cppcheck/lib/programmemory.cpp

1767 lines
73 KiB
C++
Raw Normal View History

/*
* Cppcheck - A tool for static C/C++ code analysis
2023-01-28 10:16:34 +01:00
* Copyright (C) 2007-2023 Cppcheck team.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "programmemory.h"
#include "astutils.h"
#include "calculate.h"
#include "infer.h"
#include "library.h"
#include "mathlib.h"
#include "settings.h"
#include "symboldatabase.h"
#include "token.h"
2022-02-11 19:44:08 +01:00
#include "utils.h"
#include "valueflow.h"
#include "valueptr.h"
#include <algorithm>
#include <cassert>
#include <cmath>
#include <functional>
#include <list>
#include <memory>
#include <string>
#include <utility>
#include <vector>
#include <iostream>
ExprIdToken::ExprIdToken(const Token* tok) : tok(tok), exprid(tok ? tok->exprId() : 0) {}
nonneg int ExprIdToken::getExpressionId() const {
return tok ? tok->exprId() : exprid;
}
std::size_t ExprIdToken::Hash::operator()(ExprIdToken etok) const
2021-01-22 21:47:24 +01:00
{
return std::hash<nonneg int>()(etok.getExpressionId());
}
void ProgramMemory::setValue(const Token* expr, const ValueFlow::Value& value) {
mValues[expr] = value;
ValueFlow::Value subvalue = value;
const Token* subexpr = solveExprValue(
expr,
[&](const Token* tok) -> std::vector<MathLib::bigint> {
if (tok->hasKnownIntValue())
return {tok->values().front().intvalue};
MathLib::bigint result = 0;
if (getIntValue(tok->exprId(), result))
return {result};
return {};
},
subvalue);
if (subexpr)
mValues[subexpr] = subvalue;
2021-01-22 21:47:24 +01:00
}
const ValueFlow::Value* ProgramMemory::getValue(nonneg int exprid, bool impossible) const
2019-10-30 17:58:19 +01:00
{
const ProgramMemory::Map::const_iterator it = mValues.find(exprid);
const bool found = it != mValues.cend() && (impossible || !it->second.isImpossible());
if (found)
return &it->second;
return nullptr;
}
// cppcheck-suppress unusedFunction
bool ProgramMemory::getIntValue(nonneg int exprid, MathLib::bigint& result) const
{
const ValueFlow::Value* value = getValue(exprid);
if (value && value->isIntValue()) {
result = value->intvalue;
return true;
}
return false;
}
void ProgramMemory::setIntValue(const Token* expr, MathLib::bigint value, bool impossible)
2019-10-30 17:58:19 +01:00
{
ValueFlow::Value v(value);
if (impossible)
v.setImpossible();
setValue(expr, v);
}
bool ProgramMemory::getTokValue(nonneg int exprid, const Token** result) const
2019-10-30 17:58:19 +01:00
{
const ValueFlow::Value* value = getValue(exprid);
if (value && value->isTokValue()) {
*result = value->tokvalue;
return true;
}
return false;
}
// cppcheck-suppress unusedFunction
bool ProgramMemory::getContainerSizeValue(nonneg int exprid, MathLib::bigint& result) const
{
const ValueFlow::Value* value = getValue(exprid);
if (value && value->isContainerSizeValue()) {
result = value->intvalue;
return true;
}
return false;
}
bool ProgramMemory::getContainerEmptyValue(nonneg int exprid, MathLib::bigint& result) const
{
const ValueFlow::Value* value = getValue(exprid, true);
if (value && value->isContainerSizeValue()) {
if (value->isImpossible() && value->intvalue == 0) {
result = false;
return true;
}
if (!value->isImpossible()) {
result = (value->intvalue == 0);
return true;
}
}
return false;
}
void ProgramMemory::setContainerSizeValue(const Token* expr, MathLib::bigint value, bool isEqual)
{
ValueFlow::Value v(value);
v.valueType = ValueFlow::Value::ValueType::CONTAINER_SIZE;
if (!isEqual)
v.valueKind = ValueFlow::Value::ValueKind::Impossible;
setValue(expr, v);
}
void ProgramMemory::setUnknown(const Token* expr) {
mValues[expr].valueType = ValueFlow::Value::ValueType::UNINIT;
2020-02-13 17:04:05 +01:00
}
bool ProgramMemory::hasValue(nonneg int exprid)
2021-01-22 21:47:24 +01:00
{
return mValues.find(exprid) != mValues.end();
}
const ValueFlow::Value& ProgramMemory::at(nonneg int exprid) const {
return mValues.at(exprid);
}
ValueFlow::Value& ProgramMemory::at(nonneg int exprid) {
return mValues.at(exprid);
}
void ProgramMemory::erase_if(const std::function<bool(const ExprIdToken&)>& pred)
{
for (auto it = mValues.begin(); it != mValues.end();) {
if (pred(it->first))
it = mValues.erase(it);
else
++it;
}
2021-01-22 21:47:24 +01:00
}
2019-10-30 17:58:19 +01:00
void ProgramMemory::swap(ProgramMemory &pm)
{
mValues.swap(pm.mValues);
}
2019-10-30 17:58:19 +01:00
void ProgramMemory::clear()
{
mValues.clear();
}
2019-10-30 17:58:19 +01:00
bool ProgramMemory::empty() const
{
return mValues.empty();
}
2019-10-30 17:58:19 +01:00
void ProgramMemory::replace(const ProgramMemory &pm)
{
for (auto&& p : pm.mValues) {
mValues[p.first] = p.second;
}
}
2019-10-30 17:58:19 +01:00
void ProgramMemory::insert(const ProgramMemory &pm)
{
for (auto&& p : pm)
mValues.insert(p);
}
static ValueFlow::Value execute(const Token* expr, ProgramMemory& pm, const Settings* settings);
static bool evaluateCondition(MathLib::bigint r, const Token* condition, ProgramMemory& pm, const Settings* settings)
{
if (!condition)
return false;
MathLib::bigint result = 0;
bool error = false;
execute(condition, pm, &result, &error, settings);
return !error && result == r;
}
bool conditionIsFalse(const Token* condition, ProgramMemory pm, const Settings* settings)
{
return evaluateCondition(0, condition, pm, settings);
}
bool conditionIsTrue(const Token* condition, ProgramMemory pm, const Settings* settings)
{
return evaluateCondition(1, condition, pm, settings);
}
static bool frontIs(const std::vector<MathLib::bigint>& v, bool i)
{
if (v.empty())
return false;
if (v.front())
return i;
return !i;
}
static bool isTrue(const ValueFlow::Value& v)
{
if (v.isUninitValue())
return false;
if (v.isImpossible())
return v.intvalue == 0;
return v.intvalue != 0;
}
static bool isFalse(const ValueFlow::Value& v)
{
if (v.isUninitValue())
return false;
if (v.isImpossible())
return false;
return v.intvalue == 0;
}
static bool isTrueOrFalse(const ValueFlow::Value& v, bool b)
{
if (b)
return isTrue(v);
return isFalse(v);
}
// If the scope is a non-range for loop
static bool isBasicForLoop(const Token* tok)
{
if (!tok)
return false;
if (Token::simpleMatch(tok, "}"))
return isBasicForLoop(tok->link());
if (!Token::simpleMatch(tok->previous(), ") {"))
return false;
const Token* start = tok->linkAt(-1);
if (!start)
return false;
if (!Token::simpleMatch(start->previous(), "for ("))
return false;
if (!Token::simpleMatch(start->astOperand2(), ";"))
return false;
return true;
}
void programMemoryParseCondition(ProgramMemory& pm, const Token* tok, const Token* endTok, const Settings* settings, bool then)
{
auto eval = [&](const Token* t) -> std::vector<MathLib::bigint> {
if (t->hasKnownIntValue())
return {t->values().front().intvalue};
MathLib::bigint result = 0;
bool error = false;
execute(t, pm, &result, &error, settings);
if (!error)
return {result};
return std::vector<MathLib::bigint>{};
};
if (Token::Match(tok, "==|>=|<=|<|>|!=")) {
ValueFlow::Value truevalue;
ValueFlow::Value falsevalue;
const Token* vartok = parseCompareInt(tok, truevalue, falsevalue, eval);
if (!vartok)
return;
if (vartok->exprId() == 0)
return;
if (!truevalue.isIntValue())
return;
if (endTok && findExpressionChanged(vartok, tok->next(), endTok, settings, true))
return;
const bool impossible = (tok->str() == "==" && !then) || (tok->str() == "!=" && then);
