cppcheck/test/bug-hunting/cve/CVE-2019-10021/Stream.cc

5850 lines
123 KiB
C++
Raw Permalink Normal View History

//========================================================================
//
// Stream.cc
//
// Copyright 1996-2003 Glyph & Cog, LLC
//
//========================================================================
#include <aconf.h>
#ifdef USE_GCC_PRAGMAS
#pragma implementation
#endif
#include <stdio.h>
#include <stdlib.h>
#include <stddef.h>
#include <limits.h>
#ifdef _WIN32
#include <io.h>
#else
#include <unistd.h>
#endif
#include <string.h>
#include <ctype.h>
#include "gmem.h"
#include "gmempp.h"
#include "gfile.h"
#if MULTITHREADED
#include "GMutex.h"
#endif
#include "config.h"
#include "Error.h"
#include "Object.h"
#include "Lexer.h"
#include "GfxState.h"
#include "Stream.h"
#include "JBIG2Stream.h"
#include "JPXStream.h"
#include "Stream-CCITT.h"
#ifdef __DJGPP__
static GBool setDJSYSFLAGS = gFalse;
#endif
#ifdef VMS
#ifdef __GNUC__
#define SEEK_SET 0
#define SEEK_CUR 1
#define SEEK_END 2
#endif
#endif
//------------------------------------------------------------------------
// Stream (base class)
//------------------------------------------------------------------------
Stream::Stream() {
}
Stream::~Stream() {
}
void Stream::close() {
}
int Stream::getRawChar() {
error(errInternal, -1, "Called getRawChar() on non-predictor stream");
return EOF;
}
int Stream::getBlock(char *buf, int size) {
int n, c;
n = 0;
while (n < size) {
if ((c = getChar()) == EOF) {
break;
}
buf[n++] = (char)c;
}
return n;
}
char *Stream::getLine(char *buf, int size) {
int i;
int c;
if (lookChar() == EOF || size < 0)
return NULL;
for (i = 0; i < size - 1; ++i) {
c = getChar();
if (c == EOF || c == '\n')
break;
if (c == '\r') {
if ((c = lookChar()) == '\n')
getChar();
break;
}
buf[i] = (char)c;
}
buf[i] = '\0';
return buf;
}
Guint Stream::discardChars(Guint n) {
char buf[4096];
Guint count, i, j;
count = 0;
while (count < n) {
if ((i = n - count) > sizeof(buf)) {
i = (Guint)sizeof(buf);
}
j = (Guint)getBlock(buf, (int)i);
count += j;
if (j != i) {
break;
}
}
return count;
}
GString *Stream::getPSFilter(int psLevel, const char *indent) {
return new GString();
}
Stream *Stream::addFilters(Object *dict, int recursion) {
Object obj, obj2;
Object params, params2;
Stream *str;
int i;
str = this;
dict->dictLookup("Filter", &obj);
if (obj.isNull()) {
obj.free();
dict->dictLookup("F", &obj);
}
dict->dictLookup("DecodeParms", &params);
if (params.isNull()) {
params.free();
dict->dictLookup("DP", &params);
}
if (obj.isName()) {
str = makeFilter(obj.getName(), str, &params, recursion);
} else if (obj.isArray()) {
for (i = 0; i < obj.arrayGetLength(); ++i) {
obj.arrayGet(i, &obj2, recursion);
if (params.isArray())
params.arrayGet(i, &params2, recursion);
else
params2.initNull();
if (obj2.isName()) {
str = makeFilter(obj2.getName(), str, &params2, recursion);
} else {
error(errSyntaxError, getPos(), "Bad filter name");
str = new EOFStream(str);
}
obj2.free();
params2.free();
}
} else if (!obj.isNull()) {
error(errSyntaxError, getPos(), "Bad 'Filter' attribute in stream");
}
obj.free();
params.free();
return str;
}
Stream *Stream::makeFilter(char *name, Stream *str, Object *params,
int recursion) {
int pred; // parameters
int colors;
int bits;
int early;
int encoding;
GBool endOfLine, byteAlign, endOfBlock, black;
int columns, rows;
int colorXform;
Object globals, obj;
if (!strcmp(name, "ASCIIHexDecode") || !strcmp(name, "AHx")) {
str = new ASCIIHexStream(str);
} else if (!strcmp(name, "ASCII85Decode") || !strcmp(name, "A85")) {
str = new ASCII85Stream(str);
} else if (!strcmp(name, "LZWDecode") || !strcmp(name, "LZW")) {
pred = 1;
columns = 1;
colors = 1;
bits = 8;
early = 1;
if (params->isDict()) {
params->dictLookup("Predictor", &obj, recursion);
if (obj.isInt())
pred = obj.getInt();
obj.free();
params->dictLookup("Columns", &obj, recursion);
if (obj.isInt())
columns = obj.getInt();
obj.free();
params->dictLookup("Colors", &obj, recursion);
if (obj.isInt())
colors = obj.getInt();
obj.free();
params->dictLookup("BitsPerComponent", &obj, recursion);
if (obj.isInt())
bits = obj.getInt();
obj.free();
params->dictLookup("EarlyChange", &obj, recursion);
if (obj.isInt())
early = obj.getInt();
obj.free();
}
str = new LZWStream(str, pred, columns, colors, bits, early);
} else if (!strcmp(name, "RunLengthDecode") || !strcmp(name, "RL")) {
str = new RunLengthStream(str);
} else if (!strcmp(name, "CCITTFaxDecode") || !strcmp(name, "CCF")) {
encoding = 0;
endOfLine = gFalse;
byteAlign = gFalse;
columns = 1728;
rows = 0;
endOfBlock = gTrue;
black = gFalse;
if (params->isDict()) {
params->dictLookup("K", &obj, recursion);
if (obj.isInt()) {
encoding = obj.getInt();
}
obj.free();
params->dictLookup("EndOfLine", &obj, recursion);
if (obj.isBool()) {
endOfLine = obj.getBool();
}
obj.free();
params->dictLookup("EncodedByteAlign", &obj, recursion);
if (obj.isBool()) {
byteAlign = obj.getBool();
}
obj.free();
params->dictLookup("Columns", &obj, recursion);
if (obj.isInt()) {
columns = obj.getInt();
}
obj.free();
params->dictLookup("Rows", &obj, recursion);
if (obj.isInt()) {
rows = obj.getInt();
}
obj.free();
params->dictLookup("EndOfBlock", &obj, recursion);
if (obj.isBool()) {
endOfBlock = obj.getBool();
}
obj.free();
params->dictLookup("BlackIs1", &obj, recursion);
if (obj.isBool()) {
black = obj.getBool();
}
obj.free();
}
str = new CCITTFaxStream(str, encoding, endOfLine, byteAlign,
columns, rows, endOfBlock, black);
} else if (!strcmp(name, "DCTDecode") || !strcmp(name, "DCT")) {
colorXform = -1;
if (params->isDict()) {
if (params->dictLookup("ColorTransform", &obj, recursion)->isInt()) {
colorXform = obj.getInt();
}
obj.free();
}
str = new DCTStream(str, colorXform);
} else if (!strcmp(name, "FlateDecode") || !strcmp(name, "Fl")) {
pred = 1;
columns = 1;
colors = 1;
bits = 8;
if (params->isDict()) {
params->dictLookup("Predictor", &obj, recursion);
if (obj.isInt())
pred = obj.getInt();
obj.free();
params->dictLookup("Columns", &obj, recursion);
if (obj.isInt())
columns = obj.getInt();
obj.free();
params->dictLookup("Colors", &obj, recursion);
if (obj.isInt())
colors = obj.getInt();
obj.free();
params->dictLookup("BitsPerComponent", &obj, recursion);
if (obj.isInt())
bits = obj.getInt();
obj.free();
}
str = new FlateStream(str, pred, columns, colors, bits);
} else if (!strcmp(name, "JBIG2Decode")) {
if (params->isDict()) {
params->dictLookup("JBIG2Globals", &globals, recursion);
}
str = new JBIG2Stream(str, &globals);
globals.free();
} else if (!strcmp(name, "JPXDecode")) {
str = new JPXStream(str);
} else {
error(errSyntaxError, getPos(), "Unknown filter '{0:s}'", name);
str = new EOFStream(str);
}
return str;
}
//------------------------------------------------------------------------
// BaseStream
//------------------------------------------------------------------------
BaseStream::BaseStream(Object *dictA) {
dict = *dictA;
}
BaseStream::~BaseStream() {
dict.free();
}
//------------------------------------------------------------------------
// FilterStream
//------------------------------------------------------------------------
FilterStream::FilterStream(Stream *strA) {
str = strA;
}
FilterStream::~FilterStream() {
}
void FilterStream::close() {
str->close();
}
void FilterStream::setPos(GFileOffset pos, int dir) {
error(errInternal, -1, "Called setPos() on FilterStream");
}
//------------------------------------------------------------------------
// ImageStream
//------------------------------------------------------------------------
ImageStream::ImageStream(Stream *strA, int widthA, int nCompsA, int nBitsA) {
int imgLineSize;
str = strA;
width = widthA;
nComps = nCompsA;
nBits = nBitsA;
nVals = width * nComps;
inputLineSize = (nVals * nBits + 7) >> 3;
if (width > INT_MAX / nComps ||
nVals > (INT_MAX - 7) / nBits) {
// force a call to gmallocn(-1,...), which will throw an exception
inputLineSize = -1;
}
inputLine = (char *)gmallocn(inputLineSize, sizeof(char));
if (nBits == 8) {
imgLine = (Guchar *)inputLine;
} else {
if (nBits == 1) {
imgLineSize = (nVals + 7) & ~7;
} else {
imgLineSize = nVals;
}
imgLine = (Guchar *)gmallocn(imgLineSize, sizeof(Guchar));
}
imgIdx = nVals;
}
ImageStream::~ImageStream() {
if (imgLine != (Guchar *)inputLine) {
gfree(imgLine);
}
gfree(inputLine);
}
void ImageStream::reset() {
str->reset();
}
void ImageStream::close() {
str->close();
}
GBool ImageStream::getPixel(Guchar *pix) {
int i;
if (imgIdx >= nVals) {
if (!getLine()) {
return gFalse;
}
imgIdx = 0;
}
for (i = 0; i < nComps; ++i) {
pix[i] = imgLine[imgIdx++];
}
return gTrue;
}
Guchar *ImageStream::getLine() {
Gulong buf, bitMask;
int bits;
int c;
int i;
char *p;
if (str->getBlock(inputLine, inputLineSize) != inputLineSize) {
return NULL;
}
if (nBits == 1) {
p = inputLine;
for (i = 0; i < nVals; i += 8) {
c = *p++;
imgLine[i+0] = (Guchar)((c >> 7) & 1);
imgLine[i+1] = (Guchar)((c >> 6) & 1);
imgLine[i+2] = (Guchar)((c >> 5) & 1);
imgLine[i+3] = (Guchar)((c >> 4) & 1);
imgLine[i+4] = (Guchar)((c >> 3) & 1);
imgLine[i+5] = (Guchar)((c >> 2) & 1);
imgLine[i+6] = (Guchar)((c >> 1) & 1);
imgLine[i+7] = (Guchar)(c & 1);
}
} else if (nBits == 8) {
// special case: imgLine == inputLine
} else if (nBits == 16) {
for (i = 0; i < nVals; ++i) {
imgLine[i] = (Guchar)inputLine[2*i];
}
} else {
bitMask = (1 << nBits) - 1;
buf = 0;
bits = 0;
p = inputLine;
for (i = 0; i < nVals; ++i) {
if (bits < nBits) {
buf = (buf << 8) | (*p++ & 0xff);
bits += 8;
}
imgLine[i] = (Guchar)((buf >> (bits - nBits)) & bitMask);
bits -= nBits;
}
}
return imgLine;
}
void ImageStream::skipLine() {
str->getBlock(inputLine, inputLineSize);
}
//------------------------------------------------------------------------
// StreamPredictor
//------------------------------------------------------------------------
StreamPredictor::StreamPredictor(Stream *strA, int predictorA,
int widthA, int nCompsA, int nBitsA) {
str = strA;
predictor = predictorA;
width = widthA;
nComps = nCompsA;
nBits = nBitsA;
predLine = NULL;
ok = gFalse;
nVals = width * nComps;
pixBytes = (nComps * nBits + 7) >> 3;
rowBytes = ((nVals * nBits + 7) >> 3) + pixBytes;
if (width <= 0 || nComps <= 0 || nBits <= 0 ||
nComps > gfxColorMaxComps ||
nBits > 16 ||
width >= INT_MAX / nComps || // check for overflow in nVals
nVals >= (INT_MAX - 7) / nBits) { // check for overflow in rowBytes
return;
}
predLine = (Guchar *)gmalloc(rowBytes);
reset();
ok = gTrue;
}
StreamPredictor::~StreamPredictor() {
gfree(predLine);
}
void StreamPredictor::reset() {
memset(predLine, 0, rowBytes);
predIdx = rowBytes;
}
int StreamPredictor::lookChar() {
if (predIdx >= rowBytes) {
if (!getNextLine()) {
return EOF;
}
}
return predLine[predIdx];
}
int StreamPredictor::getChar() {
if (predIdx >= rowBytes) {
if (!getNextLine()) {
return EOF;
}
}
return predLine[predIdx++];
}
int StreamPredictor::getBlock(char *blk, int size) {
int n, m;
n = 0;
while (n < size) {
if (predIdx >= rowBytes) {
if (!getNextLine()) {
break;
}
}
m = rowBytes - predIdx;
if (m > size - n) {
m = size - n;
}
memcpy(blk + n, predLine + predIdx, m);
predIdx += m;
n += m;
}
return n;
}
GBool StreamPredictor::getNextLine() {
int curPred;
Guchar upLeftBuf[gfxColorMaxComps * 2 + 1];
int left, up, upLeft, p, pa, pb, pc;
int c;
Gulong inBuf, outBuf, bitMask;
int inBits, outBits;
int i, j, k, kk;
// get PNG optimum predictor number
if (predictor >= 10) {
if ((curPred = str->getRawChar()) == EOF) {
return gFalse;
}
curPred += 10;
} else {
curPred = predictor;
}
// read the raw line, apply PNG (byte) predictor
memset(upLeftBuf, 0, pixBytes + 1);
for (i = pixBytes; i < rowBytes; ++i) {
for (j = pixBytes; j > 0; --j) {
upLeftBuf[j] = upLeftBuf[j-1];
}
upLeftBuf[0] = predLine[i];
if ((c = str->getRawChar()) == EOF) {
if (i > pixBytes) {
// this ought to return false, but some (broken) PDF files
// contain truncated image data, and Adobe apparently reads the
// last partial line
break;
}
return gFalse;
}
switch (curPred) {
case 11: // PNG sub
predLine[i] = (Guchar)(predLine[i - pixBytes] + c);
break;
case 12: // PNG up
predLine[i] = (Guchar)(predLine[i] + c);
break;
case 13: // PNG average
predLine[i] = (Guchar)(((predLine[i - pixBytes] + predLine[i]) >> 1) + c);
break;
case 14: // PNG Paeth
left = predLine[i - pixBytes];
up = predLine[i];
upLeft = upLeftBuf[pixBytes];
p = left + up - upLeft;
if ((pa = p - left) < 0)
pa = -pa;
if ((pb = p - up) < 0)
pb = -pb;
if ((pc = p - upLeft) < 0)
pc = -pc;
if (pa <= pb && pa <= pc)
predLine[i] = (Guchar)(left + c);
else if (pb <= pc)
predLine[i] = (Guchar)(up + c);
else
predLine[i] = (Guchar)(upLeft + c);
break;
case 10: // PNG none
default: // no predictor or TIFF predictor
predLine[i] = (Guchar)c;
break;
}
}
// apply TIFF (component) predictor
if (predictor == 2) {
if (nBits == 8) {
for (i = pixBytes; i < rowBytes; ++i) {
predLine[i] = (Guchar)(predLine[i] + predLine[i - nComps]);
}
} else if (nBits == 16) {
for (i = pixBytes; i < rowBytes; i += 2) {
c = ((predLine[i] + predLine[i - 2*nComps]) << 8) +
predLine[i + 1] + predLine[i + 1 - 2*nComps];
predLine[i] = (Guchar)(c >> 8);
predLine[i+1] = (Guchar)(c & 0xff);
}
} else {
memset(upLeftBuf, 0, nComps);
bitMask = (1 << nBits) - 1;
inBuf = outBuf = 0;
inBits = outBits = 0;
j = k = pixBytes;
for (i = 0; i < width; ++i) {
for (kk = 0; kk < nComps; ++kk) {
if (inBits < nBits) {
inBuf = (inBuf << 8) | (predLine[j++] & 0xff);
inBits += 8;
}
upLeftBuf[kk] = (Guchar)((upLeftBuf[kk] +
(inBuf >> (inBits - nBits))) & bitMask);
inBits -= nBits;
outBuf = (outBuf << nBits) | upLeftBuf[kk];
outBits += nBits;
if (outBits >= 8) {
predLine[k++] = (Guchar)(outBuf >> (outBits - 8));
outBits -= 8;
}
}
}
if (outBits > 0) {
predLine[k++] = (Guchar)((outBuf << (8 - outBits)) +
(inBuf & ((1 << (8 - outBits)) - 1)));
}
}
}
// reset to start of line
predIdx = pixBytes;
return gTrue;
}
//------------------------------------------------------------------------
// SharedFile
//------------------------------------------------------------------------
class SharedFile {
public:
SharedFile(FILE *fA);
SharedFile *copy();
void free();
int readBlock(char *buf, GFileOffset pos, int size);
GFileOffset getSize();
private:
~SharedFile();
FILE *f;
int refCnt;
#if MULTITHREADED
GMutex mutex;
#endif
};
SharedFile::SharedFile(FILE *fA) {
f = fA;
refCnt = 1;
#if MULTITHREADED
gInitMutex(&mutex);
#endif
}
SharedFile::~SharedFile() {
#if MULTITHREADED
gDestroyMutex(&mutex);
#endif
}
SharedFile *SharedFile::copy() {
#if MULTITHREADED
gLockMutex(&mutex);
#endif
++refCnt;
#if MULTITHREADED
gUnlockMutex(&mutex);
#endif
return this;
}
void SharedFile::free() {
int newCount;
#if MULTITHREADED
gLockMutex(&mutex);
#endif
newCount = --refCnt;
#if MULTITHREADED
gUnlockMutex(&mutex);
#endif
if (newCount == 0) {
delete this;
}
}
int SharedFile::readBlock(char *buf, GFileOffset pos, int size) {
int n;
#if MULTITHREADED
gLockMutex(&mutex);
#endif
gfseek(f, pos, SEEK_SET);
n = (int)fread(buf, 1, size, f);
#if MULTITHREADED
gUnlockMutex(&mutex);
#endif
return n;
}
