/* ** 2001 September 15 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This module contains C code that generates VDBE code used to process ** the WHERE clause of SQL statements. This module is responsible for ** generating the code that loops through a table looking for applicable ** rows. Indices are selected and used to speed the search when doing ** so is applicable. Because this module is responsible for selecting ** indices, you might also think of this module as the "query optimizer". */ #include "sqliteInt.h" #include "whereInt.h" /* ** Extra information appended to the end of sqlite3_index_info but not ** visible to the xBestIndex function, at least not directly. The ** sqlite3_vtab_collation() interface knows how to reach it, however. ** ** This object is not an API and can be changed from one release to the ** next. As long as allocateIndexInfo() and sqlite3_vtab_collation() ** agree on the structure, all will be well. */ typedef struct HiddenIndexInfo HiddenIndexInfo; struct HiddenIndexInfo { WhereClause *pWC; /* The Where clause being analyzed */ Parse *pParse; /* The parsing context */ }; /* Forward declaration of methods */ static int whereLoopResize(sqlite3*, WhereLoop*, int); /* Test variable that can be set to enable WHERE tracing */ #if defined(SQLITE_TEST) || defined(SQLITE_DEBUG) /***/ int sqlite3WhereTrace = 0; #endif /* ** Return the estimated number of output rows from a WHERE clause */ LogEst sqlite3WhereOutputRowCount(WhereInfo *pWInfo){ return pWInfo->nRowOut; } /* ** Return one of the WHERE_DISTINCT_xxxxx values to indicate how this ** WHERE clause returns outputs for DISTINCT processing. */ int sqlite3WhereIsDistinct(WhereInfo *pWInfo){ return pWInfo->eDistinct; } /* ** Return TRUE if the WHERE clause returns rows in ORDER BY order. ** Return FALSE if the output needs to be sorted. */ int sqlite3WhereIsOrdered(WhereInfo *pWInfo){ return pWInfo->nOBSat; } /* ** In the ORDER BY LIMIT optimization, if the inner-most loop is known ** to emit rows in increasing order, and if the last row emitted by the ** inner-most loop did not fit within the sorter, then we can skip all ** subsequent rows for the current iteration of the inner loop (because they ** will not fit in the sorter either) and continue with the second inner ** loop - the loop immediately outside the inner-most. ** ** When a row does not fit in the sorter (because the sorter already ** holds LIMIT+OFFSET rows that are smaller), then a jump is made to the ** label returned by this function. ** ** If the ORDER BY LIMIT optimization applies, the jump destination should ** be the continuation for the second-inner-most loop. If the ORDER BY ** LIMIT optimization does not apply, then the jump destination should ** be the continuation for the inner-most loop. ** ** It is always safe for this routine to return the continuation of the ** inner-most loop, in the sense that a correct answer will result. ** Returning the continuation the second inner loop is an optimization ** that might make the code run a little faster, but should not change ** the final answer. */ int sqlite3WhereOrderByLimitOptLabel(WhereInfo *pWInfo){ WhereLevel *pInner; if (!pWInfo->bOrderedInnerLoop) { /* The ORDER BY LIMIT optimization does not apply. Jump to the ** continuation of the inner-most loop. */ return pWInfo->iContinue; } pInner = &pWInfo->a[pWInfo->nLevel-1]; assert( pInner->addrNxt!=0 ); return pInner->addrNxt; } /* ** Return the VDBE address or label to jump to in order to continue ** immediately with the next row of a WHERE clause. */ int sqlite3WhereContinueLabel(WhereInfo *pWInfo){ assert( pWInfo->iContinue!=0 ); return pWInfo->iContinue; } /* ** Return the VDBE address or label to jump to in order to break ** out of a WHERE loop. */ int sqlite3WhereBreakLabel(WhereInfo *pWInfo){ return pWInfo->iBreak; } /* ** Return ONEPASS_OFF (0) if an UPDATE or DELETE statement is unable to ** operate directly on the rowis returned by a WHERE clause. Return ** ONEPASS_SINGLE (1) if the statement can operation directly because only ** a single row is to be changed. Return ONEPASS_MULTI (2) if the one-pass ** optimization can be used on multiple ** ** If the ONEPASS optimization is used (if this routine returns true) ** then also write the indices of open cursors used by ONEPASS ** into aiCur[0] and aiCur[1]. iaCur[0] gets the cursor of the data ** table and iaCur[1] gets the cursor used by an auxiliary index. ** Either value may be -1, indicating that cursor is not used. ** Any cursors returned will have been opened for writing. ** ** aiCur[0] and aiCur[1] both get -1 if the where-clause logic is ** unable to use the ONEPASS optimization. */ int sqlite3WhereOkOnePass(WhereInfo *pWInfo, int *aiCur){ memcpy(aiCur, pWInfo->aiCurOnePass, sizeof(int)*2); #ifdef WHERETRACE_ENABLED if (sqlite3WhereTrace && pWInfo->eOnePass!=ONEPASS_OFF) { sqlite3DebugPrintf("%s cursors: %d %d\n", pWInfo->eOnePass==ONEPASS_SINGLE ? "ONEPASS_SINGLE" : "ONEPASS_MULTI", aiCur[0], aiCur[1]); } #endif return pWInfo->eOnePass; } /* ** Move the content of pSrc into pDest */ static void whereOrMove(WhereOrSet *pDest, WhereOrSet *pSrc){ pDest->n = pSrc->n; memcpy(pDest->a, pSrc->a, pDest->n*sizeof(pDest->a[0])); } /* ** Try to insert a new prerequisite/cost entry into the WhereOrSet pSet. ** ** The new entry might overwrite an existing entry, or it might be ** appended, or it might be discarded. Do whatever is the right thing ** so that pSet keeps the N_OR_COST best entries seen so far. */ static int whereOrInsert( WhereOrSet *pSet, /* The WhereOrSet to be updated */ Bitmask prereq, /* Prerequisites of the new entry */ LogEst rRun, /* Run-cost of the new entry */ LogEst nOut /* Number of outputs for the new entry */ ){ u16 i; WhereOrCost *p; for (i=pSet->n, p=pSet->a; i>0; i--, p++) { if (rRun<=p->rRun && (prereq & p->prereq)==prereq) { goto whereOrInsert_done; } if (p->rRun<=rRun && (p->prereq & prereq)==p->prereq) { return 0; } } if (pSet->n<N_OR_COST) { p = &pSet->a[pSet->n++]; p->nOut = nOut; } else { p = pSet->a; for (i=1; i<pSet->n; i++) { if (p->rRun>pSet->a[i].rRun) p = pSet->a + i; } if (p->rRun<=rRun) return 0; } whereOrInsert_done: p->prereq = prereq; p->rRun = rRun; if (p->nOut>nOut) p->nOut = nOut; return 1; } /* ** Return the bitmask for the given cursor number. Return 0 if ** iCursor is not in the set. */ Bitmask sqlite3WhereGetMask(WhereMaskSet *pMaskSet, int iCursor){ int i; assert( pMaskSet->n<=(int)sizeof(Bitmask)*8 ); for (i=0; i<pMaskSet->n; i++) { if (pMaskSet->ix[i]==iCursor) { return MASKBIT(i); } } return 0; } /* ** Create a new mask for cursor iCursor. ** ** There is one cursor per table in the FROM clause. The number of ** tables in the FROM clause is limited by a test early in the ** sqlite3WhereBegin() routine. So we know that the pMaskSet->ix[] ** array will never overflow. */ static void createMask(WhereMaskSet *pMaskSet, int iCursor){ assert( pMaskSet->n < ArraySize(pMaskSet->ix)); pMaskSet->ix[pMaskSet->n++] = iCursor; } /* ** Advance to the next WhereTerm that matches according to the criteria ** established when the pScan object was initialized by whereScanInit(). ** Return NULL if there are no more matching WhereTerms. */ static WhereTerm *whereScanNext(WhereScan *pScan){ int iCur; /* The cursor on the LHS of the term */ i16 iColumn; /* The column on the LHS of the term. -1 for IPK */ Expr *pX; /* An expression being tested */ WhereClause *pWC; /* Shorthand for pScan->pWC */ WhereTerm *pTerm; /* The term being tested */ int k = pScan->k; /* Where to start scanning */ assert( pScan->iEquiv<=pScan->nEquiv ); pWC = pScan->pWC; while (1) { iColumn = pScan->aiColumn[pScan->iEquiv-1]; iCur = pScan->aiCur[pScan->iEquiv-1]; assert( pWC!=0 ); do{ for (pTerm=pWC->a+k; k<pWC->nTerm; k++, pTerm++) { if (pTerm->leftCursor==iCur && pTerm->u.leftColumn==iColumn && (iColumn!=XN_EXPR || sqlite3ExprCompareSkip(pTerm->pExpr->pLeft, pScan->pIdxExpr,iCur)==0) && (pScan->iEquiv<=1 || !ExprHasProperty(pTerm->pExpr, EP_FromJoin)) ) { if ((pTerm->eOperator & WO_EQUIV)!=0 && pScan->nEquiv<ArraySize(pScan->aiCur) && (pX = sqlite3ExprSkipCollate(pTerm->pExpr->pRight))->op==TK_COLUMN ) { int j; for (j=0; j<pScan->nEquiv; j++) { if (pScan->aiCur[j]==pX->iTable && pScan->aiColumn[j]==pX->iColumn) { break; } } if (j==pScan->nEquiv) { pScan->aiCur[j] = pX->iTable; pScan->aiColumn[j] = pX->iColumn; pScan->nEquiv++; } } if ((pTerm->eOperator & pScan->opMask)!=0) { /* Verify the affinity and collating sequence match */ if (pScan->zCollName && (pTerm->eOperator & WO_ISNULL)==0) { CollSeq *pColl; Parse *pParse = pWC->pWInfo->pParse; pX = pTerm->pExpr; if (!sqlite3IndexAffinityOk(pX, pScan->idxaff)) { continue; } assert(pX->pLeft); pColl = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pX->pRight); if (pColl==0) pColl = pParse->db->pDfltColl; if (sqlite3StrICmp(pColl->zName, pScan->zCollName)) { continue; } } if ((pTerm->eOperator & (WO_EQ|WO_IS))!=0 && (pX = pTerm->pExpr->pRight)->op==TK_COLUMN && pX->iTable==pScan->aiCur[0] && pX->iColumn==pScan->aiColumn[0] ) { testcase( pTerm->eOperator & WO_IS ); continue; } pScan->pWC = pWC; pScan->k = k+1; return pTerm; } } } pWC = pWC->pOuter; k = 0; }while (pWC!=0); if (pScan->iEquiv>=pScan->nEquiv) break; pWC = pScan->pOrigWC; k = 0; pScan->iEquiv++; } return 0; } /* ** This is whereScanInit() for the case of an index on an expression. ** It is factored out into a separate tail-recursion subroutine so that ** the normal whereScanInit() routine, which is a high-runner, does not ** need to push registers onto the stack as part of its prologue. */ static SQLITE_NOINLINE WhereTerm *whereScanInitIndexExpr(WhereScan *pScan){ pScan->idxaff = sqlite3ExprAffinity(pScan->pIdxExpr); return whereScanNext(pScan); } /* ** Initialize a WHERE clause scanner object. Return a pointer to the ** first match. Return NULL if there are no matches. ** ** The scanner will be searching the WHERE clause pWC. It will look ** for terms of the form "X <op> <expr>" where X is column iColumn of table ** iCur. Or if pIdx!=0 then X is column iColumn of index pIdx. pIdx ** must be one of the indexes of table iCur. ** ** The <op> must be one of the operators described by opMask. ** ** If the search is for X and the WHERE clause contains terms of the ** form X=Y then this routine might also return terms of the form ** "Y <op> <expr>". The number of levels of transitivity is limited, ** but is enough to handle most commonly occurring SQL statements. ** ** If X is not the INTEGER PRIMARY KEY then X must be compatible with ** index pIdx. */ static WhereTerm *whereScanInit( WhereScan *pScan, /* The WhereScan object being initialized */ WhereClause *pWC, /* The WHERE clause to be scanned */ int iCur, /* Cursor to scan for */ int iColumn, /* Column to scan for */ u32 opMask, /* Operator(s) to scan for */ Index *pIdx /* Must be compatible with this index */ ){ pScan->pOrigWC = pWC; pScan->pWC = pWC; pScan->pIdxExpr = 0; pScan->idxaff = 0; pScan->zCollName = 0; pScan->opMask = opMask; pScan->k = 0; pScan->aiCur[0] = iCur; pScan->nEquiv = 1; pScan->iEquiv = 1; if (pIdx) { int j = iColumn; iColumn = pIdx->aiColumn[j]; if (iColumn==XN_EXPR) { pScan->pIdxExpr = pIdx->aColExpr->a[j].pExpr; pScan->zCollName = pIdx->azColl[j]; pScan->aiColumn[0] = XN_EXPR; return whereScanInitIndexExpr(pScan); } else if (iColumn==pIdx->pTable->iPKey) { iColumn = XN_ROWID; } else if (iColumn>=0) { pScan->idxaff = pIdx->pTable->aCol[iColumn].affinity; pScan->zCollName = pIdx->azColl[j]; } } else if (iColumn==XN_EXPR) { return 0; } pScan->aiColumn[0] = iColumn; return whereScanNext(pScan); } /* ** Search for a term in the WHERE clause that is of the form "X <op> <expr>" ** where X is a reference to the iColumn of table iCur or of index pIdx ** if pIdx!=0 and <op> is one of the WO_xx operator codes specified by ** the op parameter. Return a pointer to the term. Return 0 if not found. ** ** If pIdx!=0 then it must be one of the indexes of table iCur. ** Search for terms matching the iColumn-th column of pIdx ** rather than the iColumn-th column of table iCur. ** ** The term returned might by Y=<expr> if there is another constraint in ** the WHERE clause that specifies that X=Y. Any such constraints will be ** identified by the WO_EQUIV bit in the pTerm->eOperator field. The ** aiCur[]/iaColumn[] arrays hold X and all its equivalents. There are 11 ** slots in aiCur[]/aiColumn[] so that means we can look for X plus up to 10 ** other equivalent values. Hence a search for X will return <expr> if X=A1 ** and A1=A2 and A2=A3 and ... and A9=A10 and A10=<expr>. ** ** If there are multiple terms in the WHERE clause of the form "X <op> <expr>" ** then try for the one with no dependencies on <expr> - in other words where ** <expr> is a constant expression of some kind. Only return entries of ** the form "X <op> Y" where Y is a column in another table if no terms of ** the form "X <op> <const-expr>" exist. If no terms with a constant RHS ** exist, try to return a term that does not use WO_EQUIV. */ WhereTerm *sqlite3WhereFindTerm( WhereClause *pWC, /* The WHERE clause to be searched */ int iCur, /* Cursor number of LHS */ int iColumn, /* Column number of LHS */ Bitmask notReady, /* RHS must not overlap with this mask */ u32 op, /* Mask of WO_xx values describing operator */ Index *pIdx /* Must be compatible with this index, if not NULL */ ){ WhereTerm *pResult = 0; WhereTerm *p; WhereScan scan; p = whereScanInit(&scan, pWC, iCur, iColumn, op, pIdx); op &= WO_EQ|WO_IS; while (p) { if ((p->prereqRight & notReady)==0) { if (p->prereqRight==0 && (p->eOperator&op)!=0) { testcase( p->eOperator & WO_IS ); return p; } if (pResult==0) pResult = p; } p = whereScanNext(&scan); } return pResult; } /* ** This function searches pList for an entry that matches the iCol-th column ** of index pIdx. ** ** If such an expression is found, its index in pList->a[] is returned. If ** no expression is found, -1 is returned. */ static int findIndexCol( Parse *pParse, /* Parse context */ ExprList *pList, /* Expression list to search */ int iBase, /* Cursor for table associated with pIdx */ Index *pIdx, /* Index to match column of */ int iCol /* Column of index to match */ ){ int i; const char *zColl = pIdx->azColl[iCol]; for (i=0; i<pList->nExpr; i++) { Expr *p = sqlite3ExprSkipCollate(pList->a[i].pExpr); if (p->op==TK_COLUMN && p->iColumn==pIdx->aiColumn[iCol] && p->iTable==iBase ) { CollSeq *pColl = sqlite3ExprNNCollSeq(pParse, pList->a[i].pExpr); if (0==sqlite3StrICmp(pColl->zName, zColl)) { return i; } } } return -1; } /* ** Return TRUE if the iCol-th column of index pIdx is NOT NULL */ static int indexColumnNotNull(Index *pIdx, int iCol){ int j; assert( pIdx!=0 ); assert( iCol>=0 && iCol<pIdx->nColumn ); j = pIdx->aiColumn[iCol]; if (j>=0) { return pIdx->pTable->aCol[j].notNull; } else if (j==(-1)) { return 1; } else { assert( j==(-2)); return 0; /* Assume an indexed expression can always yield a NULL */ } } /* ** Return true if the DISTINCT expression-list passed as the third argument ** is redundant. ** ** A DISTINCT list is redundant if any subset of the columns in the ** DISTINCT list are collectively unique and individually non-null. */ static int isDistinctRedundant( Parse *pParse, /* Parsing context */ SrcList *pTabList, /* The FROM clause */ WhereClause *pWC, /* The WHERE clause */ ExprList *pDistinct /* The result set that needs to be DISTINCT */ ){ Table *pTab; Index *pIdx; int i; int iBase; /* If there is more than one table or sub-select in the FROM clause of ** this query, then it will not be possible to show that the DISTINCT ** clause is redundant. */ if (pTabList->nSrc!=1) return 0; iBase = pTabList->a[0].iCursor; pTab = pTabList->a[0].pTab; /* If any of the expressions is an IPK column on table iBase, then return ** true. Note: The (p->iTable==iBase) part of this test may be false if the ** current SELECT is a correlated sub-query. */ for (i=0; i<pDistinct->nExpr; i++) { Expr *p = sqlite3ExprSkipCollate(pDistinct->a[i].pExpr); if (p->op==TK_COLUMN && p->iTable==iBase && p->iColumn<0) return 1; } /* Loop through all indices on the table, checking each to see if it makes ** the DISTINCT qualifier redundant. It does so if: ** ** 1. The index is itself UNIQUE, and ** ** 2. All of the columns in the index are either part of the pDistinct ** list, or else the WHERE clause contains a term of the form "col=X", ** where X is a constant value. The collation sequences of the ** comparison and select-list expressions must match those of the index. ** ** 3. All of those index columns for which the WHERE clause does not ** contain a "col=X" term are subject to a NOT NULL constraint. */ for (pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext) { if (!IsUniqueIndex(pIdx)) continue; for (i=0; i<pIdx->nKeyCol; i++) { if (0==sqlite3WhereFindTerm(pWC, iBase, i, ~(Bitmask)0, WO_EQ, pIdx)) { if (findIndexCol(pParse, pDistinct, iBase, pIdx, i)<0) break; if (indexColumnNotNull(pIdx, i)==0) break; } } if (i==pIdx->nKeyCol) { /* This index implies that the DISTINCT qualifier is redundant. */ return 1; } } return 0; } /* ** Estimate the logarithm of the input value to base 2. */ static LogEst estLog(LogEst N){ return N<=10 ? 0 : sqlite3LogEst(N) - 33; } /* ** Convert OP_Column opcodes to OP_Copy in previously generated code. ** ** This routine runs over generated VDBE code and translates OP_Column ** opcodes into OP_Copy when the table is being accessed via co-routine ** instead of via table lookup. ** ** If the iAutoidxCur is not zero, then any OP_Rowid instructions on ** cursor iTabCur are transformed into OP_Sequence opcode for the ** iAutoidxCur cursor, in order to generate unique rowids for the ** automatic index being generated. */ static void translateColumnToCopy( Parse *pParse, /* Parsing context */ int iStart, /* Translate from this opcode to the end */ int iTabCur, /* OP_Column/OP_Rowid references to this table */ int iRegister, /* The first column is in this register */ int iAutoidxCur /* If non-zero, cursor of autoindex being generated */ ){ Vdbe *v = pParse->pVdbe; VdbeOp *pOp = sqlite3VdbeGetOp(v, iStart); int iEnd = sqlite3VdbeCurrentAddr(v); if (pParse->db->mallocFailed) return; for (; iStart<iEnd; iStart++, pOp++) { if (pOp->p1!=iTabCur) continue; if (pOp->opcode==OP_Column) { pOp->opcode = OP_Copy; pOp->p1 = pOp->p2 + iRegister; pOp->p2 = pOp->p3; pOp->p3 = 0; } else if (pOp->opcode==OP_Rowid) { if (iAutoidxCur) { pOp->opcode = OP_Sequence; pOp->p1 = iAutoidxCur; } else { pOp->opcode = OP_Null; pOp->p1 = 0; pOp->p3 = 0; } } } } /* ** Two routines for printing the content of an sqlite3_index_info ** structure. Used for testing and debugging only. If neither ** SQLITE_TEST or SQLITE_DEBUG are defined, then these routines ** are no-ops. */ #if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(WHERETRACE_ENABLED) static void TRACE_IDX_INPUTS(sqlite3_index_info *p){ int i; if (!sqlite3WhereTrace) return; for (i=0; i<p->nConstraint; i++) { sqlite3DebugPrintf(" constraint[%d]: col=%d termid=%d op=%d usabled=%d\n", i, p->aConstraint[i].iColumn, p->aConstraint[i].iTermOffset, p->aConstraint[i].op, p->aConstraint[i].usable); } for (i=0; i<p->nOrderBy; i++) { sqlite3DebugPrintf(" orderby[%d]: col=%d desc=%d\n", i, p->aOrderBy[i].iColumn, p->aOrderBy[i].desc); } } static void TRACE_IDX_OUTPUTS(sqlite3_index_info *p){ int i; if (!sqlite3WhereTrace) return; for (i=0; i<p->nConstraint; i++) { sqlite3DebugPrintf(" usage[%d]: argvIdx=%d omit=%d\n", i, p->aConstraintUsage[i].argvIndex, p->aConstraintUsage[i].omit); } sqlite3DebugPrintf(" idxNum=%d\n", p->idxNum); sqlite3DebugPrintf(" idxStr=%s\n", p->idxStr); sqlite3DebugPrintf(" orderByConsumed=%d\n", p->orderByConsumed); sqlite3DebugPrintf(" estimatedCost=%g\n", p->estimatedCost); sqlite3DebugPrintf(" estimatedRows=%lld\n", p->estimatedRows); } #else #define TRACE_IDX_INPUTS(A) #define TRACE_IDX_OUTPUTS(A) #endif #ifndef SQLITE_OMIT_AUTOMATIC_INDEX /* ** Return TRUE if the WHERE clause term pTerm is of a form where it ** could be used with an index to access pSrc, assuming an appropriate ** index existed. */ static int termCanDriveIndex( WhereTerm *pTerm, /* WHERE clause term to check */ struct SrcList_item *pSrc, /* Table we are trying to access */ Bitmask notReady /* Tables in outer loops of the join */ ){ char aff; if (pTerm->leftCursor!=pSrc->iCursor) return 0; if ((pTerm->eOperator & (WO_EQ|WO_IS))==0) return 0; if ((pSrc->fg.jointype & JT_LEFT) && !ExprHasProperty(pTerm->pExpr, EP_FromJoin) && (pTerm->eOperator & WO_IS) ) { /* Cannot use an IS term from the WHERE clause as an index driver for ** the RHS of a LEFT JOIN. Such a term can only be used if it is from ** the ON clause. */ return 0; } if ((pTerm->prereqRight & notReady)!=0) return 0; if (pTerm->u.leftColumn<0) return 0; aff = pSrc->pTab->aCol[pTerm->u.leftColumn].affinity; if (!sqlite3IndexAffinityOk(pTerm->pExpr, aff)) return 0; testcase( pTerm->pExpr->op==TK_IS ); return 1; } #endif #ifndef SQLITE_OMIT_AUTOMATIC_INDEX /* ** Generate code to construct the Index object for an automatic index ** and to set up the WhereLevel object pLevel so that the code generator ** makes use of the automatic index. */ static void constructAutomaticIndex( Parse *pParse, /* The parsing context */ WhereClause *pWC, /* The WHERE clause */ struct SrcList_item *pSrc, /* The FROM clause term to get the next index */ Bitmask notReady, /* Mask of cursors that are not available */ WhereLevel *pLevel /* Write new index here */ ){ int nKeyCol; /* Number of columns in the constructed index */ WhereTerm *pTerm; /* A single term of the WHERE clause */ WhereTerm *pWCEnd; /* End of pWC->a[] */ Index *pIdx; /* Object describing the transient index */ Vdbe *v; /* Prepared statement under construction */ int addrInit; /* Address of the initialization bypass jump */ Table *pTable; /* The table being indexed */ int addrTop; /* Top of the index fill loop */ int regRecord; /* Register holding an index record */ int n; /* Column counter */ int i; /* Loop counter */ int mxBitCol; /* Maximum column in pSrc->colUsed */ CollSeq *pColl; /* Collating sequence to on a column */ WhereLoop *pLoop; /* The Loop object */ char *zNotUsed; /* Extra space on the end of pIdx */ Bitmask idxCols; /* Bitmap of columns used for indexing */ Bitmask extraCols; /* Bitmap of additional columns */ u8 sentWarning = 0; /* True if a warnning has been issued */ Expr *pPartial = 0; /* Partial Index Expression */ int iContinue = 0; /* Jump here to skip excluded rows */ struct SrcList_item *pTabItem; /* FROM clause term being indexed */ int addrCounter = 0; /* Address where integer counter is initialized */ int regBase; /* Array of registers where record is assembled */ /* Generate code to skip over the creation and initialization of the ** transient index on 2nd and subsequent iterations of the loop. */ v = pParse->pVdbe; assert( v!