/* * Cppcheck - A tool for static C/C++ code analysis * Copyright (C) 2007-2023 Cppcheck team. * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include "mathlib.h" #include "errortypes.h" #include "utils.h" #include #include #include #include #include #include #include #include #include #include #include const int MathLib::bigint_bits = 64; MathLib::value::value(const std::string &s) { if (MathLib::isFloat(s)) { mType = MathLib::value::Type::FLOAT; mDoubleValue = MathLib::toDoubleNumber(s); return; } if (!MathLib::isInt(s)) throw InternalError(nullptr, "Invalid value: " + s); mType = MathLib::value::Type::INT; mIntValue = MathLib::toBigNumber(s); if (isIntHex(s) && mIntValue < 0) mIsUnsigned = true; // read suffix if (s.size() >= 2U) { for (std::size_t i = s.size() - 1U; i > 0U; --i) { const char c = s[i]; if (c == 'u' || c == 'U') mIsUnsigned = true; else if (c == 'l' || c == 'L') { if (mType == MathLib::value::Type::INT) mType = MathLib::value::Type::LONG; else if (mType == MathLib::value::Type::LONG) mType = MathLib::value::Type::LONGLONG; } else if (i > 2U && c == '4' && s[i-1] == '6' && s[i-2] == 'i') mType = MathLib::value::Type::LONGLONG; } } } std::string MathLib::value::str() const { std::ostringstream ostr; if (mType == MathLib::value::Type::FLOAT) { #if defined(__amigaos4__) && defined(__CLIB2__) if (isnan(mDoubleValue)) return "nan.0"; if (isinf(mDoubleValue)) return (mDoubleValue > 0) ? "inf.0" : "-inf.0"; #else if (std::isnan(mDoubleValue)) return "nan.0"; if (std::isinf(mDoubleValue)) return (mDoubleValue > 0) ? "inf.0" : "-inf.0"; #endif ostr.precision(9); ostr << std::fixed << mDoubleValue; // remove trailing zeros std::string ret(ostr.str()); std::string::size_type pos = ret.size() - 1U; while (ret[pos] == '0') pos--; if (ret[pos] == '.') ++pos; return ret.substr(0, pos+1); } if (mIsUnsigned) ostr << static_cast(mIntValue) << "U"; else ostr << mIntValue; if (mType == MathLib::value::Type::LONG) ostr << "L"; else if (mType == MathLib::value::Type::LONGLONG) ostr << "LL"; return ostr.str(); } void MathLib::value::promote(const MathLib::value &v) { if (isInt() && v.isInt()) { if (mType < v.mType) { mType = v.mType; mIsUnsigned = v.mIsUnsigned; } else if (mType == v.mType) { mIsUnsigned |= v.mIsUnsigned; } } else if (!isFloat()) { mIsUnsigned = false; mDoubleValue = mIntValue; mType = MathLib::value::Type::FLOAT; } } MathLib::value MathLib::value::calc(char op, const MathLib::value &v1, const MathLib::value &v2) { value temp(v1); temp.promote(v2); if (temp.isFloat()) { switch (op) { case '+': temp.mDoubleValue += v2.getDoubleValue(); break; case '-': temp.mDoubleValue -= v2.getDoubleValue(); break; case '*': temp.mDoubleValue *= v2.getDoubleValue(); break; case '/': temp.mDoubleValue /= v2.getDoubleValue(); break; case '%': case '&': case '|': case '^': throw InternalError(nullptr, "Invalid calculation"); default: throw InternalError(nullptr, "Unhandled calculation"); } } else if (temp.mIsUnsigned) { switch (op) { case '+': temp.mIntValue += (unsigned long long)v2.mIntValue; break; case '-': temp.mIntValue -= (unsigned long long)v2.mIntValue; break; case '*': temp.mIntValue *= (unsigned long long)v2.mIntValue; break; case '/': if (v2.mIntValue == 0) throw InternalError(nullptr, "Internal Error: Division by zero"); if (v1.mIntValue == std::numeric_limits::min() && std::abs(v2.mIntValue)<=1) throw InternalError(nullptr, "Internal Error: Division overflow"); temp.mIntValue /= (unsigned long long)v2.mIntValue; break; case '%': if (v2.mIntValue == 0) throw InternalError(nullptr, "Internal Error: Division by zero"); temp.mIntValue %= (unsigned long long)v2.mIntValue; break; case '&': temp.mIntValue &= (unsigned long long)v2.mIntValue; break; case '|': temp.mIntValue |= (unsigned long long)v2.mIntValue; break; case '^': temp.mIntValue ^= (unsigned long long)v2.mIntValue; break; default: throw InternalError(nullptr, "Unhandled calculation"); } } else { switch (op) { case '+': temp.mIntValue += v2.mIntValue; break; case '-': temp.mIntValue -= v2.mIntValue; break; case '*': temp.mIntValue *= v2.mIntValue; break; case '/': if (v2.mIntValue == 0) throw InternalError(nullptr, "Internal Error: Division by zero"); if (v1.mIntValue == std::numeric_limits::min() && std::abs(v2.mIntValue)<=1) throw