GFileOffset SharedFile::getSize() {
GFileOffset size;
#if MULTITHREADED
gLockMutex(&mutex);
#endif
gfseek(f, 0, SEEK_END);
size = gftell(f);
#if MULTITHREADED
gUnlockMutex(&mutex);
#endif
return size;
}
//------------------------------------------------------------------------
// FileStream
//------------------------------------------------------------------------
FileStream::FileStream(FILE *fA, GFileOffset startA, GBool limitedA,
GFileOffset lengthA, Object *dictA):
BaseStream(dictA) {
f = new SharedFile(fA);
start = startA;
limited = limitedA;
length = lengthA;
bufPtr = bufEnd = buf;
bufPos = start;
}
FileStream::FileStream(SharedFile *fA, GFileOffset startA, GBool limitedA,
GFileOffset lengthA, Object *dictA):
BaseStream(dictA) {
f = fA->copy();
start = startA;
limited = limitedA;
length = lengthA;
bufPtr = bufEnd = buf;
bufPos = start;
}
FileStream::~FileStream() {
f->free();
}
Stream *FileStream::copy() {
Object dictA;
dict.copy(&dictA);
return new FileStream(f, start, limited, length, &dictA);
}
Stream *FileStream::makeSubStream(GFileOffset startA, GBool limitedA,
GFileOffset lengthA, Object *dictA) {
return new FileStream(f, startA, limitedA, lengthA, dictA);
}
void FileStream::reset() {
bufPtr = bufEnd = buf;
bufPos = start;
}
int FileStream::getBlock(char *blk, int size) {
int n, m;
n = 0;
while (n < size) {
if (bufPtr >= bufEnd) {
if (!fillBuf()) {
break;
}
}
m = (int)(bufEnd - bufPtr);
if (m > size - n) {
m = size - n;
}
memcpy(blk + n, bufPtr, m);
bufPtr += m;
n += m;
}
return n;
}
GBool FileStream::fillBuf() {
int n;
bufPos += (int)(bufEnd - buf);
bufPtr = bufEnd = buf;
if (limited && bufPos >= start + length) {
return gFalse;
}
if (limited && bufPos + fileStreamBufSize > start + length) {
n = (int)(start + length - bufPos);
} else {
n = fileStreamBufSize;
}
n = f->readBlock(buf, bufPos, n);
bufEnd = buf + n;
if (bufPtr >= bufEnd) {
return gFalse;
}
return gTrue;
}
void FileStream::setPos(GFileOffset pos, int dir) {
GFileOffset size;
if (dir >= 0) {
bufPos = pos;
} else {
size = f->getSize();
if (pos <= size) {
bufPos = size - pos;
} else {
bufPos = 0;
}
}
bufPtr = bufEnd = buf;
}
void FileStream::moveStart(int delta) {
start += delta;
bufPtr = bufEnd = buf;
bufPos = start;
}
//------------------------------------------------------------------------
// MemStream
//------------------------------------------------------------------------
MemStream::MemStream(char *bufA, Guint startA, Guint lengthA, Object *dictA):
BaseStream(dictA) {
buf = bufA;
start = startA;
length = lengthA;
bufEnd = buf + start + length;
bufPtr = buf + start;
needFree = gFalse;
}
MemStream::~MemStream() {
if (needFree) {
gfree(buf);
}
}
Stream *MemStream::copy() {
Object dictA;
dict.copy(&dictA);
return new MemStream(buf, start, length, &dictA);
}
Stream *MemStream::makeSubStream(GFileOffset startA, GBool limited,
GFileOffset lengthA, Object *dictA) {
MemStream *subStr;
Guint newStart, newLength;
if (startA < start) {
newStart = start;
} else if (startA > start + length) {
newStart = start + (int)length;
} else {
newStart = (int)startA;
}
if (!limited || newStart + lengthA > start + length) {
newLength = start + length - newStart;
} else {
newLength = (Guint)lengthA;
}
subStr = new MemStream(buf, newStart, newLength, dictA);
return subStr;
}
void MemStream::reset() {
bufPtr = buf + start;
}
void MemStream::close() {
}
int MemStream::getBlock(char *blk, int size) {
int n;
if (size <= 0) {
return 0;
}
if (bufEnd - bufPtr < size) {
n = (int)(bufEnd - bufPtr);
} else {
n = size;
}
memcpy(blk, bufPtr, n);
bufPtr += n;
return n;
}
void MemStream::setPos(GFileOffset pos, int dir) {
Guint i;
if (dir >= 0) {
i = (Guint)pos;
} else {
i = (Guint)(start + length - pos);
}
if (i < start) {
i = start;
} else if (i > start + length) {
i = start + length;
}
bufPtr = buf + i;
}
void MemStream::moveStart(int delta) {
start += delta;
length -= delta;
bufPtr = buf + start;
}
//------------------------------------------------------------------------
// EmbedStream
//------------------------------------------------------------------------
EmbedStream::EmbedStream(Stream *strA, Object *dictA,
GBool limitedA, GFileOffset lengthA):
BaseStream(dictA) {
str = strA;
limited = limitedA;
length = lengthA;
}
EmbedStream::~EmbedStream() {
}
Stream *EmbedStream::copy() {
Object dictA;
dict.copy(&dictA);
return new EmbedStream(str, &dictA, limited, length);
}
Stream *EmbedStream::makeSubStream(GFileOffset start, GBool limitedA,
GFileOffset lengthA, Object *dictA) {
error(errInternal, -1, "Called makeSubStream() on EmbedStream");
return NULL;
}
int EmbedStream::getChar() {
if (limited && !length) {
return EOF;
}
--length;
return str->getChar();
}
int EmbedStream::lookChar() {
if (limited && !length) {
return EOF;
}
return str->lookChar();
}
int EmbedStream::getBlock(char *blk, int size) {
if (size <= 0) {
return 0;
}
if (limited && length < (Guint)size) {
size = (int)length;
}
length -= size;
return str->getBlock(blk, size);
}
void EmbedStream::setPos(GFileOffset pos, int dir) {
error(errInternal, -1, "Called setPos() on EmbedStream");
}
GFileOffset EmbedStream::getStart() {
error(errInternal, -1, "Called getStart() on EmbedStream");
return 0;
}
void EmbedStream::moveStart(int delta) {
error(errInternal, -1, "Called moveStart() on EmbedStream");
}
//------------------------------------------------------------------------
// ASCIIHexStream
//------------------------------------------------------------------------
ASCIIHexStream::ASCIIHexStream(Stream *strA):
FilterStream(strA) {
buf = EOF;
eof = gFalse;
}
ASCIIHexStream::~ASCIIHexStream() {
delete str;
}
Stream *ASCIIHexStream::copy() {
return new ASCIIHexStream(str->copy());
}
void ASCIIHexStream::reset() {
str->reset();
buf = EOF;
eof = gFalse;
}
int ASCIIHexStream::lookChar() {
int c1, c2, x;
if (buf != EOF)
return buf;
if (eof) {
buf = EOF;
return EOF;
}
do {
c1 = str->getChar();
} while (isspace(c1));
if (c1 == '>') {
eof = gTrue;
buf = EOF;
return buf;
}
do {
c2 = str->getChar();
} while (isspace(c2));
if (c2 == '>') {
eof = gTrue;
c2 = '0';
}
if (c1 >= '0' && c1 <= '9') {
x = (c1 - '0') << 4;
} else if (c1 >= 'A' && c1 <= 'F') {
x = (c1 - 'A' + 10) << 4;
} else if (c1 >= 'a' && c1 <= 'f') {
x = (c1 - 'a' + 10) << 4;
} else if (c1 == EOF) {
eof = gTrue;
x = 0;
} else {
error(errSyntaxError, getPos(),
"Illegal character <{0:02x}> in ASCIIHex stream", c1);
x = 0;
}
if (c2 >= '0' && c2 <= '9') {
x += c2 - '0';
} else if (c2 >= 'A' && c2 <= 'F') {
x += c2 - 'A' + 10;
} else if (c2 >= 'a' && c2 <= 'f') {
x += c2 - 'a' + 10;
} else if (c2 == EOF) {
eof = gTrue;
x = 0;
} else {
error(errSyntaxError, getPos(),
"Illegal character <{0:02x}> in ASCIIHex stream", c2);
}
buf = x & 0xff;
return buf;
}
GString *ASCIIHexStream::getPSFilter(int psLevel, const char *indent) {
GString *s;
if (psLevel < 2) {
return NULL;
}
if (!(s = str->getPSFilter(psLevel, indent))) {
return NULL;
}
s->append(indent)->append("/ASCIIHexDecode filter\n");
return s;
}
GBool ASCIIHexStream::isBinary(GBool last) {
return str->isBinary(gFalse);
}
//------------------------------------------------------------------------
// ASCII85Stream
//------------------------------------------------------------------------
ASCII85Stream::ASCII85Stream(Stream *strA):
FilterStream(strA) {
index = n = 0;
eof = gFalse;
}
ASCII85Stream::~ASCII85Stream() {
delete str;
}
Stream *ASCII85Stream::copy() {
return new ASCII85Stream(str->copy());
}
void ASCII85Stream::reset() {
str->reset();
index = n = 0;
eof = gFalse;
}
int ASCII85Stream::lookChar() {
int k;
Gulong t;
if (index >= n) {
if (eof)
return EOF;
index = 0;
do {
c[0] = str->getChar();
} while (Lexer::isSpace(c[0]));
if (c[0] == '~' || c[0] == EOF) {
eof = gTrue;
n = 0;
return EOF;
} else if (c[0] == 'z') {
b[0] = b[1] = b[2] = b[3] = 0;
n = 4;
} else {
for (k = 1; k < 5; ++k) {
do {
c[k] = str->getChar();
} while (Lexer::isSpace(c[k]));
if (c[k] == '~' || c[k] == EOF)
break;
}
n = k - 1;
if (k < 5 && (c[k] == '~' || c[k] == EOF)) {
for (++k; k < 5; ++k)
c[k] = 0x21 + 84;
eof = gTrue;
}
t = 0;
for (k = 0; k < 5; ++k)
t = t * 85 + (c[k] - 0x21);
for (k = 3; k >= 0; --k) {
b[k] = (int)(t & 0xff);
t >>= 8;
}
}
}
return b[index];
}
GString *ASCII85Stream::getPSFilter(int psLevel, const char *indent) {
GString *s;
if (psLevel < 2) {
return NULL;
}
if (!(s = str->getPSFilter(psLevel, indent))) {
return NULL;
}
s->append(indent)->append("/ASCII85Decode filter\n");
return s;
}
GBool ASCII85Stream::isBinary(GBool last) {
return str->isBinary(gFalse);
}
//------------------------------------------------------------------------
// LZWStream
//------------------------------------------------------------------------
LZWStream::LZWStream(Stream *strA, int predictor, int columns, int colors,
int bits, int earlyA):
FilterStream(strA) {
if (predictor != 1) {
pred = new StreamPredictor(this, predictor, columns, colors, bits);
if (!pred->isOk()) {
delete pred;
pred = NULL;
}
} else {
pred = NULL;
}
early = earlyA;
eof = gFalse;
inputBits = 0;
clearTable();
}
LZWStream::~LZWStream() {
if (pred) {
delete pred;
}
delete str;
}
Stream *LZWStream::copy() {
if (pred) {
return new LZWStream(str->copy(), pred->getPredictor(),
pred->getWidth(), pred->getNComps(),
pred->getNBits(), early);
} else {
return new LZWStream(str->copy(), 1, 0, 0, 0, early);
}
}
int LZWStream::getChar() {
if (pred) {
return pred->getChar();
}
if (eof) {
return EOF;
}
if (seqIndex >= seqLength) {
if (!processNextCode()) {
return EOF;
}
}
return seqBuf[seqIndex++];
}
int LZWStream::lookChar() {
if (pred) {
return pred->lookChar();
}
if (eof) {
return EOF;
}
if (seqIndex >= seqLength) {
if (!processNextCode()) {
return EOF;
}
}
return seqBuf[seqIndex];
}
int LZWStream::getRawChar() {
if (eof) {
return EOF;
}
if (seqIndex >= seqLength) {
if (!processNextCode()) {
return EOF;
}
}
return seqBuf[seqIndex++];
}
int LZWStream::getBlock(char *blk, int size) {
int n, m;
if (pred) {
return pred->getBlock(blk, size);
}
if (eof) {
return 0;
}
n = 0;
while (n < size) {
if (seqIndex >= seqLength) {
if (!processNextCode()) {
break;
}
}
m = seqLength - seqIndex;
if (m > size - n) {
m = size - n;
}
memcpy(blk + n, seqBuf + seqIndex, m);
seqIndex += m;
n += m;
}
return n;
}
void LZWStream::reset() {
str->reset();
if (pred) {
pred->reset();
}
eof = gFalse;
inputBits = 0;
clearTable();
}
GBool LZWStream::processNextCode() {
int code;
int nextLength;
int i, j;
// check for EOF
if (eof) {
return gFalse;
}
// check for eod and clear-table codes
start:
code = getCode();
if (code == EOF || code == 257) {
eof = gTrue;
return gFalse;
}
if (code == 256) {
clearTable();
goto start;
}
if (nextCode >= 4097) {
error(errSyntaxError, getPos(),
"Bad LZW stream - expected clear-table code");
clearTable();
}
// process the next code
nextLength = seqLength + 1;
if (code < 256) {
seqBuf[0] = (Guchar)code;
seqLength = 1;
} else if (code < nextCode) {
seqLength = table[code].length;
for (i = seqLength - 1, j = code; i > 0; --i) {
seqBuf[i] = table[j].tail;
j = table[j].head;
}
seqBuf[0] = (Guchar)j;
} else if (code == nextCode) {
seqBuf[seqLength] = (Guchar)newChar;
++seqLength;
} else {
error(errSyntaxError, getPos(), "Bad LZW stream - unexpected code");
eof = gTrue;
return gFalse;
}
newChar = seqBuf[0];
if (first) {
first = gFalse;
} else {
table[nextCode].length = nextLength;
table[nextCode].head = prevCode;
table[nextCode].tail = (Guchar)newChar;
++nextCode;
if (nextCode + early == 512)
nextBits = 10;
else if (nextCode + early == 1024)
nextBits = 11;
else if (nextCode + early == 2048)
nextBits = 12;
}
prevCode = code;
// reset buffer
seqIndex = 0;
return gTrue;
}
void LZWStream::clearTable() {
nextCode = 258;
nextBits = 9;
seqIndex = seqLength = 0;
first = gTrue;
}
int LZWStream::getCode() {
int c;
int code;
while (inputBits < nextBits) {
if ((c = str->getChar()) == EOF)
return EOF;
inputBuf = (inputBuf << 8) | (c & 0xff);
inputBits += 8;
}
code = (inputBuf >> (inputBits - nextBits)) & ((1 << nextBits) - 1);
inputBits -= nextBits;
return code;
}
GString *LZWStream::getPSFilter(int psLevel, const char *indent) {
GString *s;
if (psLevel < 2 || pred) {
return NULL;
}
if (!(s = str->getPSFilter(psLevel, indent))) {
return NULL;
}
s->append(indent)->append("<< ");
if (!early) {
s->append("/EarlyChange 0 ");
}
s->append(">> /LZWDecode filter\n");
return s;
}
GBool LZWStream::isBinary(GBool last) {
return str->isBinary(gTrue);
}
//------------------------------------------------------------------------
// RunLengthStream
//------------------------------------------------------------------------
RunLengthStream::RunLengthStream(Stream *strA):
FilterStream(strA) {
bufPtr = bufEnd = buf;
eof = gFalse;
}
RunLengthStream::~RunLengthStream() {
delete str;
}
Stream *RunLengthStream::copy() {
return new RunLengthStream(str->copy());
}
void RunLengthStream::reset() {
str->reset();
bufPtr = bufEnd = buf;
eof = gFalse;
}
int RunLengthStream::getBlock(char *blk, int size) {
int n, m;
n = 0;
while (n < size) {
if (bufPtr >= bufEnd) {
if (!fillBuf()) {
break;
}
}
m = (int)(bufEnd - bufPtr);
if (m > size - n) {
m = size - n;
}
memcpy(blk + n, bufPtr, m);
bufPtr += m;
n += m;
}
return n;
}
GString *RunLengthStream::getPSFilter(int psLevel, const char *indent) {
GString *s;
if (psLevel < 2) {
return NULL;
}
if (!(s = str->getPSFilter(psLevel, indent))) {
return NULL;
}
s->append(indent)->append("/RunLengthDecode filter\n");
return s;
}
GBool RunLengthStream::isBinary(GBool last) {
return str->isBinary(gTrue);
}
GBool RunLengthStream::fillBuf() {
int c;
int n, i;
if (eof)
return gFalse;
c = str->getChar();
if (c == 0x80 || c == EOF) {
eof = gTrue;
return gFalse;
}
if (c < 0x80) {
n = c + 1;
for (i = 0; i < n; ++i)
buf[i] = (char)str->getChar();
} else {
n = 0x101 - c;
c = str->getChar();
for (i = 0; i < n; ++i)
buf[i] = (char)c;
}
bufPtr = buf;
bufEnd = buf + n;
return gTrue;
}
//------------------------------------------------------------------------
// CCITTFaxStream
//------------------------------------------------------------------------
CCITTFaxStream::CCITTFaxStream(Stream *strA, int encodingA, GBool endOfLineA,
GBool byteAlignA, int columnsA, int rowsA,
GBool endOfBlockA, GBool blackA):
FilterStream(strA) {
encoding = encodingA;
endOfLine = endOfLineA;
byteAlign = byteAlignA;
columns = columnsA;
if (columns < 1) {
columns = 1;
} else if (columns > INT_MAX - 3) {
columns = INT_MAX - 3;
}
rows = rowsA;
endOfBlock = endOfBlockA;
black = blackA;
blackXOR = black ? 0xff : 0x00;
// 0 <= codingLine[0] < codingLine[1] < ... < codingLine[n] = columns
// ---> max codingLine size = columns + 1
// refLine has two extra guard entries at the end
// ---> max refLine size = columns + 3
codingLine = (int *)gmallocn(columns + 1, sizeof(int));
refLine = (int *)gmallocn(columns + 3, sizeof(int));
eof = gFalse;
row = 0;
nextLine2D = encoding < 0;
inputBits = 0;
codingLine[0] = columns;
nextCol = columns;
a0i = 0;
err = gFalse;
nErrors = 0;
}
CCITTFaxStream::~CCITTFaxStream() {
delete str;
gfree(refLine);
gfree(codingLine);
}
Stream *CCITTFaxStream::copy() {