=0 ); addrInit = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); /* Count the number of columns that will be added to the index ** and used to match WHERE clause constraints */ nKeyCol = 0; pTable = pSrc->pTab; pWCEnd = &pWC->a[pWC->nTerm]; pLoop = pLevel->pWLoop; idxCols = 0; for (pTerm=pWC->a; pTerm<pWCEnd; pTerm++) { Expr *pExpr = pTerm->pExpr; assert( !ExprHasProperty(pExpr, EP_FromJoin) /* prereq always non-zero */ || pExpr->iRightJoinTable!=pSrc->iCursor /* for the right-hand */ || pLoop->prereq!=0 ); /* table of a LEFT JOIN */ if (pLoop->prereq==0 && (pTerm->wtFlags & TERM_VIRTUAL)==0 && !ExprHasProperty(pExpr, EP_FromJoin) && sqlite3ExprIsTableConstant(pExpr, pSrc->iCursor)) { pPartial = sqlite3ExprAnd(pParse, pPartial, sqlite3ExprDup(pParse->db, pExpr, 0)); } if (termCanDriveIndex(pTerm, pSrc, notReady)) { int iCol = pTerm->u.leftColumn; Bitmask cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol); testcase( iCol==BMS ); testcase( iCol==BMS-1 ); if (!sentWarning) { sqlite3_log(SQLITE_WARNING_AUTOINDEX, "automatic index on %s(%s)", pTable->zName, pTable->aCol[iCol].zName); sentWarning = 1; } if ((idxCols & cMask)==0) { if (whereLoopResize(pParse->db, pLoop, nKeyCol+1)) { goto end_auto_index_create; } pLoop->aLTerm[nKeyCol++] = pTerm; idxCols |= cMask; } } } assert( nKeyCol>0 ); pLoop->u.btree.nEq = pLoop->nLTerm = nKeyCol; pLoop->wsFlags = WHERE_COLUMN_EQ | WHERE_IDX_ONLY | WHERE_INDEXED | WHERE_AUTO_INDEX; /* Count the number of additional columns needed to create a ** covering index. A "covering index" is an index that contains all ** columns that are needed by the query. With a covering index, the ** original table never needs to be accessed. Automatic indices must ** be a covering index because the index will not be updated if the ** original table changes and the index and table cannot both be used ** if they go out of sync. */ extraCols = pSrc->colUsed & (~idxCols | MASKBIT(BMS-1)); mxBitCol = MIN(BMS-1,pTable->nCol); testcase( pTable->nCol==BMS-1 ); testcase( pTable->nCol==BMS-2 ); for (i=0; i<mxBitCol; i++) { if (extraCols & MASKBIT(i)) nKeyCol++; } if (pSrc->colUsed & MASKBIT(BMS-1)) { nKeyCol += pTable->nCol - BMS + 1; } /* Construct the Index object to describe this index */ pIdx = sqlite3AllocateIndexObject(pParse->db, nKeyCol+1, 0, &zNotUsed); if (pIdx==0) goto end_auto_index_create; pLoop->u.btree.pIndex = pIdx; pIdx->zName = "auto-index"; pIdx->pTable = pTable; n = 0; idxCols = 0; for (pTerm=pWC->a; pTerm<pWCEnd; pTerm++) { if (termCanDriveIndex(pTerm, pSrc, notReady)) { int iCol = pTerm->u.leftColumn; Bitmask cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol); testcase( iCol==BMS-1 ); testcase( iCol==BMS ); if ((idxCols & cMask)==0) { Expr *pX = pTerm->pExpr; idxCols |= cMask; pIdx->aiColumn[n] = pTerm->u.leftColumn; pColl = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pX->pRight); pIdx->azColl[n] = pColl ? pColl->zName : sqlite3StrBINARY; n++; } } } assert((u32)n==pLoop->u.btree.nEq ); /* Add additional columns needed to make the automatic index into ** a covering index */ for (i=0; i<mxBitCol; i++) { if (extraCols & MASKBIT(i)) { pIdx->aiColumn[n] = i; pIdx->azColl[n] = sqlite3StrBINARY; n++; } } if (pSrc->colUsed & MASKBIT(BMS-1)) { for (i=BMS-1; i<pTable->nCol; i++) { pIdx->aiColumn[n] = i; pIdx->azColl[n] = sqlite3StrBINARY; n++; } } assert( n==nKeyCol ); pIdx->aiColumn[n] = XN_ROWID; pIdx->azColl[n] = sqlite3StrBINARY; /* Create the automatic index */ assert( pLevel->iIdxCur>=0 ); pLevel->iIdxCur = pParse->nTab++; sqlite3VdbeAddOp2(v, OP_OpenAutoindex, pLevel->iIdxCur, nKeyCol+1); sqlite3VdbeSetP4KeyInfo(pParse, pIdx); VdbeComment((v, "for %s", pTable->zName)); /* Fill the automatic index with content */ pTabItem = &pWC->pWInfo->pTabList->a[pLevel->iFrom]; if (pTabItem->fg.viaCoroutine) { int regYield = pTabItem->regReturn; addrCounter = sqlite3VdbeAddOp2(v, OP_Integer, 0, 0); sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pTabItem->addrFillSub); addrTop = sqlite3VdbeAddOp1(v, OP_Yield, regYield); VdbeCoverage(v); VdbeComment((v, "next row of %s", pTabItem->pTab->zName)); } else { addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, pLevel->iTabCur); VdbeCoverage(v); } if (pPartial) { iContinue = sqlite3VdbeMakeLabel(pParse); sqlite3ExprIfFalse(pParse, pPartial, iContinue, SQLITE_JUMPIFNULL); pLoop->wsFlags |= WHERE_PARTIALIDX; } regRecord = sqlite3GetTempReg(pParse); regBase = sqlite3GenerateIndexKey( pParse, pIdx, pLevel->iTabCur, regRecord, 0, 0, 0, 0 ); sqlite3VdbeAddOp2(v, OP_IdxInsert, pLevel->iIdxCur, regRecord); sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); if (pPartial) sqlite3VdbeResolveLabel(v, iContinue); if (pTabItem->fg.viaCoroutine) { sqlite3VdbeChangeP2(v, addrCounter, regBase+n); testcase( pParse->db->mallocFailed ); assert( pLevel->iIdxCur>0 ); translateColumnToCopy(pParse, addrTop, pLevel->iTabCur, pTabItem->regResult, pLevel->iIdxCur); sqlite3VdbeGoto(v, addrTop); pTabItem->fg.viaCoroutine = 0; } else { sqlite3VdbeAddOp2(v, OP_Next, pLevel->iTabCur, addrTop+1); VdbeCoverage(v); } sqlite3VdbeChangeP5(v, SQLITE_STMTSTATUS_AUTOINDEX); sqlite3VdbeJumpHere(v, addrTop); sqlite3ReleaseTempReg(pParse, regRecord); /* Jump here when skipping the initialization */ sqlite3VdbeJumpHere(v, addrInit); end_auto_index_create: sqlite3ExprDelete(pParse->db, pPartial); } #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */ #ifndef SQLITE_OMIT_VIRTUALTABLE /* ** Allocate and populate an sqlite3_index_info structure. It is the ** responsibility of the caller to eventually release the structure ** by passing the pointer returned by this function to sqlite3_free(). */ static sqlite3_index_info *allocateIndexInfo( Parse *pParse, /* The parsing context */ WhereClause *pWC, /* The WHERE clause being analyzed */ Bitmask mUnusable, /* Ignore terms with these prereqs */ struct SrcList_item *pSrc, /* The FROM clause term that is the vtab */ ExprList *pOrderBy, /* The ORDER BY clause */ u16 *pmNoOmit /* Mask of terms not to omit */ ){ int i, j; int nTerm; struct sqlite3_index_constraint *pIdxCons; struct sqlite3_index_orderby *pIdxOrderBy; struct sqlite3_index_constraint_usage *pUsage; struct HiddenIndexInfo *pHidden; WhereTerm *pTerm; int nOrderBy; sqlite3_index_info *pIdxInfo; u16 mNoOmit = 0; /* Count the number of possible WHERE clause constraints referring ** to this virtual table */ for (i=nTerm=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++) { if (pTerm->leftCursor != pSrc->iCursor) continue; if (pTerm->prereqRight & mUnusable) continue; assert( IsPowerOfTwo(pTerm->eOperator & ~WO_EQUIV)); testcase( pTerm->eOperator & WO_IN ); testcase( pTerm->eOperator & WO_ISNULL ); testcase( pTerm->eOperator & WO_IS ); testcase( pTerm->eOperator & WO_ALL ); if ((pTerm->eOperator & ~(WO_EQUIV))==0) continue; if (pTerm->wtFlags & TERM_VNULL) continue; assert( pTerm->u.leftColumn>=(-1)); nTerm++; } /* If the ORDER BY clause contains only columns in the current ** virtual table then allocate space for the aOrderBy part of ** the sqlite3_index_info structure. */ nOrderBy = 0; if (pOrderBy) { int n = pOrderBy->nExpr; for (i=0; i<n; i++) { Expr *pExpr = pOrderBy->a[i].pExpr; if (pExpr->op!=TK_COLUMN || pExpr->iTable!=pSrc->iCursor) break; } if (i==n) { nOrderBy = n; } } /* Allocate the sqlite3_index_info structure */ pIdxInfo = sqlite3DbMallocZero(pParse->db, sizeof(*pIdxInfo) + (sizeof(*pIdxCons) + sizeof(*pUsage))*nTerm + sizeof(*pIdxOrderBy)*nOrderBy + sizeof(*pHidden)); if (pIdxInfo==0) { sqlite3ErrorMsg(pParse, "out of memory"); return 0; } /* Initialize the structure. The sqlite3_index_info structure contains ** many fields that are declared "const" to prevent xBestIndex from ** changing them. We have to do some funky casting in order to ** initialize those fields. */ pHidden = (struct HiddenIndexInfo*)&pIdxInfo[1]; pIdxCons = (struct sqlite3_index_constraint*)&pHidden[1]; pIdxOrderBy = (struct sqlite3_index_orderby*)&pIdxCons[nTerm]; pUsage = (struct sqlite3_index_constraint_usage*)&pIdxOrderBy[nOrderBy]; *(int*)&pIdxInfo->nConstraint = nTerm; *(int*)&pIdxInfo->nOrderBy = nOrderBy; *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint = pIdxCons; *(struct sqlite3_index_orderby**)&pIdxInfo->aOrderBy = pIdxOrderBy; *(struct sqlite3_index_constraint_usage**)&pIdxInfo->aConstraintUsage = pUsage; pHidden->pWC = pWC; pHidden->pParse = pParse; for (i=j=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++) { u16 op; if (pTerm->leftCursor != pSrc->iCursor) continue; if (pTerm->prereqRight & mUnusable) continue; assert( IsPowerOfTwo(pTerm->eOperator & ~WO_EQUIV)); testcase( pTerm->eOperator & WO_IN ); testcase( pTerm->eOperator & WO_IS ); testcase( pTerm->eOperator & WO_ISNULL ); testcase( pTerm->eOperator & WO_ALL ); if ((pTerm->eOperator & ~(WO_EQUIV))==0) continue; if (pTerm->wtFlags & TERM_VNULL) continue; if ((pSrc->fg.jointype & JT_LEFT)!=0 && !ExprHasProperty(pTerm->pExpr, EP_FromJoin) && (pTerm->eOperator & (WO_IS|WO_ISNULL)) ) { /* An "IS" term in the WHERE clause where the virtual table is the rhs ** of a LEFT JOIN. Do not pass this term to the virtual table ** implementation, as this can lead to incorrect results from SQL such ** as: ** ** "LEFT JOIN vtab WHERE vtab.col IS NULL" */ testcase( pTerm->eOperator & WO_ISNULL ); testcase( pTerm->eOperator & WO_IS ); continue; } assert( pTerm->u.leftColumn>=(-1)); pIdxCons[j].iColumn = pTerm->u.leftColumn; pIdxCons[j].iTermOffset = i; op = pTerm->eOperator & WO_ALL; if (op==WO_IN) op = WO_EQ; if (op==WO_AUX) { pIdxCons[j].op = pTerm->eMatchOp; } else if (op & (WO_ISNULL|WO_IS)) { if (op==WO_ISNULL) { pIdxCons[j].op = SQLITE_INDEX_CONSTRAINT_ISNULL; } else { pIdxCons[j].op = SQLITE_INDEX_CONSTRAINT_IS; } } else { pIdxCons[j].op = (u8)op; /* The direct assignment in the previous line is possible only because ** the WO_ and SQLITE_INDEX_CONSTRAINT_ codes are identical. The ** following asserts verify this fact. */ assert( WO_EQ==SQLITE_INDEX_CONSTRAINT_EQ ); assert( WO_LT==SQLITE_INDEX_CONSTRAINT_LT ); assert( WO_LE==SQLITE_INDEX_CONSTRAINT_LE ); assert( WO_GT==SQLITE_INDEX_CONSTRAINT_GT ); assert( WO_GE==SQLITE_INDEX_CONSTRAINT_GE ); assert( pTerm->eOperator&(WO_IN|WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE|WO_AUX)); if (op & (WO_LT|WO_LE|WO_GT|WO_GE) && sqlite3ExprIsVector(pTerm->pExpr->pRight) ) { if (i<16) mNoOmit |= (1 << i); if (op==WO_LT) pIdxCons[j].op = WO_LE; if (op==WO_GT) pIdxCons[j].op = WO_GE; } } j++; } for (i=0; i<nOrderBy; i++) { Expr *pExpr = pOrderBy->a[i].pExpr; pIdxOrderBy[i].iColumn = pExpr->iColumn; pIdxOrderBy[i].desc = pOrderBy->a[i].sortOrder; } *pmNoOmit = mNoOmit; return pIdxInfo; } /* ** The table object reference passed as the second argument to this function ** must represent a virtual table. This function invokes the xBestIndex() ** method of the virtual table with the sqlite3_index_info object that ** comes in as the 3rd argument to this function. ** ** If an error occurs, pParse is populated with an error message and an ** appropriate error code is returned. A return of SQLITE_CONSTRAINT from ** xBestIndex is not considered an error. SQLITE_CONSTRAINT indicates that ** the current configuration of "unusable" flags in sqlite3_index_info can ** not result in a valid plan. ** ** Whether or not an error is returned, it is the responsibility of the ** caller to eventually free p->idxStr if p->needToFreeIdxStr indicates ** that this is required. */ static int vtabBestIndex(Parse *pParse, Table *pTab, sqlite3_index_info *p){ sqlite3_vtab *pVtab = sqlite3GetVTable(pParse->db, pTab)->pVtab; int rc; TRACE_IDX_INPUTS(p); rc = pVtab->pModule->xBestIndex(pVtab, p); TRACE_IDX_OUTPUTS(p); if (rc!=SQLITE_OK && rc!=SQLITE_CONSTRAINT) { if (rc==SQLITE_NOMEM) { sqlite3OomFault(pParse->db); } else if (!pVtab->zErrMsg) { sqlite3ErrorMsg(pParse, "%s", sqlite3ErrStr(rc)); } else { sqlite3ErrorMsg(pParse, "%s", pVtab->zErrMsg); } } sqlite3_free(pVtab->zErrMsg); pVtab->zErrMsg = 0; return rc; } #endif /* !defined(SQLITE_OMIT_VIRTUALTABLE) */ #ifdef SQLITE_ENABLE_STAT4 /* ** Estimate the location of a particular key among all keys in an ** index. Store the results in aStat as follows: ** ** aStat[0] Est. number of rows less than pRec ** aStat[1] Est. number of rows equal to pRec ** ** Return the index of the sample that is the smallest sample that ** is greater than or equal to pRec. Note that this index is not an index ** into the aSample[] array - it is an index into a virtual set of samples ** based on the contents of aSample[] and the number of fields in record ** pRec. */ static int whereKeyStats( Parse *pParse, /* Database connection */ Index *pIdx, /* Index to consider domain of */ UnpackedRecord *pRec, /* Vector of values to consider */ int roundUp, /* Round up if true. Round down if false */ tRowcnt *aStat /* OUT: stats written here */ ){ IndexSample *aSample = pIdx->aSample; int iCol; /* Index of required stats in anEq[] etc. */ int i; /* Index of first sample >= pRec */ int iSample; /* Smallest sample larger than or equal to pRec */ int iMin = 0; /* Smallest sample not yet tested */ int iTest; /* Next sample to test */ int res; /* Result of comparison operation */ int nField; /* Number of fields in pRec */ tRowcnt iLower = 0; /* anLt[] + anEq[] of largest sample pRec is > */ #ifndef SQLITE_DEBUG UNUSED_PARAMETER( pParse ); #endif assert( pRec!=0 ); assert( pIdx->nSample>0 ); assert( pRec->nField>0 && pRec->nField<=pIdx->nSampleCol ); /* Do a binary search to find the first sample greater than or equal ** to pRec. If pRec contains a single field, the set of samples to search ** is simply the aSample[] array. If the samples in aSample[] contain more ** than one fields, all fields following the first are ignored. ** ** If pRec contains N fields, where N is more than one, then as well as the ** samples in aSample[] (truncated to N fields), the search also has to ** consider prefixes of those samples. For example, if the set of samples ** in aSample is: ** ** aSample[0] = (a, 5) ** aSample[1] = (a, 10) ** aSample[2] = (b, 5) ** aSample[3] = (c, 100) ** aSample[4] = (c, 105) ** ** Then the search space should ideally be the samples above and the ** unique prefixes [a], [b] and [c]. But since that is hard to organize, ** the code actually searches this set: ** ** 0: (a) ** 1: (a, 5) ** 2: (a, 10) ** 3: (a, 10) ** 4: (b) ** 5: (b, 5) ** 6: (c) ** 7: (c, 100) ** 8: (c, 105) ** 9: (c, 105) ** ** For each sample in the aSample[] array, N samples are present in the ** effective sample array. In the above, samples 0 and 1 are based on ** sample aSample[0]. Samples 2 and 3 on aSample[1] etc. ** ** Often, sample i of each block of N effective samples has (i+1) fields. ** Except, each sample may be extended to ensure that it is greater than or ** equal to the previous sample in the array. For example, in the above, ** sample 2 is the first sample of a block of N samples, so at first it ** appears that it should be 1 field in size. However, that would make it ** smaller than sample 1, so the binary search would not work. As a result, ** it is extended to two fields. The duplicates that this creates do not ** cause any problems. */ nField = pRec->nField; iCol = 0; iSample = pIdx->nSample * nField; do{ int iSamp; /* Index in aSample[] of test sample */ int n; /* Number of fields in test sample */ iTest = (iMin+iSample)/2; iSamp = iTest / nField; if (iSamp>0) { /* The proposed effective sample is a prefix of sample aSample[iSamp]. ** Specifically, the shortest prefix of at least (1 + iTest%nField) ** fields that is greater than the previous effective sample. */ for (n=(iTest % nField) + 1; n<nField; n++) { if (aSample[iSamp-1].anLt[n-1]!=aSample[iSamp].anLt[n-1]) break; } } else { n = iTest + 1; } pRec->nField = n; res = sqlite3VdbeRecordCompare(aSample[iSamp].n, aSample[iSamp].p, pRec); if (res<0) { iLower = aSample[iSamp].anLt[n-1] + aSample[iSamp].anEq[n-1]; iMin = iTest+1; } else if (res==0 && n<nField) { iLower = aSample[iSamp].anLt[n-1]; iMin = iTest+1; res = -1; } else { iSample = iTest; iCol = n-1; } }while (res && iMin<iSample); i = iSample / nField; #ifdef SQLITE_DEBUG /* The following assert statements check that the binary search code ** above found the right answer. This block serves no purpose other ** than to invoke the asserts. */ if (pParse->db->mallocFailed==0) { if (res==0) { /* If (res==0) is true, then pRec must be equal to sample i. */ assert( i<pIdx->nSample ); assert( iCol==nField-1 ); pRec->nField = nField; assert( 0==sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec) || pParse->db->mallocFailed ); } else { /* Unless i==pIdx->nSample, indicating that pRec is larger than ** all samples in the aSample[] array, pRec must be smaller than the ** (iCol+1) field prefix of sample i. */ assert( i<=pIdx->nSample && i>=0 ); pRec->nField = iCol+1; assert( i==pIdx->nSample || sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)>0 || pParse->db->mallocFailed ); /* if i==0 and iCol==0, then record pRec is smaller than all samples ** in the aSample[] array. Otherwise, if (iCol>0) then pRec must ** be greater than or equal to the (iCol) field prefix of sample i. ** If (i>0), then pRec must also be greater than sample (i-1). */ if (iCol>0) { pRec->nField = iCol; assert( sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)<=0 || pParse->db->mallocFailed ); } if (i>0) { pRec->nField = nField; assert( sqlite3VdbeRecordCompare(aSample[i-1].n, aSample[i-1].p, pRec)<0 || pParse->db->mallocFailed ); } } } #endif /* ifdef SQLITE_DEBUG */ if (res==0) { /* Record pRec is equal to sample i */ assert( iCol==nField-1 ); aStat[0] = aSample[i].anLt[iCol]; aStat[1] = aSample[i].anEq[iCol]; } else { /* At this point, the (iCol+1) field prefix of aSample[i] is the first ** sample that is greater than pRec. Or, if i==pIdx->nSample then pRec ** is larger than all samples in the array. */ tRowcnt iUpper, iGap; if (i>=pIdx->nSample) { iUpper = sqlite3LogEstToInt(pIdx->aiRowLogEst[0]); } else { iUpper = aSample[i].anLt[iCol]; } if (iLower>=iUpper) { iGap = 0; } else { iGap = iUpper - iLower; } if (roundUp) { iGap = (iGap*2)/3; } else { iGap = iGap/3; } aStat[0] = iLower + iGap; aStat[1] = pIdx->aAvgEq[nField-1]; } /* Restore the pRec->nField value before returning. */ pRec->nField = nField; return i; } #endif /* SQLITE_ENABLE_STAT4 */ /* ** If it is not NULL, pTerm is a term that provides an upper or lower ** bound on a range scan. Without considering pTerm, it is estimated ** that the scan will visit nNew rows. This function returns the number ** estimated to be visited after taking pTerm into account. ** ** If the user explicitly specified a likelihood() value for this term, ** then the return value is the likelihood multiplied by the number of ** input rows. Otherwise, this function assumes that an "IS NOT NULL" term ** has a likelihood of 0.50, and any other term a likelihood of 0.25. */ static LogEst whereRangeAdjust(WhereTerm *pTerm, LogEst nNew){ LogEst nRet = nNew; if (pTerm) { if (pTerm->truthProb<=0) { nRet += pTerm->truthProb; } else if ((pTerm->wtFlags & TERM_VNULL)==0) { nRet -= 20; assert( 20==sqlite3LogEst(4)); } } return nRet; } #ifdef SQLITE_ENABLE_STAT4 /* ** Return the affinity for a single column of an index. */ char sqlite3IndexColumnAffinity(sqlite3 *db, Index *pIdx, int iCol){ assert( iCol>=0 && iCol<pIdx->nColumn ); if (!pIdx->zColAff) { if (sqlite3IndexAffinityStr(db, pIdx)==0) return SQLITE_AFF_BLOB; } assert( pIdx->zColAff[iCol]!=0 ); return pIdx->zColAff[iCol]; } #endif #ifdef SQLITE_ENABLE_STAT4 /* ** This function is called to estimate the number of rows visited by a ** range-scan on a skip-scan index. For example: ** ** CREATE INDEX i1 ON t1(a, b, c); ** SELECT * FROM t1 WHERE a=? AND c BETWEEN ? AND ?; ** ** Value pLoop->nOut is currently set to the estimated number of rows ** visited for scanning (a=? AND b=?). This function reduces that estimate ** by some factor to account for the (c BETWEEN ? AND ?) expression based ** on the stat4 data for the index. this scan will be peformed multiple ** times (once for each (a,b) combination that matches a=?) is dealt with ** by the caller. ** ** It does this by scanning through all stat4 samples, comparing values ** extracted from pLower and pUpper with the corresponding column in each ** sample. If L and U are the number of samples found to be less than or ** equal to the values extracted from pLower and pUpper respectively, and ** N is the total number of samples, the pLoop->nOut value is adjusted ** as follows: ** ** nOut = nOut * ( min(U - L, 1) / N ) ** ** If pLower is NULL, or a value cannot be extracted from the term, L is ** set to zero. If pUpper is NULL, or a value cannot be extracted from it, ** U is set to N. ** ** Normally, this function sets *pbDone to 1 before returning. However, ** if no value can be extracted from either pLower or pUpper (and so the ** estimate of the number of rows delivered remains unchanged), *pbDone ** is left as is. ** ** If an error occurs, an SQLite error code is returned. Otherwise, ** SQLITE_OK. */ static int whereRangeSkipScanEst( Parse *pParse, /* Parsing & code generating context */ WhereTerm *pLower, /* Lower bound on the range. ex: "x>123" Might be NULL */ WhereTerm *pUpper, /* Upper bound on the range. ex: "x<455" Might be NULL */ WhereLoop *pLoop, /* Update the .nOut value of this loop */ int *pbDone /* Set to true if at least one expr. value extracted */ ){ Index *p = pLoop->u.btree.pIndex; int nEq = pLoop->u.btree.nEq; sqlite3 *db = pParse->db; int nLower = -1; int nUpper = p->nSample+1; int rc = SQLITE_OK; u8 aff = sqlite3IndexColumnAffinity(db, p, nEq); CollSeq *pColl; sqlite3_value *p1 = 0; /* Value extracted from pLower */ sqlite3_value *p2 = 0; /* Value extracted from pUpper */ sqlite3_value *pVal = 0; /* Value extracted from record */ pColl = sqlite3LocateCollSeq(pParse, p->azColl[nEq]); if (pLower) { rc = sqlite3Stat4ValueFromExpr(pParse, pLower->pExpr->pRight, aff, &p1); nLower = 0; } if (pUpper && rc==SQLITE_OK) { rc = sqlite3Stat4ValueFromExpr(pParse, pUpper->pExpr->pRight, aff, &p2); nUpper = p2 ? 