Writing Cppcheck rules Part 2 - The Cppcheck data representation Daniel Marjamäki Cppcheck 2010
Introduction In this article I will discuss the data representation that Cppcheck uses. The data representation that Cppcheck uses is specifically designed for static analysis. It is not intended to be generic and useful for other tasks.
See the data There are two ways to look at the data representation at runtime. Using --rule=.+ is one way. All tokens are written on a line: int a ; int b ; Using --debug is another way. The tokens are line separated in the same way as the original code: 1: int a@1 ; 2: int b@2 ; In the --debug output there are "@1" and "@2" shown. These are the variable ids (Cppcheck gives each variable a unique id). You can ignore these if you only plan to write rules with regular expressions, you can't use variable ids with regular expressions. In general, I will use the --rule=.+ output in this article because it is more compact.
Some of the simplifications The data is simplified in many ways. The intention with the simplifications is to remove all information that the rules don't use. The best way to see what simplifications there are is to look at the doxygen documentation for the Tokenizer. Some developer information such as doxygen output is available online at http://cppcheck.sf.net/devinfo.html
Preprocessing The Cppcheck data is preprocessed. There are no comments, #define, #include, etc. Original source code: #define SIZE 123 char a[SIZE]; The Cppcheck data for that is: char a [ 123 ] ;
typedef (Tokenizer::simplifyTypedef) The typedefs are simplified. typedef char s8; s8 x; The Cppcheck data for that is: ; char x ;
Calculations (Tokenizer::simplifyCalculations) Calculations are simplified. int a[10 + 4]; => int a [ 14 ] ;
Variables
Variable declarations (Tokenizer::simplifyVarDecl) Variable declarations are simplified. Only one variable can be declared at a time. The initialization is also broken out into a separate statement. int *a=0, b=2; => int * a ; a = 0 ; int b ; b = 2 ; This is even done in the global scope. Even though that is invalid in C/C++.
Known variable values (Tokenizer::simplifyKnownVariables) Known variable values are simplified. void f() { int x = 0; x++; array[x + 2] = 0; } The --debug output for that is: 1: void f ( ) 2: { 3: ; ; 4: ; 5: array [ 3 ] = 0 ; 6: } The variable x is removed because it is not used after the simplification. It is therefore redundant. The "known values" doesn't have to be numeric. Variable aliases, pointer aliases, strings, etc should be handled too. Example code: void f() { char *a = strdup("hello"); char *b = a; free(b); } The --debug output for that is: 1: void f ( ) 2: { 3: char * a@1 ; a@1 = strdup ( "hello" ) ; 4: ; ; 5: free ( a@1 ) ; 6: }
if/for/while
Braces in if/for/while-body (Tokenizer::simplifyIfAddBraces) Cppcheck makes sure that there are always braces in if/for/while bodies. if (x) f1(); => if ( x ) { f1 ( ) ; }
No else if The simplified data representation doesn't have "else if". void f(int x) { if (x == 1) f1(); else if (x == 2) f2(); } The --debug output: 1: void f ( int x@1 ) 2: { 3: if ( x@1 == 1 ) { 4: f1 ( ) ; } 5: else { if ( x@1 == 2 ) { 6: f2 ( ) ; } } 7: }
Condition is always true / false Conditions that are always true / false are simplified. void f() { if (true) { f1(); } } The Cppcheck data is: void f ( ) { { f1 ( ) ; } } Another example: void f() { if (false) { f1(); } } The debug output: void f ( ) { }
Assignments (Tokenizer::simplifyIfAssign) Assignments within conditions are broken out from the condition. void f() { int x; if ((x = f1()) == 12) { f2(); } } The "x = f1()" is broken out. The --debug output: 1: void f ( ) 2: { 3: int x@1 ; 4: x@1 = f1 ( ) ; if ( x@1 == 12 ) { 5: f2 ( ) ; 6: } 7: } Replacing the "if" with "while" in the above example: void f() { int x; while ((x = f1()) == 12) { f2(); } } The "x = f1()" is broken out twice. The --debug output: 1: void f ( ) 2: { 3: int x@1 ; 4: x@1 = f1 ( ) ; while ( x@1 == 12 ) { 5: f2 ( ) ; x@1 = f1 ( ) ; 5: 6: } 7: }