InternalError(nullptr, "Internal Error: Division overflow"); temp.mIntValue /= v2.mIntValue; break; case '%': if (v2.mIntValue == 0) throw InternalError(nullptr, "Internal Error: Division by zero"); temp.mIntValue %= v2.mIntValue; break; case '&': temp.mIntValue &= v2.mIntValue; break; case '|': temp.mIntValue |= v2.mIntValue; break; case '^': temp.mIntValue ^= v2.mIntValue; break; default: throw InternalError(nullptr, "Unhandled calculation"); } } return temp; } int MathLib::value::compare(const MathLib::value &v) const { value temp(*this); temp.promote(v); if (temp.isFloat()) { if (temp.mDoubleValue < v.getDoubleValue()) return -1; if (temp.mDoubleValue > v.getDoubleValue()) return 1; return 0; } if (temp.mIsUnsigned) { if ((unsigned long long)mIntValue < (unsigned long long)v.mIntValue) return -1; if ((unsigned long long)mIntValue > (unsigned long long)v.mIntValue) return 1; return 0; } if (mIntValue < v.mIntValue) return -1; if (mIntValue > v.mIntValue) return 1; return 0; } MathLib::value MathLib::value::add(int v) const { MathLib::value temp(*this); if (temp.isInt()) temp.mIntValue += v; else temp.mDoubleValue += v; return temp; } MathLib::value MathLib::value::shiftLeft(const MathLib::value &v) const { if (!isInt() || !v.isInt()) throw InternalError(nullptr, "Shift operand is not integer"); MathLib::value ret(*this); if (v.mIntValue >= MathLib::bigint_bits) { return ret; } ret.mIntValue <<= v.mIntValue; return ret; } MathLib::value MathLib::value::shiftRight(const MathLib::value &v) const { if (!isInt() || !v.isInt()) throw InternalError(nullptr, "Shift operand is not integer"); MathLib::value ret(*this); if (v.mIntValue >= MathLib::bigint_bits) { return ret; } ret.mIntValue >>= v.mIntValue; return ret; } // TODO: remove handling of non-literal stuff MathLib::biguint MathLib::toBigUNumber(const std::string & str) { // hexadecimal numbers: if (isIntHex(str)) { try { const biguint ret = std::stoull(str, nullptr, 16); return ret; } catch (const std::out_of_range& /*e*/) { throw InternalError(nullptr, "Internal Error. MathLib::toBigUNumber: out_of_range: " + str); } catch (const std::invalid_argument& /*e*/) { throw InternalError(nullptr, "Internal Error. MathLib::toBigUNumber: invalid_argument: " + str); } } // octal numbers: if (isOct(str)) { try { const biguint ret = std::stoull(str, nullptr, 8); return ret; } catch (const std::out_of_range& /*e*/) { throw InternalError(nullptr, "Internal Error. MathLib::toBigUNumber: out_of_range: " + str); } catch (const std::invalid_argument& /*e*/) { throw InternalError(nullptr, "Internal Error. MathLib::toBigUNumber: invalid_argument: " + str); } } // binary numbers: if (isBin(str)) { biguint ret = 0; for (std::string::size_type i = str[0] == '0'?2:3; i < str.length(); i++) { if (str[i] != '1' && str[i] != '0') break; ret <<= 1; if (str[i] == '1') ret |= 1; } if (str[0] == '-') ret = -ret; return ret; } if (isFloat(str)) { // Things are going to be less precise now: the value can't be represented in the biguint type. // Use min/max values as an approximation. See #5843 // TODO: bail out when we are out of range? const double doubleval = toDoubleNumber(str); if (doubleval > (double)std::numeric_limits::max()) return std::numeric_limits::max(); // cast to bigint to avoid UBSAN warning about negative double being out-of-range return static_cast(static_cast(doubleval)); } if (isCharLiteral(str)) return simplecpp::characterLiteralToLL(str); try { std::size_t idx = 0; const biguint ret = std::stoull(str, &idx, 10); if (idx != str.size()) { const std::string s = str.substr(idx); if (!isValidIntegerSuffix(s, true)) throw InternalError(nullptr, "Internal Error. MathLib::toBigUNumber: input was not completely consumed: " + str); } return ret; } catch (const std::out_of_range& /*e*/) { throw InternalError(nullptr, "Internal Error. MathLib::toBigUNumber: out_of_range: " + str); } catch (const std::invalid_argument& /*e*/) { throw InternalError(nullptr, "Internal Error. MathLib::toBigUNumber: invalid_argument: " + str); } } unsigned int MathLib::encodeMultiChar(const std::string& str) { return std::accumulate(str.cbegin(), str.cend(), uint32_t(), [](uint32_t v, char c) { return (v << 8) | c; }); } // TODO: remove handling of non-literal stuff