0 : p->nSample; } if (p1 || p2) { int i; int nDiff; for (i=0; rc==SQLITE_OK && i<p->nSample; i++) { rc = sqlite3Stat4Column(db, p->aSample[i].p, p->aSample[i].n, nEq, &pVal); if (rc==SQLITE_OK && p1) { int res = sqlite3MemCompare(p1, pVal, pColl); if (res>=0) nLower++; } if (rc==SQLITE_OK && p2) { int res = sqlite3MemCompare(p2, pVal, pColl); if (res>=0) nUpper++; } } nDiff = (nUpper - nLower); if (nDiff<=0) nDiff = 1; /* If there is both an upper and lower bound specified, and the ** comparisons indicate that they are close together, use the fallback ** method (assume that the scan visits 1/64 of the rows) for estimating ** the number of rows visited. Otherwise, estimate the number of rows ** using the method described in the header comment for this function. */ if (nDiff!=1 || pUpper==0 || pLower==0) { int nAdjust = (sqlite3LogEst(p->nSample) - sqlite3LogEst(nDiff)); pLoop->nOut -= nAdjust; *pbDone = 1; WHERETRACE(0x10, ("range skip-scan regions: %u..%u adjust=%d est=%d\n", nLower, nUpper, nAdjust* -1, pLoop->nOut)); } } else { assert( *pbDone==0 ); } sqlite3ValueFree(p1); sqlite3ValueFree(p2); sqlite3ValueFree(pVal); return rc; } #endif /* SQLITE_ENABLE_STAT4 */ /* ** This function is used to estimate the number of rows that will be visited ** by scanning an index for a range of values. The range may have an upper ** bound, a lower bound, or both. The WHERE clause terms that set the upper ** and lower bounds are represented by pLower and pUpper respectively. For ** example, assuming that index p is on t1(a): ** ** ... FROM t1 WHERE a > ? AND a < ? ... ** |_____| |_____| ** | | ** pLower pUpper ** ** If either of the upper or lower bound is not present, then NULL is passed in ** place of the corresponding WhereTerm. ** ** The value in (pBuilder->pNew->u.btree.nEq) is the number of the index ** column subject to the range constraint. Or, equivalently, the number of ** equality constraints optimized by the proposed index scan. For example, ** assuming index p is on t1(a, b), and the SQL query is: ** ** ... FROM t1 WHERE a = ? AND b > ? AND b < ? ... ** ** then nEq is set to 1 (as the range restricted column, b, is the second ** left-most column of the index). Or, if the query is: ** ** ... FROM t1 WHERE a > ? AND a < ? ... ** ** then nEq is set to 0. ** ** When this function is called, *pnOut is set to the sqlite3LogEst() of the ** number of rows that the index scan is expected to visit without ** considering the range constraints. If nEq is 0, then *pnOut is the number of ** rows in the index. Assuming no error occurs, *pnOut is adjusted (reduced) ** to account for the range constraints pLower and pUpper. ** ** In the absence of sqlite_stat4 ANALYZE data, or if such data cannot be ** used, a single range inequality reduces the search space by a factor of 4. ** and a pair of constraints (x>? AND x<?) reduces the expected number of ** rows visited by a factor of 64. */ static int whereRangeScanEst( Parse *pParse, /* Parsing & code generating context */ WhereLoopBuilder *pBuilder, WhereTerm *pLower, /* Lower bound on the range. ex: "x>123" Might be NULL */ WhereTerm *pUpper, /* Upper bound on the range. ex: "x<455" Might be NULL */ WhereLoop *pLoop /* Modify the .nOut and maybe .rRun fields */ ){ int rc = SQLITE_OK; int nOut = pLoop->nOut; LogEst nNew; #ifdef SQLITE_ENABLE_STAT4 Index *p = pLoop->u.btree.pIndex; int nEq = pLoop->u.btree.nEq; if (p->nSample>0 && ALWAYS(nEq<p->nSampleCol) && OptimizationEnabled(pParse->db, SQLITE_Stat4) ) { if (nEq==pBuilder->nRecValid) { UnpackedRecord *pRec = pBuilder->pRec; tRowcnt a[2]; int nBtm = pLoop->u.btree.nBtm; int nTop = pLoop->u.btree.nTop; /* Variable iLower will be set to the estimate of the number of rows in ** the index that are less than the lower bound of the range query. The ** lower bound being the concatenation of $P and $L, where $P is the ** key-prefix formed by the nEq values matched against the nEq left-most ** columns of the index, and $L is the value in pLower. ** ** Or, if pLower is NULL or $L cannot be extracted from it (because it ** is not a simple variable or literal value), the lower bound of the ** range is $P. Due to a quirk in the way whereKeyStats() works, even ** if $L is available, whereKeyStats() is called for both ($P) and ** ($P:$L) and the larger of the two returned values is used. ** ** Similarly, iUpper is to be set to the estimate of the number of rows ** less than the upper bound of the range query. Where the upper bound ** is either ($P) or ($P:$U). Again, even if $U is available, both values ** of iUpper are requested of whereKeyStats() and the smaller used. ** ** The number of rows between the two bounds is then just iUpper-iLower. */ tRowcnt iLower; /* Rows less than the lower bound */ tRowcnt iUpper; /* Rows less than the upper bound */ int iLwrIdx = -2; /* aSample[] for the lower bound */ int iUprIdx = -1; /* aSample[] for the upper bound */ if (pRec) { testcase( pRec->nField!=pBuilder->nRecValid ); pRec->nField = pBuilder->nRecValid; } /* Determine iLower and iUpper using ($P) only. */ if (nEq==0) { iLower = 0; iUpper = p->nRowEst0; } else { /* Note: this call could be optimized away - since the same values must ** have been requested when testing key $P in whereEqualScanEst(). */ whereKeyStats(pParse, p, pRec, 0, a); iLower = a[0]; iUpper = a[0] + a[1]; } assert( pLower==0 || (pLower->eOperator & (WO_GT|WO_GE))!=0 ); assert( pUpper==0 || (pUpper->eOperator & (WO_LT|WO_LE))!=0 ); assert( p->aSortOrder!=0 ); if (p->aSortOrder[nEq]) { /* The roles of pLower and pUpper are swapped for a DESC index */ SWAP(WhereTerm*, pLower, pUpper); SWAP(int, nBtm, nTop); } /* If possible, improve on the iLower estimate using ($P:$L). */ if (pLower) { int n; /* Values extracted from pExpr */ Expr *pExpr = pLower->pExpr->pRight; rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, nBtm, nEq, &n); if (rc==SQLITE_OK && n) { tRowcnt iNew; u16 mask = WO_GT|WO_LE; if (sqlite3ExprVectorSize(pExpr)>n) mask = (WO_LE|WO_LT); iLwrIdx = whereKeyStats(pParse, p, pRec, 0, a); iNew = a[0] + ((pLower->eOperator & mask) ? a[1] : 0); if (iNew>iLower) iLower = iNew; nOut--; pLower = 0; } } /* If possible, improve on the iUpper estimate using ($P:$U). */ if (pUpper) { int n; /* Values extracted from pExpr */ Expr *pExpr = pUpper->pExpr->pRight; rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, nTop, nEq, &n); if (rc==SQLITE_OK && n) { tRowcnt iNew; u16 mask = WO_GT|WO_LE; if (sqlite3ExprVectorSize(pExpr)>n) mask = (WO_LE|WO_LT); iUprIdx = whereKeyStats(pParse, p, pRec, 1, a); iNew = a[0] + ((pUpper->eOperator & mask) ? a[1] : 0); if (iNew<iUpper) iUpper = iNew; nOut--; pUpper = 0; } } pBuilder->pRec = pRec; if (rc==SQLITE_OK) { if (iUpper>iLower) { nNew = sqlite3LogEst(iUpper - iLower); /* TUNING: If both iUpper and iLower are derived from the same ** sample, then assume they are 4x more selective. This brings ** the estimated selectivity more in line with what it would be ** if estimated without the use of STAT4 tables. */ if (iLwrIdx==iUprIdx) nNew -= 20; assert( 20==sqlite3LogEst(4)); } else { nNew = 10; assert( 10==sqlite3LogEst(2)); } if (nNew<nOut) { nOut = nNew; } WHERETRACE(0x10, ("STAT4 range scan: %u..%u est=%d\n", (u32)iLower, (u32)iUpper, nOut)); } } else { int bDone = 0; rc = whereRangeSkipScanEst(pParse, pLower, pUpper, pLoop, &bDone); if (bDone) return rc; } } #else UNUSED_PARAMETER(pParse); UNUSED_PARAMETER(pBuilder); assert( pLower || pUpper ); #endif assert( pUpper==0 || (pUpper->wtFlags & TERM_VNULL)==0 ); nNew = whereRangeAdjust(pLower, nOut); nNew = whereRangeAdjust(pUpper, nNew); /* TUNING: If there is both an upper and lower limit and neither limit ** has an application-defined likelihood(), assume the range is ** reduced by an additional 75%. This means that, by default, an open-ended ** range query (e.g. col > ?) is assumed to match 1/4 of the rows in the ** index. While a closed range (e.g. col BETWEEN ? AND ?) is estimated to ** match 1/64 of the index. */ if (pLower && pLower->truthProb>0 && pUpper && pUpper->truthProb>0) { nNew -= 20; } nOut -= (pLower!=0) + (pUpper!=0); if (nNew<10) nNew = 10; if (nNew<nOut) nOut = nNew; #if defined(WHERETRACE_ENABLED) if (pLoop->nOut>nOut) { WHERETRACE(0x10,("Range scan lowers nOut from %d to %d\n", pLoop->nOut, nOut)); } #endif pLoop->nOut = (LogEst)nOut; return rc; } #ifdef SQLITE_ENABLE_STAT4 /* ** Estimate the number of rows that will be returned based on ** an equality constraint x=VALUE and where that VALUE occurs in ** the histogram data. This only works when x is the left-most ** column of an index and sqlite_stat4 histogram data is available ** for that index. When pExpr==NULL that means the constraint is ** "x IS NULL" instead of "x=VALUE". ** ** Write the estimated row count into *pnRow and return SQLITE_OK. ** If unable to make an estimate, leave *pnRow unchanged and return ** non-zero. ** ** This routine can fail if it is unable to load a collating sequence ** required for string comparison, or if unable to allocate memory ** for a UTF conversion required for comparison. The error is stored ** in the pParse structure. */ static int whereEqualScanEst( Parse *pParse, /* Parsing & code generating context */ WhereLoopBuilder *pBuilder, Expr *pExpr, /* Expression for VALUE in the x=VALUE constraint */ tRowcnt *pnRow /* Write the revised row estimate here */ ){ Index *p = pBuilder->pNew->u.btree.pIndex; int nEq = pBuilder->pNew->u.btree.nEq; UnpackedRecord *pRec = pBuilder->pRec; int rc; /* Subfunction return code */ tRowcnt a[2]; /* Statistics */ int bOk; assert( nEq>=1 ); assert( nEq<=p->nColumn ); assert( p->aSample!=0 ); assert( p->nSample>0 ); assert( pBuilder->nRecValid<nEq ); /* If values are not available for all fields of the index to the left ** of this one, no estimate can be made. Return SQLITE_NOTFOUND. */ if (pBuilder->nRecValid<(nEq-1)) { return SQLITE_NOTFOUND; } /* This is an optimization only. The call to sqlite3Stat4ProbeSetValue() ** below would return the same value. */ if (nEq>=p->nColumn) { *pnRow = 1; return SQLITE_OK; } rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, 1, nEq-1, &bOk); pBuilder->pRec = pRec; if (rc!=SQLITE_OK) return rc; if (bOk==0) return SQLITE_NOTFOUND; pBuilder->nRecValid = nEq; whereKeyStats(pParse, p, pRec, 0, a); WHERETRACE(0x10,("equality scan regions %s(%d): %d\n", p->zName, nEq-1, (int)a[1])); *pnRow = a[1]; return rc; } #endif /* SQLITE_ENABLE_STAT4 */ #ifdef SQLITE_ENABLE_STAT4 /* ** Estimate the number of rows that will be returned based on ** an IN constraint where the right-hand side of the IN operator ** is a list of values. Example: ** ** WHERE x IN (1,2,3,4) ** ** Write the estimated row count into *pnRow and return SQLITE_OK. ** If unable to make an estimate, leave *pnRow unchanged and return ** non-zero. ** ** This routine can fail if it is unable to load a collating sequence ** required for string comparison, or if unable to allocate memory ** for a UTF conversion required for comparison. The error is stored ** in the pParse structure. */ static int whereInScanEst( Parse *pParse, /* Parsing & code generating context */ WhereLoopBuilder *pBuilder, ExprList *pList, /* The value list on the RHS of "x IN (v1,v2,v3,...)" */ tRowcnt *pnRow /* Write the revised row estimate here */ ){ Index *p = pBuilder->pNew->u.btree.pIndex; i64 nRow0 = sqlite3LogEstToInt(p->aiRowLogEst[0]); int nRecValid = pBuilder->nRecValid; int rc = SQLITE_OK; /* Subfunction return code */ tRowcnt nEst; /* Number of rows for a single term */ tRowcnt nRowEst = 0; /* New estimate of the number of rows */ int i; /* Loop counter */ assert( p->aSample!=0 ); for (i=0; rc==SQLITE_OK && i<pList->nExpr; i++) { nEst = nRow0; rc = whereEqualScanEst(pParse, pBuilder, pList->a[i].pExpr, &nEst); nRowEst += nEst; pBuilder->nRecValid = nRecValid; } if (rc==SQLITE_OK) { if (nRowEst > nRow0) nRowEst = nRow0; *pnRow = nRowEst; WHERETRACE(0x10,("IN row estimate: est=%d\n", nRowEst)); } assert( pBuilder->nRecValid==nRecValid ); return rc; } #endif /* SQLITE_ENABLE_STAT4 */ #ifdef WHERETRACE_ENABLED /* ** Print the content of a WhereTerm object */ static void whereTermPrint(WhereTerm *pTerm, int iTerm){ if (pTerm==0) { sqlite3DebugPrintf("TERM-%-3d NULL\n", iTerm); } else { char zType[4]; char zLeft[50]; memcpy(zType, "...", 4); if (pTerm->wtFlags & TERM_VIRTUAL) zType[0] = 'V'; if (pTerm->eOperator & WO_EQUIV) zType[1] = 'E'; if (ExprHasProperty(pTerm->pExpr, EP_FromJoin)) zType[2] = 'L'; if (pTerm->eOperator & WO_SINGLE) { sqlite3_snprintf(sizeof(zLeft),zLeft,"left={%d:%d}", pTerm->leftCursor, pTerm->u.leftColumn); } else if ((pTerm->eOperator & WO_OR)!=0 && pTerm->u.pOrInfo!=0) { sqlite3_snprintf(sizeof(zLeft),zLeft,"indexable=0x%lld", pTerm->u.pOrInfo->indexable); } else { sqlite3_snprintf(sizeof(zLeft),zLeft,"left=%d", pTerm->leftCursor); } sqlite3DebugPrintf( "TERM-%-3d %p %s %-12s prob=%-3d op=0x%03x wtFlags=0x%04x", iTerm, pTerm, zType, zLeft, pTerm->truthProb, pTerm->eOperator, pTerm->wtFlags); if (pTerm->iField) { sqlite3DebugPrintf(" iField=%d\n", pTerm->iField); } else { sqlite3DebugPrintf("\n"); } sqlite3TreeViewExpr(0, pTerm->pExpr, 0); } } #endif #ifdef WHERETRACE_ENABLED /* ** Show the complete content of a WhereClause */ void sqlite3WhereClausePrint(WhereClause *pWC){ int i; for (i=0; i<pWC->nTerm; i++) { whereTermPrint(&pWC->a[i], i); } } #endif #ifdef WHERETRACE_ENABLED /* ** Print a WhereLoop object for debugging purposes */ static void whereLoopPrint(WhereLoop *p, WhereClause *pWC){ WhereInfo *pWInfo = pWC->pWInfo; int nb = 1+(pWInfo->pTabList->nSrc+3)/4; struct SrcList_item *pItem = pWInfo->pTabList->a + p->iTab; Table *pTab = pItem->pTab; Bitmask mAll = (((Bitmask)1)<<(nb*4)) - 1; sqlite3DebugPrintf("%c%2d.%0*llx.%0*llx", p->cId, p->iTab, nb, p->maskSelf, nb, p->prereq & mAll); sqlite3DebugPrintf(" %12s", pItem->zAlias ? pItem->zAlias : pTab->zName); if ((p->wsFlags & WHERE_VIRTUALTABLE)==0) { const char *zName; if (p->u.btree.pIndex && (zName = p->u.btree.pIndex->zName)!=0) { if (strncmp(zName, "sqlite_autoindex_", 17)==0) { int i = sqlite3Strlen30(zName) - 1; while (zName[i]!='_') i--; zName += i; } sqlite3DebugPrintf(".%-16s %2d", zName, p->u.btree.nEq); } else { sqlite3DebugPrintf("%20s",""); } } else { char *z; if (p->u.vtab.idxStr) { z = sqlite3_mprintf("(%d,\"%s\",%x)", p->u.vtab.idxNum, p->u.vtab.idxStr, p->u.vtab.omitMask); } else { z = sqlite3_mprintf("(%d,%x)", p->u.vtab.idxNum, p->u.vtab.omitMask); } sqlite3DebugPrintf(" %-19s", z); sqlite3_free(z); } if (p->wsFlags & WHERE_SKIPSCAN) { sqlite3DebugPrintf(" f %05x %d-%d", p->wsFlags, p->nLTerm,p->nSkip); } else { sqlite3DebugPrintf(" f %05x N %d", p->wsFlags, p->nLTerm); } sqlite3DebugPrintf(" cost %d,%d,%d\n", p->rSetup, p->rRun, p->nOut); if (p->nLTerm && (sqlite3WhereTrace & 0x100)!=0) { int i; for (i=0; i<p->nLTerm; i++) { whereTermPrint(p->aLTerm[i], i); } } } #endif /* ** Convert bulk memory into a valid WhereLoop that can be passed ** to whereLoopClear harmlessly. */ static void whereLoopInit(WhereLoop *p){ p->aLTerm = p->aLTermSpace; p->nLTerm = 0; p->nLSlot = ArraySize(p->aLTermSpace); p->wsFlags = 0; } /* ** Clear the WhereLoop.u union. Leave WhereLoop.pLTerm intact. */ static void whereLoopClearUnion(sqlite3 *db, WhereLoop *p){ if (p->wsFlags & (WHERE_VIRTUALTABLE|WHERE_AUTO_INDEX)) { if ((p->wsFlags & WHERE_VIRTUALTABLE)!=0 && p->u.vtab.needFree) { sqlite3_free(p->u.vtab.idxStr); p->u.vtab.needFree = 0; p->u.vtab.idxStr = 0; } else if ((p->wsFlags & WHERE_AUTO_INDEX)!=0 && p->u.btree.pIndex!=0) { sqlite3DbFree(db, p->u.btree.pIndex->zColAff); sqlite3DbFreeNN(db, p->u.btree.pIndex); p->u.btree.pIndex = 0; } } } /* ** Deallocate internal memory used by a WhereLoop object */ static void whereLoopClear(sqlite3 *db, WhereLoop *p){ if (p->aLTerm!=p->aLTermSpace) sqlite3DbFreeNN(db, p->aLTerm); whereLoopClearUnion(db, p); whereLoopInit(p); } /* ** Increase the memory allocation for pLoop->aLTerm[] to be at least n. */ static int whereLoopResize(sqlite3 *db, WhereLoop *p, int n){ WhereTerm **paNew; if (p->nLSlot>=n) return SQLITE_OK; n = (n+7)&~7; paNew = sqlite3DbMallocRawNN(db, sizeof(p->aLTerm[0])*n); if (paNew==0) return SQLITE_NOMEM_BKPT; memcpy(paNew, p->aLTerm, sizeof(p->aLTerm[0])*p->nLSlot); if (p->aLTerm!=p->aLTermSpace) sqlite3DbFreeNN(db, p->aLTerm); p->aLTerm = paNew; p->nLSlot = n; return SQLITE_OK; } /* ** Transfer content from the second pLoop into the first. */ static int whereLoopXfer(sqlite3 *db, WhereLoop *pTo, WhereLoop *pFrom){ whereLoopClearUnion(db, pTo); if (whereLoopResize(db, pTo, pFrom->nLTerm)) { memset(&pTo->u, 0, sizeof(pTo->u)); return SQLITE_NOMEM_BKPT; } memcpy(pTo, pFrom, WHERE_LOOP_XFER_SZ); memcpy(pTo->aLTerm, pFrom->aLTerm, pTo->nLTerm*sizeof(pTo->aLTerm[0])); if (pFrom->wsFlags & WHERE_VIRTUALTABLE) { pFrom->u.vtab.needFree = 0; } else if ((pFrom->wsFlags & WHERE_AUTO_INDEX)!=0) { pFrom->u.btree.pIndex = 0; } return SQLITE_OK; } /* ** Delete a WhereLoop object */ static void whereLoopDelete(sqlite3 *db, WhereLoop *p){ whereLoopClear(db, p); sqlite3DbFreeNN(db, p); } /* ** Free a WhereInfo structure */ static void whereInfoFree(sqlite3 *db, WhereInfo *pWInfo){ int i; assert( pWInfo!=0 ); for (i=0; i<pWInfo->nLevel; i++) { WhereLevel *pLevel = &pWInfo->a[i]; if (pLevel->pWLoop && (pLevel->pWLoop->wsFlags & WHERE_IN_ABLE)) { sqlite3DbFree(db, pLevel->u.in.aInLoop); } } sqlite3WhereClauseClear(&pWInfo->sWC); while (pWInfo->pLoops) { WhereLoop *p = pWInfo->pLoops; pWInfo->pLoops = p->pNextLoop; whereLoopDelete(db, p); } sqlite3DbFreeNN(db, pWInfo); } /* ** Return TRUE if all of the following are true: ** ** (1) X has the same or lower cost that Y ** (2) X uses fewer WHERE clause terms than Y ** (3) Every WHERE clause term used by X is also used by Y ** (4) X skips at least as many columns as Y ** (5) If X is a covering index, than Y is too ** ** Conditions (2) and (3) mean that X is a "proper subset" of Y. ** If X is a proper subset of Y then Y is a better choice and ought ** to have a lower cost. This routine returns TRUE when that cost ** relationship is inverted and needs to be adjusted. Constraint (4) ** was added because if X uses skip-scan less than Y it still might ** deserve a lower cost even if it is a proper subset of Y. Constraint (5) ** was added because a covering index probably deserves to have a lower cost ** than a non-covering index even if it is a proper subset. */ static int whereLoopCheaperProperSubset( const WhereLoop *pX, /* First WhereLoop to compare */ const WhereLoop *pY /* Compare against this WhereLoop */ ){ int i, j; if (pX->nLTerm-pX->nSkip >= pY->nLTerm-pY->nSkip) { return 0; /* X is not a subset of Y */ } if (pY->nSkip > pX->nSkip) return 0; if (pX->rRun >= pY->rRun) { if (pX->rRun > pY->rRun) return 0; /* X costs more than Y */ if (pX->nOut > pY->nOut) return 0; /* X costs more than Y */ } for (i=pX->nLTerm-1; i>=0; i--) { if (pX->aLTerm[i]==0) continue; for (j=pY->nLTerm-1; j>=0; j--) { if (pY->aLTerm[j]==pX->aLTerm[i]) break; } if (j<0) return 0; /* X not a subset of Y since term X[i] not used by Y */ } if ((pX->wsFlags&WHERE_IDX_ONLY)!=0 && (pY->wsFlags&WHERE_IDX_ONLY)==0) { return 0; /* Constraint (5) */ } return 1; /* All conditions meet */ } /* ** Try to adjust the cost of WhereLoop pTemplate upwards or downwards so ** that: ** ** (1) pTemplate costs less than any other WhereLoops that are a proper ** subset of pTemplate ** ** (2) pTemplate costs more than any other WhereLoops for which pTemplate ** is a proper subset. ** ** To say "WhereLoop X is a proper subset of Y" means that X uses fewer ** WHERE clause terms than Y and that every WHERE clause term used by X is ** also used by Y. */ static void whereLoopAdjustCost(const WhereLoop *p, WhereLoop *pTemplate){ if ((pTemplate->wsFlags & WHERE_INDEXED)==0) return; for (; p; p=p->pNextLoop) { if (p->iTab!=pTemplate->iTab) continue; if ((p->wsFlags & WHERE_INDEXED)==0) continue; if (whereLoopCheaperProperSubset(p, pTemplate)) { /* Adjust pTemplate cost downward so that it is cheaper than its ** subset p. */ WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n", pTemplate->rRun, pTemplate->nOut, p->rRun, p->nOut-1)); pTemplate->rRun = p->rRun; pTemplate->nOut = p->nOut - 1; } else if (whereLoopCheaperProperSubset(pTemplate, p)) { /* Adjust pTemplate cost upward so that it is costlier than p since ** pTemplate is a proper subset of p */ WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n", pTemplate->rRun, pTemplate->nOut, p->rRun, p->nOut+1)); pTemplate->rRun = p->rRun; pTemplate->nOut = p->nOut + 1; } } } /* ** Search the list of WhereLoops in *ppPrev looking for one that can be ** replaced by pTemplate. ** ** Return NULL if pTemplate does not belong on the WhereLoop list. ** In other words if pTemplate ought to be dropped from further consideration. ** ** If pX is a WhereLoop that pTemplate can replace, then return the ** link that points to pX. ** ** If pTemplate cannot replace any existing element of the list but needs ** to be added to the list as a new entry, then return a pointer to the ** tail of the list. */ static WhereLoop **whereLoopFindLesser( WhereLoop **ppPrev, const WhereLoop *pTemplate ){ WhereLoop *p; for (p=(*ppPrev); p; ppPrev=&p->pNextLoop, p=*ppPrev) { if (p->iTab!=pTemplate->iTab || p->iSortIdx!