const ValueFlow::Value& v = then ? truevalue : falsevalue;
pm.setValue(vartok, impossible ? asImpossible(v) : v);
const Token* containerTok = settings->library.getContainerFromYield(vartok, Library::Container::Yield::SIZE);
if (containerTok)
pm.setContainerSizeValue(containerTok, v.intvalue, !impossible);
} else if (Token::simpleMatch(tok, "!")) {
programMemoryParseCondition(pm, tok->astOperand1(), endTok, settings, !then);
} else if (then && Token::simpleMatch(tok, "&&")) {
programMemoryParseCondition(pm, tok->astOperand1(), endTok, settings, then);
programMemoryParseCondition(pm, tok->astOperand2(), endTok, settings, then);
} else if (!then && Token::simpleMatch(tok, "||")) {
programMemoryParseCondition(pm, tok->astOperand1(), endTok, settings, then);
programMemoryParseCondition(pm, tok->astOperand2(), endTok, settings, then);
} else if (Token::Match(tok, "&&|%oror%")) {
std::vector<MathLib::bigint> lhs = eval(tok->astOperand1());
std::vector<MathLib::bigint> rhs = eval(tok->astOperand2());
if (lhs.empty() || rhs.empty()) {
if (frontIs(lhs, !then))
programMemoryParseCondition(pm, tok->astOperand2(), endTok, settings, then);
else if (frontIs(rhs, !then))
programMemoryParseCondition(pm, tok->astOperand1(), endTok, settings, then);
else
pm.setIntValue(tok, 0, then);
}
} else if (tok->exprId() > 0) {
if (endTok && findExpressionChanged(tok, tok->next(), endTok, settings, true))
return;
pm.setIntValue(tok, 0, then);
assert(settings);
const Token* containerTok = settings->library.getContainerFromYield(tok, Library::Container::Yield::EMPTY);
if (containerTok)
pm.setContainerSizeValue(containerTok, 0, then);
}
}
static void fillProgramMemoryFromConditions(ProgramMemory& pm, const Scope* scope, const Token* endTok, const Settings* settings)
{
if (!scope)
return;
if (!scope->isLocal())
return;
assert(scope != scope->nestedIn);
fillProgramMemoryFromConditions(pm, scope->nestedIn, endTok, settings);
if (scope->type == Scope::eIf || scope->type == Scope::eWhile || scope->type == Scope::eElse || scope->type == Scope::eFor) {
const Token* condTok = getCondTokFromEnd(scope->bodyEnd);
if (!condTok)
return;
MathLib::bigint result = 0;
bool error = false;
execute(condTok, pm, &result, &error, settings);
if (error)
programMemoryParseCondition(pm, condTok, endTok, settings, scope->type != Scope::eElse);
}
}
static void fillProgramMemoryFromConditions(ProgramMemory& pm, const Token* tok, const Settings* settings)
{
fillProgramMemoryFromConditions(pm, tok->scope(), tok, settings);
}
static void fillProgramMemoryFromAssignments(ProgramMemory& pm, const Token* tok, const Settings* settings, const ProgramMemory& state, const ProgramMemory::Map& vars)
{
int indentlevel = 0;
for (const Token *tok2 = tok; tok2; tok2 = tok2->previous()) {
if ((Token::simpleMatch(tok2, "=") || Token::Match(tok2->previous(), "%var% (|{")) && tok2->astOperand1() &&
tok2->astOperand2()) {
bool setvar = false;
const Token* vartok = tok2->astOperand1();
2021-01-16 19:05:51 +01:00
for (const auto& p:vars) {
if (p.first != vartok->exprId())
continue;
2020-11-10 16:00:55 +01:00
if (vartok == tok)
continue;
pm.setValue(vartok, p.second);
setvar = true;
}
if (!setvar) {
if (!pm.hasValue(vartok->exprId())) {
const Token* valuetok = tok2->astOperand2();
pm.setValue(vartok, execute(valuetok, pm, settings));
}
}
} else if (tok2->exprId() > 0 && Token::Match(tok2, ".|(|[|*|%var%") && !pm.hasValue(tok2->exprId()) &&
isVariableChanged(tok2, 0, settings, true)) {
pm.setUnknown(tok2);
}
if (tok2->str() == "{") {
if (indentlevel <= 0) {
const Token* cond = getCondTokFromEnd(tok2->link());
// Keep progressing with anonymous/do scopes and always true branches
if (!Token::Match(tok2->previous(), "do|; {") && !conditionIsTrue(cond, state, settings) &&
(cond || !isBasicForLoop(tok2)))
break;
} else
--indentlevel;
if (Token::simpleMatch(tok2->previous(), "else {"))
tok2 = tok2->linkAt(-2)->previous();
}
if (tok2->str() == "}" && !Token::Match(tok2->link()->previous(), "%var% {")) {
const Token *cond = getCondTokFromEnd(tok2);
const bool inElse = Token::simpleMatch(tok2->link()->previous(), "else {");
if (cond) {
if (conditionIsFalse(cond, state, settings)) {
if (inElse) {
++indentlevel;
continue;
}
} else if (conditionIsTrue(cond, state, settings)) {
if (inElse)
tok2 = tok2->link()->tokAt(-2);
++indentlevel;
continue;
}
}
break;
}
}
}
static void removeModifiedVars(ProgramMemory& pm, const Token* tok, const Token* origin)
{
pm.erase_if([&](const ExprIdToken& e) {
return isVariableChanged(origin, tok, e.getExpressionId(), false, nullptr, true);
});
}
static ProgramMemory getInitialProgramState(const Token* tok,
2021-08-07 20:51:18 +02:00
const Token* origin,
const Settings* settings,
2021-08-07 20:51:18 +02:00
const ProgramMemory::Map& vars = ProgramMemory::Map {})
{
ProgramMemory pm;
if (origin) {
fillProgramMemoryFromConditions(pm, origin, nullptr);
const ProgramMemory state = pm;
fillProgramMemoryFromAssignments(pm, tok, settings, state, vars);
removeModifiedVars(pm, tok, origin);
}
return pm;
}
ProgramMemoryState::ProgramMemoryState(const Settings* s) : settings(s) {}
void ProgramMemoryState::insert(const ProgramMemory &pm, const Token* origin)
{
2020-02-21 16:18:41 +01:00
if (origin)
for (auto&& p : pm)
origins.insert(std::make_pair(p.first.getExpressionId(), origin));
state.insert(pm);
}
void ProgramMemoryState::replace(const ProgramMemory &pm, const Token* origin)
{
2020-02-21 16:18:41 +01:00
if (origin)
for (auto&& p : pm)
origins[p.first.getExpressionId()] = origin;
state.replace(pm);
}
static void addVars(ProgramMemory& pm, const ProgramMemory::Map& vars)
{
for (const auto& p:vars) {
const ValueFlow::Value &value = p.second;
pm.setValue(p.first.tok, value);
}
}
void ProgramMemoryState::addState(const Token* tok, const ProgramMemory::Map& vars)
{
ProgramMemory pm = state;
addVars(pm, vars);
fillProgramMemoryFromConditions(pm, tok, settings);
2021-01-16 19:05:51 +01:00
ProgramMemory local = pm;
fillProgramMemoryFromAssignments(pm, tok, settings, local, vars);
addVars(pm, vars);
replace(pm, tok);
}
void ProgramMemoryState::assume(const Token* tok, bool b, bool isEmpty)
{
ProgramMemory pm = state;
if (isEmpty)
pm.setContainerSizeValue(tok, 0, b);
else
programMemoryParseCondition(pm, tok, nullptr, settings, b);
const Token* origin = tok;
const Token* top = tok->astTop();
if (top && Token::Match(top->previous(), "for|while|if (") && !Token::simpleMatch(tok->astParent(), "?")) {
origin = top->link()->next();
if (!b && origin->link()) {
origin = origin->link();
}
}
replace(pm, origin);
}
void ProgramMemoryState::removeModifiedVars(const Token* tok)
{
ProgramMemory pm = state;
auto eval = [&](const Token* cond) -> std::vector<MathLib::bigint> {
if (conditionIsTrue(cond, pm, settings))
return {1};
if (conditionIsFalse(cond, pm, settings))
return {0};
return {};
};
state.erase_if([&](const ExprIdToken& e) {
const Token* start = origins[e.getExpressionId()];
const Token* expr = e.tok;
if (!expr || findExpressionChangedSkipDeadCode(expr, start, tok, settings, true, eval)) {
origins.erase(e.getExpressionId());
return true;
}
return false;
});
}
ProgramMemory ProgramMemoryState::get(const Token* tok, const Token* ctx, const ProgramMemory::Map& vars) const
{
ProgramMemoryState local = *this;
if (ctx)
local.addState(ctx, vars);
const Token* start = previousBeforeAstLeftmostLeaf(tok);