return new CCITTFaxStream(str->copy(), encoding, endOfLine,
byteAlign, columns, rows, endOfBlock, black);
}
void CCITTFaxStream::reset() {
int code1;
str->reset();
eof = gFalse;
row = 0;
nextLine2D = encoding < 0;
inputBits = 0;
codingLine[0] = columns;
nextCol = columns;
a0i = 0;
// skip any initial zero bits and end-of-line marker, and get the 2D
// encoding tag
while ((code1 = lookBits(12)) == 0) {
eatBits(1);
}
if (code1 == 0x001) {
eatBits(12);
endOfLine = gTrue;
}
if (encoding > 0) {
nextLine2D = !lookBits(1);
eatBits(1);
}
}
int CCITTFaxStream::getChar() {
int c, bitsNeeded, bitsAvail, bitsUsed;
if (nextCol >= columns) {
if (eof) {
return EOF;
}
if (!readRow()) {
return EOF;
}
}
bitsAvail = codingLine[a0i] - nextCol;
if (bitsAvail > 8) {
c = (a0i & 1) ? 0x00 : 0xff;
} else {
c = 0;
bitsNeeded = 8;
do {
bitsUsed = (bitsAvail < bitsNeeded) ? bitsAvail : bitsNeeded;
c <<= bitsUsed;
if (!(a0i & 1)) {
c |= 0xff >> (8 - bitsUsed);
}
bitsAvail -= bitsUsed;
bitsNeeded -= bitsUsed;
if (bitsAvail == 0) {
if (codingLine[a0i] >= columns) {
c <<= bitsNeeded;
break;
}
++a0i;
bitsAvail = codingLine[a0i] - codingLine[a0i - 1];
}
} while (bitsNeeded > 0);
}
nextCol += 8;
c ^= blackXOR;
return c;
}
int CCITTFaxStream::lookChar() {
int c, bitsNeeded, bitsAvail, bitsUsed, i;
if (nextCol >= columns) {
if (eof) {
return EOF;
}
if (!readRow()) {
return EOF;
}
}
bitsAvail = codingLine[a0i] - nextCol;
if (bitsAvail >= 8) {
c = (a0i & 1) ? 0x00 : 0xff;
} else {
i = a0i;
c = 0;
bitsNeeded = 8;
do {
bitsUsed = (bitsAvail < bitsNeeded) ? bitsAvail : bitsNeeded;
c <<= bitsUsed;
if (!(i & 1)) {
c |= 0xff >> (8 - bitsUsed);
}
bitsAvail -= bitsUsed;
bitsNeeded -= bitsUsed;
if (bitsAvail == 0) {
if (codingLine[i] >= columns) {
c <<= bitsNeeded;
break;
}
++i;
bitsAvail = codingLine[i] - codingLine[i - 1];
}
} while (bitsNeeded > 0);
}
c ^= blackXOR;
return c;
}
int CCITTFaxStream::getBlock(char *blk, int size) {
int bytesRead, bitsAvail, bitsNeeded, bitsUsed, byte, c;
bytesRead = 0;
while (bytesRead < size) {
if (nextCol >= columns) {
if (eof) {
break;
}
if (!readRow()) {
break;
}
}
bitsAvail = codingLine[a0i] - nextCol;
byte = (a0i & 1) ? 0x00 : 0xff;
if (bitsAvail > 8) {
c = byte;
bitsAvail -= 8;
} else {
c = 0;
bitsNeeded = 8;
do {
bitsUsed = (bitsAvail < bitsNeeded) ? bitsAvail : bitsNeeded;
c <<= bitsUsed;
c |= byte >> (8 - bitsUsed);
bitsAvail -= bitsUsed;
bitsNeeded -= bitsUsed;
if (bitsAvail == 0) {
if (codingLine[a0i] >= columns) {
c <<= bitsNeeded;
break;
}
++a0i;
bitsAvail = codingLine[a0i] - codingLine[a0i - 1];
byte ^= 0xff;
}
} while (bitsNeeded > 0);
}
nextCol += 8;
blk[bytesRead++] = (char)(c ^ blackXOR);
}
return bytesRead;
}
inline void CCITTFaxStream::addPixels(int a1, int blackPixels) {
if (a1 > codingLine[a0i]) {
if (a1 > columns) {
error(errSyntaxError, getPos(),
"CCITTFax row is wrong length ({0:d})", a1);
err = gTrue;
++nErrors;
a1 = columns;
}
if ((a0i & 1) ^ blackPixels) {
++a0i;
}
codingLine[a0i] = a1;
}
}
inline void CCITTFaxStream::addPixelsNeg(int a1, int blackPixels) {
if (a1 > codingLine[a0i]) {
if (a1 > columns) {
error(errSyntaxError, getPos(),
"CCITTFax row is wrong length ({0:d})", a1);
err = gTrue;
++nErrors;
a1 = columns;
}
if ((a0i & 1) ^ blackPixels) {
++a0i;
}
codingLine[a0i] = a1;
} else if (a1 < codingLine[a0i]) {
if (a1 < 0) {
error(errSyntaxError, getPos(), "Invalid CCITTFax code");
err = gTrue;
++nErrors;
a1 = 0;
}
while (a0i > 0 && a1 <= codingLine[a0i - 1]) {
--a0i;
}
codingLine[a0i] = a1;
}
}
GBool CCITTFaxStream::readRow() {
int code1, code2, code3;
int b1i, blackPixels, i;
GBool gotEOL;
// if at eof just return EOF
if (eof) {
return gFalse;
}
err = gFalse;
// 2-D encoding
if (nextLine2D) {
for (i = 0; codingLine[i] < columns; ++i) {
refLine[i] = codingLine[i];
}
refLine[i++] = columns;
refLine[i++] = columns;
refLine[i] = columns;
codingLine[0] = 0;
a0i = 0;
b1i = 0;
blackPixels = 0;
// invariant:
// refLine[b1i-1] <= codingLine[a0i] < refLine[b1i] < refLine[b1i+1]
// <= columns
// exception at left edge:
// codingLine[a0i = 0] = refLine[b1i = 0] = 0 is possible
// exception at right edge:
// refLine[b1i] = refLine[b1i+1] = columns is possible
while (codingLine[a0i] < columns) {
code1 = getTwoDimCode();
switch (code1) {
case twoDimPass:
addPixels(refLine[b1i + 1], blackPixels);
if (refLine[b1i + 1] < columns) {
b1i += 2;
}
break;
case twoDimHoriz:
code1 = code2 = 0;
if (blackPixels) {
do {
code1 += code3 = getBlackCode();
} while (code3 >= 64);
do {
code2 += code3 = getWhiteCode();
} while (code3 >= 64);
} else {
do {
code1 += code3 = getWhiteCode();
} while (code3 >= 64);
do {
code2 += code3 = getBlackCode();
} while (code3 >= 64);
}
addPixels(codingLine[a0i] + code1, blackPixels);
if (codingLine[a0i] < columns) {
addPixels(codingLine[a0i] + code2, blackPixels ^ 1);
}
while (refLine[b1i] <= codingLine[a0i] && refLine[b1i] < columns) {
b1i += 2;
}
break;
case twoDimVertR3:
addPixels(refLine[b1i] + 3, blackPixels);
blackPixels ^= 1;
if (codingLine[a0i] < columns) {
++b1i;
while (refLine[b1i] <= codingLine[a0i] && refLine[b1i] < columns) {
b1i += 2;
}
}
break;
case twoDimVertR2:
addPixels(refLine[b1i] + 2, blackPixels);
blackPixels ^= 1;
if (codingLine[a0i] < columns) {
++b1i;
while (refLine[b1i] <= codingLine[a0i] && refLine[b1i] < columns) {
b1i += 2;
}
}
break;
case twoDimVertR1:
addPixels(refLine[b1i] + 1, blackPixels);
blackPixels ^= 1;
if (codingLine[a0i] < columns) {
++b1i;
while (refLine[b1i] <= codingLine[a0i] && refLine[b1i] < columns) {
b1i += 2;
}
}
break;
case twoDimVert0:
addPixels(refLine[b1i], blackPixels);
blackPixels ^= 1;
if (codingLine[a0i] < columns) {
++b1i;
while (refLine[b1i] <= codingLine[a0i] && refLine[b1i] < columns) {
b1i += 2;
}
}
break;
case twoDimVertL3:
addPixelsNeg(refLine[b1i] - 3, blackPixels);
blackPixels ^= 1;
if (codingLine[a0i] < columns) {
if (b1i > 0) {
--b1i;
} else {
++b1i;
}
while (refLine[b1i] <= codingLine[a0i] && refLine[b1i] < columns) {
b1i += 2;
}
}
break;
case twoDimVertL2:
addPixelsNeg(refLine[b1i] - 2, blackPixels);
blackPixels ^= 1;
if (codingLine[a0i] < columns) {
if (b1i > 0) {
--b1i;
} else {
++b1i;
}
while (refLine[b1i] <= codingLine[a0i] && refLine[b1i] < columns) {
b1i += 2;
}
}
break;
case twoDimVertL1:
addPixelsNeg(refLine[b1i] - 1, blackPixels);
blackPixels ^= 1;
if (codingLine[a0i] < columns) {
if (b1i > 0) {
--b1i;
} else {
++b1i;
}
while (refLine[b1i] <= codingLine[a0i] && refLine[b1i] < columns) {
b1i += 2;
}
}
break;
case EOF:
addPixels(columns, 0);
err = gTrue;
break;
default:
error(errSyntaxError, getPos(),
"Bad 2D code {0:04x} in CCITTFax stream", code1);
addPixels(columns, 0);
err = gTrue;
++nErrors;
break;
}
}
// 1-D encoding
} else {
codingLine[0] = 0;
a0i = 0;
blackPixels = 0;
while (codingLine[a0i] < columns) {
code1 = 0;
if (blackPixels) {
do {
code1 += code3 = getBlackCode();
} while (code3 >= 64);
} else {
do {
code1 += code3 = getWhiteCode();
} while (code3 >= 64);
}
addPixels(codingLine[a0i] + code1, blackPixels);
blackPixels ^= 1;
}
}
// check for end-of-line marker, skipping over any extra zero bits
// (if EncodedByteAlign is true and EndOfLine is false, there can
// be "false" EOL markers -- i.e., if the last n unused bits in
// row i are set to zero, and the first 11-n bits in row i+1
// happen to be zero -- so we don't look for EOL markers in this
// case)
gotEOL = gFalse;
if (!endOfBlock && row == rows - 1) {
eof = gTrue;
} else if (endOfLine || !byteAlign) {
code1 = lookBits(12);
if (endOfLine) {
while (code1 != EOF && code1 != 0x001) {
eatBits(1);
code1 = lookBits(12);
}
} else {
while (code1 == 0) {
eatBits(1);
code1 = lookBits(12);
}
}
if (code1 == 0x001) {
eatBits(12);
gotEOL = gTrue;
}
}
// byte-align the row
// (Adobe apparently doesn't do byte alignment after EOL markers
// -- I've seen CCITT image data streams in two different formats,
// both with the byteAlign flag set:
// 1. xx:x0:01:yy:yy
// 2. xx:00:1y:yy:yy
// where xx is the previous line, yy is the next line, and colons
// separate bytes.)
if (byteAlign && !gotEOL) {
inputBits &= ~7;
}
// check for end of stream
if (lookBits(1) == EOF) {
eof = gTrue;
}
// get 2D encoding tag
if (!eof && encoding > 0) {
nextLine2D = !lookBits(1);
eatBits(1);
}
// check for end-of-block marker
if (endOfBlock && !endOfLine && byteAlign) {
// in this case, we didn't check for an EOL code above, so we
// need to check here
code1 = lookBits(24);
if (code1 == 0x001001) {
eatBits(12);
gotEOL = gTrue;
}
}
if (endOfBlock && gotEOL) {
code1 = lookBits(12);
if (code1 == 0x001) {
eatBits(12);
if (encoding > 0) {
lookBits(1);
eatBits(1);
}
if (encoding >= 0) {
for (i = 0; i < 4; ++i) {
code1 = lookBits(12);
if (code1 != 0x001) {
error(errSyntaxError, getPos(),
"Bad RTC code in CCITTFax stream");
++nErrors;
}
eatBits(12);
if (encoding > 0) {
lookBits(1);
eatBits(1);
}
}
}
eof = gTrue;
}
// look for an end-of-line marker after an error -- we only do
// this if we know the stream contains end-of-line markers because
// the "just plow on" technique tends to work better otherwise
} else if (err && endOfLine) {
while (1) {
code1 = lookBits(13);
if (code1 == EOF) {
eof = gTrue;
return gFalse;
}
if ((code1 >> 1) == 0x001) {
break;
}
eatBits(1);
}
eatBits(12);
if (encoding > 0) {
eatBits(1);
nextLine2D = !(code1 & 1);
}
}
// corrupt CCITTFax streams can generate huge data expansion -- we
// avoid that case by aborting decode after 1000 errors
if (nErrors > 1000) {
error(errSyntaxError, getPos(), "Too many errors in CCITTFaxStream - aborting decode");
eof = gTrue;
return gFalse;
}
// set up for output
nextCol = 0;
a0i = (codingLine[0] > 0) ? 0 : 1;
++row;
return gTrue;
}
short CCITTFaxStream::getTwoDimCode() {
int code;
CCITTCode *p;
int n;
code = 0; // make gcc happy
if (endOfBlock) {
if ((code = lookBits(7)) != EOF) {
p = &twoDimTab1[code];
if (p->bits > 0) {
eatBits(p->bits);
return p->n;
}
}
} else {
for (n = 1; n <= 7; ++n) {
if ((code = lookBits(n)) == EOF) {
break;
}
if (n < 7) {
code <<= 7 - n;
}
p = &twoDimTab1[code];
if (p->bits == n) {
eatBits(n);
return p->n;
}
}
}
error(errSyntaxError, getPos(),
"Bad two dim code ({0:04x}) in CCITTFax stream", code);
++nErrors;
return EOF;
}
short CCITTFaxStream::getWhiteCode() {
short code;
CCITTCode *p;
int n;
code = 0; // make gcc happy
if (endOfBlock) {
code = lookBits(12);
if (code == EOF) {
return 1;
}
if ((code >> 5) == 0) {
p = &whiteTab1[code];
} else {
p = &whiteTab2[code >> 3];
}
if (p->bits > 0) {
eatBits(p->bits);
return p->n;
}
} else {
for (n = 1; n <= 9; ++n) {
code = lookBits(n);
if (code == EOF) {
return 1;
}
if (n < 9) {
code = (short)(code << (9 - n));
}
p = &whiteTab2[code];
if (p->bits == n) {
eatBits(n);
return p->n;
}
}
for (n = 11; n <= 12; ++n) {
code = lookBits(n);
if (code == EOF) {
return 1;
}
if (n < 12) {
code = (short)(code << (12 - n));
}
p = &whiteTab1[code];
if (p->bits == n) {
eatBits(n);
return p->n;
}
}
}
error(errSyntaxError, getPos(),
"Bad white code ({0:04x}) in CCITTFax stream", code);
++nErrors;
// eat a bit and return a positive number so that the caller doesn't
// go into an infinite loop
eatBits(1);
return 1;
}
short CCITTFaxStream::getBlackCode() {
short code;
CCITTCode *p;
int n;
code = 0; // make gcc happy
if (endOfBlock) {
code = lookBits(13);
if (code == EOF) {
return 1;
}
if ((code >> 7) == 0) {
p = &blackTab1[code];
} else if ((code >> 9) == 0 && (code >> 7) != 0) {
p = &blackTab2[(code >> 1) - 64];
} else {
p = &blackTab3[code >> 7];
}
if (p->bits > 0) {
eatBits(p->bits);
return p->n;
}
} else {
for (n = 2; n <= 6; ++n) {
code = lookBits(n);
if (code == EOF) {
return 1;
}
if (n < 6) {
code = (short)(code << (6 - n));
}
p = &blackTab3[code];
if (p->bits == n) {
eatBits(n);
return p->n;
}
}
for (n = 7; n <= 12; ++n) {
code = lookBits(n);
if (code == EOF) {
return 1;
}
if (n < 12) {
code = (short)(code << (12 - n));
}
if (code >= 64) {
p = &blackTab2[code - 64];
if (p->bits == n) {
eatBits(n);
return p->n;
}
}
}
for (n = 10; n <= 13; ++n) {
code = lookBits(n);
if (code == EOF) {
return 1;
}
if (n < 13) {
code = (short)(code << (13 - n));
}
p = &blackTab1[code];
if (p->bits == n) {
eatBits(n);
return p->n;
}
}
}
error(errSyntaxError, getPos(),
"Bad black code ({0:04x}) in CCITTFax stream", code);
++nErrors;
// eat a bit and return a positive number so that the caller doesn't
// go into an infinite loop
eatBits(1);
return 1;
}
short CCITTFaxStream::lookBits(int n) {
int c;
while (inputBits < n) {
if ((c = str->getChar()) == EOF) {
if (inputBits == 0) {
return EOF;
}
// near the end of the stream, the caller may ask for more bits
// than are available, but there may still be a valid code in
// however many bits are available -- we need to return correct
// data in this case
return (short)((inputBuf << (n - inputBits)) & (0xffffffff >> (32 - n)));
}
inputBuf = (inputBuf << 8) + c;
inputBits += 8;
}
return (short)((inputBuf >> (inputBits - n)) & (0xffffffff >> (32 - n)));
}
GString *CCITTFaxStream::getPSFilter(int psLevel, const char *indent) {
GString *s;
char s1[50];
if (psLevel < 2) {
return NULL;
}
if (!(s = str->getPSFilter(psLevel, indent))) {
return NULL;
}
s->append(indent)->append("<< ");
if (encoding != 0) {
sprintf(s1, "/K %d ", encoding);
s->append(s1);
}
if (endOfLine) {
s->append("/EndOfLine true ");
}
if (byteAlign) {
s->append("/EncodedByteAlign true ");
}
sprintf(s1, "/Columns %d ", columns);
s->append(s1);
if (rows != 0) {
sprintf(s1, "/Rows %d ", rows);
s->append(s1);
}
if (!endOfBlock) {
s->append("/EndOfBlock false ");
}
if (black) {
s->append("/BlackIs1 true ");
}
s->append(">> /CCITTFaxDecode filter\n");
return s;
}
GBool CCITTFaxStream::isBinary(GBool last) {
return str->isBinary(gTrue);
}
//------------------------------------------------------------------------
// DCTStream
//------------------------------------------------------------------------
#if HAVE_JPEGLIB
DCTStream::DCTStream(Stream *strA, GBool colorXformA):
FilterStream(strA) {
colorXform = colorXformA;
lineBuf = NULL;
inlineImage = str->isEmbedStream();
}
DCTStream::~DCTStream() {
delete str;
}
Stream *DCTStream::copy() {
return new DCTStream(str->copy(), colorXform);
}
void DCTStream::reset() {
int i;
lineBuf = NULL;
error = gFalse;
str->reset();
// initialize the libjpeg decompression object
decomp.err = jpeg_std_error(&errorMgr.err);
errorMgr.err.error_exit = &errorExit;
errorMgr.err.output_message = &errorMessage;
if (setjmp(errorMgr.setjmpBuf)) {
error = gTrue;
return;
}
jpeg_create_decompress(&decomp);
// set up the data source manager
sourceMgr.src.next_input_byte = NULL;
sourceMgr.src.bytes_in_buffer = 0;
sourceMgr.src.init_source = &initSourceCbk;
sourceMgr.src.fill_input_buffer = &fillInputBufferCbk;
sourceMgr.src.skip_input_data = &skipInputDataCbk;
sourceMgr.src.resync_to_restart = &jpeg_resync_to_restart;
sourceMgr.src.term_source = &termSourceCbk;
sourceMgr.str = this;
decomp.src = &sourceMgr.src;
// read the header
jpeg_read_header(&decomp, TRUE);
jpeg_calc_output_dimensions(&decomp);
// set up the color transform
if (!decomp.saw_Adobe_marker && colorXform >= 0) {