=pTemplate->iSortIdx) { /* If either the iTab or iSortIdx values for two WhereLoop are different ** then those WhereLoops need to be considered separately. Neither is ** a candidate to replace the other. */ continue; } /* In the current implementation, the rSetup value is either zero ** or the cost of building an automatic index (NlogN) and the NlogN ** is the same for compatible WhereLoops. */ assert( p->rSetup==0 || pTemplate->rSetup==0 || p->rSetup==pTemplate->rSetup ); /* whereLoopAddBtree() always generates and inserts the automatic index ** case first. Hence compatible candidate WhereLoops never have a larger ** rSetup. Call this SETUP-INVARIANT */ assert( p->rSetup>=pTemplate->rSetup ); /* Any loop using an appliation-defined index (or PRIMARY KEY or ** UNIQUE constraint) with one or more == constraints is better ** than an automatic index. Unless it is a skip-scan. */ if ((p->wsFlags & WHERE_AUTO_INDEX)!=0 && (pTemplate->nSkip)==0 && (pTemplate->wsFlags & WHERE_INDEXED)!=0 && (pTemplate->wsFlags & WHERE_COLUMN_EQ)!=0 && (p->prereq & pTemplate->prereq)==pTemplate->prereq ) { break; } /* If existing WhereLoop p is better than pTemplate, pTemplate can be ** discarded. WhereLoop p is better if: ** (1) p has no more dependencies than pTemplate, and ** (2) p has an equal or lower cost than pTemplate */ if ((p->prereq & pTemplate->prereq)==p->prereq /* (1) */ && p->rSetup<=pTemplate->rSetup /* (2a) */ && p->rRun<=pTemplate->rRun /* (2b) */ && p->nOut<=pTemplate->nOut /* (2c) */ ) { return 0; /* Discard pTemplate */ } /* If pTemplate is always better than p, then cause p to be overwritten ** with pTemplate. pTemplate is better than p if: ** (1) pTemplate has no more dependences than p, and ** (2) pTemplate has an equal or lower cost than p. */ if ((p->prereq & pTemplate->prereq)==pTemplate->prereq /* (1) */ && p->rRun>=pTemplate->rRun /* (2a) */ && p->nOut>=pTemplate->nOut /* (2b) */ ) { assert( p->rSetup>=pTemplate->rSetup ); /* SETUP-INVARIANT above */ break; /* Cause p to be overwritten by pTemplate */ } } return ppPrev; } /* ** Insert or replace a WhereLoop entry using the template supplied. ** ** An existing WhereLoop entry might be overwritten if the new template ** is better and has fewer dependencies. Or the template will be ignored ** and no insert will occur if an existing WhereLoop is faster and has ** fewer dependencies than the template. Otherwise a new WhereLoop is ** added based on the template. ** ** If pBuilder->pOrSet is not NULL then we care about only the ** prerequisites and rRun and nOut costs of the N best loops. That ** information is gathered in the pBuilder->pOrSet object. This special ** processing mode is used only for OR clause processing. ** ** When accumulating multiple loops (when pBuilder->pOrSet is NULL) we ** still might overwrite similar loops with the new template if the ** new template is better. Loops may be overwritten if the following ** conditions are met: ** ** (1) They have the same iTab. ** (2) They have the same iSortIdx. ** (3) The template has same or fewer dependencies than the current loop ** (4) The template has the same or lower cost than the current loop */ static int whereLoopInsert(WhereLoopBuilder *pBuilder, WhereLoop *pTemplate){ WhereLoop **ppPrev, *p; WhereInfo *pWInfo = pBuilder->pWInfo; sqlite3 *db = pWInfo->pParse->db; int rc; /* Stop the search once we hit the query planner search limit */ if (pBuilder->iPlanLimit==0) { WHERETRACE(0xffffffff,("=== query planner search limit reached ===\n")); if (pBuilder->pOrSet) pBuilder->pOrSet->n = 0; return SQLITE_DONE; } pBuilder->iPlanLimit--; /* If pBuilder->pOrSet is defined, then only keep track of the costs ** and prereqs. */ if (pBuilder->pOrSet!=0) { if (pTemplate->nLTerm) { #if WHERETRACE_ENABLED u16 n = pBuilder->pOrSet->n; int x = #endif whereOrInsert(pBuilder->pOrSet, pTemplate->prereq, pTemplate->rRun, pTemplate->nOut); #if WHERETRACE_ENABLED /* 0x8 */ if (sqlite3WhereTrace & 0x8) { sqlite3DebugPrintf(x?" or-%d: ":" or-X: ", n); whereLoopPrint(pTemplate, pBuilder->pWC); } #endif } return SQLITE_OK; } /* Look for an existing WhereLoop to replace with pTemplate */ whereLoopAdjustCost(pWInfo->pLoops, pTemplate); ppPrev = whereLoopFindLesser(&pWInfo->pLoops, pTemplate); if (ppPrev==0) { /* There already exists a WhereLoop on the list that is better ** than pTemplate, so just ignore pTemplate */ #if WHERETRACE_ENABLED /* 0x8 */ if (sqlite3WhereTrace & 0x8) { sqlite3DebugPrintf(" skip: "); whereLoopPrint(pTemplate, pBuilder->pWC); } #endif return SQLITE_OK; } else { p = *ppPrev; } /* If we reach this point it means that either p[] should be overwritten ** with pTemplate[] if p[] exists, or if p==NULL then allocate a new ** WhereLoop and insert it. */ #if WHERETRACE_ENABLED /* 0x8 */ if (sqlite3WhereTrace & 0x8) { if (p!=0) { sqlite3DebugPrintf("replace: "); whereLoopPrint(p, pBuilder->pWC); sqlite3DebugPrintf(" with: "); } else { sqlite3DebugPrintf(" add: "); } whereLoopPrint(pTemplate, pBuilder->pWC); } #endif if (p==0) { /* Allocate a new WhereLoop to add to the end of the list */ *ppPrev = p = sqlite3DbMallocRawNN(db, sizeof(WhereLoop)); if (p==0) return SQLITE_NOMEM_BKPT; whereLoopInit(p); p->pNextLoop = 0; } else { /* We will be overwriting WhereLoop p[]. But before we do, first ** go through the rest of the list and delete any other entries besides ** p[] that are also supplated by pTemplate */ WhereLoop **ppTail = &p->pNextLoop; WhereLoop *pToDel; while (*ppTail) { ppTail = whereLoopFindLesser(ppTail, pTemplate); if (ppTail==0) break; pToDel = *ppTail; if (pToDel==0) break; *ppTail = pToDel->pNextLoop; #if WHERETRACE_ENABLED /* 0x8 */ if (sqlite3WhereTrace & 0x8) { sqlite3DebugPrintf(" delete: "); whereLoopPrint(pToDel, pBuilder->pWC); } #endif whereLoopDelete(db, pToDel); } } rc = whereLoopXfer(db, p, pTemplate); if ((p->wsFlags & WHERE_VIRTUALTABLE)==0) { Index *pIndex = p->u.btree.pIndex; if (pIndex && pIndex->idxType==SQLITE_IDXTYPE_IPK) { p->u.btree.pIndex = 0; } } return rc; } /* ** Adjust the WhereLoop.nOut value downward to account for terms of the ** WHERE clause that reference the loop but which are not used by an ** index. * ** For every WHERE clause term that is not used by the index ** and which has a truth probability assigned by one of the likelihood(), ** likely(), or unlikely() SQL functions, reduce the estimated number ** of output rows by the probability specified. ** ** TUNING: For every WHERE clause term that is not used by the index ** and which does not have an assigned truth probability, heuristics ** described below are used to try to estimate the truth probability. ** TODO --> Perhaps this is something that could be improved by better ** table statistics. ** ** Heuristic 1: Estimate the truth probability as 93.75%. The 93.75% ** value corresponds to -1 in LogEst notation, so this means decrement ** the WhereLoop.nOut field for every such WHERE clause term. ** ** Heuristic 2: If there exists one or more WHERE clause terms of the ** form "x==EXPR" and EXPR is not a constant 0 or 1, then make sure the ** final output row estimate is no greater than 1/4 of the total number ** of rows in the table. In other words, assume that x==EXPR will filter ** out at least 3 out of 4 rows. If EXPR is -1 or 0 or 1, then maybe the ** "x" column is boolean or else -1 or 0 or 1 is a common default value ** on the "x" column and so in that case only cap the output row estimate ** at 1/2 instead of 1/4. */ static void whereLoopOutputAdjust( WhereClause *pWC, /* The WHERE clause */ WhereLoop *pLoop, /* The loop to adjust downward */ LogEst nRow /* Number of rows in the entire table */ ){ WhereTerm *pTerm, *pX; Bitmask notAllowed = ~(pLoop->prereq|pLoop->maskSelf); int i, j, k; LogEst iReduce = 0; /* pLoop->nOut should not exceed nRow-iReduce */ assert((pLoop->wsFlags & WHERE_AUTO_INDEX)==0 ); for (i=pWC->nTerm, pTerm=pWC->a; i>0; i--, pTerm++) { assert( pTerm!=0 ); if ((pTerm->wtFlags & TERM_VIRTUAL)!=0) break; if ((pTerm->prereqAll & pLoop->maskSelf)==0) continue; if ((pTerm->prereqAll & notAllowed)!=0) continue; for (j=pLoop->nLTerm-1; j>=0; j--) { pX = pLoop->aLTerm[j]; if (pX==0) continue; if (pX==pTerm) break; if (pX->iParent>=0 && (&pWC->a[pX->iParent])==pTerm) break; } if (j<0) { if (pTerm->truthProb<=0) { /* If a truth probability is specified using the likelihood() hints, ** then use the probability provided by the application. */ pLoop->nOut += pTerm->truthProb; } else { /* In the absence of explicit truth probabilities, use heuristics to ** guess a reasonable truth probability. */ pLoop->nOut--; if (pTerm->eOperator&(WO_EQ|WO_IS)) { Expr *pRight = pTerm->pExpr->pRight; testcase( pTerm->pExpr->op==TK_IS ); if (sqlite3ExprIsInteger(pRight, &k) && k>=(-1) && k<=1) { k = 10; } else { k = 20; } if (iReduce<k) iReduce = k; } } } } if (pLoop->nOut > nRow-iReduce) pLoop->nOut = nRow - iReduce; } /* ** Term pTerm is a vector range comparison operation. The first comparison ** in the vector can be optimized using column nEq of the index. This ** function returns the total number of vector elements that can be used ** as part of the range comparison. ** ** For example, if the query is: ** ** WHERE a = ? AND (b, c, d) > (?, ?, ?) ** ** and the index: ** ** CREATE INDEX ... ON (a, b, c, d, e) ** ** then this function would be invoked with nEq=1. The value returned in ** this case is 3. */ static int whereRangeVectorLen( Parse *pParse, /* Parsing context */ int iCur, /* Cursor open on pIdx */ Index *pIdx, /* The index to be used for a inequality constraint */ int nEq, /* Number of prior equality constraints on same index */ WhereTerm *pTerm /* The vector inequality constraint */ ){ int nCmp = sqlite3ExprVectorSize(pTerm->pExpr->pLeft); int i; nCmp = MIN(nCmp, (pIdx->nColumn - nEq)); for (i=1; i<nCmp; i++) { /* Test if comparison i of pTerm is compatible with column (i+nEq) ** of the index. If not, exit the loop. */ char aff; /* Comparison affinity */ char idxaff = 0; /* Indexed columns affinity */ CollSeq *pColl; /* Comparison collation sequence */ Expr *pLhs = pTerm->pExpr->pLeft->x.pList->a[i].pExpr; Expr *pRhs = pTerm->pExpr->pRight; if (pRhs->flags & EP_xIsSelect) { pRhs = pRhs->x.pSelect->pEList->a[i].pExpr; } else { pRhs = pRhs->x.pList->a[i].pExpr; } /* Check that the LHS of the comparison is a column reference to ** the right column of the right source table. And that the sort ** order of the index column is the same as the sort order of the ** leftmost index column. */ if (pLhs->op!=TK_COLUMN || pLhs->iTable!=iCur || pLhs->iColumn!=pIdx->aiColumn[i+nEq] || pIdx->aSortOrder[i+nEq]!=pIdx->aSortOrder[nEq] ) { break; } testcase( pLhs->iColumn==XN_ROWID ); aff = sqlite3CompareAffinity(pRhs, sqlite3ExprAffinity(pLhs)); idxaff = sqlite3TableColumnAffinity(pIdx->pTable, pLhs->iColumn); if (aff!=idxaff) break; pColl = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs); if (pColl==0) break; if (sqlite3StrICmp(pColl->zName, pIdx->azColl[i+nEq])) break; } return i; } /* ** Adjust the cost C by the costMult facter T. This only occurs if ** compiled with -DSQLITE_ENABLE_COSTMULT */ #ifdef SQLITE_ENABLE_COSTMULT # define ApplyCostMultiplier(C,T) C += T #else # define ApplyCostMultiplier(C,T) #endif /* ** We have so far matched pBuilder->pNew->u.btree.nEq terms of the ** index pIndex. Try to match one more. ** ** When this function is called, pBuilder->pNew->nOut contains the ** number of rows expected to be visited by filtering using the nEq ** terms only. If it is modified, this value is restored before this ** function returns. ** ** If pProbe->idxType==SQLITE_IDXTYPE_IPK, that means pIndex is ** a fake index used for the INTEGER PRIMARY KEY. */ static int whereLoopAddBtreeIndex( WhereLoopBuilder *pBuilder, /* The WhereLoop factory */ struct SrcList_item *pSrc, /* FROM clause term being analyzed */ Index *pProbe, /* An index on pSrc */ LogEst nInMul /* log(Number of iterations due to IN) */ ){ WhereInfo *pWInfo = pBuilder->pWInfo; /* WHERE analyse context */ Parse *pParse = pWInfo->pParse; /* Parsing context */ sqlite3 *db = pParse->db; /* Database connection malloc context */ WhereLoop *pNew; /* Template WhereLoop under construction */ WhereTerm *pTerm; /* A WhereTerm under consideration */ int opMask; /* Valid operators for constraints */ WhereScan scan; /* Iterator for WHERE terms */ Bitmask saved_prereq; /* Original value of pNew->prereq */ u16 saved_nLTerm; /* Original value of pNew->nLTerm */ u16 saved_nEq; /* Original value of pNew->u.btree.nEq */ u16 saved_nBtm; /* Original value of pNew->u.btree.nBtm */ u16 saved_nTop; /* Original value of pNew->u.btree.nTop */ u16 saved_nSkip; /* Original value of pNew->nSkip */ u32 saved_wsFlags; /* Original value of pNew->wsFlags */ LogEst saved_nOut; /* Original value of pNew->nOut */ int rc = SQLITE_OK; /* Return code */ LogEst rSize; /* Number of rows in the table */ LogEst rLogSize; /* Logarithm of table size */ WhereTerm *pTop = 0, *pBtm = 0; /* Top and bottom range constraints */ pNew = pBuilder->pNew; if (db->mallocFailed) return SQLITE_NOMEM_BKPT; WHERETRACE(0x800, ("BEGIN %s.addBtreeIdx(%s), nEq=%d\n", pProbe->pTable->zName,pProbe->zName, pNew->u.btree.nEq)); assert((pNew->wsFlags & WHERE_VIRTUALTABLE)==0 ); assert((pNew->wsFlags & WHERE_TOP_LIMIT)==0 ); if (pNew->wsFlags & WHERE_BTM_LIMIT) { opMask = WO_LT|WO_LE; } else { assert( pNew->u.btree.nBtm==0 ); opMask = WO_EQ|WO_IN|WO_GT|WO_GE|WO_LT|WO_LE|WO_ISNULL|WO_IS; } if (pProbe->bUnordered) opMask &= ~(WO_GT|WO_GE|WO_LT|WO_LE); assert( pNew->u.btree.nEq<pProbe->nColumn ); saved_nEq = pNew->u.btree.nEq; saved_nBtm = pNew->u.btree.nBtm; saved_nTop = pNew->u.btree.nTop; saved_nSkip = pNew->nSkip; saved_nLTerm = pNew->nLTerm; saved_wsFlags = pNew->wsFlags; saved_prereq = pNew->prereq; saved_nOut = pNew->nOut; pTerm = whereScanInit(&scan, pBuilder->pWC, pSrc->iCursor, saved_nEq, opMask, pProbe); pNew->rSetup = 0; rSize = pProbe->aiRowLogEst[0]; rLogSize = estLog(rSize); for (; rc==SQLITE_OK && pTerm!=0; pTerm = whereScanNext(&scan)) { u16 eOp = pTerm->eOperator; /* Shorthand for pTerm->eOperator */ LogEst rCostIdx; LogEst nOutUnadjusted; /* nOut before IN() and WHERE adjustments */ int nIn = 0; #ifdef SQLITE_ENABLE_STAT4 int nRecValid = pBuilder->nRecValid; #endif if ((eOp==WO_ISNULL || (pTerm->wtFlags&TERM_VNULL)!=0) && indexColumnNotNull(pProbe, saved_nEq) ) { continue; /* ignore IS [NOT] NULL constraints on NOT NULL columns */ } if (pTerm->prereqRight & pNew->maskSelf) continue; /* Do not allow the upper bound of a LIKE optimization range constraint ** to mix with a lower range bound from some other source */ if (pTerm->wtFlags & TERM_LIKEOPT && pTerm->eOperator==WO_LT) continue; /* Do not allow constraints from the WHERE clause to be used by the ** right table of a LEFT JOIN. Only constraints in the ON clause are ** allowed */ if ((pSrc->fg.jointype & JT_LEFT)!=0 && !ExprHasProperty(pTerm->pExpr, EP_FromJoin) ) { continue; } if (IsUniqueIndex(pProbe) && saved_nEq==pProbe->nKeyCol-1) { pBuilder->bldFlags |= SQLITE_BLDF_UNIQUE; } else { pBuilder->bldFlags |= SQLITE_BLDF_INDEXED; } pNew->wsFlags = saved_wsFlags; pNew->u.btree.nEq = saved_nEq; pNew->u.btree.nBtm = saved_nBtm; pNew->u.btree.nTop = saved_nTop; pNew->nLTerm = saved_nLTerm; if (whereLoopResize(db, pNew, pNew->nLTerm+1)) break; /* OOM */ pNew->aLTerm[pNew->nLTerm++] = pTerm; pNew->prereq = (saved_prereq | pTerm->prereqRight) & ~pNew->maskSelf; assert( nInMul==0 || (pNew->wsFlags & WHERE_COLUMN_NULL)!=0 || (pNew->wsFlags & WHERE_COLUMN_IN)!=0 || (pNew->wsFlags & WHERE_SKIPSCAN)!=0 ); if (eOp & WO_IN) { Expr *pExpr = pTerm->pExpr; if (ExprHasProperty(pExpr, EP_xIsSelect)) { /* "x IN (SELECT ...)": TUNING: the SELECT returns 25 rows */ int i; nIn = 46; assert( 46==sqlite3LogEst(25)); /* The expression may actually be of the form (x, y) IN (SELECT...). ** In this case there is a separate term for each of (x) and (y). ** However, the nIn multiplier should only be applied once, not once ** for each such term. The following loop checks that pTerm is the ** first such term in use, and sets nIn back to 0 if it is not. */ for (i=0; i<pNew->nLTerm-1; i++) { if (pNew->aLTerm[i] && pNew->aLTerm[i]->pExpr==pExpr) nIn = 0; } } else if (ALWAYS(pExpr->x.pList && pExpr->x.pList->nExpr)) { /* "x IN (value, value, ...)" */ nIn = sqlite3LogEst(pExpr->x.pList->nExpr); assert( nIn>0 ); /* RHS always has 2 or more terms... The parser ** changes "x IN (?)" into "x=?". */ } if (pProbe->hasStat1) { LogEst M, logK, safetyMargin; /* Let: ** N = the total number of rows in the table ** K = the number of entries on the RHS of the IN operator ** M = the number of rows in the table that match terms to the ** to the left in the same index. If the IN operator is on ** the left-most index column, M==N. ** ** Given the definitions above, it is better to omit the IN operator ** from the index lookup and instead do a scan of the M elements, ** testing each scanned row against the IN operator separately, if: ** ** M*log(K) < K*log(N) ** ** Our estimates for M, K, and N might be inaccurate, so we build in ** a safety margin of 2 (LogEst: 10) that favors using the IN operator ** with the index, as using an index has better worst-case behavior. ** If we do not have real sqlite_stat1 data, always prefer to use ** the index. */ M = pProbe->aiRowLogEst[saved_nEq]; logK = estLog(nIn); safetyMargin = 10; /* TUNING: extra weight for indexed IN */ if (M + logK + safetyMargin < nIn + rLogSize) { WHERETRACE(0x40, ("Scan preferred over IN operator on column %d of \"%s\" (%d<%d)\n", saved_nEq, pProbe->zName, M+logK+10, nIn+rLogSize)); continue; } else { WHERETRACE(0x40, ("IN operator preferred on column %d of \"%s\" (%d>=%d)\n", saved_nEq, pProbe->zName, M+logK+10, nIn+rLogSize)); } } pNew->wsFlags |= WHERE_COLUMN_IN; } else if (eOp & (WO_EQ|WO_IS)) { int iCol = pProbe->aiColumn[saved_nEq]; pNew->wsFlags |= WHERE_COLUMN_EQ; assert( saved_nEq==pNew->u.btree.nEq ); if (iCol==XN_ROWID || (iCol>=0 && nInMul==0 && saved_nEq==pProbe->nKeyCol-1) ) { if (iCol==XN_ROWID || pProbe->uniqNotNull || (pProbe->nKeyCol==1 && pProbe->onError && eOp==WO_EQ) ) { pNew->wsFlags |= WHERE_ONEROW; } else { pNew->wsFlags |= WHERE_UNQ_WANTED; } } } else if (eOp & WO_ISNULL) { pNew->wsFlags |= WHERE_COLUMN_NULL; } else if (eOp & (WO_GT|WO_GE)) { testcase( eOp & WO_GT ); testcase( eOp & WO_GE ); pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_BTM_LIMIT; pNew->u.btree.nBtm = whereRangeVectorLen( pParse, pSrc->iCursor, pProbe, saved_nEq, pTerm ); pBtm = pTerm; pTop = 0; if (pTerm->wtFlags & TERM_LIKEOPT) { /* Range contraints that come from the LIKE optimization are ** always used in pairs. */ pTop = &pTerm[1]; assert((pTop-(pTerm->pWC->a))<pTerm->pWC->nTerm ); assert( pTop->wtFlags & TERM_LIKEOPT ); assert( pTop->eOperator==WO_LT ); if (whereLoopResize(db, pNew, pNew->nLTerm+1)) break; /* OOM */ pNew->aLTerm[pNew->nLTerm++] = pTop; pNew->wsFlags |= WHERE_TOP_LIMIT; pNew->u.btree.nTop = 1; } } else { assert( eOp & (WO_LT|WO_LE)); testcase( eOp & WO_LT ); testcase( eOp & WO_LE ); pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_TOP_LIMIT; pNew->u.btree.nTop = whereRangeVectorLen( pParse, pSrc->iCursor, pProbe, saved_nEq, pTerm ); pTop = pTerm; pBtm = (pNew->wsFlags & WHERE_BTM_LIMIT)!=0 ? pNew->aLTerm[pNew->nLTerm-2] : 0; } /* At this point pNew->nOut is set to the number of rows expected to ** be visited by the index scan before considering term pTerm, or the ** values of nIn and nInMul. In other words, assuming that all ** "x IN(...)" terms are replaced with "x = ?". This block updates ** the value of pNew->nOut to account for pTerm (but not nIn/nInMul). */ assert( pNew->nOut==saved_nOut ); if (pNew->wsFlags & WHERE_COLUMN_RANGE) { /* Adjust nOut using stat4 data. Or, if there is no stat4 ** data, using some other estimate. */ whereRangeScanEst(pParse, pBuilder, pBtm, pTop, pNew); } else { int nEq = ++pNew->u.btree.nEq; assert( eOp & (WO_ISNULL|WO_EQ|WO_IN|WO_IS)); assert( pNew->nOut==saved_nOut ); if (pTerm->truthProb<=0 && pProbe->aiColumn[saved_nEq]>=0) { assert((eOp & WO_IN) || nIn==0 ); testcase( eOp & WO_IN ); pNew->nOut += pTerm->truthProb; pNew->nOut -= nIn; } else { #ifdef SQLITE_ENABLE_STAT4 tRowcnt nOut = 0; if (nInMul==0 && pProbe->nSample && pNew->u.btree.nEq<=pProbe->nSampleCol && ((eOp & WO_IN)==0 || !ExprHasProperty(pTerm->pExpr, EP_xIsSelect)) && OptimizationEnabled(db, SQLITE_Stat4) ) { Expr *pExpr = pTerm->pExpr; if ((eOp & (WO_EQ|WO_ISNULL|WO_IS))!=0) { testcase( eOp & WO_EQ ); testcase( eOp & WO_IS ); testcase( eOp & WO_ISNULL ); rc = whereEqualScanEst(pParse, pBuilder, pExpr->pRight, &nOut); } else { rc = whereInScanEst(pParse, pBuilder, pExpr->x.pList, &nOut); } if (rc==SQLITE_NOTFOUND) rc = SQLITE_OK; if (rc!