if (!start)
start = tok;
if (!ctx || precedes(start, ctx)) {
local.removeModifiedVars(start);
local.addState(start, vars);
} else {
local.removeModifiedVars(ctx);
}
return local.state;
}
ProgramMemory getProgramMemory(const Token* tok, const Token* expr, const ValueFlow::Value& value, const Settings* settings)
{
ProgramMemory programMemory;
programMemory.replace(getInitialProgramState(tok, value.tokvalue, settings));
programMemory.replace(getInitialProgramState(tok, value.condition, settings));
fillProgramMemoryFromConditions(programMemory, tok, settings);
programMemory.setValue(expr, value);
const ProgramMemory state = programMemory;
fillProgramMemoryFromAssignments(programMemory, tok, settings, state, {{expr, value}});
return programMemory;
}
static bool isNumericValue(const ValueFlow::Value& value) {
return value.isIntValue() || value.isFloatValue();
}
static double asFloat(const ValueFlow::Value& value)
{
return value.isFloatValue() ? value.floatValue : value.intvalue;
}
static std::string removeAssign(const std::string& assign) {
return std::string{assign.cbegin(), assign.cend() - 1};
}
namespace {
struct assign {
template<class T, class U>
void operator()(T& x, const U& y) const
{
x = y;
}
};
}
static bool isIntegralValue(const ValueFlow::Value& value)
{
return value.isIntValue() || value.isIteratorValue() || value.isSymbolicValue();
}
static ValueFlow::Value evaluate(const std::string& op, const ValueFlow::Value& lhs, const ValueFlow::Value& rhs)
{
ValueFlow::Value result;
combineValueProperties(lhs, rhs, result);
if (lhs.isImpossible() && rhs.isImpossible())
return ValueFlow::Value::unknown();
if (lhs.isImpossible() || rhs.isImpossible()) {
// noninvertible
if (contains({"%", "/", "&", "|"}, op))
return ValueFlow::Value::unknown();
result.setImpossible();
}
if (isNumericValue(lhs) && isNumericValue(rhs)) {
if (lhs.isFloatValue() || rhs.isFloatValue()) {
result.valueType = ValueFlow::Value::ValueType::FLOAT;
bool error = false;
result.floatValue = calculate(op, asFloat(lhs), asFloat(rhs), &error);
if (error)
return ValueFlow::Value::unknown();
return result;
}
}
// Must be integral types
if (!isIntegralValue(lhs) && !isIntegralValue(rhs))
return ValueFlow::Value::unknown();
// If not the same type then one must be int
if (lhs.valueType != rhs.valueType && !lhs.isIntValue() && !rhs.isIntValue())
return ValueFlow::Value::unknown();
const bool compareOp = contains({"==", "!=", "<", ">", ">=", "<="}, op);
// Comparison must be the same type
if (compareOp && lhs.valueType != rhs.valueType)
return ValueFlow::Value::unknown();
// Only add, subtract, and compare for non-integers
if (!compareOp && !contains({"+", "-"}, op) && !lhs.isIntValue() && !rhs.isIntValue())
return ValueFlow::Value::unknown();
// Both can't be iterators for non-compare
if (!compareOp && lhs.isIteratorValue() && rhs.isIteratorValue())
return ValueFlow::Value::unknown();
// Symbolic values must be in the same ring
if (lhs.isSymbolicValue() && rhs.isSymbolicValue() && lhs.tokvalue != rhs.tokvalue)
return ValueFlow::Value::unknown();
if (!lhs.isIntValue() && !compareOp) {
result.valueType = lhs.valueType;
result.tokvalue = lhs.tokvalue;
} else if (!rhs.isIntValue() && !compareOp) {
result.valueType = rhs.valueType;
result.tokvalue = rhs.tokvalue;
} else {
result.valueType = ValueFlow::Value::ValueType::INT;
}
bool error = false;
result.intvalue = calculate(op, lhs.intvalue, rhs.intvalue, &error);
if (error)
return ValueFlow::Value::unknown();
if (result.isImpossible() && op == "!=") {
if (isTrue(result)) {
result.intvalue = 1;
} else if (isFalse(result)) {
result.intvalue = 0;
} else {
return ValueFlow::Value::unknown();
}
result.setPossible();
result.bound = ValueFlow::Value::Bound::Point;
}
return result;
}
using BuiltinLibraryFunction = std::function<ValueFlow::Value(const std::vector<ValueFlow::Value>&)>;
static std::unordered_map<std::string, BuiltinLibraryFunction> createBuiltinLibraryFunctions()
{
std::unordered_map<std::string, BuiltinLibraryFunction> functions;
functions["strlen"] = [](const std::vector<ValueFlow::Value>& args) {
if (args.size() != 1)
return ValueFlow::Value::unknown();
ValueFlow::Value v = args[0];
if (!(v.isTokValue() && v.tokvalue->tokType() == Token::eString))
return ValueFlow::Value::unknown();
v.valueType = ValueFlow::Value::ValueType::INT;
v.intvalue = Token::getStrLength(v.tokvalue);
v.tokvalue = nullptr;
return v;
};
functions["strcmp"] = [](const std::vector<ValueFlow::Value>& args) {
if (args.size() != 2)
return ValueFlow::Value::unknown();
const ValueFlow::Value& lhs = args[0];
if (!(lhs.isTokValue() && lhs.tokvalue->tokType() == Token::eString))
return ValueFlow::Value::unknown();
const ValueFlow::Value& rhs = args[1];
if (!(rhs.isTokValue() && rhs.tokvalue->tokType() == Token::eString))
return ValueFlow::Value::unknown();
ValueFlow::Value v(getStringLiteral(lhs.tokvalue->str()).compare(getStringLiteral(rhs.tokvalue->str())));
ValueFlow::combineValueProperties(lhs, rhs, v);
return v;
};
functions["strncmp"] = [](const std::vector<ValueFlow::Value>& args) {
if (args.size() != 3)
return ValueFlow::Value::unknown();
const ValueFlow::Value& lhs = args[0];
if (!(lhs.isTokValue() && lhs.tokvalue->tokType() == Token::eString))
return ValueFlow::Value::unknown();
const ValueFlow::Value& rhs = args[1];
if (!(rhs.isTokValue() && rhs.tokvalue->tokType() == Token::eString))
return ValueFlow::Value::unknown();
const ValueFlow::Value& len = args[2];
if (!len.isIntValue())
return ValueFlow::Value::unknown();
ValueFlow::Value v(getStringLiteral(lhs.tokvalue->str())
.compare(0, len.intvalue, getStringLiteral(rhs.tokvalue->str()), 0, len.intvalue));
ValueFlow::combineValueProperties(lhs, rhs, v);
return v;
};
functions["sin"] = [](const std::vector<ValueFlow::Value>& args) {
if (args.size() != 1)
return ValueFlow::Value::unknown();
ValueFlow::Value v = args[0];
if (!v.isFloatValue() && !v.isIntValue())
return ValueFlow::Value::unknown();
const double value = args[0].isFloatValue() ? args[0].floatValue : args[0].intvalue;
v.floatValue = std::sin(value);
v.valueType = ValueFlow::Value::ValueType::FLOAT;
return v;
};
functions["lgamma"] = [](const std::vector<ValueFlow::Value>& args) {
if (args.size() != 1)
return ValueFlow::Value::unknown();
ValueFlow::Value v = args[0];
if (!v.isFloatValue() && !v.isIntValue())
return ValueFlow::Value::unknown();
const double value = args[0].isFloatValue() ? args[0].floatValue : args[0].intvalue;
v.floatValue = std::lgamma(value);
v.valueType = ValueFlow::Value::ValueType::FLOAT;
return v;
};
functions["cos"] = [](const std::vector<ValueFlow::Value>& args) {
if (args.size() != 1)
return ValueFlow::Value::unknown();
ValueFlow::Value v = args[0];
if (!v.isFloatValue() && !v.isIntValue())
return ValueFlow::Value::unknown();
const double value = args[0].isFloatValue() ? args[0].floatValue : args[0].intvalue;
v.floatValue = std::cos(value);
v.valueType = ValueFlow::Value::ValueType::FLOAT;
return v;
};
functions["tan"] = [](const std::vector<ValueFlow::Value>& args) {
if (args.size() != 1)
return ValueFlow::Value::unknown();
ValueFlow::Value v = args[0];
if (!v.isFloatValue() && !v.isIntValue())
return ValueFlow::Value::unknown();
const double value = args[0].isFloatValue() ? args[0].floatValue : args[0].intvalue;
v.floatValue = std::tan(value);