if (decomp.num_components == 3) {
decomp.jpeg_color_space = colorXform ? JCS_YCbCr : JCS_RGB;
decomp.out_color_space = JCS_RGB;
decomp.out_color_components = 3;
} else if (decomp.num_components == 4) {
decomp.jpeg_color_space = colorXform ? JCS_YCCK : JCS_CMYK;
decomp.out_color_space = JCS_CMYK;
decomp.out_color_components = 4;
}
}
// allocate a line buffer
if ((lineBufHeight = decomp.rec_outbuf_height) > 4) {
lineBufHeight = 4;
}
lineBuf = (char *)gmallocn(lineBufHeight * decomp.out_color_components,
decomp.output_width);
for (i = 0; i < lineBufHeight; ++i) {
lineBufRows[i] = lineBuf +
i * decomp.out_color_components * decomp.output_width;
}
bufPtr = bufEnd = lineBuf;
// start up the decompression process
jpeg_start_decompress(&decomp);
}
void DCTStream::close() {
// we don't call jpeg_finish_decompress() here because it will report
// an error if the full image wasn't read
if (setjmp(errorMgr.setjmpBuf)) {
goto skip;
}
jpeg_destroy_decompress(&decomp);
skip:
gfree(lineBuf);
FilterStream::close();
}
int DCTStream::getChar() {
if (error) {
return EOF;
}
if (bufPtr == bufEnd) {
if (!fillBuf()) {
return EOF;
}
}
return *bufPtr++ & 0xff;
}
int DCTStream::lookChar() {
if (error) {
return EOF;
}
if (bufPtr == bufEnd) {
if (!fillBuf()) {
return EOF;
}
}
return *bufPtr & 0xff;
}
int DCTStream::getBlock(char *blk, int size) {
int nRead, nAvail, n;
if (error) {
return 0;
}
nRead = 0;
while (nRead < size) {
if (bufPtr == bufEnd) {
if (!fillBuf()) {
break;
}
}
nAvail = bufEnd - bufPtr;
n = (nAvail < size - nRead) ? nAvail : size - nRead;
memcpy(blk + nRead, bufPtr, n);
bufPtr += n;
nRead += n;
}
return nRead;
}
GBool DCTStream::fillBuf() {
int nLines;
if (setjmp(errorMgr.setjmpBuf)) {
error = gTrue;
return gFalse;
}
nLines = jpeg_read_scanlines(&decomp, (JSAMPARRAY)lineBufRows,
lineBufHeight);
bufPtr = lineBuf;
bufEnd = lineBuf +
nLines * decomp.out_color_components * decomp.output_width;
return nLines > 0;
}
void DCTStream::errorExit(j_common_ptr d) {
DCTErrorMgr *errMgr = (DCTErrorMgr *)d->err;
longjmp(errMgr->setjmpBuf, 1);
}
void DCTStream::errorMessage(j_common_ptr d) {
#if 0 // for debugging
char buf[JMSG_LENGTH_MAX];
(*d->err->format_message)(d, buf);
fprintf(stderr, "%s\n", buf);
#endif
}
void DCTStream::initSourceCbk(j_decompress_ptr d) {
DCTSourceMgr *sourceMgr = (DCTSourceMgr *)d->src;
sourceMgr->src.next_input_byte = NULL;
sourceMgr->src.bytes_in_buffer = 0;
}
boolean DCTStream::fillInputBufferCbk(j_decompress_ptr d) {
DCTSourceMgr *sourceMgr = (DCTSourceMgr *)d->src;
int c, n;
// for inline images, we need to read one byte at a time so we don't
// read past the end of the input data
if (sourceMgr->str->inlineImage) {
c = sourceMgr->str->str->getChar();
if (c == EOF) {
sourceMgr->buf[0] = (char)0xff;
sourceMgr->buf[1] = (char)JPEG_EOI;
sourceMgr->src.bytes_in_buffer = 2;
} else {
sourceMgr->buf[0] = (char)c;
sourceMgr->src.bytes_in_buffer = 1;
}
} else {
n = sourceMgr->str->str->getBlock(sourceMgr->buf, dctStreamBufSize);
if (n > 0) {
sourceMgr->src.bytes_in_buffer = (size_t)n;
} else {
sourceMgr->buf[0] = (char)0xff;
sourceMgr->buf[1] = (char)JPEG_EOI;
sourceMgr->src.bytes_in_buffer = 2;
}
}
sourceMgr->src.next_input_byte = (JOCTET *)sourceMgr->buf;
return TRUE;
}
void DCTStream::skipInputDataCbk(j_decompress_ptr d, long numBytes) {
DCTSourceMgr *sourceMgr = (DCTSourceMgr *)d->src;
if (numBytes > 0) {
if ((long)sourceMgr->src.bytes_in_buffer < numBytes) {
sourceMgr->str->str->discardChars(
(Guint)(numBytes - sourceMgr->src.bytes_in_buffer));
sourceMgr->src.bytes_in_buffer = 0;
} else {
sourceMgr->src.bytes_in_buffer -= numBytes;
sourceMgr->src.next_input_byte += numBytes;
}
}
}
void DCTStream::termSourceCbk(j_decompress_ptr d) {
}
#else // HAVE_JPEGLIB
#define idctScaleA 1024
#define idctScaleB 1138
#define idctScaleC 1730
#define idctScaleD 1609
#define idctScaleE 1264
#define idctScaleF 1922
#define idctScaleG 1788
#define idctScaleH 2923
#define idctScaleI 2718
#define idctScaleJ 2528
static int idctScaleMat[64] = {
idctScaleA, idctScaleB, idctScaleC, idctScaleD, idctScaleA, idctScaleD, idctScaleC, idctScaleB,
idctScaleB, idctScaleE, idctScaleF, idctScaleG, idctScaleB, idctScaleG, idctScaleF, idctScaleE,
idctScaleC, idctScaleF, idctScaleH, idctScaleI, idctScaleC, idctScaleI, idctScaleH, idctScaleF,
idctScaleD, idctScaleG, idctScaleI, idctScaleJ, idctScaleD, idctScaleJ, idctScaleI, idctScaleG,
idctScaleA, idctScaleB, idctScaleC, idctScaleD, idctScaleA, idctScaleD, idctScaleC, idctScaleB,
idctScaleD, idctScaleG, idctScaleI, idctScaleJ, idctScaleD, idctScaleJ, idctScaleI, idctScaleG,
idctScaleC, idctScaleF, idctScaleH, idctScaleI, idctScaleC, idctScaleI, idctScaleH, idctScaleF,
idctScaleB, idctScaleE, idctScaleF, idctScaleG, idctScaleB, idctScaleG, idctScaleF, idctScaleE
};
// color conversion parameters (16.16 fixed point format)
#define dctCrToR 91881 // 1.4020
#define dctCbToG -22553 // -0.3441363
#define dctCrToG -46802 // -0.71413636
#define dctCbToB 116130 // 1.772
// The dctClip function clips signed integers to the [0,255] range.
// To handle valid DCT inputs, this must support an input range of at
// least [-256,511]. Invalid DCT inputs (e.g., from damaged PDF
// files) can result in arbitrary values, so we want to mask those
// out. We round the input range size up to a power of 2 (so we can
// use a bit mask), which gives us an input range of [-384,639]. The
// end result is:
// input output
// ---------- ------
// <-384 X invalid inputs -> output is "don't care"
// -384..-257 0 invalid inputs, clipped
// -256..-1 0 valid inputs, need to be clipped
// 0..255 0..255
// 256..511 255 valid inputs, need to be clipped
// 512..639 255 invalid inputs, clipped
// >=512 X invalid inputs -> output is "don't care"
#define dctClipOffset 384
#define dctClipMask 1023
static Guchar dctClipData[1024];
static inline void dctClipInit() {
static int initDone = 0;
int i;
if (!initDone) {
for (i = -384; i < 0; ++i) {
dctClipData[dctClipOffset + i] = 0;
}
for (i = 0; i < 256; ++i) {
dctClipData[dctClipOffset + i] = (Guchar)i;
}
for (i = 256; i < 639; ++i) {
dctClipData[dctClipOffset + i] = 255;
}
initDone = 1;
}
}
static inline Guchar dctClip(int x) {
return dctClipData[(dctClipOffset + x) & dctClipMask];
}
// zig zag decode map
static int dctZigZag[64] = {
0,
1, 8,
16, 9, 2,
3, 10, 17, 24,
32, 25, 18, 11, 4,
5, 12, 19, 26, 33, 40,
48, 41, 34, 27, 20, 13, 6,
7, 14, 21, 28, 35, 42, 49, 56,
57, 50, 43, 36, 29, 22, 15,
23, 30, 37, 44, 51, 58,
59, 52, 45, 38, 31,
39, 46, 53, 60,
61, 54, 47,
55, 62,
63
};
DCTStream::DCTStream(Stream *strA, GBool colorXformA):
FilterStream(strA) {
int i;
colorXform = colorXformA;
progressive = interleaved = gFalse;
width = height = 0;
mcuWidth = mcuHeight = 0;
numComps = 0;
comp = 0;
x = y = 0;
for (i = 0; i < 4; ++i) {
frameBuf[i] = NULL;
}
rowBuf = NULL;
memset(dcHuffTables, 0, sizeof(dcHuffTables));
memset(acHuffTables, 0, sizeof(acHuffTables));
dctClipInit();
}
DCTStream::~DCTStream() {
close();
delete str;
}
Stream *DCTStream::copy() {
return new DCTStream(str->copy(), colorXform);
}
void DCTStream::reset() {
int i;
str->reset();
progressive = interleaved = gFalse;
width = height = 0;
numComps = 0;
numQuantTables = 0;
numDCHuffTables = 0;
numACHuffTables = 0;
gotJFIFMarker = gFalse;
gotAdobeMarker = gFalse;
restartInterval = 0;
if (!readHeader(gTrue)) {
// force an EOF condition
progressive = gTrue;
y = height;
return;
}
// compute MCU size
if (numComps == 1) {
compInfo[0].hSample = compInfo[0].vSample = 1;
}
mcuWidth = compInfo[0].hSample;
mcuHeight = compInfo[0].vSample;
for (i = 1; i < numComps; ++i) {
if (compInfo[i].hSample > mcuWidth) {
mcuWidth = compInfo[i].hSample;
}
if (compInfo[i].vSample > mcuHeight) {
mcuHeight = compInfo[i].vSample;
}
}
mcuWidth *= 8;
mcuHeight *= 8;
// figure out color transform
if (colorXform == -1) {
if (numComps == 3) {
if (gotJFIFMarker) {
colorXform = 1;
} else if (compInfo[0].id == 82 && compInfo[1].id == 71 &&
compInfo[2].id == 66) { // ASCII "RGB"
colorXform = 0;
} else {
colorXform = 1;
}
} else {
colorXform = 0;
}
}
if (progressive || !interleaved) {
// allocate a buffer for the whole image
bufWidth = ((width + mcuWidth - 1) / mcuWidth) * mcuWidth;
bufHeight = ((height + mcuHeight - 1) / mcuHeight) * mcuHeight;
if (bufWidth <= 0 || bufHeight <= 0 ||
bufWidth > INT_MAX / bufWidth / (int)sizeof(int)) {
error(errSyntaxError, getPos(), "Invalid image size in DCT stream");
y = height;
return;
}
for (i = 0; i < numComps; ++i) {
frameBuf[i] = (int *)gmallocn(bufWidth * bufHeight, sizeof(int));
memset(frameBuf[i], 0, bufWidth * bufHeight * sizeof(int));
}
// read the image data
do {
restartMarker = 0xd0;
restart();
readScan();
} while (readHeader(gFalse));
// decode
decodeImage();
// initialize counters
comp = 0;
x = 0;
y = 0;
} else {
if (scanInfo.numComps != numComps) {
error(errSyntaxError, getPos(), "Invalid scan in sequential DCT stream");
y = height;
return;
}
// allocate a buffer for one row of MCUs
bufWidth = ((width + mcuWidth - 1) / mcuWidth) * mcuWidth;
rowBuf = (Guchar *)gmallocn(numComps * mcuHeight, bufWidth);
rowBufPtr = rowBufEnd = rowBuf;
// initialize counters
y = -mcuHeight;
restartMarker = 0xd0;
restart();
}
}
void DCTStream::close() {
int i;
for (i = 0; i < 4; ++i) {
gfree(frameBuf[i]);
frameBuf[i] = NULL;
}
gfree(rowBuf);
rowBuf = NULL;
FilterStream::close();
}
int DCTStream::getChar() {
int c;
if (progressive || !interleaved) {
if (y >= height) {
return EOF;
}
c = frameBuf[comp][y * bufWidth + x];
if (++comp == numComps) {
comp = 0;
if (++x == width) {
x = 0;
++y;
}
}
} else {
if (rowBufPtr == rowBufEnd) {
if (y + mcuHeight >= height) {
return EOF;
}
y += mcuHeight;
if (!readMCURow()) {
y = height;
return EOF;
}
}
c = *rowBufPtr++;
}
return c;
}
int DCTStream::lookChar() {
if (progressive || !interleaved) {
if (y >= height) {
return EOF;
}
return frameBuf[comp][y * bufWidth + x];
} else {
if (rowBufPtr == rowBufEnd) {
if (y + mcuHeight >= height) {
return EOF;
}
if (!readMCURow()) {
y = height;
return EOF;
}
}
return *rowBufPtr;
}
}
int DCTStream::getBlock(char *blk, int size) {
int nRead, nAvail, n;
if (progressive || !interleaved) {
if (y >= height) {
return 0;
}
for (nRead = 0; nRead < size; ++nRead) {
blk[nRead] = (char)frameBuf[comp][y * bufWidth + x];
if (++comp == numComps) {
comp = 0;
if (++x == width) {
x = 0;
++y;
if (y >= height) {
++nRead;
break;
}
}
}
}
} else {
nRead = 0;
while (nRead < size) {
if (rowBufPtr == rowBufEnd) {
if (y + mcuHeight >= height) {
break;
}
y += mcuHeight;
if (!readMCURow()) {
y = height;
break;
}
}
nAvail = (int)(rowBufEnd - rowBufPtr);
n = (nAvail < size - nRead) ? nAvail : size - nRead;
memcpy(blk + nRead, rowBufPtr, n);
rowBufPtr += n;
nRead += n;
}
}
return nRead;
}
void DCTStream::restart() {
int i;
inputBits = 0;
restartCtr = restartInterval;
for (i = 0; i < numComps; ++i) {
compInfo[i].prevDC = 0;
}
eobRun = 0;
}
// Read one row of MCUs from a sequential JPEG stream.
GBool DCTStream::readMCURow() {
int data1[64];
Guchar data2[64];
Guchar *p1, *p2;
int pY, pCb, pCr, pR, pG, pB;
int h, v, horiz, vert, hSub, vSub;
int x1, x2, y2, x3, y3, x4, y4, x5, y5, cc, i;
int c;
for (cc = 0; cc < numComps; ++cc) {
if (scanInfo.dcHuffTable[cc] >= numDCHuffTables ||
scanInfo.acHuffTable[cc] >= numACHuffTables) {
error(errSyntaxError, getPos(),
"Bad DCT data: invalid Huffman table index");
return gFalse;
}
if (compInfo[cc].quantTable > numQuantTables) {
error(errSyntaxError, getPos(),
"Bad DCT data: invalid quant table index");
return gFalse;
}
}
for (x1 = 0; x1 < width; x1 += mcuWidth) {
// deal with restart marker
if (restartInterval > 0 && restartCtr == 0) {
c = readMarker();
if (c != restartMarker) {
error(errSyntaxError, getPos(),
"Bad DCT data: incorrect restart marker");
return gFalse;
}
if (++restartMarker == 0xd8)
restartMarker = 0xd0;
restart();
}
// read one MCU
for (cc = 0; cc < numComps; ++cc) {
h = compInfo[cc].hSample;
v = compInfo[cc].vSample;
horiz = mcuWidth / h;
vert = mcuHeight / v;
hSub = horiz / 8;
vSub = vert / 8;
for (y2 = 0; y2 < mcuHeight; y2 += vert) {
for (x2 = 0; x2 < mcuWidth; x2 += horiz) {
if (!readDataUnit(&dcHuffTables[scanInfo.dcHuffTable[cc]],
&acHuffTables[scanInfo.acHuffTable[cc]],
&compInfo[cc].prevDC,
data1)) {
return gFalse;
}
transformDataUnit(quantTables[compInfo[cc].quantTable],
data1, data2);
if (hSub == 1 && vSub == 1 && x1+x2+8 <= width) {
for (y3 = 0, i = 0; y3 < 8; ++y3, i += 8) {
p1 = &rowBuf[((y2+y3) * width + (x1+x2)) * numComps + cc];
p1[0] = data2[i];
p1[ numComps] = data2[i+1];
p1[2*numComps] = data2[i+2];
p1[3*numComps] = data2[i+3];
p1[4*numComps] = data2[i+4];
p1[5*numComps] = data2[i+5];
p1[6*numComps] = data2[i+6];
p1[7*numComps] = data2[i+7];
}
} else if (hSub == 2 && vSub == 2 && x1+x2+16 <= width) {
for (y3 = 0, i = 0; y3 < 16; y3 += 2, i += 8) {
p1 = &rowBuf[((y2+y3) * width + (x1+x2)) * numComps + cc];
p2 = p1 + width * numComps;
p1[0] = p1[numComps] =
p2[0] = p2[numComps] = data2[i];
p1[2*numComps] = p1[3*numComps] =
p2[2*numComps] = p2[3*numComps] = data2[i+1];
p1[4*numComps] = p1[5*numComps] =
p2[4*numComps] = p2[5*numComps] = data2[i+2];
p1[6*numComps] = p1[7*numComps] =
p2[6*numComps] = p2[7*numComps] = data2[i+3];
p1[8*numComps] = p1[9*numComps] =
p2[8*numComps] = p2[9*numComps] = data2[i+4];
p1[10*numComps] = p1[11*numComps] =
p2[10*numComps] = p2[11*numComps] = data2[i+5];
p1[12*numComps] = p1[13*numComps] =
p2[12*numComps] = p2[13*numComps] = data2[i+6];
p1[14*numComps] = p1[15*numComps] =
p2[14*numComps] = p2[15*numComps] = data2[i+7];
}
} else {
p1 = &rowBuf[(y2 * width + (x1+x2)) * numComps + cc];
i = 0;
for (y3 = 0, y4 = 0; y3 < 8; ++y3, y4 += vSub) {
for (x3 = 0, x4 = 0; x3 < 8; ++x3, x4 += hSub) {
for (y5 = 0; y5 < vSub; ++y5) {
for (x5 = 0; x5 < hSub && x1+x2+x4+x5 < width; ++x5) {
p1[((y4+y5) * width + (x4+x5)) * numComps] = data2[i];
}
}
++i;
}
}
}
}
}
}
--restartCtr;
}
// color space conversion
if (colorXform) {
// convert YCbCr to RGB
if (numComps == 3) {
for (i = 0, p1 = rowBuf; i < width * mcuHeight; ++i, p1 += 3) {
pY = p1[0];
pCb = p1[1] - 128;
pCr = p1[2] - 128;
pR = ((pY << 16) + dctCrToR * pCr + 32768) >> 16;
p1[0] = dctClip(pR);
pG = ((pY << 16) + dctCbToG * pCb + dctCrToG * pCr + 32768) >> 16;
p1[1] = dctClip(pG);
pB = ((pY << 16) + dctCbToB * pCb + 32768) >> 16;
p1[2] = dctClip(pB);
}
// convert YCbCrK to CMYK (K is passed through unchanged)
} else if (numComps == 4) {
for (i = 0, p1 = rowBuf; i < width * mcuHeight; ++i, p1 += 4) {
pY = p1[0];
pCb = p1[1] - 128;
pCr = p1[2] - 128;
pR = ((pY << 16) + dctCrToR * pCr + 32768) >> 16;
p1[0] = (Guchar)(255 - dctClip(pR));
pG = ((pY << 16) + dctCbToG * pCb + dctCrToG * pCr + 32768) >> 16;
p1[1] = (Guchar)(255 - dctClip(pG));
pB = ((pY << 16) + dctCbToB * pCb + 32768) >> 16;
p1[2] = (Guchar)(255 - dctClip(pB));
}
}
}
rowBufPtr = rowBuf;
if (y + mcuHeight <= height) {
rowBufEnd = rowBuf + numComps * width * mcuHeight;
} else {
rowBufEnd = rowBuf + numComps * width * (height - y);
}
return gTrue;
}
// Read one scan from a progressive or non-interleaved JPEG stream.