=SQLITE_OK) break; /* Jump out of the pTerm loop */ if (nOut) { pNew->nOut = sqlite3LogEst(nOut); if (pNew->nOut>saved_nOut) pNew->nOut = saved_nOut; pNew->nOut -= nIn; } } if (nOut==0) #endif { pNew->nOut += (pProbe->aiRowLogEst[nEq] - pProbe->aiRowLogEst[nEq-1]); if (eOp & WO_ISNULL) { /* TUNING: If there is no likelihood() value, assume that a ** "col IS NULL" expression matches twice as many rows ** as (col=?). */ pNew->nOut += 10; } } } } /* Set rCostIdx to the cost of visiting selected rows in index. Add ** it to pNew->rRun, which is currently set to the cost of the index ** seek only. Then, if this is a non-covering index, add the cost of ** visiting the rows in the main table. */ rCostIdx = pNew->nOut + 1 + (15*pProbe->szIdxRow)/pSrc->pTab->szTabRow; pNew->rRun = sqlite3LogEstAdd(rLogSize, rCostIdx); if ((pNew->wsFlags & (WHERE_IDX_ONLY|WHERE_IPK))==0) { pNew->rRun = sqlite3LogEstAdd(pNew->rRun, pNew->nOut + 16); } ApplyCostMultiplier(pNew->rRun, pProbe->pTable->costMult); nOutUnadjusted = pNew->nOut; pNew->rRun += nInMul + nIn; pNew->nOut += nInMul + nIn; whereLoopOutputAdjust(pBuilder->pWC, pNew, rSize); rc = whereLoopInsert(pBuilder, pNew); if (pNew->wsFlags & WHERE_COLUMN_RANGE) { pNew->nOut = saved_nOut; } else { pNew->nOut = nOutUnadjusted; } if ((pNew->wsFlags & WHERE_TOP_LIMIT)==0 && pNew->u.btree.nEq<pProbe->nColumn ) { whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nInMul+nIn); } pNew->nOut = saved_nOut; #ifdef SQLITE_ENABLE_STAT4 pBuilder->nRecValid = nRecValid; #endif } pNew->prereq = saved_prereq; pNew->u.btree.nEq = saved_nEq; pNew->u.btree.nBtm = saved_nBtm; pNew->u.btree.nTop = saved_nTop; pNew->nSkip = saved_nSkip; pNew->wsFlags = saved_wsFlags; pNew->nOut = saved_nOut; pNew->nLTerm = saved_nLTerm; /* Consider using a skip-scan if there are no WHERE clause constraints ** available for the left-most terms of the index, and if the average ** number of repeats in the left-most terms is at least 18. ** ** The magic number 18 is selected on the basis that scanning 17 rows ** is almost always quicker than an index seek (even though if the index ** contains fewer than 2^17 rows we assume otherwise in other parts of ** the code). And, even if it is not, it should not be too much slower. ** On the other hand, the extra seeks could end up being significantly ** more expensive. */ assert( 42==sqlite3LogEst(18)); if (saved_nEq==saved_nSkip && saved_nEq+1<pProbe->nKeyCol && pProbe->noSkipScan==0 && OptimizationEnabled(db, SQLITE_SkipScan) && pProbe->aiRowLogEst[saved_nEq+1]>=42 /* TUNING: Minimum for skip-scan */ && (rc = whereLoopResize(db, pNew, pNew->nLTerm+1))==SQLITE_OK ) { LogEst nIter; pNew->u.btree.nEq++; pNew->nSkip++; pNew->aLTerm[pNew->nLTerm++] = 0; pNew->wsFlags |= WHERE_SKIPSCAN; nIter = pProbe->aiRowLogEst[saved_nEq] - pProbe->aiRowLogEst[saved_nEq+1]; pNew->nOut -= nIter; /* TUNING: Because uncertainties in the estimates for skip-scan queries, ** add a 1.375 fudge factor to make skip-scan slightly less likely. */ nIter += 5; whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nIter + nInMul); pNew->nOut = saved_nOut; pNew->u.btree.nEq = saved_nEq; pNew->nSkip = saved_nSkip; pNew->wsFlags = saved_wsFlags; } WHERETRACE(0x800, ("END %s.addBtreeIdx(%s), nEq=%d, rc=%d\n", pProbe->pTable->zName, pProbe->zName, saved_nEq, rc)); return rc; } /* ** Return True if it is possible that pIndex might be useful in ** implementing the ORDER BY clause in pBuilder. ** ** Return False if pBuilder does not contain an ORDER BY clause or ** if there is no way for pIndex to be useful in implementing that ** ORDER BY clause. */ static int indexMightHelpWithOrderBy( WhereLoopBuilder *pBuilder, Index *pIndex, int iCursor ){ ExprList *pOB; ExprList *aColExpr; int ii, jj; if (pIndex->bUnordered) return 0; if ((pOB = pBuilder->pWInfo->pOrderBy)==0) return 0; for (ii=0; ii<pOB->nExpr; ii++) { Expr *pExpr = sqlite3ExprSkipCollate(pOB->a[ii].pExpr); if (pExpr->op==TK_COLUMN && pExpr->iTable==iCursor) { if (pExpr->iColumn<0) return 1; for (jj=0; jj<pIndex->nKeyCol; jj++) { if (pExpr->iColumn==pIndex->aiColumn[jj]) return 1; } } else if ((aColExpr = pIndex->aColExpr)!=0) { for (jj=0; jj<pIndex->nKeyCol; jj++) { if (pIndex->aiColumn[jj]!=XN_EXPR) continue; if (sqlite3ExprCompareSkip(pExpr,aColExpr->a[jj].pExpr,iCursor)==0) { return 1; } } } } return 0; } /* Check to see if a partial index with pPartIndexWhere can be used ** in the current query. Return true if it can be and false if not. */ static int whereUsablePartialIndex(int iTab, WhereClause *pWC, Expr *pWhere){ int i; WhereTerm *pTerm; Parse *pParse = pWC->pWInfo->pParse; while (pWhere->op==TK_AND) { if (!whereUsablePartialIndex(iTab,pWC,pWhere->pLeft)) return 0; pWhere = pWhere->pRight; } if (pParse->db->flags & SQLITE_EnableQPSG) pParse = 0; for (i=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++) { Expr *pExpr = pTerm->pExpr; if ((!ExprHasProperty(pExpr, EP_FromJoin) || pExpr->iRightJoinTable==iTab) && sqlite3ExprImpliesExpr(pParse, pExpr, pWhere, iTab) ) { return 1; } } return 0; } /* ** Add all WhereLoop objects for a single table of the join where the table ** is identified by pBuilder->pNew->iTab. That table is guaranteed to be ** a b-tree table, not a virtual table. ** ** The costs (WhereLoop.rRun) of the b-tree loops added by this function ** are calculated as follows: ** ** For a full scan, assuming the table (or index) contains nRow rows: ** ** cost = nRow * 3.0 // full-table scan ** cost = nRow * K // scan of covering index ** cost = nRow * (K+3.0) // scan of non-covering index ** ** where K is a value between 1.1 and 3.0 set based on the relative ** estimated average size of the index and table records. ** ** For an index scan, where nVisit is the number of index rows visited ** by the scan, and nSeek is the number of seek operations required on ** the index b-tree: ** ** cost = nSeek * (log(nRow) + K * nVisit) // covering index ** cost = nSeek * (log(nRow) + (K+3.0) * nVisit) // non-covering index ** ** Normally, nSeek is 1. nSeek values greater than 1 come about if the ** WHERE clause includes "x IN (....)" terms used in place of "x=?". Or when ** implicit "x IN (SELECT x FROM tbl)" terms are added for skip-scans. ** ** The estimated values (nRow, nVisit, nSeek) often contain a large amount ** of uncertainty. For this reason, scoring is designed to pick plans that ** "do the least harm" if the estimates are inaccurate. For example, a ** log(nRow) factor is omitted from a non-covering index scan in order to ** bias the scoring in favor of using an index, since the worst-case ** performance of using an index is far better than the worst-case performance ** of a full table scan. */ static int whereLoopAddBtree( WhereLoopBuilder *pBuilder, /* WHERE clause information */ Bitmask mPrereq /* Extra prerequesites for using this table */ ){ WhereInfo *pWInfo; /* WHERE analysis context */ Index *pProbe; /* An index we are evaluating */ Index sPk; /* A fake index object for the primary key */ LogEst aiRowEstPk[2]; /* The aiRowLogEst[] value for the sPk index */ i16 aiColumnPk = -1; /* The aColumn[] value for the sPk index */ SrcList *pTabList; /* The FROM clause */ struct SrcList_item *pSrc; /* The FROM clause btree term to add */ WhereLoop *pNew; /* Template WhereLoop object */ int rc = SQLITE_OK; /* Return code */ int iSortIdx = 1; /* Index number */ int b; /* A boolean value */ LogEst rSize; /* number of rows in the table */ LogEst rLogSize; /* Logarithm of the number of rows in the table */ WhereClause *pWC; /* The parsed WHERE clause */ Table *pTab; /* Table being queried */ pNew = pBuilder->pNew; pWInfo = pBuilder->pWInfo; pTabList = pWInfo->pTabList; pSrc = pTabList->a + pNew->iTab; pTab = pSrc->pTab; pWC = pBuilder->pWC; assert( !IsVirtual(pSrc->pTab)); if (pSrc->pIBIndex) { /* An INDEXED BY clause specifies a particular index to use */ pProbe = pSrc->pIBIndex; } else if (!HasRowid(pTab)) { pProbe = pTab->pIndex; } else { /* There is no INDEXED BY clause. Create a fake Index object in local ** variable sPk to represent the rowid primary key index. Make this ** fake index the first in a chain of Index objects with all of the real ** indices to follow */ Index *pFirst; /* First of real indices on the table */ memset(&sPk, 0, sizeof(Index)); sPk.nKeyCol = 1; sPk.nColumn = 1; sPk.aiColumn = &aiColumnPk; sPk.aiRowLogEst = aiRowEstPk; sPk.onError = OE_Replace; sPk.pTable = pTab; sPk.szIdxRow = pTab->szTabRow; sPk.idxType = SQLITE_IDXTYPE_IPK; aiRowEstPk[0] = pTab->nRowLogEst; aiRowEstPk[1] = 0; pFirst = pSrc->pTab->pIndex; if (pSrc->fg.notIndexed==0) { /* The real indices of the table are only considered if the ** NOT INDEXED qualifier is omitted from the FROM clause */ sPk.pNext = pFirst; } pProbe = &sPk; } rSize = pTab->nRowLogEst; rLogSize = estLog(rSize); #ifndef SQLITE_OMIT_AUTOMATIC_INDEX /* Automatic indexes */ if (!pBuilder->pOrSet /* Not part of an OR optimization */ && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0 && (pWInfo->pParse->db->flags & SQLITE_AutoIndex)!=0 && pSrc->pIBIndex==0 /* Has no INDEXED BY clause */ && !pSrc->fg.notIndexed /* Has no NOT INDEXED clause */ && HasRowid(pTab) /* Not WITHOUT ROWID table. (FIXME: Why not?) */ && !pSrc->fg.isCorrelated /* Not a correlated subquery */ && !pSrc->fg.isRecursive /* Not a recursive common table expression. */ ) { /* Generate auto-index WhereLoops */ WhereTerm *pTerm; WhereTerm *pWCEnd = pWC->a + pWC->nTerm; for (pTerm=pWC->a; rc==SQLITE_OK && pTerm<pWCEnd; pTerm++) { if (pTerm->prereqRight & pNew->maskSelf) continue; if (termCanDriveIndex(pTerm, pSrc, 0)) { pNew->u.btree.nEq = 1; pNew->nSkip = 0; pNew->u.btree.pIndex = 0; pNew->nLTerm = 1; pNew->aLTerm[0] = pTerm; /* TUNING: One-time cost for computing the automatic index is ** estimated to be X*N*log2(N) where N is the number of rows in ** the table being indexed and where X is 7 (LogEst=28) for normal ** tables or 0.5 (LogEst=-10) for views and subqueries. The value ** of X is smaller for views and subqueries so that the query planner ** will be more aggressive about generating automatic indexes for ** those objects, since there is no opportunity to add schema ** indexes on subqueries and views. */ pNew->rSetup = rLogSize + rSize; if (pTab->pSelect==0 && (pTab->tabFlags & TF_Ephemeral)==0) { pNew->rSetup += 28; } else { pNew->rSetup -= 10; } ApplyCostMultiplier(pNew->rSetup, pTab->costMult); if (pNew->rSetup<0) pNew->rSetup = 0; /* TUNING: Each index lookup yields 20 rows in the table. This ** is more than the usual guess of 10 rows, since we have no way ** of knowing how selective the index will ultimately be. It would ** not be unreasonable to make this value much larger. */ pNew->nOut = 43; assert( 43==sqlite3LogEst(20)); pNew->rRun = sqlite3LogEstAdd(rLogSize,pNew->nOut); pNew->wsFlags = WHERE_AUTO_INDEX; pNew->prereq = mPrereq | pTerm->prereqRight; rc = whereLoopInsert(pBuilder, pNew); } } } #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */ /* Loop over all indices. If there was an INDEXED BY clause, then only ** consider index pProbe. */ for (; rc==SQLITE_OK && pProbe; pProbe=(pSrc->pIBIndex ? 0 : pProbe->pNext), iSortIdx++ ) { if (pProbe->pPartIdxWhere!=0 && !whereUsablePartialIndex(pSrc->iCursor, pWC, pProbe->pPartIdxWhere)) { testcase( pNew->iTab!=pSrc->iCursor ); /* See ticket [98d973b8f5] */ continue; /* Partial index inappropriate for this query */ } if (pProbe->bNoQuery) continue; rSize = pProbe->aiRowLogEst[0]; pNew->u.btree.nEq = 0; pNew->u.btree.nBtm = 0; pNew->u.btree.nTop = 0; pNew->nSkip = 0; pNew->nLTerm = 0; pNew->iSortIdx = 0; pNew->rSetup = 0; pNew->prereq = mPrereq; pNew->nOut = rSize; pNew->u.btree.pIndex = pProbe; b = indexMightHelpWithOrderBy(pBuilder, pProbe, pSrc->iCursor); /* The ONEPASS_DESIRED flags never occurs together with ORDER BY */ assert((pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || b==0 ); if (pProbe->idxType==SQLITE_IDXTYPE_IPK) { /* Integer primary key index */ pNew->wsFlags = WHERE_IPK; /* Full table scan */ pNew->iSortIdx = b ? iSortIdx : 0; /* TUNING: Cost of full table scan is (N*3.0). */ pNew->rRun = rSize + 16; ApplyCostMultiplier(pNew->rRun, pTab->costMult); whereLoopOutputAdjust(pWC, pNew, rSize); rc = whereLoopInsert(pBuilder, pNew); pNew->nOut = rSize; if (rc) break; } else { Bitmask m; if (pProbe->isCovering) { pNew->wsFlags = WHERE_IDX_ONLY | WHERE_INDEXED; m = 0; } else { m = pSrc->colUsed & pProbe->colNotIdxed; pNew->wsFlags = (m==0) ? (WHERE_IDX_ONLY|WHERE_INDEXED) : WHERE_INDEXED; } /* Full scan via index */ if (b || !HasRowid(pTab) || pProbe->pPartIdxWhere!=0 || (m==0 && pProbe->bUnordered==0 && (pProbe->szIdxRow<pTab->szTabRow) && (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 && sqlite3GlobalConfig.bUseCis && OptimizationEnabled(pWInfo->pParse->db, SQLITE_CoverIdxScan) ) ) { pNew->iSortIdx = b ? iSortIdx : 0; /* The cost of visiting the index rows is N*K, where K is ** between 1.1 and 3.0, depending on the relative sizes of the ** index and table rows. */ pNew->rRun = rSize + 1 + (15*pProbe->szIdxRow)/pTab->szTabRow; if (m!=0) { /* If this is a non-covering index scan, add in the cost of ** doing table lookups. The cost will be 3x the number of ** lookups. Take into account WHERE clause terms that can be ** satisfied using just the index, and that do not require a ** table lookup. */ LogEst nLookup = rSize + 16; /* Base cost: N*3 */ int ii; int iCur = pSrc->iCursor; WhereClause *pWC2 = &pWInfo->sWC; for (ii=0; ii<pWC2->nTerm; ii++) { WhereTerm *pTerm = &pWC2->a[ii]; if (!sqlite3ExprCoveredByIndex(pTerm->pExpr, iCur, pProbe)) { break; } /* pTerm can be evaluated using just the index. So reduce ** the expected number of table lookups accordingly */ if (pTerm->truthProb<=0) { nLookup += pTerm->truthProb; } else { nLookup--; if (pTerm->eOperator & (WO_EQ|WO_IS)) nLookup -= 19; } } pNew->rRun = sqlite3LogEstAdd(pNew->rRun, nLookup); } ApplyCostMultiplier(pNew->rRun, pTab->costMult); whereLoopOutputAdjust(pWC, pNew, rSize); rc = whereLoopInsert(pBuilder, pNew); pNew->nOut = rSize; if (rc) break; } } pBuilder->bldFlags = 0; rc = whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, 0); if (pBuilder->bldFlags==SQLITE_BLDF_INDEXED) { /* If a non-unique index is used, or if a prefix of the key for ** unique index is used (making the index functionally non-unique) ** then the sqlite_stat1 data becomes important for scoring the ** plan */ pTab->tabFlags |= TF_StatsUsed; } #ifdef SQLITE_ENABLE_STAT4 sqlite3Stat4ProbeFree(pBuilder->pRec); pBuilder->nRecValid = 0; pBuilder->pRec = 0; #endif } return rc; } #ifndef SQLITE_OMIT_VIRTUALTABLE /* ** Argument pIdxInfo is already populated with all constraints that may ** be used by the virtual table identified by pBuilder->pNew->iTab. This ** function marks a subset of those constraints usable, invokes the ** xBestIndex method and adds the returned plan to pBuilder. ** ** A constraint is marked usable if: ** ** * Argument mUsable indicates that its prerequisites are available, and ** ** * It is not one of the operators specified in the mExclude mask passed ** as the fourth argument (which in practice is either WO_IN or 0). ** ** Argument mPrereq is a mask of tables that must be scanned before the ** virtual table in question. These are added to the plans prerequisites ** before it is added to pBuilder. ** ** Output parameter *pbIn is set to true if the plan added to pBuilder ** uses one or more WO_IN terms, or false otherwise. */ static int whereLoopAddVirtualOne( WhereLoopBuilder *pBuilder, Bitmask mPrereq, /* Mask of tables that must be used. */ Bitmask mUsable, /* Mask of usable tables */ u16 mExclude, /* Exclude terms using these operators */ sqlite3_index_info *pIdxInfo, /* Populated object for xBestIndex */ u16 mNoOmit, /* Do not omit these constraints */ int *pbIn /* OUT: True if plan uses an IN(...) op */ ){ WhereClause *pWC = pBuilder->pWC; struct sqlite3_index_constraint *pIdxCons; struct sqlite3_index_constraint_usage *pUsage = pIdxInfo->aConstraintUsage; int i; int mxTerm; int rc = SQLITE_OK; WhereLoop *pNew = pBuilder->pNew; Parse *pParse = pBuilder->pWInfo->pParse; struct SrcList_item *pSrc = &pBuilder->pWInfo->pTabList->a[pNew->iTab]; int nConstraint = pIdxInfo->nConstraint; assert((mUsable & mPrereq)==mPrereq ); *pbIn = 0; pNew->prereq = mPrereq; /* Set the usable flag on the subset of constraints identified by ** arguments mUsable and mExclude. */ pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint; for (i=0; i<nConstraint; i++, pIdxCons++) { WhereTerm *pTerm = &pWC->a[pIdxCons->iTermOffset]; pIdxCons->usable = 0; if ((pTerm->prereqRight & mUsable)==pTerm->prereqRight && (pTerm->eOperator & mExclude)==0 ) { pIdxCons->usable = 1; } } /* Initialize the output fields of the sqlite3_index_info structure */ memset(pUsage, 0, sizeof(pUsage[0])*nConstraint); assert( pIdxInfo->needToFreeIdxStr==0 ); pIdxInfo->idxStr = 0; pIdxInfo->idxNum = 0; pIdxInfo->orderByConsumed = 0; pIdxInfo->estimatedCost = SQLITE_BIG_DBL / (double)2; pIdxInfo->estimatedRows = 25; pIdxInfo->idxFlags = 0; pIdxInfo->colUsed = (sqlite3_int64)pSrc->colUsed; /* Invoke the virtual table xBestIndex() method */ rc = vtabBestIndex(pParse, pSrc->pTab, pIdxInfo); if (rc) { if (rc==SQLITE_CONSTRAINT) { /* If the xBestIndex method returns SQLITE_CONSTRAINT, that means ** that the particular combination of parameters provided is unusable. ** Make no entries in the loop table. */ WHERETRACE(0xffff, (" ^^^^--- non-viable plan rejected!\n")); return SQLITE_OK; } return rc; } mxTerm = -1; assert( pNew->nLSlot>=nConstraint ); for (i=0; i<nConstraint; i++) pNew->aLTerm[i] = 0; pNew->u.vtab.omitMask = 0; pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint; for (i=0; i<nConstraint; i++, pIdxCons++) { int iTerm; if ((iTerm = pUsage[i].argvIndex - 1)>=0) { WhereTerm *pTerm; int j = pIdxCons->iTermOffset; if (iTerm>=nConstraint || j<0 || j>=pWC->nTerm || pNew->aLTerm[iTerm]!=0 || pIdxCons->usable==0 ) { sqlite3ErrorMsg(pParse,"%s.xBestIndex malfunction",pSrc->pTab->zName); testcase( pIdxInfo->needToFreeIdxStr ); return SQLITE_ERROR; } testcase( iTerm==nConstraint-1 ); testcase( j==0 ); testcase( j==pWC->nTerm-1 ); pTerm = &pWC->a[j]; pNew->prereq |= pTerm->prereqRight; assert( iTerm<pNew->nLSlot ); pNew->aLTerm[iTerm] = pTerm; if (iTerm>mxTerm) mxTerm = iTerm; testcase( iTerm==15 ); testcase( iTerm==16 ); if (iTerm<16 && pUsage[i].omit) pNew->u.vtab.omitMask |= 1<<iTerm; if ((pTerm->eOperator & WO_IN)!=0) { /* A virtual table that is constrained by an IN clause may not ** consume the ORDER BY clause because (1) the order of IN terms ** is not necessarily related to the order of output terms and ** (2) Multiple outputs from a single IN value will not merge ** together. */ pIdxInfo->orderByConsumed = 0; pIdxInfo->idxFlags &= ~SQLITE_INDEX_SCAN_UNIQUE; *pbIn = 1; assert((mExclude & WO_IN)==0 ); } } } pNew->u.vtab.omitMask &= ~mNoOmit; pNew->nLTerm = mxTerm+1; for (i=0; i<=mxTerm; i++) { if (pNew->aLTerm[i]==0) { /* The non-zero argvIdx values must be contiguous. Raise an ** error if they are not */ sqlite3ErrorMsg(pParse,"%s.xBestIndex malfunction",pSrc->pTab->zName); testcase( pIdxInfo->needToFreeIdxStr ); return SQLITE_ERROR; } } assert( pNew->nLTerm<=pNew->nLSlot ); pNew->u.vtab.idxNum = pIdxInfo->idxNum; pNew->u.vtab.needFree = pIdxInfo->needToFreeIdxStr; pIdxInfo->needToFreeIdxStr = 0; pNew->u.vtab.idxStr = pIdxInfo->idxStr; pNew->u.vtab.isOrdered = (i8)(pIdxInfo->orderByConsumed ? pIdxInfo->nOrderBy : 0); pNew->rSetup = 0; pNew->rRun = sqlite3LogEstFromDouble(pIdxInfo->estimatedCost); pNew->nOut = sqlite3LogEst(pIdxInfo->estimatedRows); /* Set the WHERE_ONEROW flag if the xBestIndex() method indicated ** that the scan will visit at most one row. Clear it otherwise. */ if (pIdxInfo->idxFlags & SQLITE_INDEX_SCAN_UNIQUE) { pNew->wsFlags |= WHERE_ONEROW; } else { pNew->wsFlags &= ~WHERE_ONEROW; } rc = whereLoopInsert(pBuilder, pNew); if (pNew->u.vtab.needFree) { sqlite3_free(pNew->u.vtab.idxStr); pNew->u.vtab.needFree = 0; } WHERETRACE(0xffff, (" bIn=%d prereqIn=%04llx prereqOut=%04llx\n", *pbIn, (sqlite3_uint64)mPrereq, (sqlite3_uint64)(pNew->prereq & ~mPrereq))); return rc; } /* ** If this function is invoked from within an xBestIndex() callback, it ** returns a pointer to a buffer containing the name of the collation ** sequence associated with element iCons of the sqlite3_index_info.aConstraint ** array. Or, if iCons is out of range or there is no active xBestIndex ** call, return NULL. */ const char *sqlite3_vtab_collation(sqlite3_index_info *pIdxInfo, int iCons){ HiddenIndexInfo *pHidden = (HiddenIndexInfo*)&pIdxInfo[1]; const char *zRet = 0; if (iCons>=0 && iCons<pIdxInfo->nConstraint) { CollSeq *pC = 0; int iTerm = pIdxInfo->aConstraint[iCons].iTermOffset; Expr *pX = pHidden->pWC->a[iTerm].pExpr; if (pX->pLeft) { pC = sqlite3BinaryCompareCollSeq(pHidden->pParse, pX->pLeft, pX->pRight); } zRet = (pC ? pC->zName : sqlite3StrBINARY); } return zRet; } /* ** Add all WhereLoop objects for a table of the join identified by ** pBuilder->pNew->iTab. That table is guaranteed to be a virtual table. ** ** If there are no LEFT or CROSS JOIN joins in the query, both mPrereq and ** mUnusable are set to 0. Otherwise, mPrereq is a mask of all FROM clause ** entries that occur before the virtual table in the FROM clause and are ** separated from it by at least one LEFT or CROSS JOIN. Similarly, the ** mUnusable mask contains all FROM clause entries that occur after the ** virtual table and are separated from it by at least one LEFT or ** CROSS JOIN. ** ** For example, if the query were: ** ** ... FROM t1, t2 LEFT JOIN t3, t4, vt CROSS JOIN t5, t6; ** ** then mPrereq corresponds to (t1, t2) and mUnusable to (t5, t6). ** ** All the tables in mPrereq must be scanned before the current virtual ** table. So any terms for which all prerequisites are satisfied by ** mPrereq may be specified as "usable" in all calls to xBestIndex. ** Conversely, all tables in mUnusable must be scanned after the current ** virtual table, so any terms for which the prerequisites overlap with ** mUnusable should always be configured as "not-usable" for xBestIndex. */ static int whereLoopAddVirtual( WhereLoopBuilder *pBuilder, /* WHERE clause information */ Bitmask mPrereq, /* Tables that must be scanned before this one */ Bitmask mUnusable /* Tables that must be scanned after this one */ ){ int rc = SQLITE_OK; /* Return code */ WhereInfo *pWInfo; /* WHERE analysis context */ Parse *pParse; /* The parsing context */ WhereClause *pWC; /* The WHERE clause */ struct SrcList_item *pSrc; /* The FROM clause term to search */ sqlite3_index_info *p; /* Object to pass to xBestIndex() */ int nConstraint; /* Number of constraints in p */ int bIn; /* True if plan uses IN(...) operator */ WhereLoop *pNew; Bitmask mBest; /* Tables used by best possible plan */ u16 mNoOmit; assert((mPrereq & mUnusable)==0 ); pWInfo = pBuilder->pWInfo; pParse = pWInfo->pParse; pWC = pBuilder->pWC; pNew = pBuilder->pNew; pSrc = &pWInfo->pTabList->a[pNew->iTab]; assert( IsVirtual(pSrc->pTab)); p = allocateIndexInfo(pParse, pWC, mUnusable, pSrc, pBuilder->pOrderBy, &mNoOmit); if (p==0) return SQLITE_NOMEM_BKPT; pNew->rSetup = 0; pNew->wsFlags = WHERE_VIRTUALTABLE; pNew->nLTerm = 0; pNew->u.vtab.needFree = 0; nConstraint = p->nConstraint; if (whereLoopResize(pParse->db, pNew, nConstraint)) { sqlite3DbFree(pParse->db, p); return SQLITE_NOMEM_BKPT; } /* First call xBestIndex() with all constraints usable. */ WHERETRACE(0x800, ("BEGIN %s.addVirtual()\n", pSrc->pTab->zName)); WHERETRACE(0x40, (" VirtualOne: all usable\n")); rc = whereLoopAddVirtualOne(pBuilder, mPrereq, ALLBITS, 0, p, mNoOmit, &bIn); /* If the call to xBestIndex() with all terms enabled produced a plan ** that does not require any source tables (IOW: a plan with mBest==0) ** and does not use an IN(...) operator, then there is no point in making ** any further calls to xBestIndex() since they will all return the same ** result (if the xBestIndex() implementation is sane). */ if (rc==SQLITE_OK && ((mBest = (pNew->prereq & ~mPrereq))!