v.valueType = ValueFlow::Value::ValueType::FLOAT;
return v;
};
functions["asin"] = [](const std::vector<ValueFlow::Value>& args) {
if (args.size() != 1)
return ValueFlow::Value::unknown();
ValueFlow::Value v = args[0];
if (!v.isFloatValue() && !v.isIntValue())
return ValueFlow::Value::unknown();
const double value = args[0].isFloatValue() ? args[0].floatValue : args[0].intvalue;
v.floatValue = std::asin(value);
v.valueType = ValueFlow::Value::ValueType::FLOAT;
return v;
};
functions["acos"] = [](const std::vector<ValueFlow::Value>& args) {
if (args.size() != 1)
return ValueFlow::Value::unknown();
ValueFlow::Value v = args[0];
if (!v.isFloatValue() && !v.isIntValue())
return ValueFlow::Value::unknown();
const double value = args[0].isFloatValue() ? args[0].floatValue : args[0].intvalue;
v.floatValue = std::acos(value);
v.valueType = ValueFlow::Value::ValueType::FLOAT;
return v;
};
functions["atan"] = [](const std::vector<ValueFlow::Value>& args) {
if (args.size() != 1)
return ValueFlow::Value::unknown();
ValueFlow::Value v = args[0];
if (!v.isFloatValue() && !v.isIntValue())
return ValueFlow::Value::unknown();
const double value = args[0].isFloatValue() ? args[0].floatValue : args[0].intvalue;
v.floatValue = std::atan(value);
v.valueType = ValueFlow::Value::ValueType::FLOAT;
return v;
};
functions["atan2"] = [](const std::vector<ValueFlow::Value>& args) {
if (args.size() != 2 || !std::all_of(args.cbegin(), args.cend(), [](const ValueFlow::Value& v) {
return v.isFloatValue() || v.isIntValue();
}))
return ValueFlow::Value::unknown();
const double value = args[0].isFloatValue() ? args[0].floatValue : args[0].intvalue;
ValueFlow::Value v;
combineValueProperties(args[0], args[1], v);
v.floatValue = std::atan2(value, args[1].isFloatValue() ? args[1].floatValue : args[1].intvalue);
v.valueType = ValueFlow::Value::ValueType::FLOAT;
return v;
};
functions["remainder"] = [](const std::vector<ValueFlow::Value>& args) {
if (args.size() != 2 || !std::all_of(args.cbegin(), args.cend(), [](const ValueFlow::Value& v) {
return v.isFloatValue() || v.isIntValue();
}))
return ValueFlow::Value::unknown();
const double value = args[0].isFloatValue() ? args[0].floatValue : args[0].intvalue;
ValueFlow::Value v;
combineValueProperties(args[0], args[1], v);
v.floatValue = std::remainder(value, args[1].isFloatValue() ? args[1].floatValue : args[1].intvalue);
v.valueType = ValueFlow::Value::ValueType::FLOAT;
return v;
};
functions["nextafter"] = [](const std::vector<ValueFlow::Value>& args) {
if (args.size() != 2 || !std::all_of(args.cbegin(), args.cend(), [](const ValueFlow::Value& v) {
return v.isFloatValue() || v.isIntValue();
}))
return ValueFlow::Value::unknown();
const double value = args[0].isFloatValue() ? args[0].floatValue : args[0].intvalue;
ValueFlow::Value v;
combineValueProperties(args[0], args[1], v);
v.floatValue = std::nextafter(value, args[1].isFloatValue() ? args[1].floatValue : args[1].intvalue);
v.valueType = ValueFlow::Value::ValueType::FLOAT;
return v;
};
functions["nexttoward"] = [](const std::vector<ValueFlow::Value>& args) {
if (args.size() != 2 || !std::all_of(args.cbegin(), args.cend(), [](const ValueFlow::Value& v) {
return v.isFloatValue() || v.isIntValue();
}))
return ValueFlow::Value::unknown();
const double value = args[0].isFloatValue() ? args[0].floatValue : args[0].intvalue;
ValueFlow::Value v;
combineValueProperties(args[0], args[1], v);
v.floatValue = std::nexttoward(value, args[1].isFloatValue() ? args[1].floatValue : args[1].intvalue);
v.valueType = ValueFlow::Value::ValueType::FLOAT;
return v;
};
functions["hypot"] = [](const std::vector<ValueFlow::Value>& args) {
if (args.size() != 2 || !std::all_of(args.cbegin(), args.cend(), [](const ValueFlow::Value& v) {
return v.isFloatValue() || v.isIntValue();
}))
return ValueFlow::Value::unknown();
const double value = args[0].isFloatValue() ? args[0].floatValue : args[0].intvalue;
ValueFlow::Value v;
combineValueProperties(args[0], args[1], v);
v.floatValue = std::hypot(value, args[1].isFloatValue() ? args[1].floatValue : args[1].intvalue);
v.valueType = ValueFlow::Value::ValueType::FLOAT;
return v;
};
functions["fdim"] = [](const std::vector<ValueFlow::Value>& args) {
if (args.size() != 2 || !std::all_of(args.cbegin(), args.cend(), [](const ValueFlow::Value& v) {
return v.isFloatValue() || v.isIntValue();
}))
return ValueFlow::Value::unknown();
const double value = args[0].isFloatValue() ? args[0].floatValue : args[0].intvalue;
ValueFlow::Value v;
combineValueProperties(args[0], args[1], v);
v.floatValue = std::fdim(value, args[1].isFloatValue() ? args[1].floatValue : args[1].intvalue);
v.valueType = ValueFlow::Value::ValueType::FLOAT;
return v;
};
functions["fmax"] = [](const std::vector<ValueFlow::Value>& args) {
if (args.size() != 2 || !std::all_of(args.cbegin(), args.cend(), [](const ValueFlow::Value& v) {
return v.isFloatValue() || v.isIntValue();
}))
return ValueFlow::Value::unknown();
const double value = args[0].isFloatValue() ? args[0].floatValue : args[0].intvalue;
ValueFlow::Value v;
combineValueProperties(args[0], args[1], v);
v.floatValue = std::fmax(value, args[1].isFloatValue() ? args[1].floatValue : args[1].intvalue);
v.valueType = ValueFlow::Value::ValueType::FLOAT;
return v;
};
functions["fmin"] = [](const std::vector<ValueFlow::Value>& args) {
if (args.size() != 2 || !std::all_of(args.cbegin(), args.cend(), [](const ValueFlow::Value& v) {
return v.isFloatValue() || v.isIntValue();
}))
return ValueFlow::Value::unknown();
const double value = args[0].isFloatValue() ? args[0].floatValue : args[0].intvalue;
ValueFlow::Value v;
combineValueProperties(args[0], args[1], v);
v.floatValue = std::fmin(value, args[1].isFloatValue() ? args[1].floatValue : args[1].intvalue);
v.valueType = ValueFlow::Value::ValueType::FLOAT;
return v;
};
functions["fmod"] = [](const std::vector<ValueFlow::Value>& args) {
if (args.size() != 2 || !std::all_of(args.cbegin(), args.cend(), [](const ValueFlow::Value& v) {
return v.isFloatValue() || v.isIntValue();
}))
return ValueFlow::Value::unknown();
const double value = args[0].isFloatValue() ? args[0].floatValue : args[0].intvalue;
ValueFlow::Value v;
combineValueProperties(args[0], args[1], v);
v.floatValue = std::fmod(value, args[1].isFloatValue() ? args[1].floatValue : args[1].intvalue);
v.valueType = ValueFlow::Value::ValueType::FLOAT;
return v;
};
functions["pow"] = [](const std::vector<ValueFlow::Value>& args) {
if (args.size() != 2 || !std::all_of(args.cbegin(), args.cend(), [](const ValueFlow::Value& v) {
return v.isFloatValue() || v.isIntValue();
}))
return ValueFlow::Value::unknown();
const double value = args[0].isFloatValue() ? args[0].floatValue : args[0].intvalue;
ValueFlow::Value v;
combineValueProperties(args[0], args[1], v);
v.floatValue = std::pow(value, args[1].isFloatValue() ? args[1].floatValue : args[1].intvalue);
v.valueType = ValueFlow::Value::ValueType::FLOAT;
return v;
};
functions["scalbln"] = [](const std::vector<ValueFlow::Value>& args) {
if (args.size() != 2 || !std::all_of(args.cbegin(), args.cend(), [](const ValueFlow::Value& v) {
return v.isFloatValue() || v.isIntValue();
}))
return ValueFlow::Value::unknown();
const double value = args[0].isFloatValue() ? args[0].floatValue : args[0].intvalue;
ValueFlow::Value v;
combineValueProperties(args[0], args[1], v);