void DCTStream::readScan() {
int data[64];
int x1, y1, dx1, dy1, x2, y2, y3, cc, i;
int h, v, horiz, vert, vSub;
int *p1;
int c;
for (cc = 0; cc < numComps; ++cc) {
if (scanInfo.comp[cc] &&
(scanInfo.dcHuffTable[cc] >= numDCHuffTables ||
((!progressive || scanInfo.lastCoeff > 0) &&
scanInfo.acHuffTable[cc] >= numACHuffTables))) {
error(errSyntaxError, getPos(),
"Bad DCT data: invalid Huffman table index");
return;
}
if (compInfo[cc].quantTable > numQuantTables) {
error(errSyntaxError, getPos(),
"Bad DCT data: invalid quant table index");
return;
}
}
if (scanInfo.numComps == 1) {
for (cc = 0; cc < numComps; ++cc) {
if (scanInfo.comp[cc]) {
break;
}
}
dx1 = mcuWidth / compInfo[cc].hSample;
dy1 = mcuHeight / compInfo[cc].vSample;
} else {
dx1 = mcuWidth;
dy1 = mcuHeight;
}
for (y1 = 0; y1 < height; y1 += dy1) {
for (x1 = 0; x1 < width; x1 += dx1) {
// deal with restart marker
if (restartInterval > 0 && restartCtr == 0) {
c = readMarker();
if (c != restartMarker) {
error(errSyntaxError, getPos(),
"Bad DCT data: incorrect restart marker");
return;
}
if (++restartMarker == 0xd8) {
restartMarker = 0xd0;
}
restart();
}
// read one MCU
for (cc = 0; cc < numComps; ++cc) {
if (!scanInfo.comp[cc]) {
continue;
}
h = compInfo[cc].hSample;
v = compInfo[cc].vSample;
horiz = mcuWidth / h;
vert = mcuHeight / v;
vSub = vert / 8;
for (y2 = 0; y2 < dy1; y2 += vert) {
for (x2 = 0; x2 < dx1; x2 += horiz) {
// pull out the current values
p1 = &frameBuf[cc][(y1+y2) * bufWidth + (x1+x2)];
for (y3 = 0, i = 0; y3 < 8; ++y3, i += 8) {
data[i] = p1[0];
data[i+1] = p1[1];
data[i+2] = p1[2];
data[i+3] = p1[3];
data[i+4] = p1[4];
data[i+5] = p1[5];
data[i+6] = p1[6];
data[i+7] = p1[7];
p1 += bufWidth * vSub;
}
// read one data unit
if (progressive) {
if (!readProgressiveDataUnit(
&dcHuffTables[scanInfo.dcHuffTable[cc]],
&acHuffTables[scanInfo.acHuffTable[cc]],
&compInfo[cc].prevDC,
data)) {
return;
}
} else {
if (!readDataUnit(&dcHuffTables[scanInfo.dcHuffTable[cc]],
&acHuffTables[scanInfo.acHuffTable[cc]],
&compInfo[cc].prevDC,
data)) {
return;
}
}
// add the data unit into frameBuf
p1 = &frameBuf[cc][(y1+y2) * bufWidth + (x1+x2)];
for (y3 = 0, i = 0; y3 < 8; ++y3, i += 8) {
p1[0] = data[i];
p1[1] = data[i+1];
p1[2] = data[i+2];
p1[3] = data[i+3];
p1[4] = data[i+4];
p1[5] = data[i+5];
p1[6] = data[i+6];
p1[7] = data[i+7];
p1 += bufWidth * vSub;
}
}
}
}
--restartCtr;
}
}
}
// Read one data unit from a sequential JPEG stream.
GBool DCTStream::readDataUnit(DCTHuffTable *dcHuffTable,
DCTHuffTable *acHuffTable,
int *prevDC, int data[64]) {
int run, size, amp;
int c;
int i, j;
if ((size = readHuffSym(dcHuffTable)) == 9999) {
return gFalse;
}
if (size > 0) {
if ((amp = readAmp(size)) == 9999) {
return gFalse;
}
} else {
amp = 0;
}
data[0] = *prevDC += amp;
for (i = 1; i < 64; ++i) {
data[i] = 0;
}
i = 1;
while (i < 64) {
run = 0;
while ((c = readHuffSym(acHuffTable)) == 0xf0 && run < 0x30) {
run += 0x10;
}
if (c == 9999) {
return gFalse;
}
if (c == 0x00) {
break;
} else {
run += (c >> 4) & 0x0f;
size = c & 0x0f;
amp = readAmp(size);
if (amp == 9999) {
return gFalse;
}
i += run;
if (i < 64) {
j = dctZigZag[i++];
data[j] = amp;
}
}
}
return gTrue;
}
// Read one data unit from a progressive JPEG stream.
GBool DCTStream::readProgressiveDataUnit(DCTHuffTable *dcHuffTable,
DCTHuffTable *acHuffTable,
int *prevDC, int data[64]) {
int run, size, amp, bit, c;
int i, j, k;
// get the DC coefficient
i = scanInfo.firstCoeff;
if (i == 0) {
if (scanInfo.ah == 0) {
if ((size = readHuffSym(dcHuffTable)) == 9999) {
return gFalse;
}
if (size > 0) {
if ((amp = readAmp(size)) == 9999) {
return gFalse;
}
} else {
amp = 0;
}
data[0] += (*prevDC += amp) << scanInfo.al;
} else {
if ((bit = readBit()) == 9999) {
return gFalse;
}
if (bit) {
data[0] += 1 << scanInfo.al;
}
}
++i;
}
if (scanInfo.lastCoeff == 0) {
return gTrue;
}
// check for an EOB run
if (eobRun > 0) {
while (i <= scanInfo.lastCoeff) {
j = dctZigZag[i++];
if (data[j] != 0) {
if ((bit = readBit()) == EOF) {
return gFalse;
}
if (bit) {
if (data[j] >= 0) {
data[j] += 1 << scanInfo.al;
} else {
data[j] -= 1 << scanInfo.al;
}
}
}
}
--eobRun;
return gTrue;
}
// read the AC coefficients
while (i <= scanInfo.lastCoeff) {
if ((c = readHuffSym(acHuffTable)) == 9999) {
return gFalse;
}
// ZRL
if (c == 0xf0) {
k = 0;
while (k < 16 && i <= scanInfo.lastCoeff) {
j = dctZigZag[i++];
if (data[j] == 0) {
++k;
} else {
if ((bit = readBit()) == EOF) {
return gFalse;
}
if (bit) {
if (data[j] >= 0) {
data[j] += 1 << scanInfo.al;
} else {
data[j] -= 1 << scanInfo.al;
}
}
}
}
// EOB run
} else if ((c & 0x0f) == 0x00) {
j = c >> 4;
eobRun = 0;
for (k = 0; k < j; ++k) {
if ((bit = readBit()) == EOF) {
return gFalse;
}
eobRun = (eobRun << 1) | bit;
}
eobRun += 1 << j;
while (i <= scanInfo.lastCoeff) {
j = dctZigZag[i++];
if (data[j] != 0) {
if ((bit = readBit()) == EOF) {
return gFalse;
}
if (bit) {
if (data[j] >= 0) {
data[j] += 1 << scanInfo.al;
} else {
data[j] -= 1 << scanInfo.al;
}
}
}
}
--eobRun;
break;
// zero run and one AC coefficient
} else {
run = (c >> 4) & 0x0f;
size = c & 0x0f;
if ((amp = readAmp(size)) == 9999) {
return gFalse;
}
j = 0; // make gcc happy
for (k = 0; k <= run && i <= scanInfo.lastCoeff; ++k) {
j = dctZigZag[i++];
while (data[j] != 0 && i <= scanInfo.lastCoeff) {
if ((bit = readBit()) == EOF) {
return gFalse;
}
if (bit) {
if (data[j] >= 0) {
data[j] += 1 << scanInfo.al;
} else {
data[j] -= 1 << scanInfo.al;
}
}
j = dctZigZag[i++];
}
}
data[j] = amp << scanInfo.al;
}
}
return gTrue;
}
// Decode a progressive JPEG image.
void DCTStream::decodeImage() {
int dataIn[64];
Guchar dataOut[64];
Gushort *quantTable;
int pY, pCb, pCr, pR, pG, pB;
int x1, y1, x2, y2, x3, y3, x4, y4, x5, y5, cc, i;
int h, v, horiz, vert, hSub, vSub;
int *p0, *p1, *p2;
for (y1 = 0; y1 < bufHeight; y1 += mcuHeight) {
for (x1 = 0; x1 < bufWidth; x1 += mcuWidth) {
for (cc = 0; cc < numComps; ++cc) {
quantTable = quantTables[compInfo[cc].quantTable];
h = compInfo[cc].hSample;
v = compInfo[cc].vSample;
horiz = mcuWidth / h;
vert = mcuHeight / v;
hSub = horiz / 8;
vSub = vert / 8;
for (y2 = 0; y2 < mcuHeight; y2 += vert) {
for (x2 = 0; x2 < mcuWidth; x2 += horiz) {
// pull out the coded data unit
p1 = &frameBuf[cc][(y1+y2) * bufWidth + (x1+x2)];
for (y3 = 0, i = 0; y3 < 8; ++y3, i += 8) {
dataIn[i] = p1[0];
dataIn[i+1] = p1[1];
dataIn[i+2] = p1[2];
dataIn[i+3] = p1[3];
dataIn[i+4] = p1[4];
dataIn[i+5] = p1[5];
dataIn[i+6] = p1[6];
dataIn[i+7] = p1[7];
p1 += bufWidth * vSub;
}
// transform
transformDataUnit(quantTable, dataIn, dataOut);
// store back into frameBuf, doing replication for
// subsampled components
p1 = &frameBuf[cc][(y1+y2) * bufWidth + (x1+x2)];
if (hSub == 1 && vSub == 1) {
for (y3 = 0, i = 0; y3 < 8; ++y3, i += 8) {
p1[0] = dataOut[i] & 0xff;
p1[1] = dataOut[i+1] & 0xff;
p1[2] = dataOut[i+2] & 0xff;
p1[3] = dataOut[i+3] & 0xff;
p1[4] = dataOut[i+4] & 0xff;
p1[5] = dataOut[i+5] & 0xff;
p1[6] = dataOut[i+6] & 0xff;
p1[7] = dataOut[i+7] & 0xff;
p1 += bufWidth;
}
} else if (hSub == 2 && vSub == 2) {
p2 = p1 + bufWidth;
for (y3 = 0, i = 0; y3 < 16; y3 += 2, i += 8) {
p1[0] = p1[1] = p2[0] = p2[1] = dataOut[i] & 0xff;
p1[2] = p1[3] = p2[2] = p2[3] = dataOut[i+1] & 0xff;
p1[4] = p1[5] = p2[4] = p2[5] = dataOut[i+2] & 0xff;
p1[6] = p1[7] = p2[6] = p2[7] = dataOut[i+3] & 0xff;
p1[8] = p1[9] = p2[8] = p2[9] = dataOut[i+4] & 0xff;
p1[10] = p1[11] = p2[10] = p2[11] = dataOut[i+5] & 0xff;
p1[12] = p1[13] = p2[12] = p2[13] = dataOut[i+6] & 0xff;
p1[14] = p1[15] = p2[14] = p2[15] = dataOut[i+7] & 0xff;
p1 += bufWidth * 2;
p2 += bufWidth * 2;
}
} else {
i = 0;
for (y3 = 0, y4 = 0; y3 < 8; ++y3, y4 += vSub) {
for (x3 = 0, x4 = 0; x3 < 8; ++x3, x4 += hSub) {
p2 = p1 + x4;
for (y5 = 0; y5 < vSub; ++y5) {
for (x5 = 0; x5 < hSub; ++x5) {
p2[x5] = dataOut[i] & 0xff;
}
p2 += bufWidth;
}
++i;
}
p1 += bufWidth * vSub;
}
}
}
}
}
// color space conversion
if (colorXform) {
// convert YCbCr to RGB
if (numComps == 3) {
for (y2 = 0; y2 < mcuHeight; ++y2) {
p0 = &frameBuf[0][(y1+y2) * bufWidth + x1];
p1 = &frameBuf[1][(y1+y2) * bufWidth + x1];
p2 = &frameBuf[2][(y1+y2) * bufWidth + x1];
for (x2 = 0; x2 < mcuWidth; ++x2) {
pY = *p0;
pCb = *p1 - 128;
pCr = *p2 - 128;
pR = ((pY << 16) + dctCrToR * pCr + 32768) >> 16;
*p0++ = dctClip(pR);
pG = ((pY << 16) + dctCbToG * pCb + dctCrToG * pCr +
32768) >> 16;
*p1++ = dctClip(pG);
pB = ((pY << 16) + dctCbToB * pCb + 32768) >> 16;
*p2++ = dctClip(pB);
}
}
// convert YCbCrK to CMYK (K is passed through unchanged)
} else if (numComps == 4) {
for (y2 = 0; y2 < mcuHeight; ++y2) {
p0 = &frameBuf[0][(y1+y2) * bufWidth + x1];
p1 = &frameBuf[1][(y1+y2) * bufWidth + x1];
p2 = &frameBuf[2][(y1+y2) * bufWidth + x1];
for (x2 = 0; x2 < mcuWidth; ++x2) {
pY = *p0;
pCb = *p1 - 128;
pCr = *p2 - 128;
pR = ((pY << 16) + dctCrToR * pCr + 32768) >> 16;
*p0++ = 255 - dctClip(pR);
pG = ((pY << 16) + dctCbToG * pCb + dctCrToG * pCr +
32768) >> 16;
*p1++ = 255 - dctClip(pG);
pB = ((pY << 16) + dctCbToB * pCb + 32768) >> 16;
*p2++ = 255 - dctClip(pB);
}
}
}
}
}
}
}
// Transform one data unit -- this performs the dequantization and
// IDCT steps. This IDCT algorithm is taken from:
// Y. A. Reznik, A. T. Hinds, L. Yu, Z. Ni, and C-X. Zhang,
// "Efficient fixed-point approximations of the 8x8 inverse discrete
// cosine transform" (invited paper), Proc. SPIE Vol. 6696, Sep. 24,
// 2007.
// which is based on:
// Christoph Loeffler, Adriaan Ligtenberg, George S. Moschytz,
// "Practical Fast 1-D DCT Algorithms with 11 Multiplications",
// IEEE Intl. Conf. on Acoustics, Speech & Signal Processing, 1989,
// 988-991.