=0 || bIn)) { int seenZero = 0; /* True if a plan with no prereqs seen */ int seenZeroNoIN = 0; /* Plan with no prereqs and no IN(...) seen */ Bitmask mPrev = 0; Bitmask mBestNoIn = 0; /* If the plan produced by the earlier call uses an IN(...) term, call ** xBestIndex again, this time with IN(...) terms disabled. */ if (bIn) { WHERETRACE(0x40, (" VirtualOne: all usable w/o IN\n")); rc = whereLoopAddVirtualOne( pBuilder, mPrereq, ALLBITS, WO_IN, p, mNoOmit, &bIn); assert( bIn==0 ); mBestNoIn = pNew->prereq & ~mPrereq; if (mBestNoIn==0) { seenZero = 1; seenZeroNoIN = 1; } } /* Call xBestIndex once for each distinct value of (prereqRight & ~mPrereq) ** in the set of terms that apply to the current virtual table. */ while (rc==SQLITE_OK) { int i; Bitmask mNext = ALLBITS; assert( mNext>0 ); for (i=0; i<nConstraint; i++) { Bitmask mThis = ( pWC->a[p->aConstraint[i].iTermOffset].prereqRight & ~mPrereq ); if (mThis>mPrev && mThis<mNext) mNext = mThis; } mPrev = mNext; if (mNext==ALLBITS) break; if (mNext==mBest || mNext==mBestNoIn) continue; WHERETRACE(0x40, (" VirtualOne: mPrev=%04llx mNext=%04llx\n", (sqlite3_uint64)mPrev, (sqlite3_uint64)mNext)); rc = whereLoopAddVirtualOne( pBuilder, mPrereq, mNext|mPrereq, 0, p, mNoOmit, &bIn); if (pNew->prereq==mPrereq) { seenZero = 1; if (bIn==0) seenZeroNoIN = 1; } } /* If the calls to xBestIndex() in the above loop did not find a plan ** that requires no source tables at all (i.e. one guaranteed to be ** usable), make a call here with all source tables disabled */ if (rc==SQLITE_OK && seenZero==0) { WHERETRACE(0x40, (" VirtualOne: all disabled\n")); rc = whereLoopAddVirtualOne( pBuilder, mPrereq, mPrereq, 0, p, mNoOmit, &bIn); if (bIn==0) seenZeroNoIN = 1; } /* If the calls to xBestIndex() have so far failed to find a plan ** that requires no source tables at all and does not use an IN(...) ** operator, make a final call to obtain one here. */ if (rc==SQLITE_OK && seenZeroNoIN==0) { WHERETRACE(0x40, (" VirtualOne: all disabled and w/o IN\n")); rc = whereLoopAddVirtualOne( pBuilder, mPrereq, mPrereq, WO_IN, p, mNoOmit, &bIn); } } if (p->needToFreeIdxStr) sqlite3_free(p->idxStr); sqlite3DbFreeNN(pParse->db, p); WHERETRACE(0x800, ("END %s.addVirtual(), rc=%d\n", pSrc->pTab->zName, rc)); return rc; } #endif /* SQLITE_OMIT_VIRTUALTABLE */ /* ** Add WhereLoop entries to handle OR terms. This works for either ** btrees or virtual tables. */ static int whereLoopAddOr( WhereLoopBuilder *pBuilder, Bitmask mPrereq, Bitmask mUnusable ){ WhereInfo *pWInfo = pBuilder->pWInfo; WhereClause *pWC; WhereLoop *pNew; WhereTerm *pTerm, *pWCEnd; int rc = SQLITE_OK; int iCur; WhereClause tempWC; WhereLoopBuilder sSubBuild; WhereOrSet sSum, sCur; struct SrcList_item *pItem; pWC = pBuilder->pWC; pWCEnd = pWC->a + pWC->nTerm; pNew = pBuilder->pNew; memset(&sSum, 0, sizeof(sSum)); pItem = pWInfo->pTabList->a + pNew->iTab; iCur = pItem->iCursor; for (pTerm=pWC->a; pTerm<pWCEnd && rc==SQLITE_OK; pTerm++) { if ((pTerm->eOperator & WO_OR)!=0 && (pTerm->u.pOrInfo->indexable & pNew->maskSelf)!=0 ) { WhereClause * const pOrWC = &pTerm->u.pOrInfo->wc; WhereTerm * const pOrWCEnd = &pOrWC->a[pOrWC->nTerm]; WhereTerm *pOrTerm; int once = 1; int i, j; sSubBuild = *pBuilder; sSubBuild.pOrderBy = 0; sSubBuild.pOrSet = &sCur; WHERETRACE(0x200, ("Begin processing OR-clause %p\n", pTerm)); for (pOrTerm=pOrWC->a; pOrTerm<pOrWCEnd; pOrTerm++) { if ((pOrTerm->eOperator & WO_AND)!=0) { sSubBuild.pWC = &pOrTerm->u.pAndInfo->wc; } else if (pOrTerm->leftCursor==iCur) { tempWC.pWInfo = pWC->pWInfo; tempWC.pOuter = pWC; tempWC.op = TK_AND; tempWC.nTerm = 1; tempWC.a = pOrTerm; sSubBuild.pWC = &tempWC; } else { continue; } sCur.n = 0; #ifdef WHERETRACE_ENABLED WHERETRACE(0x200, ("OR-term %d of %p has %d subterms:\n", (int)(pOrTerm-pOrWC->a), pTerm, sSubBuild.pWC->nTerm)); if (sqlite3WhereTrace & 0x400) { sqlite3WhereClausePrint(sSubBuild.pWC); } #endif #ifndef SQLITE_OMIT_VIRTUALTABLE if (IsVirtual(pItem->pTab)) { rc = whereLoopAddVirtual(&sSubBuild, mPrereq, mUnusable); } else #endif { rc = whereLoopAddBtree(&sSubBuild, mPrereq); } if (rc==SQLITE_OK) { rc = whereLoopAddOr(&sSubBuild, mPrereq, mUnusable); } assert( rc==SQLITE_OK || sCur.n==0 ); if (sCur.n==0) { sSum.n = 0; break; } else if (once) { whereOrMove(&sSum, &sCur); once = 0; } else { WhereOrSet sPrev; whereOrMove(&sPrev, &sSum); sSum.n = 0; for (i=0; i<sPrev.n; i++) { for (j=0; j<sCur.n; j++) { whereOrInsert(&sSum, sPrev.a[i].prereq | sCur.a[j].prereq, sqlite3LogEstAdd(sPrev.a[i].rRun, sCur.a[j].rRun), sqlite3LogEstAdd(sPrev.a[i].nOut, sCur.a[j].nOut)); } } } } pNew->nLTerm = 1; pNew->aLTerm[0] = pTerm; pNew->wsFlags = WHERE_MULTI_OR; pNew->rSetup = 0; pNew->iSortIdx = 0; memset(&pNew->u, 0, sizeof(pNew->u)); for (i=0; rc==SQLITE_OK && i<sSum.n; i++) { /* TUNING: Currently sSum.a[i].rRun is set to the sum of the costs ** of all sub-scans required by the OR-scan. However, due to rounding ** errors, it may be that the cost of the OR-scan is equal to its ** most expensive sub-scan. Add the smallest possible penalty ** (equivalent to multiplying the cost by 1.07) to ensure that ** this does not happen. Otherwise, for WHERE clauses such as the ** following where there is an index on "y": ** ** WHERE likelihood(x=?, 0.99) OR y=? ** ** the planner may elect to "OR" together a full-table scan and an ** index lookup. And other similarly odd results. */ pNew->rRun = sSum.a[i].rRun + 1; pNew->nOut = sSum.a[i].nOut; pNew->prereq = sSum.a[i].prereq; rc = whereLoopInsert(pBuilder, pNew); } WHERETRACE(0x200, ("End processing OR-clause %p\n", pTerm)); } } return rc; } /* ** Add all WhereLoop objects for all tables */ static int whereLoopAddAll(WhereLoopBuilder *pBuilder){ WhereInfo *pWInfo = pBuilder->pWInfo; Bitmask mPrereq = 0; Bitmask mPrior = 0; int iTab; SrcList *pTabList = pWInfo->pTabList; struct SrcList_item *pItem; struct SrcList_item *pEnd = &pTabList->a[pWInfo->nLevel]; sqlite3 *db = pWInfo->pParse->db; int rc = SQLITE_OK; WhereLoop *pNew; u8 priorJointype = 0; /* Loop over the tables in the join, from left to right */ pNew = pBuilder->pNew; whereLoopInit(pNew); pBuilder->iPlanLimit = SQLITE_QUERY_PLANNER_LIMIT; for (iTab=0, pItem=pTabList->a; pItem<pEnd; iTab++, pItem++) { Bitmask mUnusable = 0; pNew->iTab = iTab; pBuilder->iPlanLimit += SQLITE_QUERY_PLANNER_LIMIT_INCR; pNew->maskSelf = sqlite3WhereGetMask(&pWInfo->sMaskSet, pItem->iCursor); if (((pItem->fg.jointype|priorJointype) & (JT_LEFT|JT_CROSS))!=0) { /* This condition is true when pItem is the FROM clause term on the ** right-hand-side of a LEFT or CROSS JOIN. */ mPrereq = mPrior; } priorJointype = pItem->fg.jointype; #ifndef SQLITE_OMIT_VIRTUALTABLE if (IsVirtual(pItem->pTab)) { struct SrcList_item *p; for (p=&pItem[1]; p<pEnd; p++) { if (mUnusable || (p->fg.jointype & (JT_LEFT|JT_CROSS))) { mUnusable |= sqlite3WhereGetMask(&pWInfo->sMaskSet, p->iCursor); } } rc = whereLoopAddVirtual(pBuilder, mPrereq, mUnusable); } else #endif /* SQLITE_OMIT_VIRTUALTABLE */ { rc = whereLoopAddBtree(pBuilder, mPrereq); } if (rc==SQLITE_OK && pBuilder->pWC->hasOr) { rc = whereLoopAddOr(pBuilder, mPrereq, mUnusable); } mPrior |= pNew->maskSelf; if (rc || db->mallocFailed) { if (rc==SQLITE_DONE) { /* We hit the query planner search limit set by iPlanLimit */ sqlite3_log(SQLITE_WARNING, "abbreviated query algorithm search"); rc = SQLITE_OK; } else { break; } } } whereLoopClear(db, pNew); return rc; } /* ** Examine a WherePath (with the addition of the extra WhereLoop of the 6th ** parameters) to see if it outputs rows in the requested ORDER BY ** (or GROUP BY) without requiring a separate sort operation. Return N: ** ** N>0: N terms of the ORDER BY clause are satisfied ** N==0: No terms of the ORDER BY clause are satisfied ** N<0: Unknown yet how many terms of ORDER BY might be satisfied. ** ** Note that processing for WHERE_GROUPBY and WHERE_DISTINCTBY is not as ** strict. With GROUP BY and DISTINCT the only requirement is that ** equivalent rows appear immediately adjacent to one another. GROUP BY ** and DISTINCT do not require rows to appear in any particular order as long ** as equivalent rows are grouped together. Thus for GROUP BY and DISTINCT ** the pOrderBy terms can be matched in any order. With ORDER BY, the ** pOrderBy terms must be matched in strict left-to-right order. */ static i8 wherePathSatisfiesOrderBy( WhereInfo *pWInfo, /* The WHERE clause */ ExprList *pOrderBy, /* ORDER BY or GROUP BY or DISTINCT clause to check */ WherePath *pPath, /* The WherePath to check */ u16 wctrlFlags, /* WHERE_GROUPBY or _DISTINCTBY or _ORDERBY_LIMIT */ u16 nLoop, /* Number of entries in pPath->aLoop[] */ WhereLoop *pLast, /* Add this WhereLoop to the end of pPath->aLoop[] */ Bitmask *pRevMask /* OUT: Mask of WhereLoops to run in reverse order */ ){ u8 revSet; /* True if rev is known */ u8 rev; /* Composite sort order */ u8 revIdx; /* Index sort order */ u8 isOrderDistinct; /* All prior WhereLoops are order-distinct */ u8 distinctColumns; /* True if the loop has UNIQUE NOT NULL columns */ u8 isMatch; /* iColumn matches a term of the ORDER BY clause */ u16 eqOpMask; /* Allowed equality operators */ u16 nKeyCol; /* Number of key columns in pIndex */ u16 nColumn; /* Total number of ordered columns in the index */ u16 nOrderBy; /* Number terms in the ORDER BY clause */ int iLoop; /* Index of WhereLoop in pPath being processed */ int i, j; /* Loop counters */ int iCur; /* Cursor number for current WhereLoop */ int iColumn; /* A column number within table iCur */ WhereLoop *pLoop = 0; /* Current WhereLoop being processed. */ WhereTerm *pTerm; /* A single term of the WHERE clause */ Expr *pOBExpr; /* An expression from the ORDER BY clause */ CollSeq *pColl; /* COLLATE function from an ORDER BY clause term */ Index *pIndex; /* The index associated with pLoop */ sqlite3 *db = pWInfo->pParse->db; /* Database connection */ Bitmask obSat = 0; /* Mask of ORDER BY terms satisfied so far */ Bitmask obDone; /* Mask of all ORDER BY terms */ Bitmask orderDistinctMask; /* Mask of all well-ordered loops */ Bitmask ready; /* Mask of inner loops */ /* ** We say the WhereLoop is "one-row" if it generates no more than one ** row of output. A WhereLoop is one-row if all of the following are true: ** (a) All index columns match with WHERE_COLUMN_EQ. ** (b) The index is unique ** Any WhereLoop with an WHERE_COLUMN_EQ constraint on the rowid is one-row. ** Every one-row WhereLoop will have the WHERE_ONEROW bit set in wsFlags. ** ** We say the WhereLoop is "order-distinct" if the set of columns from ** that WhereLoop that are in the ORDER BY clause are different for every ** row of the WhereLoop. Every one-row WhereLoop is automatically ** order-distinct. A WhereLoop that has no columns in the ORDER BY clause ** is not order-distinct. To be order-distinct is not quite the same as being ** UNIQUE since a UNIQUE column or index can have multiple rows that ** are NULL and NULL values are equivalent for the purpose of order-distinct. ** To be order-distinct, the columns must be UNIQUE and NOT NULL. ** ** The rowid for a table is always UNIQUE and NOT NULL so whenever the ** rowid appears in the ORDER BY clause, the corresponding WhereLoop is ** automatically order-distinct. */ assert( pOrderBy!=0 ); if (nLoop && OptimizationDisabled(db, SQLITE_OrderByIdxJoin)) return 0; nOrderBy = pOrderBy->nExpr; testcase( nOrderBy==BMS-1 ); if (nOrderBy>BMS-1) return 0; /* Cannot optimize overly large ORDER BYs */ isOrderDistinct = 1; obDone = MASKBIT(nOrderBy)-1; orderDistinctMask = 0; ready = 0; eqOpMask = WO_EQ | WO_IS | WO_ISNULL; if (wctrlFlags & WHERE_ORDERBY_LIMIT) eqOpMask |= WO_IN; for (iLoop=0; isOrderDistinct && obSat<obDone && iLoop<=nLoop; iLoop++) { if (iLoop>0) ready |= pLoop->maskSelf; if (iLoop<nLoop) { pLoop = pPath->aLoop[iLoop]; if (wctrlFlags & WHERE_ORDERBY_LIMIT) continue; } else { pLoop = pLast; } if (pLoop->wsFlags & WHERE_VIRTUALTABLE) { if (pLoop->u.vtab.isOrdered) obSat = obDone; break; } else if (wctrlFlags & WHERE_DISTINCTBY) { pLoop->u.btree.nDistinctCol = 0; } iCur = pWInfo->pTabList->a[pLoop->iTab].iCursor; /* Mark off any ORDER BY term X that is a column in the table of ** the current loop for which there is term in the WHERE ** clause of the form X IS NULL or X=? that reference only outer ** loops. */ for (i=0; i<nOrderBy; i++) { if (MASKBIT(i) & obSat) continue; pOBExpr = sqlite3ExprSkipCollate(pOrderBy->a[i].pExpr); if (pOBExpr->op!=TK_COLUMN) continue; if (pOBExpr->iTable!=iCur) continue; pTerm = sqlite3WhereFindTerm(&pWInfo->sWC, iCur, pOBExpr->iColumn, ~ready, eqOpMask, 0); if (pTerm==0) continue; if (pTerm->eOperator==WO_IN) { /* IN terms are only valid for sorting in the ORDER BY LIMIT ** optimization, and then only if they are actually used ** by the query plan */ assert( wctrlFlags & WHERE_ORDERBY_LIMIT ); for (j=0; j<pLoop->nLTerm && pTerm!=pLoop->aLTerm[j]; j++) {} if (j>=pLoop->nLTerm) continue; } if ((pTerm->eOperator&(WO_EQ|WO_IS))!=0 && pOBExpr->iColumn>=0) { if (sqlite3ExprCollSeqMatch(pWInfo->pParse, pOrderBy->a[i].pExpr, pTerm->pExpr)==0) { continue; } testcase( pTerm->pExpr->op==TK_IS ); } obSat |= MASKBIT(i); } if ((pLoop->wsFlags & WHERE_ONEROW)==0) { if (pLoop->wsFlags & WHERE_IPK) { pIndex = 0; nKeyCol = 0; nColumn = 1; } else if ((pIndex = pLoop->u.btree.pIndex)==0 || pIndex->bUnordered) { return 0; } else { nKeyCol = pIndex->nKeyCol; nColumn = pIndex->nColumn; assert( nColumn==nKeyCol+1 || !HasRowid(pIndex->pTable)); assert( pIndex->aiColumn[nColumn-1]==XN_ROWID || !HasRowid(pIndex->pTable)); isOrderDistinct = IsUniqueIndex(pIndex) && (pLoop->wsFlags & WHERE_SKIPSCAN)==0; } /* Loop through all columns of the index and deal with the ones ** that are not constrained by == or IN. */ rev = revSet = 0; distinctColumns = 0; for (j=0; j<nColumn; j++) { u8 bOnce = 1; /* True to run the ORDER BY search loop */ assert( j>=pLoop->u.btree.nEq || (pLoop->aLTerm[j]==0)==(j<pLoop->nSkip) ); if (j<pLoop->u.btree.nEq && j>=pLoop->nSkip) { u16 eOp = pLoop->aLTerm[j]->eOperator; /* Skip over == and IS and ISNULL terms. (Also skip IN terms when ** doing WHERE_ORDERBY_LIMIT processing). ** ** If the current term is a column of an ((?,?) IN (SELECT...)) ** expression for which the SELECT returns more than one column, ** check that it is the only column used by this loop. Otherwise, ** if it is one of two or more, none of the columns can be ** considered to match an ORDER BY term. */ if ((eOp & eqOpMask)!=0) { if (eOp & WO_ISNULL) { testcase( isOrderDistinct ); isOrderDistinct = 0; } continue; } else if (ALWAYS(eOp & WO_IN)) { /* ALWAYS() justification: eOp is an equality operator due to the ** j<pLoop->u.btree.nEq constraint above. Any equality other ** than WO_IN is captured by the previous "if". So this one ** always has to be WO_IN. */ Expr *pX = pLoop->aLTerm[j]->pExpr; for (i=j+1; i<pLoop->u.btree.nEq; i++) { if (pLoop->aLTerm[i]->pExpr==pX) { assert((pLoop->aLTerm[i]->eOperator & WO_IN)); bOnce = 0; break; } } } } /* Get the column number in the table (iColumn) and sort order ** (revIdx) for the j-th column of the index. */ if (pIndex) { iColumn = pIndex->aiColumn[j]; revIdx = pIndex->aSortOrder[j]; if (iColumn==pIndex->pTable->iPKey) iColumn = XN_ROWID; } else { iColumn = XN_ROWID; revIdx = 0; } /* An unconstrained column that might be NULL means that this ** WhereLoop is not well-ordered */ if (isOrderDistinct && iColumn>=0 && j>=pLoop->u.btree.nEq && pIndex->pTable->aCol[iColumn].notNull==0 ) { isOrderDistinct = 0; } /* Find the ORDER BY term that corresponds to the j-th column ** of the index and mark that ORDER BY term off */ isMatch = 0; for (i=0; bOnce && i<nOrderBy; i++) { if (MASKBIT(i) & obSat) continue; pOBExpr = sqlite3ExprSkipCollate(pOrderBy->a[i].pExpr); testcase( wctrlFlags & WHERE_GROUPBY ); testcase( wctrlFlags & WHERE_DISTINCTBY ); if ((wctrlFlags & (WHERE_GROUPBY|WHERE_DISTINCTBY))==0) bOnce = 0; if (iColumn>=XN_ROWID) { if (pOBExpr->op!=TK_COLUMN) continue; if (pOBExpr->iTable!=iCur) continue; if (pOBExpr->iColumn!=iColumn) continue; } else { Expr *pIdxExpr = pIndex->aColExpr->a[j].pExpr; if (sqlite3ExprCompareSkip(pOBExpr, pIdxExpr, iCur)) { continue; } } if (iColumn!=XN_ROWID) { pColl = sqlite3ExprNNCollSeq(pWInfo->pParse, pOrderBy->a[i].pExpr); if (sqlite3StrICmp(pColl->zName, pIndex->azColl[j])!=0) continue; } if (wctrlFlags & WHERE_DISTINCTBY) { pLoop->u.btree.nDistinctCol = j+1; } isMatch = 1; break; } if (isMatch && (wctrlFlags & WHERE_GROUPBY)==0) { /* Make sure the sort order is compatible in an ORDER BY clause. ** Sort order is irrelevant for a GROUP BY clause. */ if (revSet) { if ((rev ^ revIdx)!=pOrderBy->a[i].sortOrder) isMatch = 0; } else { rev = revIdx ^ pOrderBy->a[i].sortOrder; if (rev) *pRevMask |= MASKBIT(iLoop); revSet = 1; } } if (isMatch) { if (iColumn==XN_ROWID) { testcase( distinctColumns==0 ); distinctColumns = 1; } obSat |= MASKBIT(i); if ((wctrlFlags & WHERE_ORDERBY_MIN) && j==pLoop->u.btree.nEq) { pLoop->wsFlags |= WHERE_MIN_ORDERED; } } else { /* No match found */ if (j==0 || j<nKeyCol) { testcase( isOrderDistinct!=0 ); isOrderDistinct = 0; } break; } } /* end Loop over all index columns */ if (distinctColumns) { testcase( isOrderDistinct==0 ); isOrderDistinct = 1; } } /* end-if not one-row */ /* Mark off any other ORDER BY terms that reference pLoop */ if (isOrderDistinct) { orderDistinctMask |= pLoop->maskSelf; for (i=0; i<nOrderBy; i++) { Expr *p; Bitmask mTerm; if (MASKBIT(i) & obSat) continue; p = pOrderBy->a[i].pExpr; mTerm = sqlite3WhereExprUsage(&pWInfo->sMaskSet,p); if (mTerm==0 && !sqlite3ExprIsConstant(p)) continue; if ((mTerm&~orderDistinctMask)==0) { obSat |= MASKBIT(i); } } } } /* End the loop over all WhereLoops from outer-most down to inner-most */ if (obSat==obDone) return (i8)nOrderBy; if (!isOrderDistinct) { for (i=nOrderBy-1; i>0; i--) { Bitmask m = MASKBIT(i) - 1; if ((obSat&m)==m) return i; } return 0; } return -1; } /* ** If the WHERE_GROUPBY flag is set in the mask passed to sqlite3WhereBegin(), ** the planner assumes that the specified pOrderBy list is actually a GROUP ** BY clause - and so any order that groups rows as required satisfies the ** request. ** ** Normally, in this case it is not possible for the caller to determine ** whether or not the rows are really being delivered in sorted order, or ** just in some other order that provides the required grouping. However, ** if the WHERE_SORTBYGROUP flag is also passed to sqlite3WhereBegin(), then ** this function may be called on the returned WhereInfo object. It returns ** true if the rows really will be sorted in the specified order, or false ** otherwise. ** ** For example, assuming: ** ** CREATE INDEX i1 ON t1(x, Y); ** ** then ** ** SELECT * FROM t1 GROUP BY x,y ORDER BY x,y; -- IsSorted()==1 ** SELECT * FROM t1 GROUP BY y,x ORDER BY y,x; -- IsSorted()==0 */ int sqlite3WhereIsSorted(WhereInfo *pWInfo){ assert( pWInfo->wctrlFlags & WHERE_GROUPBY ); assert( pWInfo->wctrlFlags & WHERE_SORTBYGROUP ); return pWInfo->sorted; } #ifdef WHERETRACE_ENABLED /* For debugging use only: */ static const char *wherePathName(WherePath *pPath, int nLoop, WhereLoop *pLast){ static char zName[65]; int i; for (i=0; i<nLoop; i++) { zName[i] = pPath->aLoop[i]->cId; } if (pLast) zName[i++] = pLast->cId; zName[i] = 0; return zName; } #endif /* ** Return the cost of sorting nRow rows, assuming that the keys have ** nOrderby columns and that the first nSorted columns are already in ** order. */ static LogEst whereSortingCost( WhereInfo *pWInfo, LogEst nRow, int nOrderBy, int nSorted ){ /* TUNING: Estimated cost of a full external sort, where N is ** the number of rows to sort is: ** ** cost = (3.0 * N * log(N)). ** ** Or, if the order-by clause has X terms but only the last Y ** terms are out of order, then block-sorting will reduce the ** sorting cost to: ** ** cost = (3.0 * N * log(N)) * (Y/X) ** ** The (Y/X) term is implemented using stack variable rScale ** below. */ LogEst rScale, rSortCost; assert( nOrderBy>0 && 66==sqlite3LogEst(100)); rScale = sqlite3LogEst((nOrderBy-nSorted)*100/nOrderBy) - 66; rSortCost = nRow + rScale + 16; /* Multiple by log(M) where M is the number of output rows. ** Use the LIMIT for M if it is smaller */ if ((pWInfo->wctrlFlags & WHERE_USE_LIMIT)!=0 && pWInfo->iLimit<nRow) { nRow = pWInfo->iLimit; } rSortCost += estLog(nRow); return rSortCost; } /* ** Given the list of WhereLoop objects at pWInfo->pLoops, this routine ** attempts to find the lowest cost path that visits each WhereLoop ** once. This path is then loaded into the pWInfo->a[].pWLoop fields. ** ** Assume that the total number of output rows that will need to be sorted ** will be nRowEst (in the 10*log2 representation). Or, ignore sorting ** costs if nRowEst==0. ** ** Return SQLITE_OK on success or SQLITE_NOMEM of a memory allocation ** error occurs. */ static int wherePathSolver(WhereInfo *pWInfo, LogEst nRowEst){ int mxChoice; /* Maximum number of simultaneous paths tracked */ int nLoop; /* Number of terms in the join */ Parse *pParse; /* Parsing context */ sqlite3 *db; /* The database connection */ int iLoop; /* Loop counter over the terms of the join */ int ii, jj; /* Loop counters */ int mxI = 0; /* Index of next entry to replace */ int nOrderBy; /* Number of ORDER BY clause terms */ LogEst mxCost = 0; /* Maximum cost of a set of paths */ LogEst mxUnsorted = 0; /* Maximum unsorted cost of a set of path */ int nTo, nFrom; /* Number of valid entries in aTo[] and aFrom[] */ WherePath *aFrom; /* All nFrom paths at the previous level */ WherePath *aTo; /* The nTo best paths at the current level */ WherePath *pFrom; /* An element of aFrom[] that we are working on */ WherePath *pTo; /* An element of aTo[] that we are working on */ WhereLoop *pWLoop; /* One of the WhereLoop objects */ WhereLoop **pX; /* Used to divy up the pSpace memory */ LogEst *aSortCost = 0; /* Sorting and partial sorting costs */ char *pSpace; /* Temporary memory used by this routine */ int nSpace; /* Bytes of space allocated at pSpace */ pParse = pWInfo->pParse; db = pParse->db; nLoop = pWInfo->nLevel; /* TUNING: For simple queries, only the best path is tracked. ** For 2-way joins, the 5 best paths are followed. ** For joins of 3 or more tables, track the 10 best paths */ mxChoice = (nLoop<=1) ? 