/* * Cppcheck - A tool for static C/C++ code analysis * Copyright (C) 2007-2022 Cppcheck team. * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ //--------------------------------------------------------------------------- #ifndef valueflowH #define valueflowH //--------------------------------------------------------------------------- #include "config.h" #include "mathlib.h" #include #include #include #include #include #include #include #include #include class ErrorLogger; struct InferModel; class Settings; class SymbolDatabase; class Token; class TokenList; class ValueType; class Variable; class Scope; template class ValuePtr; namespace ValueFlow { struct increment { template void operator()(T& x) const { x++; } }; struct decrement { template void operator()(T& x) const { x--; } }; struct less { template bool operator()(const T& x, const U& y) const { return x < y; } }; struct adjacent { template bool operator()(const T& x, const U& y) const { return std::abs(x - y) == 1; } }; struct equalVisitor { template void operator()(bool& result, T x, U y) const { result = !(x > y || x < y); } }; class CPPCHECKLIB Value { public: typedef std::pair ErrorPathItem; typedef std::list ErrorPath; enum class Bound { Upper, Lower, Point }; explicit Value(long long val = 0, Bound b = Bound::Point) : valueType(ValueType::INT), bound(b), intvalue(val), tokvalue(nullptr), floatValue(0.0), moveKind(MoveKind::NonMovedVariable), varvalue(val), condition(nullptr), varId(0U), safe(false), conditional(false), macro(false), defaultArg(false), indirect(0), path(0), wideintvalue(val), subexpressions(), lifetimeKind(LifetimeKind::Object), lifetimeScope(LifetimeScope::Local), valueKind(ValueKind::Possible) {} Value(const Token* c, long long val, Bound b = Bound::Point); static Value unknown(); bool equalValue(const ValueFlow::Value& rhs) const { if (valueType != rhs.valueType) return false; switch (valueType) { case ValueType::INT: case ValueType::CONTAINER_SIZE: case ValueType::BUFFER_SIZE: case ValueType::ITERATOR_START: case ValueType::ITERATOR_END: if (intvalue != rhs.intvalue) return false; break; case ValueType::TOK: if (tokvalue != rhs.tokvalue) return false; break; case ValueType::FLOAT: // TODO: Write some better comparison if (floatValue > rhs.floatValue || floatValue < rhs.floatValue) return false; break; case ValueType::MOVED: if (moveKind != rhs.moveKind) return false; break; case ValueType::UNINIT: break; case ValueType::LIFETIME: if (tokvalue != rhs.tokvalue) return false; break; case ValueType::SYMBOLIC: if (!sameToken(tokvalue, rhs.tokvalue)) return false; if (intvalue != rhs.intvalue) return false; break; } return true; } template static void visitValue(T& self, F f) { switch (self.valueType) { case ValueType::INT: case ValueType::SYMBOLIC: case ValueType::BUFFER_SIZE: case ValueType::CONTAINER_SIZE: case ValueType::ITERATOR_START: case ValueType::ITERATOR_END: { f(self.intvalue); break; } case ValueType::FLOAT: { f(self.floatValue); break; } case ValueType::UNINIT: case ValueType::TOK: case ValueType::LIFETIME: case ValueType::MOVED: break; } } struct compareVisitor { struct innerVisitor { template void operator()(bool& result, Compare compare, T x, U y) const { result = compare(x, y); } }; template void operator()(bool& result, const Value& rhs, Compare compare, T x) const { visitValue(rhs, std::bind(innerVisitor{}, std::ref(result), std::move(compare), x, std::placeholders::_1)); } }; template bool compareValue(const Value& rhs, Compare compare) const { assert((!this->isSymbolicValue() && !rhs.isSymbolicValue()) || (this->valueType == rhs.valueType && sameToken(this->tokvalue, rhs.tokvalue))); bool result = false; visitValue( *this, std::bind(compareVisitor{}, std::ref(result), std::ref(rhs), std::move(compare), std::placeholders::_1)); return result; } bool operator==(const Value &rhs) const { if (!equalValue(rhs)) return false; return varvalue == rhs.varvalue && condition == rhs.condition && varId == rhs.varId && conditional == rhs.conditional && defaultArg == rhs.defaultArg && indirect == rhs.indirect && valueKind == rhs.valueKind; } bool operator!