// The stage numbers mentioned in the comments refer to Figure 1 in the
// Loeffler paper.
void DCTStream::transformDataUnit(Gushort *quantTable,
int dataIn[64], Guchar dataOut[64]) {
int v0, v1, v2, v3, v4, v5, v6, v7;
int t0, t1, t2, t3, t4, t5, t6, t7;
int *p, *scale;
Gushort *q;
int i;
// dequant; inverse DCT on rows
for (i = 0; i < 64; i += 8) {
p = dataIn + i;
q = quantTable + i;
scale = idctScaleMat + i;
// check for all-zero AC coefficients
if (p[1] == 0 && p[2] == 0 && p[3] == 0 &&
p[4] == 0 && p[5] == 0 && p[6] == 0 && p[7] == 0) {
t0 = p[0] * q[0] * scale[0];
if (i == 0) {
t0 += 1 << 12; // rounding bias
}
p[0] = t0;
p[1] = t0;
p[2] = t0;
p[3] = t0;
p[4] = t0;
p[5] = t0;
p[6] = t0;
p[7] = t0;
continue;
}
// stage 4
v0 = p[0] * q[0] * scale[0];
if (i == 0) {
v0 += 1 << 12; // rounding bias
}
v1 = p[4] * q[4] * scale[4];
v2 = p[2] * q[2] * scale[2];
v3 = p[6] * q[6] * scale[6];
t0 = p[1] * q[1] * scale[1];
t1 = p[7] * q[7] * scale[7];
v4 = t0 - t1;
v7 = t0 + t1;
v5 = p[3] * q[3] * scale[3];
v6 = p[5] * q[5] * scale[5];
// stage 3
t0 = v0 - v1;
v0 = v0 + v1;
v1 = t0;
t0 = v2 + (v2 >> 5);
t1 = t0 >> 2;
t2 = t1 + (v2 >> 4); // 41/128 * v2
t3 = t0 - t1; // 99/128 * v2
t4 = v3 + (v3 >> 5);
t5 = t4 >> 2;
t6 = t5 + (v3 >> 4); // 41/128 * v3
t7 = t4 - t5; // 99/128 * v3
v2 = t2 - t7;
v3 = t3 + t6;
t0 = v4 - v6;
v4 = v4 + v6;
v6 = t0;
t0 = v7 + v5;
v5 = v7 - v5;
v7 = t0;
// stage 2
t0 = v0 - v3;
v0 = v0 + v3;
v3 = t0;
t0 = v1 - v2;
v1 = v1 + v2;
v2 = t0;
t0 = (v4 >> 9) - v4;
t1 = v4 >> 1; // 1/2 * v4
t2 = (t0 >> 2) - t0; // 1533/2048 * v4
t3 = (v7 >> 9) - v7;
t4 = v7 >> 1; // 1/2 * v7
t5 = (t3 >> 2) - t3; // 1533/2048 * v7
v4 = t2 - t4;
v7 = t1 + t5;
t0 = (v5 >> 3) - (v5 >> 7);
t1 = t0 - (v5 >> 11);
t2 = t0 + (t1 >> 1); // 719/4096 * v5
t3 = v5 - t0; // 113/256 * v5
t4 = (v6 >> 3) - (v6 >> 7);
t5 = t4 - (v6 >> 11);
t6 = t4 + (t5 >> 1); // 719/4096 * v6
t7 = v6 - t4; // 113/256 * v6
v5 = t3 - t6;
v6 = t2 + t7;
// stage 1
p[0] = v0 + v7;
p[7] = v0 - v7;
p[1] = v1 + v6;
p[6] = v1 - v6;
p[2] = v2 + v5;
p[5] = v2 - v5;
p[3] = v3 + v4;
p[4] = v3 - v4;
}
// inverse DCT on columns
for (i = 0; i < 8; ++i) {
p = dataIn + i;
// check for all-zero AC coefficients
if (p[1*8] == 0 && p[2*8] == 0 && p[3*8] == 0 &&
p[4*8] == 0 && p[5*8] == 0 && p[6*8] == 0 && p[7*8] == 0) {
t0 = p[0*8];
p[1*8] = t0;
p[2*8] = t0;
p[3*8] = t0;
p[4*8] = t0;
p[5*8] = t0;
p[6*8] = t0;
p[7*8] = t0;
continue;
}
// stage 4
v0 = p[0*8];
v1 = p[4*8];
v2 = p[2*8];
v3 = p[6*8];
t0 = p[1*8];
t1 = p[7*8];
v4 = t0 - t1;
v7 = t0 + t1;
v5 = p[3*8];
v6 = p[5*8];
// stage 3
t0 = v0 - v1;
v0 = v0 + v1;
v1 = t0;
t0 = v2 + (v2 >> 5);
t1 = t0 >> 2;
t2 = t1 + (v2 >> 4); // 41/128 * v2
t3 = t0 - t1; // 99/128 * v2
t4 = v3 + (v3 >> 5);
t5 = t4 >> 2;
t6 = t5 + (v3 >> 4); // 41/128 * v3
t7 = t4 - t5; // 99/128 * v3
v2 = t2 - t7;
v3 = t3 + t6;
t0 = v4 - v6;
v4 = v4 + v6;
v6 = t0;
t0 = v7 + v5;
v5 = v7 - v5;
v7 = t0;
// stage 2
t0 = v0 - v3;
v0 = v0 + v3;
v3 = t0;
t0 = v1 - v2;
v1 = v1 + v2;
v2 = t0;
t0 = (v4 >> 9) - v4;
t1 = v4 >> 1; // 1/2 * v4
t2 = (t0 >> 2) - t0; // 1533/2048 * v4
t3 = (v7 >> 9) - v7;
t4 = v7 >> 1; // 1/2 * v7
t5 = (t3 >> 2) - t3; // 1533/2048 * v7
v4 = t2 - t4;
v7 = t1 + t5;
t0 = (v5 >> 3) - (v5 >> 7);
t1 = t0 - (v5 >> 11);
t2 = t0 + (t1 >> 1); // 719/4096 * v5
t3 = v5 - t0; // 113/256 * v5
t4 = (v6 >> 3) - (v6 >> 7);
t5 = t4 - (v6 >> 11);
t6 = t4 + (t5 >> 1); // 719/4096 * v6
t7 = v6 - t4; // 113/256 * v6
v5 = t3 - t6;
v6 = t2 + t7;
// stage 1
p[0*8] = v0 + v7;
p[7*8] = v0 - v7;
p[1*8] = v1 + v6;
p[6*8] = v1 - v6;
p[2*8] = v2 + v5;
p[5*8] = v2 - v5;
p[3*8] = v3 + v4;
p[4*8] = v3 - v4;
}
// convert to 8-bit integers
for (i = 0; i < 64; ++i) {
dataOut[i] = dctClip(128 + (dataIn[i] >> 13));
}
}
int DCTStream::readHuffSym(DCTHuffTable *table) {
Gushort code;
int bit;
int codeBits;
code = 0;
codeBits = 0;
do {
// add a bit to the code
if ((bit = readBit()) == EOF) {
return 9999;
}
code = (Gushort)((code << 1) + bit);
++codeBits;
// look up code
if (code < table->firstCode[codeBits]) {
break;
}
if (code - table->firstCode[codeBits] < table->numCodes[codeBits]) {
code = (Gushort)(code - table->firstCode[codeBits]);
return table->sym[table->firstSym[codeBits] + code];
}
} while (codeBits < 16);
error(errSyntaxError, getPos(), "Bad Huffman code in DCT stream");
return 9999;
}
int DCTStream::readAmp(int size) {
int amp, bit;
int bits;
amp = 0;
for (bits = 0; bits < size; ++bits) {
if ((bit = readBit()) == EOF)
return 9999;
amp = (amp << 1) + bit;
}
if (amp < (1 << (size - 1)))
amp -= (1 << size) - 1;
return amp;
}
int DCTStream::readBit() {
int bit;
int c, c2;
if (inputBits == 0) {
if ((c = str->getChar()) == EOF)
return EOF;
if (c == 0xff) {
do {
c2 = str->getChar();
} while (c2 == 0xff);
if (c2 != 0x00) {
error(errSyntaxError, getPos(), "Bad DCT data: missing 00 after ff");
return EOF;
}
}
inputBuf = c;
inputBits = 8;
}
bit = (inputBuf >> (inputBits - 1)) & 1;
--inputBits;
return bit;
}
GBool DCTStream::readHeader(GBool frame) {
GBool doScan;
int n;
int c = 0;
// read headers
doScan = gFalse;
while (!doScan) {
c = readMarker();
switch (c) {
case 0xc0: // SOF0 (sequential)
case 0xc1: // SOF1 (extended sequential)
if (!frame) {
error(errSyntaxError, getPos(),
"Invalid DCT marker in scan <{0:02x}>", c);
return gFalse;
}
if (!readBaselineSOF()) {
return gFalse;
}
break;
case 0xc2: // SOF2 (progressive)
if (!frame) {
error(errSyntaxError, getPos(),
"Invalid DCT marker in scan <{0:02x}>", c);
return gFalse;
}
if (!readProgressiveSOF()) {
return gFalse;
}
break;
case 0xc4: // DHT
if (!readHuffmanTables()) {
return gFalse;
}
break;
case 0xd8: // SOI
if (!frame) {
error(errSyntaxError, getPos(),
"Invalid DCT marker in scan <{0:02x}>", c);
return gFalse;
}
break;
case 0xd9: // EOI
return gFalse;
case 0xda: // SOS
if (!readScanInfo()) {
return gFalse;
}
doScan = gTrue;
break;
case 0xdb: // DQT
if (!readQuantTables()) {
return gFalse;
}
break;
case 0xdd: // DRI
if (!readRestartInterval()) {
return gFalse;
}
break;
case 0xe0: // APP0
if (!frame) {
error(errSyntaxError, getPos(),
"Invalid DCT marker in scan <{0:02x}>", c);
return gFalse;
}
if (!readJFIFMarker()) {
return gFalse;
}
break;
case 0xee: // APP14
if (!frame) {
error(errSyntaxError, getPos(),
"Invalid DCT marker in scan <{0:02x}>", c);
return gFalse;
}
if (!readAdobeMarker()) {
return gFalse;
}
break;
case EOF:
error(errSyntaxError, getPos(), "Bad DCT header");
return gFalse;
default:
// skip APPn / COM / etc.
if (c >= 0xe0) {
n = read16() - 2;
str->discardChars(n);
} else {
error(errSyntaxError, getPos(), "Unknown DCT marker <{0:02x}>", c);
return gFalse;
}
break;
}
}
return gTrue;
}
GBool DCTStream::readBaselineSOF() {
int prec;
int i;
int c;
read16(); // length
prec = str->getChar();
height = read16();
width = read16();
numComps = str->getChar();
if (numComps <= 0 || numComps > 4) {
error(errSyntaxError, getPos(), "Bad number of components in DCT stream");
numComps = 0;
return gFalse;
}
if (prec != 8) {
error(errSyntaxError, getPos(), "Bad DCT precision {0:d}", prec);
return gFalse;
}
for (i = 0; i < numComps; ++i) {
compInfo[i].id = str->getChar();
c = str->getChar();
compInfo[i].hSample = (c >> 4) & 0x0f;
compInfo[i].vSample = c & 0x0f;
compInfo[i].quantTable = str->getChar();
if (compInfo[i].hSample < 1 || compInfo[i].hSample > 4 ||
compInfo[i].vSample < 1 || compInfo[i].vSample > 4) {
error(errSyntaxError, getPos(), "Bad DCT sampling factor");
return gFalse;
}
if (compInfo[i].quantTable < 0 || compInfo[i].quantTable > 3) {
error(errSyntaxError, getPos(), "Bad DCT quant table selector");
return gFalse;
}
}
progressive = gFalse;
return gTrue;
}
GBool DCTStream::readProgressiveSOF() {
int prec;
int i;
int c;
read16(); // length
prec = str->getChar();
height = read16();
width = read16();
numComps = str->getChar();
if (numComps <= 0 || numComps > 4) {
error(errSyntaxError, getPos(), "Bad number of components in DCT stream");
numComps = 0;
return gFalse;
}
if (prec != 8) {
error(errSyntaxError, getPos(), "Bad DCT precision {0:d}", prec);
return gFalse;
}
for (i = 0; i < numComps; ++i) {
compInfo[i].id = str->getChar();
c = str->getChar();
compInfo[i].hSample = (c >> 4) & 0x0f;
compInfo[i].vSample = c & 0x0f;
compInfo[i].quantTable = str->getChar();
if (compInfo[i].hSample < 1 || compInfo[i].hSample > 4 ||
compInfo[i].vSample < 1 || compInfo[i].vSample > 4) {
error(errSyntaxError, getPos(), "Bad DCT sampling factor");
return gFalse;
}
if (compInfo[i].quantTable < 0 || compInfo[i].quantTable > 3) {
error(errSyntaxError, getPos(), "Bad DCT quant table selector");
return gFalse;
}
}
progressive = gTrue;
return gTrue;
}
GBool DCTStream::readScanInfo() {
int length;
int id, c;
int i, j;
length = read16() - 2;
scanInfo.numComps = str->getChar();
if (scanInfo.numComps <= 0 || scanInfo.numComps > 4) {
error(errSyntaxError, getPos(), "Bad number of components in DCT stream");
scanInfo.numComps = 0;
return gFalse;
}
--length;
if (length != 2 * scanInfo.numComps + 3) {
error(errSyntaxError, getPos(), "Bad DCT scan info block");
return gFalse;
}
interleaved = scanInfo.numComps == numComps;
for (j = 0; j < numComps; ++j) {
scanInfo.comp[j] = gFalse;
}
for (i = 0; i < scanInfo.numComps; ++i) {
id = str->getChar();
// some (broken) DCT streams reuse ID numbers, but at least they
// keep the components in order, so we check compInfo[i] first to
// work around the problem
if (id == compInfo[i].id) {
j = i;
} else {
for (j = 0; j < numComps; ++j) {
if (id == compInfo[j].id) {
break;
}
}
if (j == numComps) {
error(errSyntaxError, getPos(),
"Bad DCT component ID in scan info block");
return gFalse;
}
}
if (scanInfo.comp[j]) {
error(errSyntaxError, getPos(),
"Invalid DCT component ID in scan info block");
return gFalse;
}
scanInfo.comp[j] = gTrue;
c = str->getChar();
scanInfo.dcHuffTable[j] = (c >> 4) & 0x0f;
scanInfo.acHuffTable[j] = c & 0x0f;
}
scanInfo.firstCoeff = str->getChar();
scanInfo.lastCoeff = str->getChar();
if (scanInfo.firstCoeff < 0 || scanInfo.lastCoeff > 63 ||
scanInfo.firstCoeff > scanInfo.lastCoeff) {
error(errSyntaxError, getPos(),
"Bad DCT coefficient numbers in scan info block");
return gFalse;
}
c = str->getChar();
scanInfo.ah = (c >> 4) & 0x0f;
scanInfo.al = c & 0x0f;
return gTrue;
}
GBool DCTStream::readQuantTables() {
int length, prec, i, index;
length = read16() - 2;
while (length > 0) {
index = str->getChar();
prec = (index >> 4) & 0x0f;
index &= 0x0f;
if (prec > 1 || index >= 4) {
error(errSyntaxError, getPos(), "Bad DCT quantization table");
return gFalse;
}
if (index == numQuantTables) {
numQuantTables = index + 1;
}
for (i = 0; i < 64; ++i) {
if (prec) {
quantTables[index][dctZigZag[i]] = (Gushort)read16();
} else {
quantTables[index][dctZigZag[i]] = (Gushort)str->getChar();
}
}
if (prec) {
length -= 129;
} else {
length -= 65;
}
}
return gTrue;
}
GBool DCTStream::readHuffmanTables() {
DCTHuffTable *tbl;
int length;
int index;
Gushort code;
Guchar sym;
int i;
int c;
length = read16() - 2;
while (length > 0) {
index = str->getChar();
--length;
if ((index & 0x0f) >= 4) {
error(errSyntaxError, getPos(), "Bad DCT Huffman table");
return gFalse;
}
if (index & 0x10) {
index &= 0x0f;
if (index >= numACHuffTables)
numACHuffTables = index+1;
tbl = &acHuffTables[index];
} else {
index &= 0x0f;
if (index >= numDCHuffTables)
numDCHuffTables = index+1;
tbl = &dcHuffTables[index];
}
sym = 0;
code = 0;
for (i = 1; i <= 16; ++i) {
c = str->getChar();
tbl->firstSym[i] = sym;
tbl->firstCode[i] = code;
tbl->numCodes[i] = (Gushort)c;
sym = (Guchar)(sym + c);
code = (Gushort)((code + c) << 1);
}
length -= 16;