1 : (nLoop==2 ? 5 : 10); assert( nLoop<=pWInfo->pTabList->nSrc ); WHERETRACE(0x002, ("---- begin solver. (nRowEst=%d)\n", nRowEst)); /* If nRowEst is zero and there is an ORDER BY clause, ignore it. In this ** case the purpose of this call is to estimate the number of rows returned ** by the overall query. Once this estimate has been obtained, the caller ** will invoke this function a second time, passing the estimate as the ** nRowEst parameter. */ if (pWInfo->pOrderBy==0 || nRowEst==0) { nOrderBy = 0; } else { nOrderBy = pWInfo->pOrderBy->nExpr; } /* Allocate and initialize space for aTo, aFrom and aSortCost[] */ nSpace = (sizeof(WherePath)+sizeof(WhereLoop*)*nLoop)*mxChoice*2; nSpace += sizeof(LogEst) * nOrderBy; pSpace = sqlite3DbMallocRawNN(db, nSpace); if (pSpace==0) return SQLITE_NOMEM_BKPT; aTo = (WherePath*)pSpace; aFrom = aTo+mxChoice; memset(aFrom, 0, sizeof(aFrom[0])); pX = (WhereLoop**)(aFrom+mxChoice); for (ii=mxChoice*2, pFrom=aTo; ii>0; ii--, pFrom++, pX += nLoop) { pFrom->aLoop = pX; } if (nOrderBy) { /* If there is an ORDER BY clause and it is not being ignored, set up ** space for the aSortCost[] array. Each element of the aSortCost array ** is either zero - meaning it has not yet been initialized - or the ** cost of sorting nRowEst rows of data where the first X terms of ** the ORDER BY clause are already in order, where X is the array ** index. */ aSortCost = (LogEst*)pX; memset(aSortCost, 0, sizeof(LogEst) * nOrderBy); } assert( aSortCost==0 || &pSpace[nSpace]==(char*)&aSortCost[nOrderBy] ); assert( aSortCost!=0 || &pSpace[nSpace]==(char*)pX ); /* Seed the search with a single WherePath containing zero WhereLoops. ** ** TUNING: Do not let the number of iterations go above 28. If the cost ** of computing an automatic index is not paid back within the first 28 ** rows, then do not use the automatic index. */ aFrom[0].nRow = MIN(pParse->nQueryLoop, 48); assert( 48==sqlite3LogEst(28)); nFrom = 1; assert( aFrom[0].isOrdered==0 ); if (nOrderBy) { /* If nLoop is zero, then there are no FROM terms in the query. Since ** in this case the query may return a maximum of one row, the results ** are already in the requested order. Set isOrdered to nOrderBy to ** indicate this. Or, if nLoop is greater than zero, set isOrdered to ** -1, indicating that the result set may or may not be ordered, ** depending on the loops added to the current plan. */ aFrom[0].isOrdered = nLoop>0 ? -1 : nOrderBy; } /* Compute successively longer WherePaths using the previous generation ** of WherePaths as the basis for the next. Keep track of the mxChoice ** best paths at each generation */ for (iLoop=0; iLoop<nLoop; iLoop++) { nTo = 0; for (ii=0, pFrom=aFrom; ii<nFrom; ii++, pFrom++) { for (pWLoop=pWInfo->pLoops; pWLoop; pWLoop=pWLoop->pNextLoop) { LogEst nOut; /* Rows visited by (pFrom+pWLoop) */ LogEst rCost; /* Cost of path (pFrom+pWLoop) */ LogEst rUnsorted; /* Unsorted cost of (pFrom+pWLoop) */ i8 isOrdered = pFrom->isOrdered; /* isOrdered for (pFrom+pWLoop) */ Bitmask maskNew; /* Mask of src visited by (..) */ Bitmask revMask = 0; /* Mask of rev-order loops for (..) */ if ((pWLoop->prereq & ~pFrom->maskLoop)!=0) continue; if ((pWLoop->maskSelf & pFrom->maskLoop)!=0) continue; if ((pWLoop->wsFlags & WHERE_AUTO_INDEX)!=0 && pFrom->nRow<3) { /* Do not use an automatic index if the this loop is expected ** to run less than 1.25 times. It is tempting to also exclude ** automatic index usage on an outer loop, but sometimes an automatic ** index is useful in the outer loop of a correlated subquery. */ assert( 10==sqlite3LogEst(2)); continue; } /* At this point, pWLoop is a candidate to be the next loop. ** Compute its cost */ rUnsorted = sqlite3LogEstAdd(pWLoop->rSetup,pWLoop->rRun + pFrom->nRow); rUnsorted = sqlite3LogEstAdd(rUnsorted, pFrom->rUnsorted); nOut = pFrom->nRow + pWLoop->nOut; maskNew = pFrom->maskLoop | pWLoop->maskSelf; if (isOrdered<0) { isOrdered = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pOrderBy, pFrom, pWInfo->wctrlFlags, iLoop, pWLoop, &revMask); } else { revMask = pFrom->revLoop; } if (isOrdered>=0 && isOrdered<nOrderBy) { if (aSortCost[isOrdered]==0) { aSortCost[isOrdered] = whereSortingCost( pWInfo, nRowEst, nOrderBy, isOrdered ); } /* TUNING: Add a small extra penalty (5) to sorting as an ** extra encouragment to the query planner to select a plan ** where the rows emerge in the correct order without any sorting ** required. */ rCost = sqlite3LogEstAdd(rUnsorted, aSortCost[isOrdered]) + 5; WHERETRACE(0x002, ("---- sort cost=%-3d (%d/%d) increases cost %3d to %-3d\n", aSortCost[isOrdered], (nOrderBy-isOrdered), nOrderBy, rUnsorted, rCost)); } else { rCost = rUnsorted; rUnsorted -= 2; /* TUNING: Slight bias in favor of no-sort plans */ } /* Check to see if pWLoop should be added to the set of ** mxChoice best-so-far paths. ** ** First look for an existing path among best-so-far paths ** that covers the same set of loops and has the same isOrdered ** setting as the current path candidate. ** ** The term "((pTo->isOrdered^isOrdered)&0x80)==0" is equivalent ** to (pTo->isOrdered==(-1))==(isOrdered==(-1))" for the range ** of legal values for isOrdered, -1..64. */ for (jj=0, pTo=aTo; jj<nTo; jj++, pTo++) { if (pTo->maskLoop==maskNew && ((pTo->isOrdered^isOrdered)&0x80)==0 ) { testcase( jj==nTo-1 ); break; } } if (jj>=nTo) { /* None of the existing best-so-far paths match the candidate. */ if (nTo>=mxChoice && (rCost>mxCost || (rCost==mxCost && rUnsorted>=mxUnsorted)) ) { /* The current candidate is no better than any of the mxChoice ** paths currently in the best-so-far buffer. So discard ** this candidate as not viable. */ #ifdef WHERETRACE_ENABLED /* 0x4 */ if (sqlite3WhereTrace&0x4) { sqlite3DebugPrintf("Skip %s cost=%-3d,%3d,%3d order=%c\n", wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted, isOrdered>=0 ? isOrdered+'0' : '?'); } #endif continue; } /* If we reach this points it means that the new candidate path ** needs to be added to the set of best-so-far paths. */ if (nTo<mxChoice) { /* Increase the size of the aTo set by one */ jj = nTo++; } else { /* New path replaces the prior worst to keep count below mxChoice */ jj = mxI; } pTo = &aTo[jj]; #ifdef WHERETRACE_ENABLED /* 0x4 */ if (sqlite3WhereTrace&0x4) { sqlite3DebugPrintf("New %s cost=%-3d,%3d,%3d order=%c\n", wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted, isOrdered>=0 ? isOrdered+'0' : '?'); } #endif } else { /* Control reaches here if best-so-far path pTo=aTo[jj] covers the ** same set of loops and has the same isOrdered setting as the ** candidate path. Check to see if the candidate should replace ** pTo or if the candidate should be skipped. ** ** The conditional is an expanded vector comparison equivalent to: ** (pTo->rCost,pTo->nRow,pTo->rUnsorted) <= (rCost,nOut,rUnsorted) */ if (pTo->rCost<rCost || (pTo->rCost==rCost && (pTo->nRow<nOut || (pTo->nRow==nOut && pTo->rUnsorted<=rUnsorted) ) ) ) { #ifdef WHERETRACE_ENABLED /* 0x4 */ if (sqlite3WhereTrace&0x4) { sqlite3DebugPrintf( "Skip %s cost=%-3d,%3d,%3d order=%c", wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted, isOrdered>=0 ? isOrdered+'0' : '?'); sqlite3DebugPrintf(" vs %s cost=%-3d,%3d,%3d order=%c\n", wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow, pTo->rUnsorted, pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?'); } #endif /* Discard the candidate path from further consideration */ testcase( pTo->rCost==rCost ); continue; } testcase( pTo->rCost==rCost+1 ); /* Control reaches here if the candidate path is better than the ** pTo path. Replace pTo with the candidate. */ #ifdef WHERETRACE_ENABLED /* 0x4 */ if (sqlite3WhereTrace&0x4) { sqlite3DebugPrintf( "Update %s cost=%-3d,%3d,%3d order=%c", wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted, isOrdered>=0 ? isOrdered+'0' : '?'); sqlite3DebugPrintf(" was %s cost=%-3d,%3d,%3d order=%c\n", wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow, pTo->rUnsorted, pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?'); } #endif } /* pWLoop is a winner. Add it to the set of best so far */ pTo->maskLoop = pFrom->maskLoop | pWLoop->maskSelf; pTo->revLoop = revMask; pTo->nRow = nOut; pTo->rCost = rCost; pTo->rUnsorted = rUnsorted; pTo->isOrdered = isOrdered; memcpy(pTo->aLoop, pFrom->aLoop, sizeof(WhereLoop*)*iLoop); pTo->aLoop[iLoop] = pWLoop; if (nTo>=mxChoice) { mxI = 0; mxCost = aTo[0].rCost; mxUnsorted = aTo[0].nRow; for (jj=1, pTo=&aTo[1]; jj<mxChoice; jj++, pTo++) { if (pTo->rCost>mxCost || (pTo->rCost==mxCost && pTo->rUnsorted>mxUnsorted) ) { mxCost = pTo->rCost; mxUnsorted = pTo->rUnsorted; mxI = jj; } } } } } #ifdef WHERETRACE_ENABLED /* >=2 */ if (sqlite3WhereTrace & 0x02) { sqlite3DebugPrintf("---- after round %d ----\n", iLoop); for (ii=0, pTo=aTo; ii<nTo; ii++, pTo++) { sqlite3DebugPrintf(" %s cost=%-3d nrow=%-3d order=%c", wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow, pTo->isOrdered>=0 ? (pTo->isOrdered+'0') : '?'); if (pTo->isOrdered>0) { sqlite3DebugPrintf(" rev=0x%llx\n", pTo->revLoop); } else { sqlite3DebugPrintf("\n"); } } } #endif /* Swap the roles of aFrom and aTo for the next generation */ pFrom = aTo; aTo = aFrom; aFrom = pFrom; nFrom = nTo; } if (nFrom==0) { sqlite3ErrorMsg(pParse, "no query solution"); sqlite3DbFreeNN(db, pSpace); return SQLITE_ERROR; } /* Find the lowest cost path. pFrom will be left pointing to that path */ pFrom = aFrom; for (ii=1; ii<nFrom; ii++) { if (pFrom->rCost>aFrom[ii].rCost) pFrom = &aFrom[ii]; } assert( pWInfo->nLevel==nLoop ); /* Load the lowest cost path into pWInfo */ for (iLoop=0; iLoop<nLoop; iLoop++) { WhereLevel *pLevel = pWInfo->a + iLoop; pLevel->pWLoop = pWLoop = pFrom->aLoop[iLoop]; pLevel->iFrom = pWLoop->iTab; pLevel->iTabCur = pWInfo->pTabList->a[pLevel->iFrom].iCursor; } if ((pWInfo->wctrlFlags & WHERE_WANT_DISTINCT)!=0 && (pWInfo->wctrlFlags & WHERE_DISTINCTBY)==0 && pWInfo->eDistinct==WHERE_DISTINCT_NOOP && nRowEst ) { Bitmask notUsed; int rc = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pResultSet, pFrom, WHERE_DISTINCTBY, nLoop-1, pFrom->aLoop[nLoop-1], ¬Used); if (rc==pWInfo->pResultSet->nExpr) { pWInfo->eDistinct = WHERE_DISTINCT_ORDERED; } } pWInfo->bOrderedInnerLoop = 0; if (pWInfo->pOrderBy) { if (pWInfo->wctrlFlags & WHERE_DISTINCTBY) { if (pFrom->isOrdered==pWInfo->pOrderBy->nExpr) { pWInfo->eDistinct = WHERE_DISTINCT_ORDERED; } } else { pWInfo->nOBSat = pFrom->isOrdered; pWInfo->revMask = pFrom->revLoop; if (pWInfo->nOBSat<=0) { pWInfo->nOBSat = 0; if (nLoop>0) { u32 wsFlags = pFrom->aLoop[nLoop-1]->wsFlags; if ((wsFlags & WHERE_ONEROW)==0 && (wsFlags&(WHERE_IPK|WHERE_COLUMN_IN))!=(WHERE_IPK|WHERE_COLUMN_IN) ) { Bitmask m = 0; int rc = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pOrderBy, pFrom, WHERE_ORDERBY_LIMIT, nLoop-1, pFrom->aLoop[nLoop-1], &m); testcase( wsFlags & WHERE_IPK ); testcase( wsFlags & WHERE_COLUMN_IN ); if (rc==pWInfo->pOrderBy->nExpr) { pWInfo->bOrderedInnerLoop = 1; pWInfo->revMask = m; } } } } } if ((pWInfo->wctrlFlags & WHERE_SORTBYGROUP) && pWInfo->nOBSat==pWInfo->pOrderBy->nExpr && nLoop>0 ) { Bitmask revMask = 0; int nOrder = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pOrderBy, pFrom, 0, nLoop-1, pFrom->aLoop[nLoop-1], &revMask ); assert( pWInfo->sorted==0 ); if (nOrder==pWInfo->pOrderBy->nExpr) { pWInfo->sorted = 1; pWInfo->revMask = revMask; } } } pWInfo->nRowOut = pFrom->nRow; /* Free temporary memory and return success */ sqlite3DbFreeNN(db, pSpace); return SQLITE_OK; } /* ** Most queries use only a single table (they are not joins) and have ** simple == constraints against indexed fields. This routine attempts ** to plan those simple cases using much less ceremony than the ** general-purpose query planner, and thereby yield faster sqlite3_prepare() ** times for the common case. ** ** Return non-zero on success, if this query can be handled by this ** no-frills query planner. Return zero if this query needs the ** general-purpose query planner. */ static int whereShortCut(WhereLoopBuilder *pBuilder){ WhereInfo *pWInfo; struct SrcList_item *pItem; WhereClause *pWC; WhereTerm *pTerm; WhereLoop *pLoop; int iCur; int j; Table *pTab; Index *pIdx; pWInfo = pBuilder->pWInfo; if (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE) return 0; assert( pWInfo->pTabList->nSrc>=1 ); pItem = pWInfo->pTabList->a; pTab = pItem->pTab; if (IsVirtual(pTab)) return 0; if (pItem->fg.isIndexedBy) return 0; iCur = pItem->iCursor; pWC = &pWInfo->sWC; pLoop = pBuilder->pNew; pLoop->wsFlags = 0; pLoop->nSkip = 0; pTerm = sqlite3WhereFindTerm(pWC, iCur, -1, 0, WO_EQ|WO_IS, 0); if (pTerm) { testcase( pTerm->eOperator & WO_IS ); pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_IPK|WHERE_ONEROW; pLoop->aLTerm[0] = pTerm; pLoop->nLTerm = 1; pLoop->u.btree.nEq = 1; /* TUNING: Cost of a rowid lookup is 10 */ pLoop->rRun = 33; /* 33==sqlite3LogEst(10) */ } else { for (pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext) { int opMask; assert( pLoop->aLTermSpace==pLoop->aLTerm ); if (!IsUniqueIndex(pIdx) || pIdx->pPartIdxWhere!=0 || pIdx->nKeyCol>ArraySize(pLoop->aLTermSpace) ) continue; opMask = pIdx->uniqNotNull ? (WO_EQ|WO_IS) : WO_EQ; for (j=0; j<pIdx->nKeyCol; j++) { pTerm = sqlite3WhereFindTerm(pWC, iCur, j, 0, opMask, pIdx); if (pTerm==0) break; testcase( pTerm->eOperator & WO_IS ); pLoop->aLTerm[j] = pTerm; } if (j!=pIdx->nKeyCol) continue; pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_ONEROW|WHERE_INDEXED; if (pIdx->isCovering || (pItem->colUsed & pIdx->colNotIdxed)==0) { pLoop->wsFlags |= WHERE_IDX_ONLY; } pLoop->nLTerm = j; pLoop->u.btree.nEq = j; pLoop->u.btree.pIndex = pIdx; /* TUNING: Cost of a unique index lookup is 15 */ pLoop->rRun = 39; /* 39==sqlite3LogEst(15) */ break; } } if (pLoop->wsFlags) { pLoop->nOut = (LogEst)1; pWInfo->a[0].pWLoop = pLoop; assert( pWInfo->sMaskSet.n==1 && iCur==pWInfo->sMaskSet.ix[0] ); pLoop->maskSelf = 1; /* sqlite3WhereGetMask(&pWInfo->sMaskSet, iCur); */ pWInfo->a[0].iTabCur = iCur; pWInfo->nRowOut = 1; if (pWInfo->pOrderBy) pWInfo->nOBSat = pWInfo->pOrderBy->nExpr; if (pWInfo->wctrlFlags & WHERE_WANT_DISTINCT) { pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE; } #ifdef SQLITE_DEBUG pLoop->cId = '0'; #endif return 1; } return 0; } /* ** Helper function for exprIsDeterministic(). */ static int exprNodeIsDeterministic(Walker *pWalker, Expr *pExpr){ if (pExpr->op==TK_FUNCTION && ExprHasProperty(pExpr, EP_ConstFunc)==0) { pWalker->eCode = 0; return WRC_Abort; } return WRC_Continue; } /* ** Return true if the expression contains no non-deterministic SQL ** functions. Do not consider non-deterministic SQL functions that are ** part of sub-select statements. */ static int exprIsDeterministic(Expr *p){ Walker w; memset(&w, 0, sizeof(w)); w.eCode = 1; w.xExprCallback = exprNodeIsDeterministic; w.xSelectCallback = sqlite3SelectWalkFail; sqlite3WalkExpr(&w, p); return w.eCode; } /* ** Generate the beginning of the loop used for WHERE clause processing. ** The return value is a pointer to an opaque structure that contains ** information needed to terminate the loop. Later, the calling routine ** should invoke sqlite3WhereEnd() with the return value of this function ** in order to complete the WHERE clause processing. ** ** If an error occurs, this routine returns NULL. ** ** The basic idea is to do a nested loop, one loop for each table in ** the FROM clause of a select. (INSERT and UPDATE statements are the ** same as a SELECT with only a single table in the FROM clause.) For ** example, if the SQL is this: ** ** SELECT * FROM t1, t2, t3 WHERE ...; ** ** Then the code generated is conceptually like the following: ** ** foreach row1 in t1 do \ Code generated ** foreach row2 in t2 do |-- by sqlite3WhereBegin() ** foreach row3 in t3 do / ** ... ** end \ Code generated ** end |-- by sqlite3WhereEnd() ** end / ** ** Note that the loops might not be nested in the order in which they ** appear in the FROM clause if a different order is better able to make ** use of indices. Note also that when the IN operator appears in ** the WHERE clause, it might result in additional nested loops for ** scanning through all values on the right-hand side of the IN. ** ** There are Btree cursors associated with each table. t1 uses cursor ** number pTabList->a[0].iCursor. t2 uses the cursor pTabList->a[1].iCursor. ** And so forth. This routine generates code to open those VDBE cursors ** and sqlite3WhereEnd() generates the code to close them. ** ** The code that sqlite3WhereBegin() generates leaves the cursors named ** in pTabList pointing at their appropriate entries. The [...] code ** can use OP_Column and OP_Rowid opcodes on these cursors to extract ** data from the various tables of the loop. ** ** If the WHERE clause is empty, the foreach loops must each scan their ** entire tables. Thus a three-way join is an O(N^3) operation. But if ** the tables have indices and there are terms in the WHERE clause that ** refer to those indices, a complete table scan can be avoided and the ** code will run much faster. Most of the work of this routine is checking ** to see if there are indices that can be used to speed up the loop. ** ** Terms of the WHERE clause are also used to limit which rows actually ** make it to the "..." in the middle of the loop. After each "foreach", ** terms of the WHERE clause that use only terms in that loop and outer ** loops are evaluated and if false a jump is made around all subsequent ** inner loops (or around the "..." if the test occurs within the inner- ** most loop) ** ** OUTER JOINS ** ** An outer join of tables t1 and t2 is conceptally coded as follows: ** ** foreach row1 in t1 do ** flag = 0 ** foreach row2 in t2 do ** start: ** ... ** flag = 1 ** end ** if flag==0 then ** move the row2 cursor to a null row ** goto start ** fi ** end ** ** ORDER BY CLAUSE PROCESSING ** ** pOrderBy is a pointer to the ORDER BY clause (or the GROUP BY clause ** if the WHERE_GROUPBY flag is set in wctrlFlags) of a SELECT statement ** if there is one. If there is no ORDER BY clause or if this routine ** is called from an UPDATE or DELETE statement, then pOrderBy is NULL. ** ** The iIdxCur parameter is the cursor number of an index. If ** WHERE_OR_SUBCLAUSE is set, iIdxCur is the cursor number of an index ** to use for OR clause processing. The WHERE clause should use this ** specific cursor. If WHERE_ONEPASS_DESIRED is set, then iIdxCur is ** the first cursor in an array of cursors for all indices. iIdxCur should ** be used to compute the appropriate cursor depending on which index is ** used. */ WhereInfo *sqlite3WhereBegin( Parse *pParse, /* The parser context */ SrcList *pTabList, /* FROM clause: A list of all tables to be scanned */ Expr *pWhere, /* The WHERE clause */ ExprList *pOrderBy, /* An ORDER BY (or GROUP BY) clause, or NULL */ ExprList *pResultSet, /* Query result set. Req'd for DISTINCT */ u16 wctrlFlags, /* The WHERE_* flags defined in sqliteInt.h */ int iAuxArg /* If WHERE_OR_SUBCLAUSE is set, index cursor number ** If WHERE_USE_LIMIT, then the limit amount */ ){ int nByteWInfo; /* Num. bytes allocated for WhereInfo struct */ int nTabList; /* Number of elements in pTabList */ WhereInfo *pWInfo; /* Will become the return value of this function */ Vdbe *v = pParse->pVdbe; /* The virtual database engine */ Bitmask notReady; /* Cursors that are not yet positioned */ WhereLoopBuilder sWLB; /* The WhereLoop builder */ WhereMaskSet *pMaskSet; /* The expression mask set */ WhereLevel *pLevel; /* A single level in pWInfo->a[] */ WhereLoop *pLoop; /* Pointer to a single WhereLoop object */ int ii; /* Loop counter */ sqlite3 *db; /* Database connection */ int rc; /* Return code */ u8 bFordelete = 0; /* OPFLAG_FORDELETE or zero, as appropriate */ assert((wctrlFlags & WHERE_ONEPASS_MULTIROW)==0 || ( (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0 && (wctrlFlags & WHERE_OR_SUBCLAUSE)==0 )); /* Only one of WHERE_OR_SUBCLAUSE or WHERE_USE_LIMIT */ assert((wctrlFlags & WHERE_OR_SUBCLAUSE)==0 || (wctrlFlags & WHERE_USE_LIMIT)==0 ); /* Variable initialization */ db = pParse->db; memset(&sWLB, 0, sizeof(sWLB)); /* An ORDER/GROUP BY clause of more than 63 terms cannot be optimized */ testcase( pOrderBy && pOrderBy->nExpr==BMS-1 ); if (pOrderBy && pOrderBy->nExpr>=BMS) pOrderBy = 0; sWLB.pOrderBy = pOrderBy; /* Disable the DISTINCT optimization if SQLITE_DistinctOpt is set via ** sqlite3_test_ctrl(SQLITE_TESTCTRL_OPTIMIZATIONS,...) */ if (OptimizationDisabled(db, SQLITE_DistinctOpt)) { wctrlFlags &= ~WHERE_WANT_DISTINCT; } /* The number of tables in the FROM clause is limited by the number of ** bits in a Bitmask */ testcase( pTabList->nSrc==BMS ); if (pTabList->nSrc>BMS) { sqlite3ErrorMsg(pParse, "at most %d tables in a join", BMS); return 0; } /* This function normally generates a nested loop for all tables in ** pTabList. But if the WHERE_OR_SUBCLAUSE flag is set, then we should ** only generate code for the first table in pTabList and assume that ** any cursors associated with subsequent tables are uninitialized. */ nTabList = (wctrlFlags & WHERE_OR_SUBCLAUSE) ? 