MathLib::bigint MathLib::toBigNumber(const std::string & str) { // hexadecimal numbers: if (isIntHex(str)) { try { const biguint ret = std::stoull(str, nullptr, 16); return (bigint)ret; } catch (const std::out_of_range& /*e*/) { throw InternalError(nullptr, "Internal Error. MathLib::toBigNumber: out_of_range: " + str); } catch (const std::invalid_argument& /*e*/) { throw InternalError(nullptr, "Internal Error. MathLib::toBigNumber: invalid_argument: " + str); } } // octal numbers: if (isOct(str)) { try { const biguint ret = std::stoull(str, nullptr, 8); return ret; } catch (const std::out_of_range& /*e*/) { throw InternalError(nullptr, "Internal Error. MathLib::toBigNumber: out_of_range: " + str); } catch (const std::invalid_argument& /*e*/) { throw InternalError(nullptr, "Internal Error. MathLib::toBigNumber: invalid_argument: " + str); } } // binary numbers: if (isBin(str)) { bigint ret = 0; for (std::string::size_type i = str[0] == '0'?2:3; i < str.length(); i++) { if (str[i] != '1' && str[i] != '0') break; ret <<= 1; if (str[i] == '1') ret |= 1; } if (str[0] == '-') ret = -ret; return ret; } if (isFloat(str)) { // Things are going to be less precise now: the value can't be represented in the bigint type. // Use min/max values as an approximation. See #5843 // TODO: bail out when we are out of range? const double doubleval = toDoubleNumber(str); if (doubleval > (double)std::numeric_limits::max()) return std::numeric_limits::max(); if (doubleval < (double)std::numeric_limits::min()) return std::numeric_limits::min(); return static_cast(doubleval); } if (isCharLiteral(str)) return simplecpp::characterLiteralToLL(str); try { std::size_t idx = 0; const biguint ret = std::stoull(str, &idx, 10); if (idx != str.size()) { const std::string s = str.substr(idx); if (!isValidIntegerSuffix(s, true)) throw InternalError(nullptr, "Internal Error. MathLib::toBigNumber: input was not completely consumed: " + str); } return ret; } catch (const std::out_of_range& /*e*/) { throw InternalError(nullptr, "Internal Error. MathLib::toBigNumber: out_of_range: " + str); } catch (const std::invalid_argument& /*e*/) { throw InternalError(nullptr, "Internal Error. MathLib::toBigNumber: invalid_argument: " + str); } } // in-place conversion of (sub)string to double. Requires no heap. static double myStod(const std::string& str, std::string::const_iterator from, std::string::const_iterator to, int base) { double result = 0.; bool positivesign = true; std::string::const_iterator it; if ('+' == *from) { it = from + 1; } else if ('-' == *from) { it = from + 1; positivesign = false; } else it = from; const std::size_t decimalsep = str.find('.', it-str.begin()); int distance; if (std::string::npos == decimalsep) { distance = to - it; } else if (decimalsep > (to - str.begin())) return 0.; // error handling?? else distance = int(decimalsep)-(from - str.begin()); auto digitval = [&](char c) { if ((10 < base) && (c > '9')) return 10 + std::tolower(c) - 'a'; return c - '0'; }; for (; it!=to; ++it) { if ('.' == *it) continue; --distance; result += digitval(*it)* std::pow(base, distance); } return positivesign ? result : -result; } // Assuming a limited support of built-in hexadecimal floats (see C99, C++17) that is a fall-back implementation. // Performance has been optimized WRT to heap activity, however the calculation part is not optimized. static double floatHexToDoubleNumber(const std::string& str) { const std::size_t p = str.find_first_of("pP",3); const double factor1 = myStod(str, str.cbegin() + 2, str.cbegin()+p, 16); const bool suffix = (str.back() == 'f') || (str.back() == 'F') || (str.back() == 'l') || (str.back() == 'L'); const double exponent = myStod(str, str.cbegin() + p + 1, suffix ? str.cend()-1:str.cend(), 10); const double factor2 = std::pow(2, exponent); return factor1 * factor2; } double MathLib::toDoubleNumber(const std::string &str) { if (isCharLiteral(str)) { try { return simplecpp::characterLiteralToLL(str); } catch (const std::exception& e) { throw InternalError(nullptr, "Internal Error. MathLib::toDoubleNumber: characterLiteralToLL(" + str + ") => " + e.what()); } } if (isIntHex(str)) return static_cast(toBigNumber(str)); #ifdef _LIBCPP_VERSION if (isFloat(str)) // Workaround libc++ bug at https://github.com/llvm/llvm-project/issues/18156 // TODO: handle locale // TODO: make sure all characters are being consumed return std::strtod(str.c_str(), nullptr); #endif if (isFloatHex(str)) return floatHexToDoubleNumber(str); // otherwise, convert to double std::istringstream istr(str); istr.imbue(std::locale::classic()); double ret; if (!