v.floatValue = std::scalbln(value, args[1].isFloatValue() ? args[1].floatValue : args[1].intvalue);
v.valueType = ValueFlow::Value::ValueType::FLOAT;
return v;
};
functions["ldexp"] = [](const std::vector<ValueFlow::Value>& args) {
if (args.size() != 2 || !std::all_of(args.cbegin(), args.cend(), [](const ValueFlow::Value& v) {
return v.isFloatValue() || v.isIntValue();
}))
return ValueFlow::Value::unknown();
const double value = args[0].isFloatValue() ? args[0].floatValue : args[0].intvalue;
ValueFlow::Value v;
combineValueProperties(args[0], args[1], v);
v.floatValue = std::ldexp(value, args[1].isFloatValue() ? args[1].floatValue : args[1].intvalue);
v.valueType = ValueFlow::Value::ValueType::FLOAT;
return v;
};
functions["ilogb"] = [](const std::vector<ValueFlow::Value>& args) {
if (args.size() != 1)
return ValueFlow::Value::unknown();
ValueFlow::Value v = args[0];
if (!v.isFloatValue() && !v.isIntValue())
return ValueFlow::Value::unknown();
const double value = args[0].isFloatValue() ? args[0].floatValue : args[0].intvalue;
v.intvalue = std::ilogb(value);
v.valueType = ValueFlow::Value::ValueType::INT;
return v;
};
2022-07-09 17:38:28 +02:00
functions["erf"] = [](const std::vector<ValueFlow::Value>& args) {
if (args.size() != 1)
return ValueFlow::Value::unknown();
ValueFlow::Value v = args[0];
if (!v.isFloatValue() && !v.isIntValue())
return ValueFlow::Value::unknown();
const double value = args[0].isFloatValue() ? args[0].floatValue : args[0].intvalue;
2022-07-09 17:38:28 +02:00
v.floatValue = std::erf(value);
v.valueType = ValueFlow::Value::ValueType::FLOAT;
return v;
};
2022-07-09 17:43:17 +02:00
functions["erfc"] = [](const std::vector<ValueFlow::Value>& args) {
if (args.size() != 1)
return ValueFlow::Value::unknown();
ValueFlow::Value v = args[0];
if (!v.isFloatValue() && !v.isIntValue())
return ValueFlow::Value::unknown();
const double value = args[0].isFloatValue() ? args[0].floatValue : args[0].intvalue;
2022-07-09 17:43:17 +02:00
v.floatValue = std::erfc(value);
v.valueType = ValueFlow::Value::ValueType::FLOAT;
return v;
};
functions["floor"] = [](const std::vector<ValueFlow::Value>& args) {
if (args.size() != 1)
return ValueFlow::Value::unknown();
ValueFlow::Value v = args[0];
if (!v.isFloatValue() && !v.isIntValue())
return ValueFlow::Value::unknown();
const double value = args[0].isFloatValue() ? args[0].floatValue : args[0].intvalue;
v.floatValue = std::floor(value);
v.valueType = ValueFlow::Value::ValueType::FLOAT;
return v;
};
functions["sqrt"] = [](const std::vector<ValueFlow::Value>& args) {
if (args.size() != 1)
return ValueFlow::Value::unknown();
ValueFlow::Value v = args[0];
if (!v.isFloatValue() && !v.isIntValue())
return ValueFlow::Value::unknown();
const double value = args[0].isFloatValue() ? args[0].floatValue : args[0].intvalue;
v.floatValue = std::sqrt(value);
v.valueType = ValueFlow::Value::ValueType::FLOAT;
return v;
};
functions["cbrt"] = [](const std::vector<ValueFlow::Value>& args) {
if (args.size() != 1)
return ValueFlow::Value::unknown();
ValueFlow::Value v = args[0];
if (!v.isFloatValue() && !v.isIntValue())
return ValueFlow::Value::unknown();
const double value = args[0].isFloatValue() ? args[0].floatValue : args[0].intvalue;
v.floatValue = std::cbrt(value);
v.valueType = ValueFlow::Value::ValueType::FLOAT;
return v;
};
2022-07-09 17:32:32 +02:00
functions["ceil"] = [](const std::vector<ValueFlow::Value>& args) {
if (args.size() != 1)
return ValueFlow::Value::unknown();
ValueFlow::Value v = args[0];
if (!v.isFloatValue() && !v.isIntValue())
return ValueFlow::Value::unknown();
const double value = args[0].isFloatValue() ? args[0].floatValue : args[0].intvalue;
2022-07-09 17:32:32 +02:00
v.floatValue = std::ceil(value);
v.valueType = ValueFlow::Value::ValueType::FLOAT;
return v;
};
functions["exp"] = [](const std::vector<ValueFlow::Value>& args) {
if (args.size() != 1)
return ValueFlow::Value::unknown();
ValueFlow::Value v = args[0];
if (!v.isFloatValue() && !v.isIntValue())
return ValueFlow::Value::unknown();
const double value = args[0].isFloatValue() ? args[0].floatValue : args[0].intvalue;
v.floatValue = std::exp(value);
v.valueType = ValueFlow::Value::ValueType::FLOAT;
2022-07-09 17:47:21 +02:00
return v;
};
functions["exp2"] = [](const std::vector<ValueFlow::Value>& args) {
if (args.size() != 1)
return ValueFlow::Value::unknown();
ValueFlow::Value v = args[0];
if (!v.isFloatValue() && !v.isIntValue())
return ValueFlow::Value::unknown();
const double value = args[0].isFloatValue() ? args[0].floatValue : args[0].intvalue;
2022-07-09 17:47:21 +02:00
v.floatValue = std::exp2(value);
v.valueType = ValueFlow::Value::ValueType::FLOAT;
return v;
};
functions["expm1"] = [](const std::vector<ValueFlow::Value>& args) {
if (args.size() != 1)
return ValueFlow::Value::unknown();
ValueFlow::Value v = args[0];
if (!v.isFloatValue() && !v.isIntValue())
return ValueFlow::Value::unknown();
const double value = args[0].isFloatValue() ? args[0].floatValue : args[0].intvalue;
v.floatValue = std::expm1(value);
v.valueType = ValueFlow::Value::ValueType::FLOAT;
return v;
};
functions["fabs"] = [](const std::vector<ValueFlow::Value>& args) {
if (args.size() != 1)
return ValueFlow::Value::unknown();
ValueFlow::Value v = args[0];
if (!v.isFloatValue() && !v.isIntValue())
return ValueFlow::Value::unknown();
const double value = args[0].isFloatValue() ? args[0].floatValue : args[0].intvalue;
v.floatValue = std::fabs(value);
v.valueType = ValueFlow::Value::ValueType::FLOAT;
return v;
};
functions["log"] = [](const std::vector<ValueFlow::Value>& args) {
if (args.size() != 1)
return ValueFlow::Value::unknown();
ValueFlow::Value v = args[0];
if (!v.isFloatValue() && !v.isIntValue())
return ValueFlow::Value::unknown();
const double value = args[0].isFloatValue() ? args[0].floatValue : args[0].intvalue;
v.floatValue = std::log(value);
v.valueType = ValueFlow::Value::ValueType::FLOAT;
return v;
};
functions["log10"] = [](const std::vector<ValueFlow::Value>& args) {
if (args.size() != 1)
return ValueFlow::Value::unknown();
ValueFlow::Value v = args[0];
if (!v.isFloatValue() && !v.isIntValue())
return ValueFlow::Value::unknown();
const double value = args[0].isFloatValue() ? args[0].floatValue : args[0].intvalue;
v.floatValue = std::log10(value);
v.valueType = ValueFlow::Value::ValueType::FLOAT;
return v;
};
functions["log1p"] = [](const std::vector<ValueFlow::Value>& args) {
if (args.size() != 1)
return ValueFlow::Value::unknown();
ValueFlow::Value v = args[0];
if (!v.isFloatValue() && !v.isIntValue())
return ValueFlow::Value::unknown();
const double value = args[0].isFloatValue() ? args[0].floatValue : args[0].intvalue;
v.floatValue = std::log1p(value);
v.valueType = ValueFlow::Value::ValueType::FLOAT;
return v;
};
functions["log2"] = [](const std::vector<ValueFlow::Value>& args) {
if (args.size() != 1)
return ValueFlow::Value::unknown();
ValueFlow::Value v = args[0];
if (!v.isFloatValue() && !v.isIntValue())
return ValueFlow::Value::unknown();
const double value = args[0].isFloatValue() ? args[0].floatValue : args[0].intvalue;
v.floatValue = std::log2(value);
v.valueType = ValueFlow::Value::ValueType::FLOAT;
return v;
};
functions["logb"] = [](const std::vector<ValueFlow::Value>& args) {
if (args.size() != 1)
return ValueFlow::Value::unknown();
