = (nb > cell_block_size) ? unsigned(cell_block_size) : nb;
nb -= i;
while(i--)
{
sorted_y& curr_y = m_sorted_y[cell_ptr->y - m_min_y];
m_sorted_cells[curr_y.start + curr_y.num] = cell_ptr;
++curr_y.num;
++cell_ptr;
}
}
// Finally arrange the X-arrays
for(i = 0; i < m_sorted_y.size(); i++)
{
const sorted_y& curr_y = m_sorted_y[i];
if(curr_y.num)
{
qsort_cells(m_sorted_cells.data() + curr_y.start, curr_y.num);
}
}
m_sorted = true;
}
//------------------------------------------------------scanline_hit_test
class scanline_hit_test
{
public:
scanline_hit_test(int x) : m_x(x), m_hit(false) {}
void reset_spans() {}
void finalize(int) {}
void add_cell(int x, int)
{
if(m_x == x) m_hit = true;
}
void add_span(int x, int len, int)
{
if(m_x >= x && m_x < x+len) m_hit = true;
}
unsigned num_spans() const { return 1; }
bool hit() const { return m_hit; }
private:
int m_x;
bool m_hit;
};
}
#endif