(istr >> ret)) throw InternalError(nullptr, "Internal Error. MathLib::toDoubleNumber: conversion failed: " + str); std::string s; if (istr >> s) { if (isDecimalFloat(str)) return ret; if (!isValidIntegerSuffix(s, true)) throw InternalError(nullptr, "Internal Error. MathLib::toDoubleNumber: input was not completely consumed: " + str); } return ret; } template<> std::string MathLib::toString(double value) { std::ostringstream result; result.precision(12); result << value; std::string s = result.str(); if (s == "-0") return "0.0"; if (s.find_first_of(".e") == std::string::npos) return s + ".0"; return s; } bool MathLib::isFloat(const std::string &str) { return isDecimalFloat(str) || isFloatHex(str); } bool MathLib::isDecimalFloat(const std::string &str) { if (str.empty()) return false; enum class State { START, BASE_DIGITS1, LEADING_DECIMAL, TRAILING_DECIMAL, BASE_DIGITS2, E, MANTISSA_PLUSMINUS, MANTISSA_DIGITS, SUFFIX_F, SUFFIX_L, SUFFIX_LITERAL_LEADER, SUFFIX_LITERAL } state = State::START; std::string::const_iterator it = str.cbegin(); if ('+' == *it || '-' == *it) ++it; for (; it != str.cend(); ++it) { switch (state) { case State::START: if (*it=='.') state = State::LEADING_DECIMAL; else if (std::isdigit(static_cast(*it))) state = State::BASE_DIGITS1; else return false; break; case State::LEADING_DECIMAL: if (std::isdigit(static_cast(*it))) state = State::BASE_DIGITS2; else return false; break; case State::BASE_DIGITS1: if (*it=='e' || *it=='E') state = State::E; else if (*it=='.') state = State::TRAILING_DECIMAL; else if (!std::isdigit(static_cast(*it))) return false; break; case State::TRAILING_DECIMAL: if (*it=='e' || *it=='E') state = State::E; else if (*it=='f' || *it=='F') state = State::SUFFIX_F; else if (*it=='l' || *it=='L') state = State::SUFFIX_L; else if (*it == '_') state = State::SUFFIX_LITERAL_LEADER; else if (std::isdigit(static_cast(*it))) state = State::BASE_DIGITS2; else return false; break; case State::BASE_DIGITS2: if (*it=='e' || *it=='E') state = State::E; else if (*it=='f' || *it=='F') state = State::SUFFIX_F; else if (*it=='l' || *it=='L') state = State::SUFFIX_L; else if (*it == '_') state = State::SUFFIX_LITERAL_LEADER; else if (!std::isdigit(static_cast(*it))) return false; break; case State::E: if (*it=='+' || *it=='-') state = State::MANTISSA_PLUSMINUS; else if (std::isdigit(static_cast(*it))) state = State::MANTISSA_DIGITS; else return false; break; case State::MANTISSA_PLUSMINUS: if (!std::isdigit(static_cast(*it))) return false; else state = State::MANTISSA_DIGITS; break; case State::MANTISSA_DIGITS: if (*it=='f' || *it=='F') state = State::SUFFIX_F; else if (*it=='l' || *it=='L') state = State::SUFFIX_L; else if (!std::isdigit(static_cast(*it))) return false; break; // Ensure at least one post _ char for user defined literals case State::SUFFIX_LITERAL: case State::SUFFIX_LITERAL_LEADER: state = State::SUFFIX_LITERAL; break; case State::SUFFIX_F: return false; case State::SUFFIX_L: return false; } } return (state==State::BASE_DIGITS2 || state==State::MANTISSA_DIGITS || state==State::TRAILING_DECIMAL || state==State::SUFFIX_F || state==State::SUFFIX_L || (state==State::SUFFIX_LITERAL)); } bool MathLib::isNegative(const std::string &str) { if (str.empty()) return false; return (str[0] == '-'); } bool MathLib::isPositive(const std::string &str) { if (str.empty()) return false; return !MathLib::isNegative(str); } static bool isValidIntegerSuffixIt(std::string::const_iterator it, std::string::const_iterator end, bool supportMicrosoftExtensions=true) { enum class Status { START, SUFFIX_U, SUFFIX_UL, SUFFIX_ULL, SUFFIX_UZ, SUFFIX_L, SUFFIX_LU, SUFFIX_LL, SUFFIX_LLU, SUFFIX_I, SUFFIX_I6, SUFFIX_I64, SUFFIX_UI, SUFFIX_UI6, SUFFIX_UI64, SUFFIX_Z, SUFFIX_LITERAL_LEADER, SUFFIX_LITERAL } state = Status::START; for (; it != end; ++it) { switch (state) { case Status::START: if (*it == 'u' || *it == 'U') state = Status::SUFFIX_U; else