=(const Value &rhs) const { return !(*this == rhs); } template )> bool equalTo(const T& x) const { bool result = false; visitValue(*this, std::bind(equalVisitor{}, std::ref(result), x, std::placeholders::_1)); return result; } void decreaseRange() { if (bound == Bound::Lower) visitValue(*this, increment{}); else if (bound == Bound::Upper) visitValue(*this, decrement{}); } void invertBound() { if (bound == Bound::Lower) bound = Bound::Upper; else if (bound == Bound::Upper) bound = Bound::Lower; } void invertRange() { invertBound(); decreaseRange(); } void assumeCondition(const Token* tok); std::string infoString() const; enum class ValueType { INT, TOK, FLOAT, MOVED, UNINIT, CONTAINER_SIZE, LIFETIME, BUFFER_SIZE, ITERATOR_START, ITERATOR_END, SYMBOLIC } valueType; bool isIntValue() const { return valueType == ValueType::INT; } bool isTokValue() const { return valueType == ValueType::TOK; } bool isFloatValue() const { return valueType == ValueType::FLOAT; } bool isMovedValue() const { return valueType == ValueType::MOVED; } bool isUninitValue() const { return valueType == ValueType::UNINIT; } bool isContainerSizeValue() const { return valueType == ValueType::CONTAINER_SIZE; } bool isLifetimeValue() const { return valueType == ValueType::LIFETIME; } bool isBufferSizeValue() const { return valueType == ValueType::BUFFER_SIZE; } bool isIteratorValue() const { return valueType == ValueType::ITERATOR_START || valueType == ValueType::ITERATOR_END; } bool isIteratorStartValue() const { return valueType == ValueType::ITERATOR_START; } bool isIteratorEndValue() const { return valueType == ValueType::ITERATOR_END; } bool isSymbolicValue() const { return valueType == ValueType::SYMBOLIC; } bool isLocalLifetimeValue() const { return valueType == ValueType::LIFETIME && lifetimeScope == LifetimeScope::Local; } bool isArgumentLifetimeValue() const { return valueType == ValueType::LIFETIME && lifetimeScope == LifetimeScope::Argument; } bool isSubFunctionLifetimeValue() const { return valueType == ValueType::LIFETIME && lifetimeScope == LifetimeScope::SubFunction; } bool isNonValue() const { return isMovedValue() || isUninitValue() || isLifetimeValue(); } /** The value bound */ Bound bound; /** int value (or sometimes bool value?) */ long long intvalue; /** token value - the token that has the value. this is used for pointer aliases, strings, etc. */ const Token *tokvalue; /** float value */ double floatValue; /** kind of moved */ enum class MoveKind {NonMovedVariable, MovedVariable, ForwardedVariable} moveKind; /** For calculated values - variable value that calculated value depends on */ long long varvalue; /** Condition that this value depends on */ const Token *condition; ErrorPath errorPath; /** For calculated values - varId that calculated value depends on */ nonneg int varId; /** value relies on safe checking */ bool safe; /** Conditional value */ bool conditional; /** Value is is from an expanded macro */ bool macro; /** Is this value passed as default parameter to the function? */ bool defaultArg; int indirect; /** Path id */ MathLib::bigint path; /** int value before implicit truncation */ long long wideintvalue; std::vector subexpressions; enum class LifetimeKind { // Pointer points to a member of lifetime Object, // A member of object points to the lifetime SubObject, // Lambda has captured lifetime(similar to SubObject) Lambda, // Iterator points to the lifetime of a container(similar to Object) Iterator, // A pointer that holds the address of the lifetime Address } lifetimeKind; enum class LifetimeScope { Local, Argument, SubFunction, ThisPointer, ThisValue } lifetimeScope; static const char* toString(MoveKind moveKind); static const char* toString(LifetimeKind lifetimeKind); static const char* toString(LifetimeScope lifetimeScope); static const char* toString(Bound bound); /** How known is this value */ enum class ValueKind { /** This value is possible, other