Cppcheck 1.512011-10-07IntroductionCppcheck is an analysis tool for C/C++ code. Unlike C/C++ compilers
and many other analysis tools, it doesn't detect syntax errors. Cppcheck
only detects the types of bugs that the compilers normally fail to detect.
The goal is no false positives.Supported code and platforms:You can check non-standard code that includes various compiler
extensions, inline assembly code, etc.Cppcheck should be compilable by any C++ compiler that handles
the latest C++ standard.Cppcheck should work on any platform that has sufficient CPU and
memory.AccuracyPlease understand that there are limits of Cppcheck. Cppcheck is
rarely wrong about reported errors. But there are many bugs that it
doesn't detect.You will find more bugs in your software by testing your software
carefully, than by using Cppcheck. You will find more bugs in your
software by instrumenting your software, than by using Cppcheck. But
Cppcheck can still detect some of the bugs that you miss when testing and
instrumenting your software.Getting startedFirst testHere is a simple codeint main()
{
char a[10];
a[10] = 0;
return 0;
}If you save that into file1.c and
execute:cppcheck file1.cThe output from cppcheck will then be:Checking file1.c...
[file1.c:4]: (error) Array 'a[10]' index 10 out of boundsChecking all files in a folderNormally a program has many source files. And you want to check
them all. Cppcheck can check all source files in a directory:cppcheck pathIf "path" is a folder then cppcheck will check all source files in
this folder.Checking path/file1.cpp...
1/2 files checked 50% done
Checking path/file2.cpp...
2/2 files checked 100% doneExcluding a file or folder from checkingTo exclude a file or folder, there are two options.The first option is to only provide the paths and files you want
to check.cppcheck src/a src/bAll files under src/a and
src/b are then checked.The second option is to use -i,
with it you specify files/paths to ignore. With this command no files in
src/c are checked:cppcheck -isrc/c srcSeveritiesThe possible severities for messages are:errorused when bugs are foundwarningsuggestions about defensive programming to prevent
bugsstylestylistic issues related to code cleanup (unused functions,
redundant code, constness, and such)performancesuggestions for making the code fasterportabilityportability warnings. 64-bit portability. code might work different on different compilers. etc.informationInformational messages that might be interesting. Ignore
these messages unless you really agree.The performance messages are based on 'common knowledge'. It is
not certain that fixing performance messages will make any measurable
difference in speed. Fixing performance messages generally doesn't make
your code more readable.Enable messagesBy default only error messages
are shown. Through the --enable
command more checks can be enabled.Stylistic issuesWith --enable=style you
enable most warning,
style and
performance messages.Here is a simple code example:void f(int x)
{
int i;
if (x == 0)
{
i = 0;
}
}There are no bugs in that code so Cppcheck won't report anything
by default. To enable the stylistic messages, use the
--enable=style command:cppcheck --enable=style file3.cThe output from Cppcheck is now:Checking file3.c...
[file3.c:3]: (style) Variable 'i' is assigned a value that is never used
[file3.c:3]: (style) The scope of the variable i can be reducedUnused functionsThis check will try to find unused functions. It is best to use
this when the whole program is checked, so that all usages is seen by
cppcheck.cppcheck --enable=unusedFunction pathEnable all checksTo enable all checks your can use the
--enable=all flag:cppcheck --enable=all pathSaving results in fileMany times you will want to save the results in a file. You can
use the normal shell redirection for piping error output to a
file.cppcheck file1.c 2> err.txtMultithreaded checkingThe command line client can only use threads in posix
environments. But it is the goal to be able to use threads on all
platforms.The option -j is used to specify the number of threads you want to use.
For example, to use 4 threads to check the files in a folder:cppcheck -j 4 pathPreprocessor configurationsBy default Cppcheck will check all preprocessor configurations
(except those that has #error in them). This is the recommended
behaviour.But if you want to manually limit the checking you can do so with
-D.Beware that only the macros, which are given here and the macros
defined in source files and known header files are considered. That
excludes all the macros defined in some system header files, which are by
default not examined by Cppcheck.The usage: if you, for example, want to limit the checking so the
only configuration to check should be DEBUG=1;__cplusplus
then something like this can be used:cppcheck -DDEBUG=1 -D__cplusplus pathXML outputCppcheck can generate the output in XML format.Use the --xml flag when you
execute cppcheck:cppcheck --xml file1.cppThe XML format is:<?xml version="1.0"?>
<results>
<error file="file1.cpp" line="123" id="someError"
severity="error" msg="some error text"/>
</results>Attributes:filefilename. Both relative and absolute paths are possiblelinea numberidid of error. These are always valid symbolnames.severityeither error or
style.warning and performance
are saved as style.msgthe error messageReformatting the outputIf you want to reformat the output so it looks different you can use
templates.To get Visual Studio compatible output you can use
--template vs:cppcheck --template vs gui/test.cppThis output will look like this:Checking gui/test.cpp...
gui/test.cpp(31): error: Memory leak: b
gui/test.cpp(16): error: Mismatching allocation and deallocation: kTo get gcc compatible output you can use
--template gcc:cppcheck --template gcc gui/test.cppThe output will look like this:Checking gui/test.cpp...
gui/test.cpp:31: error: Memory leak: b
gui/test.cpp:16: error: Mismatching allocation and deallocation: kYou can write your own pattern (for example a comma-separated
format):cppcheck --template "{file},{line},{severity},{id},{message}" gui/test.cppThe output will look like this:Checking gui/test.cpp...
gui/test.cpp,31,error,memleak,Memory leak: b
gui/test.cpp,16,error,mismatchAllocDealloc,Mismatching allocation and deallocation: kSuppressionsIf you want to filter out certain errors you can suppress
these.Suppressing a certain error typeYou can suppress certain types of errors. The format for such a
suppression is one of:[error id]:[filename]:[line]
[error id]:[filename2]
[error id]The error id is the id that you want to
suppress. The easiest way to get it is to use the --xml command line flag. Copy and paste the
id string from the XML output. This may be
* to suppress all warnings (for a specified file or
files).The filename may include the wildcard
characters * or ?, which match any
sequence of characters or any single character respectively. It is
recommended that you use "/" as path separator on all operating
systems.Command line suppressionThe --suppress= command
line option is used to specify suppressions on the command line.