if (*it == 'l' || *it == 'L') state = Status::SUFFIX_L; else if (*it == 'z' || *it == 'Z') state = Status::SUFFIX_Z; else if (supportMicrosoftExtensions && (*it == 'i' || *it == 'I')) state = Status::SUFFIX_I; else if (*it == '_') state = Status::SUFFIX_LITERAL_LEADER; else return false; break; case Status::SUFFIX_U: if (*it == 'l' || *it == 'L') state = Status::SUFFIX_UL; // UL else if (*it == 'z' || *it == 'Z') state = Status::SUFFIX_UZ; // UZ else if (supportMicrosoftExtensions && (*it == 'i' || *it == 'I')) state = Status::SUFFIX_UI; else return false; break; case Status::SUFFIX_UL: if (*it == 'l' || *it == 'L') state = Status::SUFFIX_ULL; // ULL else return false; break; case Status::SUFFIX_L: if (*it == 'u' || *it == 'U') state = Status::SUFFIX_LU; // LU else if (*it == 'l' || *it == 'L') state = Status::SUFFIX_LL; // LL else return false; break; case Status::SUFFIX_LU: return false; case Status::SUFFIX_LL: if (*it == 'u' || *it == 'U') state = Status::SUFFIX_LLU; // LLU else return false; break; case Status::SUFFIX_I: if (*it == '6') state = Status::SUFFIX_I6; else return false; break; case Status::SUFFIX_I6: if (*it == '4') state = Status::SUFFIX_I64; else return false; break; case Status::SUFFIX_UI: if (*it == '6') state = Status::SUFFIX_UI6; else return false; break; case Status::SUFFIX_UI6: if (*it == '4') state = Status::SUFFIX_UI64; else return false; break; case Status::SUFFIX_Z: if (*it == 'u' || *it == 'U') state = Status::SUFFIX_UZ; else return false; break; // Ensure at least one post _ char for user defined literals case Status::SUFFIX_LITERAL: case Status::SUFFIX_LITERAL_LEADER: state = Status::SUFFIX_LITERAL; break; default: return false; } } return ((state == Status::SUFFIX_U) || (state == Status::SUFFIX_L) || (state == Status::SUFFIX_Z) || (state == Status::SUFFIX_UL) || (state == Status::SUFFIX_UZ) || (state == Status::SUFFIX_LU) || (state == Status::SUFFIX_LL) || (state == Status::SUFFIX_ULL) || (state == Status::SUFFIX_LLU) || (state == Status::SUFFIX_I64) || (state == Status::SUFFIX_UI64) || (state == Status::SUFFIX_LITERAL)); } // cppcheck-suppress unusedFunction bool MathLib::isValidIntegerSuffix(const std::string& str, bool supportMicrosoftExtensions) { return isValidIntegerSuffixIt(str.cbegin(), str.cend(), supportMicrosoftExtensions); } /*! \brief Does the string represent an octal number? * In case leading or trailing white space is provided, the function * returns false. * Additional information can be found here: * http://gcc.gnu.org/onlinedocs/gcc/Binary-constants.html * * \param str The string to check. In case the string is empty, the function returns false. * \return Return true in case a octal number is provided and false otherwise. **/ bool MathLib::isOct(const std::string& str) { enum class Status { START, OCTAL_PREFIX, DIGITS } state = Status::START; if (str.empty()) return false; std::string::const_iterator it = str.cbegin(); if ('+' == *it || '-' == *it) ++it; for (; it != str.cend(); ++it) { switch (state) { case Status::START: if (*it == '0') state = Status::OCTAL_PREFIX; else return false; break; case Status::OCTAL_PREFIX: if (isOctalDigit(static_cast(*it))) state = Status::DIGITS; else return false; break; case Status::DIGITS: if (isOctalDigit(static_cast(*it))) state = Status::DIGITS; else return isValidIntegerSuffixIt(it,str.end()); break; } } return state == Status::DIGITS; } bool MathLib::isIntHex(const std::string& str) { enum class Status { START, HEX_0, HEX_X, DIGIT } state = Status::START; if (str.empty()) return false; std::string::const_iterator it = str.cbegin(); if ('+' == *it || '-' == *it) ++it; for (; it != str.cend(); ++it) { switch (state) { case Status::START: if (*it == '0') state = Status::HEX_0; else return false; break; case Status::HEX_0: if (*it == 'x' || *it == 'X') state = Status::HEX_X; else return false; break; case Status::HEX_X: if (isxdigit(static_cast(*it))) state = Status::DIGIT; else return false; break; case Status::DIGIT: if (isxdigit(static_cast(*it))) ; // state = Status::DIGIT; else return isValidIntegerSuffixIt(it,str.end()); break; } } return Status::DIGIT == state; } bool MathLib::isFloatHex(const std::string& str) { enum class Status { START, HEX_0, HEX_X, WHOLE_NUMBER_DIGIT, POINT, FRACTION, EXPONENT_P, EXPONENT_SIGN, EXPONENT_DIGITS, EXPONENT_SUFFIX } state = Status::START; if (str.empty()) return false; std::string::const_iterator it = str.cbegin(); if ('+' == *it || '-' == *it) ++it; for (; it != str.cend(); ++it) { switch (state) { case Status::START: if (*it == '0') state = Status::HEX_0; else return false; break; case Status::HEX_0: if (*it == 'x' || *it == 'X') state = Status::HEX_X; else return false; break; case Status::HEX_X: if (isxdigit(static_cast(*it))) state = Status::WHOLE_NUMBER_DIGIT; else if (*it == '.') state = Status::POINT; else return false; break; case Status::WHOLE_NUMBER_DIGIT: if (isxdigit(static_cast(*it))) ; // state = Status::WHOLE_NUMBER_DIGITS; else if (*it=='.') state = Status::FRACTION; else if (*it=='p' || *it=='P') state = Status::EXPONENT_P; else return false; break; case Status::POINT: case Status::FRACTION: if (isxdigit(static_cast(*it))) state = Status::FRACTION; else if (*it == 'p' || *it == 'P') state = Status::EXPONENT_P; else return false; break; case Status::EXPONENT_P: if (isdigit(static_cast(*it))) state = Status::EXPONENT_DIGITS; else if (*it == '+' || *it == '-') state = Status::EXPONENT_SIGN; else return false; break; case Status::EXPONENT_SIGN: if (isdigit(static_cast(*it))) state = Status::EXPONENT_DIGITS; else return false; break; case Status::EXPONENT_DIGITS: if (isdigit(static_cast(*it))) ; // state = Status::EXPONENT_DIGITS; else if (*it == 'f' || *it == 'F' || *it == 'l' || *it == 'L') state = Status::EXPONENT_SUFFIX; else return false; break; case Status::EXPONENT_SUFFIX: return false; } } return (Status::EXPONENT_DIGITS == state) || (Status::EXPONENT_SUFFIX == state); } /*! \brief Does the string represent a binary number? * In case leading or trailing white space is provided, the function * returns false. * Additional information can be found here: * http://gcc.gnu.org/onlinedocs/gcc/Binary-constants.html * * \param str The string to check. In case the string is empty, the function returns false. * \return Return true in case a binary number is provided and false otherwise. **/ bool MathLib::isBin(const std::string& str) { enum class Status { START, GNU_BIN_PREFIX_0, GNU_BIN_PREFIX_B, DIGIT } state = Status::START; if (str.empty()) return false; std::string::const_iterator it = str.cbegin(); if ('+' == *it || '-' == *it) ++it; for (; it != str.cend(); ++it) { switch (state) { case Status::START: if (*it == '0') state = Status::GNU_BIN_PREFIX_0; else return false; break; case Status::GNU_BIN_PREFIX_0: if (*it == 'b' || *it == 'B') state = Status::GNU_BIN_PREFIX_B; else return false; break; case Status::GNU_BIN_PREFIX_B: if (*it == '0' || *it == '1') state = Status::DIGIT; else return false; break; case Status::DIGIT: if (*it == '0' || *it == '1') ; // state = Status::DIGIT; else return isValidIntegerSuffixIt(it,str.end()); break; } } return state == Status::DIGIT; } bool MathLib::isDec(const std::string & str) { enum class Status { START, DIGIT } state = Status::START; if (str.empty()) return false; std::string::const_iterator it = str.cbegin(); if ('+' == *it || '-' == *it) ++it; for (; it != str.cend(); ++it) { switch (state) { case Status::START: if (isdigit(static_cast(*it))) state = Status::DIGIT; else return false; break; case Status::DIGIT: if (isdigit(static_cast(*it))) state = Status::DIGIT; else return isValidIntegerSuffixIt(it,str.end()); break; } } return state == Status::DIGIT; } bool MathLib::isInt(const std::string & str) { return isDec(str) || isIntHex(str) || isOct(str) || isBin(str); } std::string MathLib::getSuffix(const std::string& value) { if (value.size() > 3 && value[value.size() - 3] == 'i' && value[value.size() - 2] == '6' && value[value.size() - 1] == '4') { if (value[value.size() - 4] == 'u') return "ULL"; return "LL"; } bool isUnsigned = false; unsigned int longState = 0; for (std::size_t i = 1U; i < value.size(); ++i) { const char c = value[value.size() - i]; if (c == 'u' || c == 'U') isUnsigned = true; else if (c == 'L' || c == 'l') longState++; else break; } if (longState == 0) return isUnsigned ? "U" : ""; if (longState == 1) return isUnsigned ? "UL" : "L"; if (longState == 2) return isUnsigned ? "ULL" : "LL"; return ""; } static std::string intsuffix(const std::string & first, const