ValueFlow::Value v = args[0];
if (!v.isFloatValue() && !v.isIntValue())
return ValueFlow::Value::unknown();
const double value = args[0].isFloatValue() ? args[0].floatValue : args[0].intvalue;
v.floatValue = std::logb(value);
v.valueType = ValueFlow::Value::ValueType::FLOAT;
return v;
};
functions["nearbyint"] = [](const std::vector<ValueFlow::Value>& args) {
if (args.size() != 1)
return ValueFlow::Value::unknown();
ValueFlow::Value v = args[0];
if (!v.isFloatValue() && !v.isIntValue())
return ValueFlow::Value::unknown();
const double value = args[0].isFloatValue() ? args[0].floatValue : args[0].intvalue;
v.floatValue = std::nearbyint(value);
v.valueType = ValueFlow::Value::ValueType::FLOAT;
return v;
};
functions["sinh"] = [](const std::vector<ValueFlow::Value>& args) {
if (args.size() != 1)
return ValueFlow::Value::unknown();
ValueFlow::Value v = args[0];
if (!v.isFloatValue() && !v.isIntValue())
return ValueFlow::Value::unknown();
const double value = args[0].isFloatValue() ? args[0].floatValue : args[0].intvalue;
v.floatValue = std::sinh(value);
v.valueType = ValueFlow::Value::ValueType::FLOAT;
return v;
};
functions["cosh"] = [](const std::vector<ValueFlow::Value>& args) {
if (args.size() != 1)
return ValueFlow::Value::unknown();
ValueFlow::Value v = args[0];
if (!v.isFloatValue() && !v.isIntValue())
return ValueFlow::Value::unknown();
const double value = args[0].isFloatValue() ? args[0].floatValue : args[0].intvalue;
v.floatValue = std::cosh(value);
v.valueType = ValueFlow::Value::ValueType::FLOAT;
return v;
};
functions["tanh"] = [](const std::vector<ValueFlow::Value>& args) {
if (args.size() != 1)
return ValueFlow::Value::unknown();
ValueFlow::Value v = args[0];
if (!v.isFloatValue() && !v.isIntValue())
return ValueFlow::Value::unknown();
const double value = args[0].isFloatValue() ? args[0].floatValue : args[0].intvalue;
v.floatValue = std::tanh(value);
v.valueType = ValueFlow::Value::ValueType::FLOAT;
return v;
};
functions["asinh"] = [](const std::vector<ValueFlow::Value>& args) {
if (args.size() != 1)
return ValueFlow::Value::unknown();
ValueFlow::Value v = args[0];
if (!v.isFloatValue() && !v.isIntValue())
return ValueFlow::Value::unknown();
const double value = args[0].isFloatValue() ? args[0].floatValue : args[0].intvalue;
v.floatValue = std::asinh(value);
v.valueType = ValueFlow::Value::ValueType::FLOAT;
return v;
};
functions["acosh"] = [](const std::vector<ValueFlow::Value>& args) {
if (args.size() != 1)
return ValueFlow::Value::unknown();
ValueFlow::Value v = args[0];
if (!v.isFloatValue() && !v.isIntValue())
return ValueFlow::Value::unknown();
const double value = args[0].isFloatValue() ? args[0].floatValue : args[0].intvalue;
v.floatValue = std::acosh(value);
v.valueType = ValueFlow::Value::ValueType::FLOAT;
return v;
};
functions["atanh"] = [](const std::vector<ValueFlow::Value>& args) {
if (args.size() != 1)
return ValueFlow::Value::unknown();
ValueFlow::Value v = args[0];
if (!v.isFloatValue() && !v.isIntValue())
return ValueFlow::Value::unknown();
const double value = args[0].isFloatValue() ? args[0].floatValue : args[0].intvalue;
v.floatValue = std::atanh(value);
v.valueType = ValueFlow::Value::ValueType::FLOAT;
return v;
};
functions["round"] = [](const std::vector<ValueFlow::Value>& args) {
if (args.size() != 1)
return ValueFlow::Value::unknown();
ValueFlow::Value v = args[0];
if (!v.isFloatValue() && !v.isIntValue())
return ValueFlow::Value::unknown();
const double value = args[0].isFloatValue() ? args[0].floatValue : args[0].intvalue;
v.floatValue = std::round(value);
v.valueType = ValueFlow::Value::ValueType::FLOAT;
return v;
};
functions["tgamma"] = [](const std::vector<ValueFlow::Value>& args) {
if (args.size() != 1)
return ValueFlow::Value::unknown();
ValueFlow::Value v = args[0];
if (!v.isFloatValue() && !v.isIntValue())
return ValueFlow::Value::unknown();
const double value = args[0].isFloatValue() ? args[0].floatValue : args[0].intvalue;
v.floatValue = std::tgamma(value);
v.valueType = ValueFlow::Value::ValueType::FLOAT;
return v;
};
functions["trunc"] = [](const std::vector<ValueFlow::Value>& args) {
if (args.size() != 1)
return ValueFlow::Value::unknown();
ValueFlow::Value v = args[0];
if (!v.isFloatValue() && !v.isIntValue())
return ValueFlow::Value::unknown();
const double value = args[0].isFloatValue() ? args[0].floatValue : args[0].intvalue;
v.floatValue = std::trunc(value);
v.valueType = ValueFlow::Value::ValueType::FLOAT;
return v;
};
return functions;
}
static BuiltinLibraryFunction getBuiltinLibraryFunction(const std::string& name)
{
static const std::unordered_map<std::string, BuiltinLibraryFunction> functions = createBuiltinLibraryFunctions();
auto it = functions.find(name);
if (it == functions.end())
return nullptr;
return it->second;
}
static bool TokenExprIdCompare(const Token* tok1, const Token* tok2) {
return tok1->exprId() < tok2->exprId();
}
static bool TokenExprIdEqual(const Token* tok1, const Token* tok2) {
return tok1->exprId() == tok2->exprId();
}
static std::vector<const Token*> setDifference(const std::vector<const Token*>& v1, const std::vector<const Token*>& v2)
{
std::vector<const Token*> result;
std::set_difference(v1.begin(), v1.end(), v2.begin(), v2.end(), std::back_inserter(result), &TokenExprIdCompare);
return result;
}
static bool evalSameCondition(const ProgramMemory& state,
const Token* storedValue,
const Token* cond,
const Settings* settings)
{
assert(!conditionIsTrue(cond, state, settings));
ProgramMemory pm = state;
programMemoryParseCondition(pm, storedValue, nullptr, settings, true);
if (pm == state)
return false;
return conditionIsTrue(cond, pm, settings);
}
static void pruneConditions(std::vector<const Token*>& conds,
bool b,
const std::unordered_map<nonneg int, ValueFlow::Value>& state)
{
conds.erase(std::remove_if(conds.begin(),
conds.end(),
[&](const Token* cond) {
if (cond->exprId() == 0)
return false;
auto it = state.find(cond->exprId());
if (it == state.end())
return false;
const ValueFlow::Value& v = it->second;
return isTrueOrFalse(v, !b);
}),
conds.end());
}
namespace {
struct Executor {
ProgramMemory* pm = nullptr;
const Settings* settings = nullptr;
int fdepth = 4;
int depth = 10;
explicit Executor(ProgramMemory* pm = nullptr, const Settings* settings = nullptr) : pm(pm), settings(settings) {}
static ValueFlow::Value unknown() {
return ValueFlow::Value::unknown();
}
std::unordered_map<nonneg int, ValueFlow::Value> executeAll(const std::vector<const Token*>& toks,
const bool* b = nullptr) const
{
std::unordered_map<nonneg int, ValueFlow::Value> result;
auto state = *this;
for (const Token* tok : toks) {
ValueFlow::Value r = state.execute(tok);
if (r.isUninitValue())
continue;
result.insert(std::make_pair(tok->exprId(), r));
// Short-circuit evaluation
if (b && isTrueOrFalse(r, *b))
break;
}
return result;
}
static std::vector<const Token*> flattenConditions(const Token* tok)
{
return astFlatten(tok, tok->str().c_str());
}
static bool sortConditions(std::vector<const Token*>& conditions)
{
if (std::any_of(conditions.begin(), conditions.end(), [](const Token* child) {
return Token::Match(child, "&&|%oror%");
}))
return false;
std::sort(conditions.begin(), conditions.end(), &TokenExprIdCompare);
return !conditions.empty() && conditions.front()->exprId() != 0;
}
ValueFlow::Value executeMultiCondition(bool b, const Token* expr)