Example:cppcheck --suppress=memleak:src/file1.cpp src/Listing suppressions in a fileYou can create a suppressions file. Example:// suppress memleak and exceptNew errors in the file src/file1.cpp
memleak:src/file1.cpp
exceptNew:src/file1.cpp
// suppress all uninitvar errors in all files
uninitvarNote that you may add empty lines and comments in the
suppressions file.You can use the suppressions file like this:cppcheck --suppressions suppressions.txt src/Inline suppressionsSuppressions can also be added directly in the code by adding
comments that contain special keywords. Before adding such comments,
consider that the code readability is sacrificed a little.This code will normally generate an error message:void f() {
char arr[5];
arr[10] = 0;
}The output is:# cppcheck test.c
Checking test.c...
[test.c:3]: (error) Array 'arr[5]' index 10 out of boundsTo suppress the error message, a comment can be added:void f() {
char arr[5];
// cppcheck-suppress arrayIndexOutOfBounds
arr[10] = 0;
}Now the --inline-suppr flag can be used to suppress the warning.
No error is reported when invoking cppcheck this way:cppcheck --inline-suppr test.cLeaksLooking for memory leaks and resource leaks is a key feature of
Cppcheck. Cppcheck can detect many common mistakes by default. But through
some tweaking you can improve the checking.User-defined allocation/deallocation functionsCppcheck understands many common allocation and
deallocation functions. But not all.Here is example code that might leak memory or resources:void foo(int x)
{
void *f = CreateFred();
if (x == 1)
return;
DestroyFred(f);
}If you analyse that with Cppcheck it won't find any leaks:cppcheck --enable=possibleError fred1.cppYou can add some custom leaks checking by providing simple
implementations for the allocation and deallocation functions. Write
this in a separate file:void *CreateFred()
{
return malloc(100);
}
void DestroyFred(void *p)
{
free(p);
}When Cppcheck see this it understands that CreateFred()
will return allocated memory and that DestroyFred()
will deallocate memory.Now, execute cppcheck this way:cppcheck --append=fred.cpp fred1.cppThe output from cppcheck is:Checking fred1.cpp...
[fred1.cpp:5]: (error) Memory leak: fException safetyCppcheck has a few checks that ensure that you don't break the basic
guarantee of exception safety. It doesn't have any checks for the strong
guarantee yet.Example:Fred::Fred() : a(new int[20]), b(new int[20])
{
}By default Cppcheck will not detect any problems in that
code.To enable the exception safety checking you can use
--enable:cppcheck --enable=exceptNew --enable=exceptRealloc fred.cppThe output will be:[fred.cpp:3]: (style) Upon exception there is memory leak: aIf an exception occurs when b is allocated,
a will leak.Here is another example:int *p;
int a(int sz)
{
delete [] p;
if (sz <= 0)
throw std::runtime_error("size <= 0");
p = new int[sz];
}Check that with Cppcheck:cppcheck --enable=exceptNew --enable=exceptRealloc except2.cppThe output from Cppcheck is:[except2.cpp:7]: (error) Throwing exception in invalid state, p points at deallocated memoryHTML reportYou can convert the XML output from cppcheck into a HTML report.
You'll need Python and the pygments module
(http://pygments.org/) for this to
work. In the Cppcheck source tree there is a folder
htmlreport that contains a script
that transforms a Cppcheck XML file into HTML output.This command generates the help screen:htmlreport/cppcheck-htmlreport -hThe output screen says:Usage: cppcheck-htmlreport [options]
Options:
-h, --help show this help message and exit
--file=FILE The cppcheck xml output file to read defects from.
Default is reading from stdin.
--report-dir=REPORT_DIR
The directory where the html report content is written.
--source-dir=SOURCE_DIR
Base directory where source code files can be found.An example usage:./cppcheck gui/test.cpp --xml 2> err.xml
htmlreport/cppcheck-htmlreport --file=err.xml --report-dir=test1 --source-dir=.Graphical user interfaceIntroductionA Cppcheck GUI is available.The main screen is shown immediately when the GUI is
started.Check source codeUse the Check menu.Inspecting resultsThe results are shown in a list.You can show/hide certain types of messages through the
View menu.Results can be saved to an XML file that can later be opened. See
Save results to file and Open
XML.SettingsThe language can be changed at any time by using the
Language menu.More settings are available in
EditPreferences.Project filesThe project files are used to store project specific settings.
These settings are:include folderspreprocessor definesIt isn't recommended to provide the paths to the standard C/C++
headers - Cppcheck has internal knowledge about ANSI C/C++ and it isn't
recommended that this known functionality is redefined. But feel free to
try it.As you can read in chapter
3 in this manual the default is that Cppcheck checks all configurations.
So only provide preprocessor defines if you want to limit the checking.