std::string & second) { const std::string suffix1 = MathLib::getSuffix(first); const std::string suffix2 = MathLib::getSuffix(second); if (suffix1 == "ULL" || suffix2 == "ULL") return "ULL"; if (suffix1 == "LL" || suffix2 == "LL") return "LL"; if (suffix1 == "UL" || suffix2 == "UL") return "UL"; if (suffix1 == "L" || suffix2 == "L") return "L"; if (suffix1 == "U" || suffix2 == "U") return "U"; return suffix1.empty() ? suffix2 : suffix1; } std::string MathLib::add(const std::string & first, const std::string & second) { #ifdef TEST_MATHLIB_VALUE return (value(first) + value(second)).str(); #else if (MathLib::isInt(first) && MathLib::isInt(second)) { return std::to_string(toBigNumber(first) + toBigNumber(second)) + intsuffix(first, second); } double d1 = toDoubleNumber(first); double d2 = toDoubleNumber(second); int count = 0; while (d1 > 100000.0 * d2 && toString(d1+d2)==first && ++count<5) d2 *= 10.0; while (d2 > 100000.0 * d1 && toString(d1+d2)==second && ++count<5) d1 *= 10.0; return toString(d1 + d2); #endif } std::string MathLib::subtract(const std::string &first, const std::string &second) { #ifdef TEST_MATHLIB_VALUE return (value(first) - value(second)).str(); #else if (MathLib::isInt(first) && MathLib::isInt(second)) { return std::to_string(toBigNumber(first) - toBigNumber(second)) + intsuffix(first, second); } if (first == second) return "0.0"; double d1 = toDoubleNumber(first); double d2 = toDoubleNumber(second); int count = 0; while (d1 > 100000.0 * d2 && toString(d1-d2)==first && ++count<5) d2 *= 10.0; while (d2 > 100000.0 * d1 && toString(d1-d2)==second && ++count<5) d1 *= 10.0; return toString(d1 - d2); #endif } std::string MathLib::divide(const std::string &first, const std::string &second) { #ifdef TEST_MATHLIB_VALUE return (value(first) / value(second)).str(); #else if (MathLib::isInt(first) && MathLib::isInt(second)) { const bigint a = toBigNumber(first); const bigint b = toBigNumber(second); if (b == 0) throw InternalError(nullptr, "Internal Error: Division by zero"); if (a == std::numeric_limits::min() && std::abs(b)<=1) throw InternalError(nullptr, "Internal Error: Division overflow"); return std::to_string(toBigNumber(first) / b) + intsuffix(first, second); } if (isNullValue(second)) { if (isNullValue(first)) return "nan.0"; return isPositive(first) == isPositive(second) ? "inf.0" : "-inf.0"; } return toString(toDoubleNumber(first) / toDoubleNumber(second)); #endif } std::string MathLib::multiply(const std::string &first, const std::string &second) { #ifdef TEST_MATHLIB_VALUE return (value(first) * value(second)).str(); #else if (MathLib::isInt(first) && MathLib::isInt(second)) { return std::to_string(toBigNumber(first) * toBigNumber(second)) + intsuffix(first, second); } return toString(toDoubleNumber(first) * toDoubleNumber(second)); #endif } std::string MathLib::mod(const std::string &first, const std::string &second) { #ifdef TEST_MATHLIB_VALUE return (value(first) % value(second)).str(); #else if (MathLib::isInt(first) && MathLib::isInt(second)) { const bigint b = toBigNumber(second); if (b == 0) throw InternalError(nullptr, "Internal Error: Division by zero"); return std::to_string(toBigNumber(first) % b) + intsuffix(first, second); } return toString(std::fmod(toDoubleNumber(first),toDoubleNumber(second))); #endif } std::string MathLib::calculate(const std::string &first, const std::string &second, char action) { switch (action) { case '+': return MathLib::add(first, second); case '-': return MathLib::subtract(first, second); case '*': return MathLib::multiply(first, second); case '/': return MathLib::divide(first, second); case '%': return MathLib::mod(first, second); case '&': return std::to_string(MathLib::toBigNumber(first) & MathLib::toBigNumber(second)) + intsuffix(first, second); case '|': return std::to_string(MathLib::toBigNumber(first) | MathLib::toBigNumber(second)) + intsuffix(first, second); case '^': return std::to_string(MathLib::toBigNumber(first) ^ MathLib::toBigNumber(second)) + intsuffix(first, second); default: throw InternalError(nullptr, std::string("Unexpected action '") + action + "' in MathLib::calculate(). Please report this to Cppcheck developers."); } } std::string MathLib::sin(const std::string &tok) { return toString(std::sin(toDoubleNumber(tok))); } std::string