{
if (pm->hasValue(expr->exprId())) {
const ValueFlow::Value& v = pm->at(expr->exprId());
if (v.isIntValue())
return v;
}
// Evaluate recursively if there are no exprids
if ((expr->astOperand1() && expr->astOperand1()->exprId() == 0) ||
(expr->astOperand2() && expr->astOperand2()->exprId() == 0)) {
ValueFlow::Value lhs = execute(expr->astOperand1());
if (isTrueOrFalse(lhs, b))
return lhs;
ValueFlow::Value rhs = execute(expr->astOperand2());
if (isTrueOrFalse(rhs, b))
return rhs;
if (isTrueOrFalse(lhs, !b) && isTrueOrFalse(rhs, !b))
return lhs;
return unknown();
}
nonneg int n = astCount(expr, expr->str().c_str());
if (n > 50)
return unknown();
std::vector<const Token*> conditions1 = flattenConditions(expr);
if (conditions1.empty())
return unknown();
std::unordered_map<nonneg int, ValueFlow::Value> condValues = executeAll(conditions1, &b);
bool allNegated = true;
ValueFlow::Value negatedValue = unknown();
for (const auto& p : condValues) {
const ValueFlow::Value& v = p.second;
if (isTrueOrFalse(v, b))
return v;
allNegated &= isTrueOrFalse(v, !b);
if (allNegated && negatedValue.isUninitValue())
negatedValue = v;
}
if (condValues.size() == conditions1.size() && allNegated)
return negatedValue;
if (n > 4)
return unknown();
if (!sortConditions(conditions1))
return unknown();
for (const auto& p : *pm) {
const Token* tok = p.first.tok;
const ValueFlow::Value& value = p.second;
if (tok->str() == expr->str() && !astHasExpr(tok, expr->exprId())) {
// TODO: Handle when it is greater
if (n != astCount(tok, expr->str().c_str()))
continue;
std::vector<const Token*> conditions2 = flattenConditions(tok);
if (!sortConditions(conditions2))
return unknown();
if (conditions1.size() == conditions2.size() &&
std::equal(conditions1.begin(), conditions1.end(), conditions2.begin(), &TokenExprIdEqual))
return value;
std::vector<const Token*> diffConditions1 = setDifference(conditions1, conditions2);
std::vector<const Token*> diffConditions2 = setDifference(conditions2, conditions1);
pruneConditions(diffConditions1, b, condValues);
pruneConditions(diffConditions2, b, executeAll(diffConditions2));
if (diffConditions1.size() != diffConditions2.size())
continue;
if (diffConditions1.size() == conditions1.size())
continue;
for (const Token* cond1 : diffConditions1) {
auto it = std::find_if(diffConditions2.begin(), diffConditions2.end(), [&](const Token* cond2) {
return evalSameCondition(*pm, cond2, cond1, settings);
});
if (it == diffConditions2.end())
break;
diffConditions2.erase(it);
}
if (diffConditions2.empty())
return value;
}
}
return unknown();
}
ValueFlow::Value executeImpl(const Token* expr)
{
const ValueFlow::Value* value = nullptr;
if (!expr)
return unknown();
if (expr->hasKnownIntValue() && !expr->isAssignmentOp() && expr->str() != ",")
return expr->values().front();
if ((value = expr->getKnownValue(ValueFlow::Value::ValueType::FLOAT)) ||
(value = expr->getKnownValue(ValueFlow::Value::ValueType::TOK)) ||
(value = expr->getKnownValue(ValueFlow::Value::ValueType::ITERATOR_START)) ||
(value = expr->getKnownValue(ValueFlow::Value::ValueType::ITERATOR_END)) ||
(value = expr->getKnownValue(ValueFlow::Value::ValueType::CONTAINER_SIZE))) {
return *value;
}
if (expr->isNumber()) {
if (MathLib::isFloat(expr->str()))
return unknown();
MathLib::bigint i = MathLib::toBigNumber(expr->str());
if (i < 0 && astIsUnsigned(expr))
return unknown();
return ValueFlow::Value{i};
}
if (expr->isBoolean())
return ValueFlow::Value{expr->str() == "true"};
if (Token::Match(expr->tokAt(-2), ". %name% (") && astIsContainer(expr->tokAt(-2)->astOperand1())) {
const Token* containerTok = expr->tokAt(-2)->astOperand1();
const Library::Container::Yield yield = containerTok->valueType()->container->getYield(expr->strAt(-1));
if (yield == Library::Container::Yield::SIZE) {
ValueFlow::Value v = execute(containerTok);
if (!v.isContainerSizeValue())
return unknown();
v.valueType = ValueFlow::Value::ValueType::INT;
return v;
}
if (yield == Library::Container::Yield::EMPTY) {
ValueFlow::Value v = execute(containerTok);
if (!v.isContainerSizeValue())
return unknown();
if (v.isImpossible() && v.intvalue == 0)
return ValueFlow::Value{0};
if (!v.isImpossible())
return ValueFlow::Value{v.intvalue == 0};
}
} else if (expr->isAssignmentOp() && expr->astOperand1() && expr->astOperand2() &&
expr->astOperand1()->exprId() > 0) {
ValueFlow::Value rhs = execute(expr->astOperand2());
if (rhs.isUninitValue())
return unknown();
if (expr->str() != "=") {
if (!pm->hasValue(expr->astOperand1()->exprId()))
return unknown();
ValueFlow::Value& lhs = pm->at(expr->astOperand1()->exprId());
rhs = evaluate(removeAssign(expr->str()), lhs, rhs);
if (lhs.isIntValue())
ValueFlow::Value::visitValue(rhs, std::bind(assign{}, std::ref(lhs.intvalue), std::placeholders::_1));
else if (lhs.isFloatValue())
ValueFlow::Value::visitValue(rhs,
std::bind(assign{}, std::ref(lhs.floatValue), std::placeholders::_1));
else
return unknown();
return lhs;
}
pm->setValue(expr->astOperand1(), rhs);
return rhs;
} else if (expr->str() == "&&" && expr->astOperand1() && expr->astOperand2()) {
return executeMultiCondition(false, expr);
} else if (expr->str() == "||" && expr->astOperand1() && expr->astOperand2()) {
return executeMultiCondition(true, expr);
} else if (expr->str() == "," && expr->astOperand1() && expr->astOperand2()) {
execute(expr->astOperand1());
return execute(expr->astOperand2());
} else if (expr->tokType() == Token::eIncDecOp && expr->astOperand1() && expr->astOperand1()->exprId() != 0) {
if (!pm->hasValue(expr->astOperand1()->exprId()))
return ValueFlow::Value::unknown();
ValueFlow::Value& lhs = pm->at(expr->astOperand1()->exprId());
if (!lhs.isIntValue())
return unknown();
// overflow
if (!lhs.isImpossible() && lhs.intvalue == 0 && expr->str() == "--" && astIsUnsigned(expr->astOperand1()))
return unknown();
if (expr->str() == "++")
lhs.intvalue++;
else
lhs.intvalue--;
return lhs;
} else if (expr->str() == "[" && expr->astOperand1() && expr->astOperand2()) {
const Token* tokvalue = nullptr;
if (!pm->getTokValue(expr->astOperand1()->exprId(), &tokvalue)) {
auto tokvalue_it = std::find_if(expr->astOperand1()->values().cbegin(),
expr->astOperand1()->values().cend(),
std::mem_fn(&ValueFlow::Value::isTokValue));
if (tokvalue_it == expr->astOperand1()->values().cend() || !tokvalue_it->isKnown()) {
return unknown();
}
tokvalue = tokvalue_it->tokvalue;
}
if (!tokvalue || !tokvalue->isLiteral()) {
return unknown();
}
const std::string strValue = tokvalue->strValue();
ValueFlow::Value rhs = execute(expr->astOperand2());
if (!rhs.isIntValue())
return unknown();
const MathLib::bigint index = rhs.intvalue;
if (index >= 0 && index < strValue.size())
return ValueFlow::Value{strValue[index]};
if (index == strValue.size())
return ValueFlow::Value{};
} else if (Token::Match(expr, "%cop%") && expr->astOperand1() && expr->astOperand2()) {
ValueFlow::Value lhs = execute(expr->astOperand1());
ValueFlow::Value rhs = execute(expr->astOperand2());
ValueFlow::Value r = unknown();
if (!lhs.isUninitValue() && !rhs.isUninitValue())
r = evaluate(expr->str(), lhs, rhs);
if (expr->isComparisonOp() && (r.isUninitValue() || r.isImpossible())) {
if (rhs.isIntValue()) {
std::vector<ValueFlow::Value> result =
infer(ValueFlow::makeIntegralInferModel(), expr->str(), expr->astOperand1()->values(), {rhs});