unlisted values may also be possible */ Possible, /** Only listed values are possible */ Known, /** Inconclusive */ Inconclusive, /** Listed values are impossible */ Impossible } valueKind; void setKnown() { valueKind = ValueKind::Known; } bool isKnown() const { return valueKind == ValueKind::Known; } void setPossible() { valueKind = ValueKind::Possible; } bool isPossible() const { return valueKind == ValueKind::Possible; } bool isImpossible() const { return valueKind == ValueKind::Impossible; } void setImpossible() { valueKind = ValueKind::Impossible; } void setInconclusive(bool inconclusive = true) { if (inconclusive) valueKind = ValueKind::Inconclusive; } bool isInconclusive() const { return valueKind == ValueKind::Inconclusive; } void changeKnownToPossible() { if (isKnown()) valueKind = ValueKind::Possible; } bool errorSeverity() const { return !condition && !defaultArg; } static bool sameToken(const Token* tok1, const Token* tok2); }; /// Constant folding of expression. This can be used before the full ValueFlow has been executed (ValueFlow::setValues). const ValueFlow::Value * valueFlowConstantFoldAST(Token *expr, const Settings *settings); /// Perform valueflow analysis. void setValues(TokenList *tokenlist, SymbolDatabase* symboldatabase, ErrorLogger *errorLogger, const Settings *settings); std::string eitherTheConditionIsRedundant(const Token *condition); size_t getSizeOf(const ValueType &vt, const Settings *settings); const ValueFlow::Value* findValue(const std::list& values, const Settings* settings, std::function pred); std::vector isOutOfBounds(const Value& size, const Token* indexTok, bool possible = true); } bool isContainerSizeChanged(const Token* tok, const Settings* settings = nullptr, int depth = 20); struct LifetimeToken { const Token* token; bool addressOf; ValueFlow::Value::ErrorPath errorPath; bool inconclusive; LifetimeToken() : token(nullptr), addressOf(false), errorPath(), inconclusive(false) {} LifetimeToken(const Token* token, ValueFlow::Value::ErrorPath errorPath) : token(token), addressOf(false), errorPath(std::move(errorPath)), inconclusive(false) {} LifetimeToken(const Token* token, bool addressOf, ValueFlow::Value::ErrorPath errorPath) : token(token), addressOf(addressOf), errorPath(std::move(errorPath)), inconclusive(false) {} static std::vector setAddressOf(std::vector v, bool b) { for (LifetimeToken& x : v) x.addressOf = b; return v; } static std::vector setInconclusive(std::vector v, bool b) { for (LifetimeToken& x : v) x.inconclusive = b; return v; } }; const Token *parseCompareInt(const Token *tok, ValueFlow::Value &true_value, ValueFlow::Value &false_value, const std::function(const Token*)>& evaluate); const Token *parseCompareInt(const Token *tok, ValueFlow::Value &true_value, ValueFlow::Value &false_value); ValueFlow::Value inferCondition(std::string op, MathLib::bigint val, const Token* varTok); ValueFlow::Value inferCondition(const std::string& op, const Token* varTok, MathLib::bigint val); CPPCHECKLIB ValuePtr makeIntegralInferModel(); std::vector getLifetimeTokens(const Token* tok, bool escape = false, ValueFlow::Value::ErrorPath errorPath = ValueFlow::Value::ErrorPath{}); bool hasLifetimeToken(const Token* tok, const Token* lifetime); const Variable* getLifetimeVariable(const Token* tok, ValueFlow::Value::ErrorPath& errorPath, bool* addressOf = nullptr); const Variable* getLifetimeVariable(const Token* tok); bool isLifetimeBorrowed(const Token *tok, const Settings *settings); std::string lifetimeType(const Token *tok, const ValueFlow::Value *val); std::string lifetimeMessage(const Token *tok, const ValueFlow::Value *val, ValueFlow::Value::ErrorPath &errorPath); CPPCHECKLIB ValueFlow::Value getLifetimeObjValue(const Token *tok, bool inconclusive = false); CPPCHECKLIB std::vector getLifetimeObjValues(const Token* tok, bool inconclusive = false, MathLib::bigint path = 0); const Token* getEndOfExprScope(const Token* tok, const Scope* defaultScope = nullptr, bool smallest = true); #endif // valueflowH