MathLib::cos(const std::string &tok) { return toString(std::cos(toDoubleNumber(tok))); } std::string MathLib::tan(const std::string &tok) { return toString(std::tan(toDoubleNumber(tok))); } std::string MathLib::abs(const std::string &tok) { if (isNegative(tok)) return tok.substr(1, tok.length() - 1); return tok; } bool MathLib::isEqual(const std::string &first, const std::string &second) { // this conversion is needed for formatting // e.g. if first=0.1 and second=1.0E-1, the direct comparison of the strings would fail return toString(toDoubleNumber(first)) == toString(toDoubleNumber(second)); } bool MathLib::isNotEqual(const std::string &first, const std::string &second) { return !isEqual(first, second); } // cppcheck-suppress unusedFunction bool MathLib::isGreater(const std::string &first, const std::string &second) { return toDoubleNumber(first) > toDoubleNumber(second); } // cppcheck-suppress unusedFunction bool MathLib::isGreaterEqual(const std::string &first, const std::string &second) { return toDoubleNumber(first) >= toDoubleNumber(second); } // cppcheck-suppress unusedFunction bool MathLib::isLess(const std::string &first, const std::string &second) { return toDoubleNumber(first) < toDoubleNumber(second); } bool MathLib::isLessEqual(const std::string &first, const std::string &second) { return toDoubleNumber(first) <= toDoubleNumber(second); } /*! \brief Does the string represent the numerical value of 0? * In case leading or trailing white space is provided, the function * returns false. * Requirement for this function: * - This code is allowed to be slow because of simplicity of the code. * * \param[in] str The string to check. In case the string is empty, the function returns false. * \return Return true in case the string represents a numerical null value. **/ bool MathLib::isNullValue(const std::string &str) { if (str.empty() || (!std::isdigit(static_cast(str[0])) && (str[0] != '.' && str[0] != '-' && str[0] != '+'))) return false; // Has to be a number if (!isInt(str) && !isFloat(str)) return false; const bool isHex = isIntHex(str) || isFloatHex(str); for (const char i : str) { if (std::isdigit(static_cast(i)) && i != '0') // May not contain digits other than 0 return false; if (i == 'p' || i == 'P' || (!isHex && (i == 'E' || i == 'e'))) return true; if (isHex && isxdigit(i) && i != '0') return false; } return true; } bool MathLib::isOctalDigit(char c) { return (c >= '0' && c <= '7'); } bool MathLib::isDigitSeparator(const std::string& iCode, std::string::size_type iPos) { if (iPos == 0 || iPos >= iCode.size() || iCode[iPos] != '\'') return false; std::string::size_type i = iPos - 1; while (std::isxdigit(iCode[i])) { if (i == 0) return true; // Only xdigits before ' --i; } if (i == iPos - 1) // No xdigit before ' return false; switch (iCode[i]) { case ' ': case '.': case ',': case 'x': case '(': case '{': case '+': case '-': case '*': case '%': case '/': case '&': case '|': case '^': case '~': case '=': return true; case '\'': return isDigitSeparator(iCode, i); default: return false; } } MathLib::value operator+(const MathLib::value &v1, const MathLib::value &v2) { return MathLib::value::calc('+',v1,v2); } MathLib::value operator-(const MathLib::value &v1, const MathLib::value &v2) { return MathLib::value::calc('-',v1,v2); } MathLib::value operator*(const MathLib::value &v1, const MathLib::value &v2) { return MathLib::value::calc('*',v1,v2); } MathLib::value operator/(const MathLib::value &v1, const MathLib::value &v2) { return MathLib::value::calc('/',v1,v2); } MathLib::value operator%(const MathLib::value &v1, const MathLib::value &v2) { return MathLib::value::calc('%',v1,v2); } MathLib::value operator&(const MathLib::value &v1, const MathLib::value &v2) { return MathLib::value::calc('&',v1,v2); } MathLib::value operator|(const MathLib::value &v1, const MathLib::value &v2) { return MathLib::value::calc('|',v1,v2); } MathLib::value operator^(const MathLib::value &v1, const MathLib::value &v2) { return MathLib::value::calc('^',v1,v2); } MathLib::value operator<<(const MathLib::value &v1, const MathLib::value &v2) { return v1.shiftLeft(v2); } MathLib::value operator>>(const MathLib::value &v1, const MathLib::value &v2) { return v1.shiftRight(v2); }