if (!result.empty() && result.front().isKnown())
return result.front();
}
if (lhs.isIntValue()) {
std::vector<ValueFlow::Value> result =
infer(ValueFlow::makeIntegralInferModel(), expr->str(), {lhs}, expr->astOperand2()->values());
if (!result.empty() && result.front().isKnown())
return result.front();
}
return unknown();
}
return r;
}
// Unary ops
else if (Token::Match(expr, "!|+|-") && expr->astOperand1() && !expr->astOperand2()) {
ValueFlow::Value lhs = execute(expr->astOperand1());
if (!lhs.isIntValue())
return unknown();
if (expr->str() == "!") {
if (isTrue(lhs)) {
lhs.intvalue = 0;
} else if (isFalse(lhs)) {
lhs.intvalue = 1;
} else {
return unknown();
}
lhs.setPossible();
lhs.bound = ValueFlow::Value::Bound::Point;
}
if (expr->str() == "-")
lhs.intvalue = -lhs.intvalue;
return lhs;
} else if (expr->str() == "?" && expr->astOperand1() && expr->astOperand2()) {
ValueFlow::Value cond = execute(expr->astOperand1());
if (!cond.isIntValue())
return unknown();
const Token* child = expr->astOperand2();
if (isFalse(cond))
return execute(child->astOperand2());
if (isTrue(cond))
return execute(child->astOperand1());
return unknown();
} else if (expr->str() == "(" && expr->isCast()) {
if (Token::simpleMatch(expr->previous(), ">") && expr->previous()->link())
return execute(expr->astOperand2());
return execute(expr->astOperand1());
}
if (expr->exprId() > 0 && pm->hasValue(expr->exprId())) {
ValueFlow::Value result = pm->at(expr->exprId());
if (result.isImpossible() && result.isIntValue() && result.intvalue == 0 && isUsedAsBool(expr)) {
result.intvalue = !result.intvalue;
result.setKnown();
}
return result;
}
if (Token::Match(expr->previous(), ">|%name% {|(")) {
const Token* ftok = expr->previous();
const Function* f = ftok->function();
ValueFlow::Value result = unknown();
if (settings && expr->str() == "(") {
std::vector<const Token*> tokArgs = getArguments(expr);
std::vector<ValueFlow::Value> args(tokArgs.size());
std::transform(
tokArgs.cbegin(), tokArgs.cend(), args.begin(), [&](const Token* tok) {
return execute(tok);
});
if (f) {
if (fdepth >= 0 && !f->isImplicitlyVirtual()) {
ProgramMemory functionState;
for (std::size_t i = 0; i < args.size(); ++i) {
const Variable* const arg = f->getArgumentVar(i);
if (!arg)
return unknown();
functionState.setValue(arg->nameToken(), args[i]);
}
Executor ex = *this;
ex.pm = &functionState;
ex.fdepth--;
auto r = ex.execute(f->functionScope);
if (!r.empty())
result = r.front();
// TODO: Track values changed by reference
}
} else {
BuiltinLibraryFunction lf = getBuiltinLibraryFunction(ftok->str());
if (lf)
return lf(args);
const std::string& returnValue = settings->library.returnValue(ftok);
if (!returnValue.empty()) {
std::unordered_map<nonneg int, ValueFlow::Value> arg_map;
int argn = 0;
for (const ValueFlow::Value& v : args) {
if (!v.isUninitValue())
arg_map[argn] = v;
argn++;
}
return evaluateLibraryFunction(arg_map, returnValue, settings);
}
}
}
// Check if function modifies argument
visitAstNodes(expr->astOperand2(), [&](const Token* child) {
if (child->exprId() > 0 && pm->hasValue(child->exprId())) {
ValueFlow::Value& v = pm->at(child->exprId());
if (v.valueType == ValueFlow::Value::ValueType::CONTAINER_SIZE) {
if (ValueFlow::isContainerSizeChanged(child, v.indirect, settings))
v = unknown();
} else if (v.valueType != ValueFlow::Value::ValueType::UNINIT) {
if (isVariableChanged(child, v.indirect, settings, true))
v = unknown();
}
}
return ChildrenToVisit::op1_and_op2;
});
return result;
}
return unknown();
}
static const ValueFlow::Value* getImpossibleValue(const Token* tok)
{
if (!tok)
return nullptr;
std::vector<const ValueFlow::Value*> values;
for (const ValueFlow::Value& v : tok->values()) {
if (!v.isImpossible())
continue;
if (v.isContainerSizeValue() || v.isIntValue()) {
values.push_back(std::addressof(v));
}
}
auto it =
std::max_element(values.begin(), values.end(), [](const ValueFlow::Value* x, const ValueFlow::Value* y) {
return x->intvalue < y->intvalue;
});
if (it == values.end())
return nullptr;
return *it;
}
ValueFlow::Value execute(const Token* expr)
{
depth--;
OnExit onExit{[&] {
depth++;
}};
if (depth < 0)
return unknown();
ValueFlow::Value v = executeImpl(expr);
if (!v.isUninitValue())
return v;
if (!expr)
return v;
if (expr->exprId() > 0 && pm->hasValue(expr->exprId()))
return pm->at(expr->exprId());
if (const ValueFlow::Value* value = getImpossibleValue(expr))
return *value;
return v;
}
std::vector<ValueFlow::Value> execute(const Scope* scope)
{
if (!scope)
return {unknown()};
if (!scope->bodyStart)
return {unknown()};
for (const Token* tok = scope->bodyStart->next(); precedes(tok, scope->bodyEnd); tok = tok->next()) {
const Token* top = tok->astTop();
if (!top)
return {unknown()};
if (Token::simpleMatch(top, "return") && top->astOperand1())
return {execute(top->astOperand1())};
if (Token::Match(top, "%op%")) {
if (execute(top).isUninitValue())
return {unknown()};
const Token* next = nextAfterAstRightmostLeaf(top);
if (!next)
return {unknown()};
tok = next;
} else if (Token::simpleMatch(top->previous(), "if (")) {
const Token* condTok = top->astOperand2();
ValueFlow::Value v = execute(condTok);
if (!v.isIntValue())
return {unknown()};
const Token* thenStart = top->link()->next();
const Token* next = thenStart->link();
const Token* elseStart = nullptr;
if (Token::simpleMatch(thenStart->link(), "} else {")) {
elseStart = thenStart->link()->tokAt(2);
next = elseStart->link();
}
std::vector<ValueFlow::Value> result;
if (isTrue(v)) {
result = execute(thenStart->scope());
} else if (isFalse(v)) {
if (elseStart)
result = execute(elseStart->scope());
} else {
return {unknown()};
}
if (!result.empty())
return result;
tok = next;
} else {
return {unknown()};
}
}
return {};
}
};
} // namespace
static ValueFlow::Value execute(const Token* expr, ProgramMemory& pm, const Settings* settings)
{
Executor ex{&pm, settings};
return ex.execute(expr);
}
std::vector<ValueFlow::Value> execute(const Scope* scope, ProgramMemory& pm, const Settings* settings)
{
Executor ex{&pm, settings};
return ex.execute(scope);
}
ValueFlow::Value evaluateLibraryFunction(const std::unordered_map<nonneg int, ValueFlow::Value>& args,
const std::string& returnValue,
const Settings* settings)
{
thread_local static std::unordered_map<std::string,
std::function<ValueFlow::Value(const std::unordered_map<nonneg int, ValueFlow::Value>& arg)>>
functions = {};
if (functions.count(returnValue) == 0) {
std::unordered_map<nonneg int, const Token*> lookupVarId;
std::shared_ptr<Token> expr = createTokenFromExpression(returnValue, settings, &lookupVarId);
functions[returnValue] =
[lookupVarId, expr, settings](const std::unordered_map<nonneg int, ValueFlow::Value>& xargs) {
if (!expr)
return ValueFlow::Value::unknown();
ProgramMemory pm{};
for (const auto& p : xargs) {
auto it = lookupVarId.find(p.first);
if (it != lookupVarId.end())
pm.setValue(it->second, p.second);
}
return execute(expr.get(), pm, settings);
};
}
return functions.at(returnValue)(args);
}
void execute(const Token* expr,
ProgramMemory& programMemory,
MathLib::bigint* result,
bool* error,
const Settings* settings)
{
ValueFlow::Value v = execute(expr, programMemory, settings);
if (!v.isIntValue() || v.isImpossible()) {
if (error)
*error = true;
} else if (result)
*result = v.intvalue;
}