for (i = 0; i < sym; ++i)
tbl->sym[i] = (Guchar)str->getChar();
length -= sym;
}
return gTrue;
}
GBool DCTStream::readRestartInterval() {
int length;
length = read16();
if (length != 4) {
error(errSyntaxError, getPos(), "Bad DCT restart interval");
return gFalse;
}
restartInterval = read16();
return gTrue;
}
GBool DCTStream::readJFIFMarker() {
int length, i;
char buf[5];
int c;
length = read16();
length -= 2;
if (length >= 5) {
for (i = 0; i < 5; ++i) {
if ((c = str->getChar()) == EOF) {
error(errSyntaxError, getPos(), "Bad DCT APP0 marker");
return gFalse;
}
buf[i] = (char)c;
}
length -= 5;
if (!memcmp(buf, "JFIF\0", 5)) {
gotJFIFMarker = gTrue;
}
}
while (length > 0) {
if (str->getChar() == EOF) {
error(errSyntaxError, getPos(), "Bad DCT APP0 marker");
return gFalse;
}
--length;
}
return gTrue;
}
GBool DCTStream::readAdobeMarker() {
int length, i;
char buf[12];
int c;
length = read16();
if (length < 14) {
goto err;
}
for (i = 0; i < 12; ++i) {
if ((c = str->getChar()) == EOF) {
goto err;
}
buf[i] = (char)c;
}
if (!strncmp(buf, "Adobe", 5)) {
colorXform = buf[11];
gotAdobeMarker = gTrue;
}
for (i = 14; i < length; ++i) {
if (str->getChar() == EOF) {
goto err;
}
}
return gTrue;
err:
error(errSyntaxError, getPos(), "Bad DCT Adobe APP14 marker");
return gFalse;
}
GBool DCTStream::readTrailer() {
int c;
c = readMarker();
if (c != 0xd9) { // EOI
error(errSyntaxError, getPos(), "Bad DCT trailer");
return gFalse;
}
return gTrue;
}
int DCTStream::readMarker() {
int c;
do {
do {
c = str->getChar();
} while (c != 0xff && c != EOF);
do {
c = str->getChar();
} while (c == 0xff);
} while (c == 0x00);
return c;
}
int DCTStream::read16() {
int c1, c2;
if ((c1 = str->getChar()) == EOF)
return EOF;
if ((c2 = str->getChar()) == EOF)
return EOF;
return (c1 << 8) + c2;
}
#endif // HAVE_JPEGLIB
GString *DCTStream::getPSFilter(int psLevel, const char *indent) {
GString *s;
if (psLevel < 2) {
return NULL;
}
if (!(s = str->getPSFilter(psLevel, indent))) {
return NULL;
}
s->append(indent)->append("<< >> /DCTDecode filter\n");
return s;
}
GBool DCTStream::isBinary(GBool last) {
return str->isBinary(gTrue);
}
//------------------------------------------------------------------------
// FlateStream
//------------------------------------------------------------------------
int FlateStream::codeLenCodeMap[flateMaxCodeLenCodes] = {
16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15
};
FlateDecode FlateStream::lengthDecode[flateMaxLitCodes-257] = {
{0, 3},
{0, 4},
{0, 5},
{0, 6},
{0, 7},
{0, 8},
{0, 9},
{0, 10},
{1, 11},
{1, 13},
{1, 15},
{1, 17},
{2, 19},
{2, 23},
{2, 27},
{2, 31},
{3, 35},
{3, 43},
{3, 51},
{3, 59},
{4, 67},
{4, 83},
{4, 99},
{4, 115},
{5, 131},
{5, 163},
{5, 195},
{5, 227},
{0, 258},
{0, 258},
{0, 258}
};
FlateDecode FlateStream::distDecode[flateMaxDistCodes] = {
{ 0, 1},
{ 0, 2},
{ 0, 3},
{ 0, 4},
{ 1, 5},
{ 1, 7},
{ 2, 9},
{ 2, 13},
{ 3, 17},
{ 3, 25},
{ 4, 33},
{ 4, 49},
{ 5, 65},
{ 5, 97},
{ 6, 129},
{ 6, 193},
{ 7, 257},
{ 7, 385},
{ 8, 513},
{ 8, 769},
{ 9, 1025},
{ 9, 1537},
{10, 2049},
{10, 3073},
{11, 4097},
{11, 6145},
{12, 8193},
{12, 12289},
{13, 16385},
{13, 24577}
};
static FlateCode flateFixedLitCodeTabCodes[512] = {
{7, 0x0100},
{8, 0x0050},
{8, 0x0010},
{8, 0x0118},
{7, 0x0110},
{8, 0x0070},
{8, 0x0030},
{9, 0x00c0},
{7, 0x0108},
{8, 0x0060},
{8, 0x0020},
{9, 0x00a0},
{8, 0x0000},
{8, 0x0080},
{8, 0x0040},
{9, 0x00e0},
{7, 0x0104},
{8, 0x0058},
{8, 0x0018},
{9, 0x0090},
{7, 0x0114},
{8, 0x0078},
{8, 0x0038},
{9, 0x00d0},
{7, 0x010c},
{8, 0x0068},
{8, 0x0028},
{9, 0x00b0},
{8, 0x0008},
{8, 0x0088},
{8, 0x0048},
{9, 0x00f0},
{7, 0x0102},
{8, 0x0054},
{8, 0x0014},
{8, 0x011c},
{7, 0x0112},
{8, 0x0074},
{8, 0x0034},
{9, 0x00c8},
{7, 0x010a},
{8, 0x0064},
{8, 0x0024},
{9, 0x00a8},
{8, 0x0004},
{8, 0x0084},
{8, 0x0044},
{9, 0x00e8},
{7, 0x0106},
{8, 0x005c},
{8, 0x001c},
{9, 0x0098},
{7, 0x0116},
{8, 0x007c},
{8, 0x003c},
{9, 0x00d8},
{7, 0x010e},
{8, 0x006c},
{8, 0x002c},
{9, 0x00b8},
{8, 0x000c},
{8, 0x008c},
{8, 0x004c},
{9, 0x00f8},
{7, 0x0101},
{8, 0x0052},
{8, 0x0012},
{8, 0x011a},
{7, 0x0111},
{8, 0x0072},
{8, 0x0032},
{9, 0x00c4},
{7, 0x0109},
{8, 0x0062},
{8, 0x0022},
{9, 0x00a4},
{8, 0x0002},
{8, 0x0082},
{8, 0x0042},
{9, 0x00e4},
{7, 0x0105},
{8, 0x005a},
{8, 0x001a},
{9, 0x0094},
{7, 0x0115},
{8, 0x007a},
{8, 0x003a},
{9, 0x00d4},
{7, 0x010d},
{8, 0x006a},
{8, 0x002a},
{9, 0x00b4},
{8, 0x000a},
{8, 0x008a},
{8, 0x004a},
{9, 0x00f4},
{7, 0x0103},
{8, 0x0056},
{8, 0x0016},
{8, 0x011e},
{7, 0x0113},
{8, 0x0076},
{8, 0x0036},
{9, 0x00cc},
{7, 0x010b},
{8, 0x0066},
{8, 0x0026},
{9, 0x00ac},
{8, 0x0006},
{8, 0x0086},
{8, 0x0046},
{9, 0x00ec},
{7, 0x0107},
{8, 0x005e},
{8, 0x001e},
{9, 0x009c},
{7, 0x0117},
{8, 0x007e},
{8, 0x003e},
{9, 0x00dc},
{7, 0x010f},
{8, 0x006e},
{8, 0x002e},
{9, 0x00bc},
{8, 0x000e},
{8, 0x008e},
{8, 0x004e},
{9, 0x00fc},
{7, 0x0100},
{8, 0x0051},
{8, 0x0011},
{8, 0x0119},
{7, 0x0110},
{8, 0x0071},
{8, 0x0031},
{9, 0x00c2},
{7, 0x0108},
{8, 0x0061},
{8, 0x0021},
{9, 0x00a2},
{8, 0x0001},
{8, 0x0081},
{8, 0x0041},
{9, 0x00e2},
{7, 0x0104},
{8, 0x0059},
{8, 0x0019},
{9, 0x0092},
{7, 0x0114},
{8, 0x0079},
{8, 0x0039},
{9, 0x00d2},
{7, 0x010c},
{8, 0x0069},
{8, 0x0029},
{9, 0x00b2},
{8, 0x0009},
{8, 0x0089},
{8, 0x0049},
{9, 0x00f2},
{7, 0x0102},
{8, 0x0055},
{8, 0x0015},
{8, 0x011d},
{7, 0x0112},
{8, 0x0075},
{8, 0x0035},
{9, 0x00ca},
{7, 0x010a},
{8, 0x0065},
{8, 0x0025},
{9, 0x00aa},
{8, 0x0005},
{8, 0x0085},
{8, 0x0045},
{9, 0x00ea},
{7, 0x0106},
{8, 0x005d},
{8, 0x001d},
{9, 0x009a},
{7, 0x0116},
{8, 0x007d},
{8, 0x003d},
{9, 0x00da},
{7, 0x010e},
{8, 0x006d},
{8, 0x002d},
{9, 0x00ba},
{8, 0x000d},
{8, 0x008d},
{8, 0x004d},
{9, 0x00fa},
{7, 0x0101},
{8, 0x0053},
{8, 0x0013},
{8, 0x011b},
{7, 0x0111},
{8, 0x0073},
{8, 0x0033},
{9, 0x00c6},
{7, 0x0109},
{8, 0x0063},
{8, 0x0023},
{9, 0x00a6},
{8, 0x0003},
{8, 0x0083},
{8, 0x0043},
{9, 0x00e6},
{7, 0x0105},
{8, 0x005b},
{8, 0x001b},
{9, 0x0096},
{7, 0x0115},
{8, 0x007b},
{8, 0x003b},
{9, 0x00d6},
{7, 0x010d},
{8, 0x006b},
{8, 0x002b},
{9, 0x00b6},
{8, 0x000b},
{8, 0x008b},
{8, 0x004b},
{9, 0x00f6},
{7, 0x0103},
{8, 0x0057},
{8, 0x0017},
{8, 0x011f},
{7, 0x0113},
{8, 0x0077},
{8, 0x0037},
{9, 0x00ce},
{7, 0x010b},
{8, 0x0067},
{8, 0x0027},
{9, 0x00ae},
{8, 0x0007},
{8, 0x0087},
{8, 0x0047},
{9, 0x00ee},
{7, 0x0107},
{8, 0x005f},
{8, 0x001f},
{9, 0x009e},
{7, 0x0117},
{8, 0x007f},
{8, 0x003f},
{9, 0x00de},
{7, 0x010f},
{8, 0x006f},
{8, 0x002f},
{9, 0x00be},
{8, 0x000f},
{8, 0x008f},
{8, 0x004f},
{9, 0x00fe},
{7, 0x0100},
{8, 0x0050},
{8, 0x0010},
{8, 0x0118},
{7, 0x0110},
{8, 0x0070},
{8, 0x0030},
{9, 0x00c1},
{7, 0x0108},
{8, 0x0060},
{8, 0x0020},
{9, 0x00a1},
{8, 0x0000},
{8, 0x0080},
{8, 0x0040},
{9, 0x00e1},
{7, 0x0104},
{8, 0x0058},
{8, 0x0018},
{9, 0x0091},
{7, 0x0114},
{8, 0x0078},
{8, 0x0038},
{9, 0x00d1},
{7, 0x010c},
{8, 0x0068},
{8, 0x0028},
{9, 0x00b1},
{8, 0x0008},
{8, 0x0088},
{8, 0x0048},
{9, 0x00f1},
{7, 0x0102},
{8, 0x0054},
{8, 0x0014},
{8, 0x011c},
{7, 0x0112},
{8, 0x0074},
{8, 0x0034},
{9, 0x00c9},
{7, 0x010a},
{8, 0x0064},
{8, 0x0024},
{9, 0x00a9},
{8, 0x0004},
{8, 0x0084},
{8, 0x0044},
{9, 0x00e9},
{7, 0x0106},
{8, 0x005c},
{8, 0x001c},
{9, 0x0099},
{7, 0x0116},
{8, 0x007c},
{8, 0x003c},
{9, 0x00d9},
{7, 0x010e},
{8, 0x006c},
{8, 0x002c},
{9, 0x00b9},
{8, 0x000c},
{8, 0x008c},
{8, 0x004c},
{9, 0x00f9},
{7, 0x0101},
{8, 0x0052},
{8, 0x0012},
{8, 0x011a},
{7, 0x0111},
{8, 0x0072},
{8, 0x0032},
{9, 0x00c5},
{7, 0x0109},
{8, 0x0062},
{8, 0x0022},
{9, 0x00a5},
{8, 0x0002},
{8, 0x0082},
{8, 0x0042},
{9, 0x00e5},
{7, 0x0105},
{8, 0x005a},
{8, 0x001a},
{9, 0x0095},
{7, 0x0115},
{8, 0x007a},
{8, 0x003a},
{9, 0x00d5},
{7, 0x010d},
{8, 0x006a},
{8, 0x002a},
{9, 0x00b5},
{8, 0x000a},
{8, 0x008a},
{8, 0x004a},
{9, 0x00f5},
{7, 0x0103},
{8, 0x0056},
{8, 0x0016},
{8, 0x011e},
{7, 0x0113},
{8, 0x0076},
{8, 0x0036},
{9, 0x00cd},
{7, 0x010b},
{8, 0x0066},
{8, 0x0026},
{9, 0x00ad},
{8, 0x0006},
{8, 0x0086},
{8, 0x0046},
{9, 0x00ed},
{7, 0x0107},
{8, 0x005e},
{8, 0x001e},
{9, 0x009d},
{7, 0x0117},
{8, 0x007e},
{8, 0x003e},
{9, 0x00dd},
{7, 0x010f},
{8, 0x006e},
{8, 0x002e},
{9, 0x00bd},
{8, 0x000e},
{8, 0x008e},
{8, 0x004e},
{9, 0x00fd},
{7, 0x0100},
{8, 0x0051},
{8, 0x0011},
{8, 0x0119},
{7, 0x0110},
{8, 0x0071},
{8, 0x0031},
{9, 0x00c3},
{7, 0x0108},
{8, 0x0061},
{8, 0x0021},
{9, 0x00a3},
{8, 0x0001},
{8, 0x0081},
{8, 0x0041},
{9, 0x00e3},
{7, 0x0104},
{8, 0x0059},
{8, 0x0019},
{9, 0x0093},
{7, 0x0114},
{8, 0x0079},
{8, 0x0039},
{9, 0x00d3},
{7, 0x010c},
{8, 0x0069},
{8, 0x0029},
{9, 0x00b3},
{8, 0x0009},
{8, 0x0089},
{8, 0x0049},
{9, 0x00f3},
{7, 0x0102},
{8, 0x0055},
{8, 0x0015},
{8, 0x011d},
{7, 0x0112},
{8, 0x0075},
{8, 0x0035},
{9, 0x00cb},
{7, 0x010a},
{8, 0x0065},
{8, 0x0025},
{9, 0x00ab},
{8, 0x0005},
{8, 0x0085},
{8, 0x0045},
{9, 0x00eb},
{7, 0x0106},
{8, 0x005d},
{8, 0x001d},
{9, 0x009b},
{7, 0x0116},
{8, 0x007d},
{8, 0x003d},
{9, 0x00db},
{7, 0x010e},
{8, 0x006d},
{8, 0x002d},
{9, 0x00bb},
{8, 0x000d},
{8, 0x008d},
{8, 0x004d},
{9, 0x00fb},
{7, 0x0101},
{8, 0x0053},
{8, 0x0013},
{8, 0x011b},
{7, 0x0111},
{8, 0x0073},
{8, 0x0033},
{9, 0x00c7},
{7, 0x0109},
{8, 0x0063},
{8, 0x0023},
{9, 0x00a7},
{8, 0x0003},
{8, 0x0083},
{8, 0x0043},
{9, 0x00e7},
{7, 0x0105},
{8, 0x005b},
{8, 0x001b},
{9, 0x0097},
{7, 0x0115},
{8, 0x007b},
{8, 0x003b},
{9, 0x00d7},
{7, 0x010d},
{8, 0x006b},
{8, 0x002b},
{9, 0x00b7},
{8, 0x000b},
{8, 0x008b},
{8, 0x004b},
{9, 0x00f7},
{7, 0x0103},
{8, 0x0057},
{8, 0x0017},
{8, 0x011f},
{7, 0x0113},
{8, 0x0077},
{8, 0x0037},
{9, 0x00cf},
{7, 0x010b},
{8, 0x0067},
{8, 0x0027},
{9, 0x00af},
{8, 0x0007},
{8, 0x0087},
{8, 0x0047},
{9, 0x00ef},
{7, 0x0107},
{8, 0x005f},
{8, 0x001f},
{9, 0x009f},
{7, 0x0117},
{8, 0x007f},
{8, 0x003f},
{9, 0x00df},
{7, 0x010f},
{8, 0x006f},
{8, 0x002f},
{9, 0x00bf},
{8, 0x000f},
{8, 0x008f},
{8, 0x004f},
{9, 0x00ff}
};
FlateHuffmanTab FlateStream::fixedLitCodeTab = {
flateFixedLitCodeTabCodes, 9
};
static FlateCode flateFixedDistCodeTabCodes[32] = {
{5, 0x0000},
{5, 0x0010},
{5, 0x0008},
{5, 0x0018},
{5, 0x0004},
{5, 0x0014},
{5, 0x000c},
{5, 0x001c},
{5, 0x0002},
{5, 0x0012},
{5, 0x000a},
{5, 0x001a},
{5, 0x0006},
{5, 0x0016},
{5, 0x000e},
{0, 0x0000},
{5, 0x0001},
{5, 0x0011},
{5, 0x0009},
{5, 0x0019},
{5, 0x0005},
{5, 0x0015},
{5, 0x000d},
{5, 0x001d},
{5, 0x0003},
{5, 0x0013},
{5, 0x000b},
{5, 0x001b},
{5, 0x0007},
{5, 0x0017},
{5, 0x000f},
{0, 0x0000}
};
FlateHuffmanTab FlateStream::fixedDistCodeTab = {
flateFixedDistCodeTabCodes, 5
};
FlateStream::FlateStream(Stream *strA, int predictor, int columns,
int colors, int bits):
FilterStream(strA) {
if (predictor != 1) {
pred = new StreamPredictor(this, predictor, columns, colors, bits);
if (!pred->isOk()) {
delete pred;
pred = NULL;
}
} else {
pred = NULL;
}
litCodeTab.codes = NULL;
distCodeTab.codes = NULL;
memset(buf, 0, flateWindow);
}
FlateStream::~FlateStream() {
if (litCodeTab.codes != fixedLitCodeTab.codes) {
gfree(litCodeTab.codes);
}
if (distCodeTab.codes != fixedDistCodeTab.codes) {
gfree(distCodeTab.codes);
}
if (pred) {
delete pred;
}
delete str;
}
Stream *FlateStream::copy() {
if (pred) {
return new FlateStream(str->copy(), pred->getPredictor(),
pred->getWidth(), pred->getNComps(),
pred->getNBits());
} else {
return new FlateStream(str->copy(), 1, 0, 0, 0);
}
}
void FlateStream::reset() {
int cmf, flg;
index = 0;
remain = 0;
codeBuf = 0;
codeSize = 0;
compressedBlock = gFalse;
endOfBlock = gTrue;
eof = gTrue;
str->reset();
if (pred) {
pred->reset();
}
// read header
//~ need to look at window size?