1 : pTabList->nSrc; /* Allocate and initialize the WhereInfo structure that will become the ** return value. A single allocation is used to store the WhereInfo ** struct, the contents of WhereInfo.a[], the WhereClause structure ** and the WhereMaskSet structure. Since WhereClause contains an 8-byte ** field (type Bitmask) it must be aligned on an 8-byte boundary on ** some architectures. Hence the ROUND8() below. */ nByteWInfo = ROUND8(sizeof(WhereInfo)+(nTabList-1)*sizeof(WhereLevel)); pWInfo = sqlite3DbMallocRawNN(db, nByteWInfo + sizeof(WhereLoop)); if (db->mallocFailed) { sqlite3DbFree(db, pWInfo); pWInfo = 0; goto whereBeginError; } pWInfo->pParse = pParse; pWInfo->pTabList = pTabList; pWInfo->pOrderBy = pOrderBy; pWInfo->pWhere = pWhere; pWInfo->pResultSet = pResultSet; pWInfo->aiCurOnePass[0] = pWInfo->aiCurOnePass[1] = -1; pWInfo->nLevel = nTabList; pWInfo->iBreak = pWInfo->iContinue = sqlite3VdbeMakeLabel(pParse); pWInfo->wctrlFlags = wctrlFlags; pWInfo->iLimit = iAuxArg; pWInfo->savedNQueryLoop = pParse->nQueryLoop; memset(&pWInfo->nOBSat, 0, offsetof(WhereInfo,sWC) - offsetof(WhereInfo,nOBSat)); memset(&pWInfo->a[0], 0, sizeof(WhereLoop)+nTabList*sizeof(WhereLevel)); assert( pWInfo->eOnePass==ONEPASS_OFF ); /* ONEPASS defaults to OFF */ pMaskSet = &pWInfo->sMaskSet; sWLB.pWInfo = pWInfo; sWLB.pWC = &pWInfo->sWC; sWLB.pNew = (WhereLoop*)(((char*)pWInfo)+nByteWInfo); assert( EIGHT_BYTE_ALIGNMENT(sWLB.pNew)); whereLoopInit(sWLB.pNew); #ifdef SQLITE_DEBUG sWLB.pNew->cId = '*'; #endif /* Split the WHERE clause into separate subexpressions where each ** subexpression is separated by an AND operator. */ initMaskSet(pMaskSet); sqlite3WhereClauseInit(&pWInfo->sWC, pWInfo); sqlite3WhereSplit(&pWInfo->sWC, pWhere, TK_AND); /* Special case: No FROM clause */ if (nTabList==0) { if (pOrderBy) pWInfo->nOBSat = pOrderBy->nExpr; if (wctrlFlags & WHERE_WANT_DISTINCT) { pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE; } ExplainQueryPlan((pParse, 0, "SCAN CONSTANT ROW")); } else { /* Assign a bit from the bitmask to every term in the FROM clause. ** ** The N-th term of the FROM clause is assigned a bitmask of 1<<N. ** ** The rule of the previous sentence ensures thta if X is the bitmask for ** a table T, then X-1 is the bitmask for all other tables to the left of T. ** Knowing the bitmask for all tables to the left of a left join is ** important. Ticket #3015. ** ** Note that bitmasks are created for all pTabList->nSrc tables in ** pTabList, not just the first nTabList tables. nTabList is normally ** equal to pTabList->nSrc but might be shortened to 1 if the ** WHERE_OR_SUBCLAUSE flag is set. */ ii = 0; do{ createMask(pMaskSet, pTabList->a[ii].iCursor); sqlite3WhereTabFuncArgs(pParse, &pTabList->a[ii], &pWInfo->sWC); }while ((++ii)<pTabList->nSrc); #ifdef SQLITE_DEBUG { Bitmask mx = 0; for (ii=0; ii<pTabList->nSrc; ii++) { Bitmask m = sqlite3WhereGetMask(pMaskSet, pTabList->a[ii].iCursor); assert( m>=mx ); mx = m; } } #endif } /* Analyze all of the subexpressions. */ sqlite3WhereExprAnalyze(pTabList, &pWInfo->sWC); if (db->mallocFailed) goto whereBeginError; /* Special case: WHERE terms that do not refer to any tables in the join ** (constant expressions). Evaluate each such term, and jump over all the ** generated code if the result is not true. ** ** Do not do this if the expression contains non-deterministic functions ** that are not within a sub-select. This is not strictly required, but ** preserves SQLite's legacy behaviour in the following two cases: ** ** FROM ... WHERE random()>0; -- eval random() once per row ** FROM ... WHERE (SELECT random())>0; -- eval random() once overall */ for (ii=0; ii<sWLB.pWC->nTerm; ii++) { WhereTerm *pT = &sWLB.pWC->a[ii]; if (pT->wtFlags & TERM_VIRTUAL) continue; if (pT->prereqAll==0 && (nTabList==0 || exprIsDeterministic(pT->pExpr))) { sqlite3ExprIfFalse(pParse, pT->pExpr, pWInfo->iBreak, SQLITE_JUMPIFNULL); pT->wtFlags |= TERM_CODED; } } if (wctrlFlags & WHERE_WANT_DISTINCT) { if (isDistinctRedundant(pParse, pTabList, &pWInfo->sWC, pResultSet)) { /* The DISTINCT marking is pointless. Ignore it. */ pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE; } else if (pOrderBy==0) { /* Try to ORDER BY the result set to make distinct processing easier */ pWInfo->wctrlFlags |= WHERE_DISTINCTBY; pWInfo->pOrderBy = pResultSet; } } /* Construct the WhereLoop objects */ #if defined(WHERETRACE_ENABLED) if (sqlite3WhereTrace & 0xffff) { sqlite3DebugPrintf("*** Optimizer Start *** (wctrlFlags: 0x%x",wctrlFlags); if (wctrlFlags & WHERE_USE_LIMIT) { sqlite3DebugPrintf(", limit: %d", iAuxArg); } sqlite3DebugPrintf(")\n"); if (sqlite3WhereTrace & 0x100) { Select sSelect; memset(&sSelect, 0, sizeof(sSelect)); sSelect.selFlags = SF_WhereBegin; sSelect.pSrc = pTabList; sSelect.pWhere = pWhere; sSelect.pOrderBy = pOrderBy; sSelect.pEList = pResultSet; sqlite3TreeViewSelect(0, &sSelect, 0); } } if (sqlite3WhereTrace & 0x100) { /* Display all terms of the WHERE clause */ sqlite3WhereClausePrint(sWLB.pWC); } #endif if (nTabList!=1 || whereShortCut(&sWLB)==0) { rc = whereLoopAddAll(&sWLB); if (rc) goto whereBeginError; #ifdef WHERETRACE_ENABLED if (sqlite3WhereTrace) { /* Display all of the WhereLoop objects */ WhereLoop *p; int i; static const char zLabel[] = "0123456789abcdefghijklmnopqrstuvwyxz" "ABCDEFGHIJKLMNOPQRSTUVWYXZ"; for (p=pWInfo->pLoops, i=0; p; p=p->pNextLoop, i++) { p->cId = zLabel[i%(sizeof(zLabel)-1)]; whereLoopPrint(p, sWLB.pWC); } } #endif wherePathSolver(pWInfo, 0); if (db->mallocFailed) goto whereBeginError; if (pWInfo->pOrderBy) { wherePathSolver(pWInfo, pWInfo->nRowOut+1); if (db->mallocFailed) goto whereBeginError; } } if (pWInfo->pOrderBy==0 && (db->flags & SQLITE_ReverseOrder)!=0) { pWInfo->revMask = ALLBITS; } if (pParse->nErr || NEVER(db->mallocFailed)) { goto whereBeginError; } #ifdef WHERETRACE_ENABLED if (sqlite3WhereTrace) { sqlite3DebugPrintf("---- Solution nRow=%d", pWInfo->nRowOut); if (pWInfo->nOBSat>0) { sqlite3DebugPrintf(" ORDERBY=%d,0x%llx", pWInfo->nOBSat, pWInfo->revMask); } switch (pWInfo->eDistinct) { case WHERE_DISTINCT_UNIQUE: { sqlite3DebugPrintf(" DISTINCT=unique"); break; } case WHERE_DISTINCT_ORDERED: { sqlite3DebugPrintf(" DISTINCT=ordered"); break; } case WHERE_DISTINCT_UNORDERED: { sqlite3DebugPrintf(" DISTINCT=unordered"); break; } } sqlite3DebugPrintf("\n"); for (ii=0; ii<pWInfo->nLevel; ii++) { whereLoopPrint(pWInfo->a[ii].pWLoop, sWLB.pWC); } } #endif /* Attempt to omit tables from the join that do not affect the result. ** For a table to not affect the result, the following must be true: ** ** 1) The query must not be an aggregate. ** 2) The table must be the RHS of a LEFT JOIN. ** 3) Either the query must be DISTINCT, or else the ON or USING clause ** must contain a constraint that limits the scan of the table to ** at most a single row. ** 4) The table must not be referenced by any part of the query apart ** from its own USING or ON clause. ** ** For example, given: ** ** CREATE TABLE t1(ipk INTEGER PRIMARY KEY, v1); ** CREATE TABLE t2(ipk INTEGER PRIMARY KEY, v2); ** CREATE TABLE t3(ipk INTEGER PRIMARY KEY, v3); ** ** then table t2 can be omitted from the following: ** ** SELECT v1, v3 FROM t1 ** LEFT JOIN t2 USING (t1.ipk=t2.ipk) ** LEFT JOIN t3 USING (t1.ipk=t3.ipk) ** ** or from: ** ** SELECT DISTINCT v1, v3 FROM t1 ** LEFT JOIN t2 ** LEFT JOIN t3 USING (t1.ipk=t3.ipk) */ notReady = ~(Bitmask)0; if (pWInfo->nLevel>=2 && pResultSet!=0 /* guarantees condition (1) above */ && OptimizationEnabled(db, SQLITE_OmitNoopJoin) ) { int i; Bitmask tabUsed = sqlite3WhereExprListUsage(pMaskSet, pResultSet); if (sWLB.pOrderBy) { tabUsed |= sqlite3WhereExprListUsage(pMaskSet, sWLB.pOrderBy); } for (i=pWInfo->nLevel-1; i>=1; i--) { WhereTerm *pTerm, *pEnd; struct SrcList_item *pItem; pLoop = pWInfo->a[i].pWLoop; pItem = &pWInfo->pTabList->a[pLoop->iTab]; if ((pItem->fg.jointype & JT_LEFT)==0) continue; if ((wctrlFlags & WHERE_WANT_DISTINCT)==0 && (pLoop->wsFlags & WHERE_ONEROW)==0 ) { continue; } if ((tabUsed & pLoop->maskSelf)!=0) continue; pEnd = sWLB.pWC->a + sWLB.pWC->nTerm; for (pTerm=sWLB.pWC->a; pTerm<pEnd; pTerm++) { if ((pTerm->prereqAll & pLoop->maskSelf)!=0) { if (!ExprHasProperty(pTerm->pExpr, EP_FromJoin) || pTerm->pExpr->iRightJoinTable!=pItem->iCursor ) { break; } } } if (pTerm<pEnd) continue; WHERETRACE(0xffff, ("-> drop loop %c not used\n", pLoop->cId)); notReady &= ~pLoop->maskSelf; for (pTerm=sWLB.pWC->a; pTerm<pEnd; pTerm++) { if ((pTerm->prereqAll & pLoop->maskSelf)!=0) { pTerm->wtFlags |= TERM_CODED; } } if (i!=pWInfo->nLevel-1) { int nByte = (pWInfo->nLevel-1-i) * sizeof(WhereLevel); memmove(&pWInfo->a[i], &pWInfo->a[i+1], nByte); } pWInfo->nLevel--; nTabList--; } } WHERETRACE(0xffff,("*** Optimizer Finished ***\n")); pWInfo->pParse->nQueryLoop += pWInfo->nRowOut; /* If the caller is an UPDATE or DELETE statement that is requesting ** to use a one-pass algorithm, determine if this is appropriate. ** ** A one-pass approach can be used if the caller has requested one ** and either (a) the scan visits at most one row or (b) each ** of the following are true: ** ** * the caller has indicated that a one-pass approach can be used ** with multiple rows (by setting WHERE_ONEPASS_MULTIROW), and ** * the table is not a virtual table, and ** * either the scan does not use the OR optimization or the caller ** is a DELETE operation (WHERE_DUPLICATES_OK is only specified ** for DELETE). ** ** The last qualification is because an UPDATE statement uses ** WhereInfo.aiCurOnePass[1] to determine whether or not it really can ** use a one-pass approach, and this is not set accurately for scans ** that use the OR optimization. */ assert((wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || pWInfo->nLevel==1 ); if ((wctrlFlags & WHERE_ONEPASS_DESIRED)!=0) { int wsFlags = pWInfo->a[0].pWLoop->wsFlags; int bOnerow = (wsFlags & WHERE_ONEROW)!=0; assert( !(wsFlags & WHERE_VIRTUALTABLE) || IsVirtual(pTabList->a[0].pTab)); if (bOnerow || ( 0!=(wctrlFlags & WHERE_ONEPASS_MULTIROW) && !IsVirtual(pTabList->a[0].pTab) && (0==(wsFlags & WHERE_MULTI_OR) || (wctrlFlags & WHERE_DUPLICATES_OK)) )) { pWInfo->eOnePass = bOnerow ? ONEPASS_SINGLE : ONEPASS_MULTI; if (HasRowid(pTabList->a[0].pTab) && (wsFlags & WHERE_IDX_ONLY)) { if (wctrlFlags & WHERE_ONEPASS_MULTIROW) { bFordelete = OPFLAG_FORDELETE; } pWInfo->a[0].pWLoop->wsFlags = (wsFlags & ~WHERE_IDX_ONLY); } } } /* Open all tables in the pTabList and any indices selected for ** searching those tables. */ for (ii=0, pLevel=pWInfo->a; ii<nTabList; ii++, pLevel++) { Table *pTab; /* Table to open */ int iDb; /* Index of database containing table/index */ struct SrcList_item *pTabItem; pTabItem = &pTabList->a[pLevel->iFrom]; pTab = pTabItem->pTab; iDb = sqlite3SchemaToIndex(db, pTab->pSchema); pLoop = pLevel->pWLoop; if ((pTab->tabFlags & TF_Ephemeral)!=0 || pTab->pSelect) { /* Do nothing */ } else #ifndef SQLITE_OMIT_VIRTUALTABLE if ((pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0) { const char *pVTab = (const char *)sqlite3GetVTable(db, pTab); int iCur = pTabItem->iCursor; sqlite3VdbeAddOp4(v, OP_VOpen, iCur, 0, 0, pVTab, P4_VTAB); } else if (IsVirtual(pTab)) { /* noop */ } else #endif if ((pLoop->wsFlags & WHERE_IDX_ONLY)==0 && (wctrlFlags & WHERE_OR_SUBCLAUSE)==0) { int op = OP_OpenRead; if (pWInfo->eOnePass!=ONEPASS_OFF) { op = OP_OpenWrite; pWInfo->aiCurOnePass[0] = pTabItem->iCursor; }; sqlite3OpenTable(pParse, pTabItem->iCursor, iDb, pTab, op); assert( pTabItem->iCursor==pLevel->iTabCur ); testcase( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol==BMS-1 ); testcase( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol==BMS ); if (pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol<BMS && HasRowid(pTab)) { Bitmask b = pTabItem->colUsed; int n = 0; for (; b; b=b>>1, n++) {} sqlite3VdbeChangeP4(v, -1, SQLITE_INT_TO_PTR(n), P4_INT32); assert( n<=pTab->nCol ); } #ifdef SQLITE_ENABLE_CURSOR_HINTS if (pLoop->u.btree.pIndex!=0) { sqlite3VdbeChangeP5(v, OPFLAG_SEEKEQ|bFordelete); } else #endif { sqlite3VdbeChangeP5(v, bFordelete); } #ifdef SQLITE_ENABLE_COLUMN_USED_MASK sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, pTabItem->iCursor, 0, 0, (const u8*)&pTabItem->colUsed, P4_INT64); #endif } else { sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); } if (pLoop->wsFlags & WHERE_INDEXED) { Index *pIx = pLoop->u.btree.pIndex; int iIndexCur; int op = OP_OpenRead; /* iAuxArg is always set to a positive value if ONEPASS is possible */ assert( iAuxArg!=0 || (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 ); if (!HasRowid(pTab) && IsPrimaryKeyIndex(pIx) && (wctrlFlags & WHERE_OR_SUBCLAUSE)!=0 ) { /* This is one term of an OR-optimization using the PRIMARY KEY of a ** WITHOUT ROWID table. No need for a separate index */ iIndexCur = pLevel->iTabCur; op = 0; } else if (pWInfo->eOnePass!=ONEPASS_OFF) { Index *pJ = pTabItem->pTab->pIndex; iIndexCur = iAuxArg; assert( wctrlFlags & WHERE_ONEPASS_DESIRED ); while (ALWAYS(pJ) && pJ!=pIx) { iIndexCur++; pJ = pJ->pNext; } op = OP_OpenWrite; pWInfo->aiCurOnePass[1] = iIndexCur; } else if (iAuxArg && (wctrlFlags & WHERE_OR_SUBCLAUSE)!=0) { iIndexCur = iAuxArg; op = OP_ReopenIdx; } else { iIndexCur = pParse->nTab++; } pLevel->iIdxCur = iIndexCur; assert( pIx->pSchema==pTab->pSchema ); assert( iIndexCur>=0 ); if (op) { sqlite3VdbeAddOp3(v, op, iIndexCur, pIx->tnum, iDb); sqlite3VdbeSetP4KeyInfo(pParse, pIx); if ((pLoop->wsFlags & WHERE_CONSTRAINT)!=0 && (pLoop->wsFlags & (WHERE_COLUMN_RANGE|WHERE_SKIPSCAN))==0 && (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)==0 && pWInfo->eDistinct!=WHERE_DISTINCT_ORDERED ) { sqlite3VdbeChangeP5(v, OPFLAG_SEEKEQ); /* Hint to COMDB2 */ } VdbeComment((v, "%s", pIx->zName)); #ifdef SQLITE_ENABLE_COLUMN_USED_MASK { u64 colUsed = 0; int ii, jj; for (ii=0; ii<pIx->nColumn; ii++) { jj = pIx->aiColumn[ii]; if (jj<0) continue; if (jj>63) jj = 63; if ((pTabItem->colUsed & MASKBIT(jj))==0) continue; colUsed |= ((u64)1)<<(ii<63 ? ii : 63); } sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, iIndexCur, 0, 0, (u8*)&colUsed, P4_INT64); } #endif /* SQLITE_ENABLE_COLUMN_USED_MASK */ } } if (iDb>=0) sqlite3CodeVerifySchema(pParse, iDb); } pWInfo->iTop = sqlite3VdbeCurrentAddr(v); if (db->mallocFailed) goto whereBeginError; /* Generate the code to do the search. Each iteration of the for ** loop below generates code for a single nested loop of the VM ** program. */ for (ii=0; ii<nTabList; ii++) { int addrExplain; int wsFlags; pLevel = &pWInfo->a[ii]; wsFlags = pLevel->pWLoop->wsFlags; #ifndef SQLITE_OMIT_AUTOMATIC_INDEX if ((pLevel->pWLoop->wsFlags & WHERE_AUTO_INDEX)!=0) { constructAutomaticIndex(pParse, &pWInfo->sWC, &pTabList->a[pLevel->iFrom], notReady, pLevel); if (db->mallocFailed) goto whereBeginError; } #endif addrExplain = sqlite3WhereExplainOneScan( pParse, pTabList, pLevel, wctrlFlags ); pLevel->addrBody = sqlite3VdbeCurrentAddr(v); notReady = sqlite3WhereCodeOneLoopStart(pParse,v,pWInfo,ii,pLevel,notReady); pWInfo->iContinue = pLevel->addrCont; if ((wsFlags&WHERE_MULTI_OR)==0 && (wctrlFlags&WHERE_OR_SUBCLAUSE)==0) { sqlite3WhereAddScanStatus(v, pTabList, pLevel, addrExplain); } } /* Done. */ VdbeModuleComment((v, "Begin WHERE-core")); return pWInfo; /* Jump here if malloc fails */ whereBeginError: if (pWInfo) { pParse->nQueryLoop = pWInfo->savedNQueryLoop; whereInfoFree(db, pWInfo); } return 0; } /* ** Part of sqlite3WhereEnd() will rewrite opcodes to reference the ** index rather than the main table. In SQLITE_DEBUG mode, we want ** to trace those changes if PRAGMA vdbe_addoptrace=on. This routine ** does that. */ #ifndef SQLITE_DEBUG # define OpcodeRewriteTrace(D,K,P) /* no-op */ #else # define OpcodeRewriteTrace(D,K,P) sqlite3WhereOpcodeRewriteTrace(D,K,P) static void sqlite3WhereOpcodeRewriteTrace( sqlite3 *db, int pc, VdbeOp *pOp ){ if ((db->flags & SQLITE_VdbeAddopTrace)==0) return; sqlite3VdbePrintOp(0, pc, pOp); } #endif /* ** Generate the end of the WHERE loop. See comments on ** sqlite3WhereBegin() for additional information. */ void sqlite3WhereEnd(WhereInfo *pWInfo){ Parse *pParse = pWInfo->pParse; Vdbe *v = pParse->pVdbe; int i; WhereLevel *pLevel; WhereLoop *pLoop; SrcList *pTabList = pWInfo->pTabList; sqlite3 *db = pParse->db; /* Generate loop termination code. */ VdbeModuleComment((v, "End WHERE-core")); for (i=pWInfo->nLevel-1; i>=0; i--) { int addr; pLevel = &pWInfo->a[i]; pLoop = pLevel->pWLoop; if (pLevel->op!=OP_Noop) { #ifndef SQLITE_DISABLE_SKIPAHEAD_DISTINCT int addrSeek = 0; Index *pIdx; int n; if (pWInfo->eDistinct==WHERE_DISTINCT_ORDERED && i==pWInfo->nLevel-1 /* Ticket [ef9318757b152e3] 2017-10-21 */ && (pLoop->wsFlags & WHERE_INDEXED)!=0 && (pIdx = pLoop->u.btree.pIndex)->hasStat1 && (n = pLoop->u.btree.nDistinctCol)>0 && pIdx->aiRowLogEst[n]>=36 ) { int r1 = pParse->nMem+1; int j, op; for (j=0; j<n; j++) { sqlite3VdbeAddOp3(v, OP_Column, pLevel->iIdxCur, j, r1+j); } pParse->nMem += n+1; op = pLevel->op==OP_Prev ? OP_SeekLT : OP_SeekGT; addrSeek = sqlite3VdbeAddOp4Int(v, op, pLevel->iIdxCur, 0, r1, n); VdbeCoverageIf(v, op==OP_SeekLT); VdbeCoverageIf(v, op==OP_SeekGT); sqlite3VdbeAddOp2(v, OP_Goto, 1, pLevel->p2); } #endif /* SQLITE_DISABLE_SKIPAHEAD_DISTINCT */ /* The common case: Advance to the next row */ sqlite3VdbeResolveLabel(v, pLevel->addrCont); sqlite3VdbeAddOp3(v, pLevel->op, pLevel->p1, pLevel->p2, pLevel->p3); sqlite3VdbeChangeP5(v, pLevel->p5); VdbeCoverage(v); VdbeCoverageIf(v, pLevel->op==OP_Next); VdbeCoverageIf(v, pLevel->op==OP_Prev); VdbeCoverageIf(v, pLevel->op==OP_VNext); #ifndef SQLITE_DISABLE_SKIPAHEAD_DISTINCT if (addrSeek) sqlite3VdbeJumpHere(v, addrSeek); #endif } else { sqlite3VdbeResolveLabel(v, pLevel->addrCont); } if (pLoop->wsFlags & WHERE_IN_ABLE && pLevel->u.in.nIn>0) { struct InLoop *pIn; int j; sqlite3VdbeResolveLabel(v, pLevel->addrNxt); for (j=pLevel->u.in.nIn, pIn=&pLevel->u.in.aInLoop[j-1]; j>0; j--, pIn--) { sqlite3VdbeJumpHere(v, pIn->addrInTop+1); if (pIn->eEndLoopOp!=OP_Noop) { if (pIn->nPrefix) { assert( pLoop->wsFlags & WHERE_IN_EARLYOUT ); sqlite3VdbeAddOp4Int(v, OP_IfNoHope, pLevel->iIdxCur, sqlite3VdbeCurrentAddr(v)+2, pIn->iBase, pIn->nPrefix); VdbeCoverage(v); } sqlite3VdbeAddOp2(v, pIn->eEndLoopOp, pIn->iCur, pIn->addrInTop); VdbeCoverage(v); VdbeCoverageIf(v, pIn->eEndLoopOp==OP_Prev); VdbeCoverageIf(v, pIn->eEndLoopOp==OP_Next); } sqlite3VdbeJumpHere(v, pIn->addrInTop-1); } } sqlite3VdbeResolveLabel(v, pLevel->addrBrk); if (pLevel->addrSkip) { sqlite3VdbeGoto(v, pLevel->addrSkip); VdbeComment((v, "next skip-scan on %s", pLoop->u.btree.pIndex->zName)); sqlite3VdbeJumpHere(v, pLevel->addrSkip); sqlite3VdbeJumpHere(v, pLevel->addrSkip-2); } #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS if (pLevel->addrLikeRep) { sqlite3VdbeAddOp2(v, OP_DecrJumpZero, (int)(pLevel->iLikeRepCntr>>1), pLevel->addrLikeRep); VdbeCoverage(v); } #endif if (pLevel->iLeftJoin) { int ws = pLoop->wsFlags; addr = sqlite3VdbeAddOp1(v, OP_IfPos, pLevel->iLeftJoin); VdbeCoverage(v); assert((ws & WHERE_IDX_ONLY)==0 || (ws & WHERE_INDEXED)!=0 ); if ((ws & WHERE_IDX_ONLY)==0) { assert( pLevel->iTabCur==pTabList->a[pLevel->iFrom].iCursor ); sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iTabCur); } if ((ws & WHERE_INDEXED) || ((ws & WHERE_MULTI_OR) && pLevel->u.pCovidx) ) { sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iIdxCur); } if (pLevel->op==OP_Return) { sqlite3VdbeAddOp2(v, OP_Gosub, pLevel->p1, pLevel->addrFirst); } else { sqlite3VdbeGoto(v, pLevel->addrFirst); } sqlite3VdbeJumpHere(v, addr); } VdbeModuleComment((v, "End WHERE-loop%d: %s", i, pWInfo->pTabList->a[pLevel->iFrom].pTab->zName)); } /* The "break" point is here, just past the end of the outer loop. ** Set it. */ sqlite3VdbeResolveLabel(v, pWInfo->iBreak); assert( pWInfo->nLevel<=pTabList->nSrc ); for (i=0, pLevel=pWInfo->a; i<pWInfo->nLevel; i++, pLevel++) { int k, last; VdbeOp *pOp; Index *pIdx = 0; struct SrcList_item *pTabItem = &pTabList->a[pLevel->iFrom]; Table *pTab = pTabItem->pTab; assert( pTab!=0 ); pLoop = pLevel->pWLoop; /* For a co-routine, change all OP_Column references to the table of ** the co-routine into OP_Copy of result contained in a register. ** OP_Rowid becomes OP_Null. */ if (pTabItem->fg.viaCoroutine) { testcase( pParse->db->mallocFailed ); translateColumnToCopy(pParse, pLevel->addrBody, pLevel->iTabCur, pTabItem->regResult, 0); continue; } #ifdef SQLITE_ENABLE_EARLY_CURSOR_CLOSE /* Close all of the cursors that were opened by sqlite3WhereBegin. ** Except, do not close cursors that will be reused by the OR optimization ** (WHERE_OR_SUBCLAUSE). And do not close the OP_OpenWrite cursors ** created for the ONEPASS optimization. */ if ((pTab->tabFlags & TF_Ephemeral)==0 && pTab->pSelect==0 && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0 ) { int ws = pLoop->wsFlags; if (pWInfo->eOnePass==ONEPASS_OFF && (ws & WHERE_IDX_ONLY)==0) { sqlite3VdbeAddOp1(v, OP_Close, pTabItem->iCursor); } if ((ws & WHERE_INDEXED)!=0 && (ws & (WHERE_IPK|WHERE_AUTO_INDEX))==0 && pLevel->iIdxCur!=pWInfo->aiCurOnePass[1] ) { sqlite3VdbeAddOp1(v, OP_Close, pLevel->iIdxCur); } } #endif /* If this scan uses an index, make VDBE code substitutions to read data ** from the index instead of from the table where possible. In some cases ** this optimization prevents the table from ever being read, which can ** yield a significant performance boost. ** ** Calls to the code generator in between sqlite3WhereBegin and ** sqlite3WhereEnd will have created code that references the table ** directly. This loop scans all that code looking for opcodes ** that reference the table and converts them into opcodes that ** reference the index. */ if (pLoop->wsFlags & (WHERE_INDEXED|WHERE_IDX_ONLY)) { pIdx = pLoop->u.btree.pIndex; } else if (pLoop->wsFlags & WHERE_MULTI_OR) { pIdx = pLevel->u.pCovidx; } if (pIdx && (pWInfo->eOnePass==ONEPASS_OFF || !HasRowid(pIdx->pTable)) && !db->mallocFailed ) { last = sqlite3VdbeCurrentAddr(v); k = pLevel->addrBody; #ifdef SQLITE_DEBUG if (db->flags & SQLITE_VdbeAddopTrace) { printf("TRANSLATE opcodes in range %d..%d\n", k, last-1); } #endif pOp = sqlite3VdbeGetOp(v, k); for (; k<last; k++, pOp++) { if (pOp->p1!=pLevel->iTabCur) continue; if (pOp->opcode==OP_Column #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC || pOp->opcode==OP_Offset #endif ) { int x = pOp->p2; assert( pIdx->pTable==pTab ); if (!HasRowid(pTab)) { Index *pPk = sqlite3PrimaryKeyIndex(pTab); x = pPk->aiColumn[x]; assert( x>=0 ); } x = sqlite3ColumnOfIndex(pIdx, x); if (x>=0) { pOp->p2 = x; pOp->p1 = pLevel->iIdxCur; OpcodeRewriteTrace(db, k, pOp); } assert((pLoop->wsFlags & WHERE_IDX_ONLY)==0 || x>=0 || pWInfo->eOnePass ); } else if (pOp->opcode==OP_Rowid) { pOp->p1 = pLevel->iIdxCur; pOp->opcode = OP_IdxRowid; OpcodeRewriteTrace(db, k, pOp); } else if (pOp->opcode==OP_IfNullRow) { pOp->p1 = pLevel->iIdxCur; OpcodeRewriteTrace(db, k, pOp); } } #ifdef SQLITE_DEBUG if (db->flags & SQLITE_VdbeAddopTrace) printf("TRANSLATE complete\n"); #endif } } /* Final cleanup */ pParse->nQueryLoop = pWInfo->savedNQueryLoop; whereInfoFree(db, pWInfo); return; }