endOfBlock = eof = gTrue;
cmf = str->getChar();
flg = str->getChar();
if (cmf == EOF || flg == EOF)
return;
if ((cmf & 0x0f) != 0x08) {
error(errSyntaxError, getPos(),
"Unknown compression method in flate stream");
return;
}
if ((((cmf << 8) + flg) % 31) != 0) {
error(errSyntaxError, getPos(), "Bad FCHECK in flate stream");
return;
}
if (flg & 0x20) {
error(errSyntaxError, getPos(), "FDICT bit set in flate stream");
return;
}
eof = gFalse;
}
int FlateStream::getChar() {
int c;
if (pred) {
return pred->getChar();
}
while (remain == 0) {
if (endOfBlock && eof)
return EOF;
readSome();
}
c = buf[index];
index = (index + 1) & flateMask;
--remain;
return c;
}
int FlateStream::lookChar() {
int c;
if (pred) {
return pred->lookChar();
}
while (remain == 0) {
if (endOfBlock && eof)
return EOF;
readSome();
}
c = buf[index];
return c;
}
int FlateStream::getRawChar() {
int c;
while (remain == 0) {
if (endOfBlock && eof)
return EOF;
readSome();
}
c = buf[index];
index = (index + 1) & flateMask;
--remain;
return c;
}
int FlateStream::getBlock(char *blk, int size) {
int n;
if (pred) {
return pred->getBlock(blk, size);
}
n = 0;
while (n < size) {
if (remain == 0) {
if (endOfBlock && eof) {
break;
}
readSome();
}
while (remain && n < size) {
blk[n++] = buf[index];
index = (index + 1) & flateMask;
--remain;
}
}
return n;
}
GString *FlateStream::getPSFilter(int psLevel, const char *indent) {
GString *s;
if (psLevel < 3 || pred) {
return NULL;
}
if (!(s = str->getPSFilter(psLevel, indent))) {
return NULL;
}
s->append(indent)->append("<< >> /FlateDecode filter\n");
return s;
}
GBool FlateStream::isBinary(GBool last) {
return str->isBinary(gTrue);
}
void FlateStream::readSome() {
int code1, code2;
int len, dist;
int i, j, k;
int c;
if (endOfBlock) {
if (!startBlock())
return;
}
if (compressedBlock) {
if ((code1 = getHuffmanCodeWord(&litCodeTab)) == EOF)
goto err;
if (code1 < 256) {
buf[index] = (Guchar)code1;
remain = 1;
} else if (code1 == 256) {
endOfBlock = gTrue;
remain = 0;
} else {
code1 -= 257;
code2 = lengthDecode[code1].bits;
if (code2 > 0 && (code2 = getCodeWord(code2)) == EOF)
goto err;
len = lengthDecode[code1].first + code2;
if ((code1 = getHuffmanCodeWord(&distCodeTab)) == EOF)
goto err;
code2 = distDecode[code1].bits;
if (code2 > 0 && (code2 = getCodeWord(code2)) == EOF)
goto err;
dist = distDecode[code1].first + code2;
i = index;
j = (index - dist) & flateMask;
for (k = 0; k < len; ++k) {
buf[i] = buf[j];
i = (i + 1) & flateMask;
j = (j + 1) & flateMask;
}
remain = len;
}
} else {
len = (blockLen < flateWindow) ? blockLen : flateWindow;
for (i = 0, j = index; i < len; ++i, j = (j + 1) & flateMask) {
if ((c = str->getChar()) == EOF) {
endOfBlock = eof = gTrue;
break;
}
buf[j] = (Guchar)c;
}
remain = i;
blockLen -= len;
if (blockLen == 0)
endOfBlock = gTrue;
}
return;
err:
error(errSyntaxError, getPos(), "Unexpected end of file in flate stream");
endOfBlock = eof = gTrue;
remain = 0;
}
GBool FlateStream::startBlock() {
int blockHdr;
int c;
int check;
// free the code tables from the previous block
if (litCodeTab.codes != fixedLitCodeTab.codes) {
gfree(litCodeTab.codes);
}
litCodeTab.codes = NULL;
if (distCodeTab.codes != fixedDistCodeTab.codes) {
gfree(distCodeTab.codes);
}
distCodeTab.codes = NULL;
// read block header
blockHdr = getCodeWord(3);
if (blockHdr & 1)
eof = gTrue;
blockHdr >>= 1;
// uncompressed block
if (blockHdr == 0) {
compressedBlock = gFalse;
if ((c = str->getChar()) == EOF)
goto err;
blockLen = c & 0xff;
if ((c = str->getChar()) == EOF)
goto err;
blockLen |= (c & 0xff) << 8;
if ((c = str->getChar()) == EOF)
goto err;
check = c & 0xff;
if ((c = str->getChar()) == EOF)
goto err;
check |= (c & 0xff) << 8;
if (check != (~blockLen & 0xffff))
error(errSyntaxError, getPos(),
"Bad uncompressed block length in flate stream");
codeBuf = 0;
codeSize = 0;
// compressed block with fixed codes
} else if (blockHdr == 1) {
compressedBlock = gTrue;
loadFixedCodes();
// compressed block with dynamic codes
} else if (blockHdr == 2) {
compressedBlock = gTrue;
if (!readDynamicCodes()) {
goto err;
}
// unknown block type
} else {
goto err;
}
endOfBlock = gFalse;
return gTrue;
err:
error(errSyntaxError, getPos(), "Bad block header in flate stream");
endOfBlock = eof = gTrue;
return gFalse;
}
void FlateStream::loadFixedCodes() {
litCodeTab.codes = fixedLitCodeTab.codes;
litCodeTab.maxLen = fixedLitCodeTab.maxLen;
distCodeTab.codes = fixedDistCodeTab.codes;
distCodeTab.maxLen = fixedDistCodeTab.maxLen;
}
GBool FlateStream::readDynamicCodes() {
int numCodeLenCodes;
int numLitCodes;
int numDistCodes;
int codeLenCodeLengths[flateMaxCodeLenCodes];
FlateHuffmanTab codeLenCodeTab;
int len, repeat, code;
int i;
codeLenCodeTab.codes = NULL;
// read lengths
if ((numLitCodes = getCodeWord(5)) == EOF) {
goto err;
}
numLitCodes += 257;
if ((numDistCodes = getCodeWord(5)) == EOF) {
goto err;
}
numDistCodes += 1;
if ((numCodeLenCodes = getCodeWord(4)) == EOF) {
goto err;
}
numCodeLenCodes += 4;
if (numLitCodes > flateMaxLitCodes ||
numDistCodes > flateMaxDistCodes ||
numCodeLenCodes > flateMaxCodeLenCodes) {
goto err;
}
// build the code length code table
for (i = 0; i < flateMaxCodeLenCodes; ++i) {
codeLenCodeLengths[i] = 0;
}
for (i = 0; i < numCodeLenCodes; ++i) {
if ((codeLenCodeLengths[codeLenCodeMap[i]] = getCodeWord(3)) == -1) {
goto err;
}
}
compHuffmanCodes(codeLenCodeLengths, flateMaxCodeLenCodes, &codeLenCodeTab);
// build the literal and distance code tables
len = 0;
repeat = 0;
i = 0;
while (i < numLitCodes + numDistCodes) {
if ((code = getHuffmanCodeWord(&codeLenCodeTab)) == EOF) {
goto err;
}
if (code == 16) {
if ((repeat = getCodeWord(2)) == EOF) {
goto err;
}
repeat += 3;
if (i + repeat > numLitCodes + numDistCodes) {
goto err;
}
for (; repeat > 0; --repeat) {
codeLengths[i++] = len;
}
} else if (code == 17) {
if ((repeat = getCodeWord(3)) == EOF) {
goto err;
}
repeat += 3;
if (i + repeat > numLitCodes + numDistCodes) {
goto err;
}
len = 0;
for (; repeat > 0; --repeat) {
codeLengths[i++] = 0;
}
} else if (code == 18) {
if ((repeat = getCodeWord(7)) == EOF) {
goto err;
}
repeat += 11;
if (i + repeat > numLitCodes + numDistCodes) {
goto err;
}
len = 0;
for (; repeat > 0; --repeat) {
codeLengths[i++] = 0;
}
} else {
codeLengths[i++] = len = code;
}
}
compHuffmanCodes(codeLengths, numLitCodes, &litCodeTab);
compHuffmanCodes(codeLengths + numLitCodes, numDistCodes, &distCodeTab);
gfree(codeLenCodeTab.codes);
return gTrue;
err:
error(errSyntaxError, getPos(), "Bad dynamic code table in flate stream");
gfree(codeLenCodeTab.codes);
return gFalse;
}
// Convert an array <lengths> of <n> lengths, in value order, into a
// Huffman code lookup table.
void FlateStream::compHuffmanCodes(int *lengths, int n, FlateHuffmanTab *tab) {
int tabSize, len, code, code2, skip, val, i, t;
// find max code length
tab->maxLen = 0;
for (val = 0; val < n; ++val) {
if (lengths[val] > tab->maxLen) {
tab->maxLen = lengths[val];
}
}
// allocate the table
tabSize = 1 << tab->maxLen;
tab->codes = (FlateCode *)gmallocn(tabSize, sizeof(FlateCode));
// clear the table
for (i = 0; i < tabSize; ++i) {
tab->codes[i].len = 0;
tab->codes[i].val = 0;
}
// build the table
for (len = 1, code = 0, skip = 2;
len <= tab->maxLen;
++len, code <<= 1, skip <<= 1) {
for (val = 0; val < n; ++val) {
if (lengths[val] == len) {
// bit-reverse the code
code2 = 0;
t = code;
for (i = 0; i < len; ++i) {
code2 = (code2 << 1) | (t & 1);
t >>= 1;
}
// fill in the table entries
for (i = code2; i < tabSize; i += skip) {
tab->codes[i].len = (Gushort)len;
tab->codes[i].val = (Gushort)val;
}
++code;
}
}
}
}
int FlateStream::getHuffmanCodeWord(FlateHuffmanTab *tab) {
FlateCode *code;
int c;
while (codeSize < tab->maxLen) {
if ((c = str->getChar()) == EOF) {
break;
}
codeBuf |= (c & 0xff) << codeSize;
codeSize += 8;
}
code = &tab->codes[codeBuf & ((1 << tab->maxLen) - 1)];
if (codeSize == 0 || codeSize < code->len || code->len == 0) {
return EOF;
}
codeBuf >>= code->len;
codeSize -= code->len;
return (int)code->val;
}
int FlateStream::getCodeWord(int bits) {
int c;
while (codeSize < bits) {
if ((c = str->getChar()) == EOF)
return EOF;
codeBuf |= (c & 0xff) << codeSize;
codeSize += 8;
}
c = codeBuf & ((1 << bits) - 1);
codeBuf >>= bits;
codeSize -= bits;
return c;
}
//------------------------------------------------------------------------
// EOFStream
//------------------------------------------------------------------------
EOFStream::EOFStream(Stream *strA):
FilterStream(strA) {
}
EOFStream::~EOFStream() {
delete str;
}
Stream *EOFStream::copy() {
return new EOFStream(str->copy());
}
//------------------------------------------------------------------------
// BufStream
//------------------------------------------------------------------------
BufStream::BufStream(Stream *strA, int bufSizeA): FilterStream(strA) {
bufSize = bufSizeA;
buf = (int *)gmallocn(bufSize, sizeof(int));
}
BufStream::~BufStream() {
gfree(buf);
delete str;
}
Stream *BufStream::copy() {
return new BufStream(str->copy(), bufSize);
}
void BufStream::reset() {
int i;
str->reset();
for (i = 0; i < bufSize; ++i) {
buf[i] = str->getChar();
}
}
int BufStream::getChar() {
int c, i;
c = buf[0];
for (i = 1; i < bufSize; ++i) {
buf[i-1] = buf[i];
}
buf[bufSize - 1] = str->getChar();
return c;
}
int BufStream::lookChar() {
return buf[0];
}
int BufStream::lookChar(int idx) {
return buf[idx];
}
GBool BufStream::isBinary(GBool last) {
return str->isBinary(gTrue);
}
//------------------------------------------------------------------------
// FixedLengthEncoder
//------------------------------------------------------------------------
FixedLengthEncoder::FixedLengthEncoder(Stream *strA, int lengthA):
FilterStream(strA) {
length = lengthA;
count = 0;
}
FixedLengthEncoder::~FixedLengthEncoder() {
if (str->isEncoder())
delete str;
}
Stream *FixedLengthEncoder::copy() {
error(errInternal, -1, "Called copy() on FixedLengthEncoder");
return NULL;
}
void FixedLengthEncoder::reset() {
str->reset();
count = 0;
}
int FixedLengthEncoder::getChar() {
if (length >= 0 && count >= length)
return EOF;
++count;
return str->getChar();
}
int FixedLengthEncoder::lookChar() {
if (length >= 0 && count >= length)
return EOF;
return str->getChar();
}
GBool FixedLengthEncoder::isBinary(GBool last) {
return str->isBinary(gTrue);
}
//------------------------------------------------------------------------
// ASCIIHexEncoder
//------------------------------------------------------------------------
ASCIIHexEncoder::ASCIIHexEncoder(Stream *strA):
FilterStream(strA) {
bufPtr = bufEnd = buf;
lineLen = 0;
eof = gFalse;
}
ASCIIHexEncoder::~ASCIIHexEncoder() {
if (str->isEncoder()) {
delete str;
}
}
Stream *ASCIIHexEncoder::copy() {
error(errInternal, -1, "Called copy() on ASCIIHexEncoder");
return NULL;
}
void ASCIIHexEncoder::reset() {
str->reset();
bufPtr = bufEnd = buf;
lineLen = 0;
eof = gFalse;
}
GBool ASCIIHexEncoder::fillBuf() {
static const char *hex = "0123456789abcdef";
int c;
if (eof) {
return gFalse;
}
bufPtr = bufEnd = buf;
if ((c = str->getChar()) == EOF) {
*bufEnd++ = '>';
eof = gTrue;
} else {
if (lineLen >= 64) {
*bufEnd++ = '\n';
lineLen = 0;
}
*bufEnd++ = hex[(c >> 4) & 0x0f];
*bufEnd++ = hex[c & 0x0f];
lineLen += 2;
}
return gTrue;
}
//------------------------------------------------------------------------
// ASCII85Encoder
//------------------------------------------------------------------------
ASCII85Encoder::ASCII85Encoder(Stream *strA):
FilterStream(strA) {
bufPtr = bufEnd = buf;
lineLen = 0;
eof = gFalse;
}
ASCII85Encoder::~ASCII85Encoder() {
if (str->isEncoder())
delete str;
}
Stream *ASCII85Encoder::copy() {
error(errInternal, -1, "Called copy() on ASCII85Encoder");
return NULL;
}
void ASCII85Encoder::reset() {
str->reset();
bufPtr = bufEnd = buf;
lineLen = 0;
eof = gFalse;
}
GBool ASCII85Encoder::fillBuf() {
Guint t;
char buf1[5];
int c0, c1, c2, c3;
int n, i;
if (eof) {
return gFalse;
}
c0 = str->getChar();
c1 = str->getChar();
c2 = str->getChar();
c3 = str->getChar();
bufPtr = bufEnd = buf;
if (c3 == EOF) {
if (c0 == EOF) {
n = 0;
t = 0;
} else {
if (c1 == EOF) {
n = 1;
t = c0 << 24;
} else if (c2 == EOF) {
n = 2;
t = (c0 << 24) | (c1 << 16);
} else {
n = 3;
t = (c0 << 24) | (c1 << 16) | (c2 << 8);
}
for (i = 4; i >= 0; --i) {
buf1[i] = (char)(t % 85 + 0x21);
t /= 85;
}
for (i = 0; i <= n; ++i) {
*bufEnd++ = buf1[i];
if (++lineLen == 65) {
*bufEnd++ = '\n';
lineLen = 0;
}
}
}
*bufEnd++ = '~';
*bufEnd++ = '>';
eof = gTrue;
} else {
t = (c0 << 24) | (c1 << 16) | (c2 << 8) | c3;
if (t == 0) {
*bufEnd++ = 'z';
if (++lineLen == 65) {
*bufEnd++ = '\n';
lineLen = 0;
}
} else {
for (i = 4; i >= 0; --i) {
buf1[i] = (char)(t % 85 + 0x21);
t /= 85;
}
for (i = 0; i <= 4; ++i) {
*bufEnd++ = buf1[i];
if (++lineLen == 65) {
*bufEnd++ = '\n';
lineLen = 0;
}
}
}
}
return gTrue;
}
//------------------------------------------------------------------------
// RunLengthEncoder
//------------------------------------------------------------------------
RunLengthEncoder::RunLengthEncoder(Stream *strA):
FilterStream(strA) {
bufPtr = bufEnd = nextEnd = buf;
eof = gFalse;
}
RunLengthEncoder::~RunLengthEncoder() {
if (str->isEncoder())
delete str;
}
Stream *RunLengthEncoder::copy() {
error(errInternal, -1, "Called copy() on RunLengthEncoder");
return NULL;
}
void RunLengthEncoder::reset() {
str->reset();
bufPtr = bufEnd = nextEnd = buf;
eof = gFalse;
}
//
// When fillBuf finishes, buf[] looks like this:
// +-----+--------------+-----------------+--
// + tag | ... data ... | next 0, 1, or 2 |
// +-----+--------------+-----------------+--
// ^ ^ ^
// bufPtr bufEnd nextEnd
//
GBool RunLengthEncoder::fillBuf() {
int c, c1, c2;
int n;
// already hit EOF?
if (eof)
return gFalse;
// grab two bytes
if (nextEnd < bufEnd + 1) {
if ((c1 = str->getChar()) == EOF) {
eof = gTrue;
return gFalse;
}
} else {
c1 = bufEnd[0] & 0xff;
}
if (nextEnd < bufEnd + 2) {
if ((c2 = str->getChar()) == EOF) {
eof = gTrue;
buf[0] = 0;
buf[1] = (char)c1;
bufPtr = buf;
bufEnd = &buf[2];
return gTrue;
}
} else {
c2 = bufEnd[1] & 0xff;
}
// check for repeat
c = 0; // make gcc happy
if (c1 == c2) {
n = 2;
while (n < 128 && (c = str->getChar()) == c1)
++n;
buf[0] = (char)(257 - n);
buf[1] = (char)c1;
bufEnd = &buf[2];
if (c == EOF) {
eof = gTrue;
} else if (n < 128) {
buf[2] = (char)c;
nextEnd = &buf[3];
} else {
nextEnd = bufEnd;
}
// get up to 128 chars
} else {
buf[1] = (char)c1;
buf[2] = (char)c2;
n = 2;
while (n < 128) {
if ((c = str->getChar()) == EOF) {
eof = gTrue;
break;
}
++n;
buf[n] = (char)c;
if (buf[n] == buf[n-1])
break;
}
if (buf[n] == buf[n-1]) {
buf[0] = (char)(n-2-1);
bufEnd = &buf[n-1];
nextEnd = &buf[n+1];
} else {
buf[0] = (char)(n-1);
bufEnd = nextEnd = &buf[n+1];
}
}
bufPtr = buf;
return gTrue;
}
//------------------------------------------------------------------------
// LZWEncoder
//------------------------------------------------------------------------
LZWEncoder::LZWEncoder(Stream *strA):
FilterStream(strA)
{
inBufStart = 0;
inBufLen = 0;
outBufLen = 0;
}
LZWEncoder::~LZWEncoder() {
if (str->isEncoder()) {
delete str;
}
}
Stream *LZWEncoder::copy() {
error(errInternal, -1, "Called copy() on LZWEncoder");
return NULL;
}
void LZWEncoder::reset() {
int i;
str->reset();
// initialize code table
for (i = 0; i < 256; ++i) {
table[i].byte = i;
table[i].next = NULL;
table[i].children = NULL;
}
nextSeq = 258;
codeLen = 9;
// initialize input buffer
inBufLen = str->getBlock((char *)inBuf, sizeof(inBuf));
inBufStart = 0;
// initialize output buffer with a clear-table code
outBuf = 256;
outBufLen = 9;
needEOD = gFalse;
}
int LZWEncoder::getChar() {
int ret;
if (inBufLen == 0 && !needEOD && outBufLen == 0) {
return EOF;
}
if (outBufLen < 8 && (inBufLen > 0 || needEOD)) {
fillBuf();
}
if (outBufLen >= 8) {
ret = (outBuf >> (outBufLen - 8)) & 0xff;
outBufLen -= 8;
} else {
ret = (outBuf << (8 - outBufLen)) & 0xff;
outBufLen = 0;
}
return ret;
}
int LZWEncoder::lookChar() {
if (inBufLen == 0 && !needEOD && outBufLen == 0) {
return EOF;
}
if (outBufLen < 8 && (inBufLen > 0 || needEOD)) {
fillBuf();
}
if (outBufLen >= 8) {
return (outBuf >> (outBufLen - 8)) & 0xff;
} else {
return (outBuf << (8 - outBufLen)) & 0xff;
}
}
// On input, outBufLen < 8.
// This function generates, at most, 2 12-bit codes
// --> outBufLen < 8 + 12 + 12 = 32
void LZWEncoder::fillBuf() {
LZWEncoderNode *p0, *p1;
int seqLen, code, i;
if (needEOD) {
outBuf = (outBuf << codeLen) | 257;
outBufLen += codeLen;
needEOD = gFalse;
return;
}
// find longest matching sequence (if any)
p0 = table + inBuf[inBufStart];
seqLen = 1;
while (inBufLen > seqLen) {
for (p1 = p0->children; p1; p1 = p1->next) {
if (p1->byte == inBuf[inBufStart + seqLen]) {
break;
}
}
if (!p1) {
break;
}
p0 = p1;
++seqLen;
}
code = (int)(p0 - table);
// generate an output code
outBuf = (outBuf << codeLen) | code;
outBufLen += codeLen;
// update the table
table[nextSeq].byte = seqLen < inBufLen ? inBuf[inBufStart + seqLen] : 0;
table[nextSeq].children = NULL;
if (table[code].children) {
table[nextSeq].next = table[code].children;
} else {
table[nextSeq].next = NULL;
}
table[code].children = table + nextSeq;
++nextSeq;
// update the input buffer
inBufStart += seqLen;
inBufLen -= seqLen;
if (inBufStart >= 4096 && inBufStart + inBufLen == sizeof(inBuf)) {
memcpy(inBuf, inBuf + inBufStart, inBufLen);
inBufStart = 0;
inBufLen += str->getBlock((char *)inBuf + inBufLen,
(int)sizeof(inBuf) - inBufLen);
}
// increment codeLen; generate clear-table code
if (nextSeq == (1 << codeLen)) {
++codeLen;
if (codeLen == 13) {
outBuf = (outBuf << 12) | 256;
outBufLen += 12;
for (i = 0; i < 256; ++i) {
table[i].next = NULL;
table[i].children = NULL;
}
nextSeq = 258;
codeLen = 9;
}
}
// generate EOD next time
if (inBufLen == 0) {
needEOD = gTrue;
}
}