/* * Cppcheck - A tool for static C/C++ code analysis * Copyright (C) 2007-2022 Cppcheck team. * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ //--------------------------------------------------------------------------- #include "checkunusedvar.h" #include "astutils.h" #include "errortypes.h" #include "library.h" #include "preprocessor.h" #include "settings.h" #include "symboldatabase.h" #include "token.h" #include "tokenize.h" #include "tokenlist.h" #include "utils.h" #include #include #include #include #include //--------------------------------------------------------------------------- // Register this check class (by creating a static instance of it) namespace { CheckUnusedVar instance; } static const struct CWE CWE563(563U); // Assignment to Variable without Use ('Unused Variable') static const struct CWE CWE665(665U); // Improper Initialization /** Is scope a raii class scope */ static bool isRaiiClassScope(const Scope *classScope) { return classScope && classScope->getDestructor() != nullptr; } /** Is ValueType a raii class? */ static bool isRaiiClass(const ValueType *valueType, bool cpp, bool defaultReturn = true) { if (!cpp) return false; if (!valueType) return defaultReturn; if ((valueType->smartPointerType && isRaiiClassScope(valueType->smartPointerType->classScope)) || (!valueType->smartPointerType && valueType->type == ValueType::Type::SMART_POINTER)) return true; switch (valueType->type) { case ValueType::Type::UNKNOWN_TYPE: case ValueType::Type::NONSTD: return defaultReturn; case ValueType::Type::RECORD: if (isRaiiClassScope(valueType->typeScope)) return true; return defaultReturn; case ValueType::Type::POD: case ValueType::Type::SMART_POINTER: case ValueType::Type::CONTAINER: case ValueType::Type::ITERATOR: case ValueType::Type::VOID: case ValueType::Type::BOOL: case ValueType::Type::CHAR: case ValueType::Type::SHORT: case ValueType::Type::WCHAR_T: case ValueType::Type::INT: case ValueType::Type::LONG: case ValueType::Type::LONGLONG: case ValueType::Type::UNKNOWN_INT: case ValueType::Type::FLOAT: case ValueType::Type::DOUBLE: case ValueType::Type::LONGDOUBLE: return false; } return defaultReturn; } /** * @brief This class is used create a list of variables within a function. */ class Variables { public: enum VariableType { standard, array, pointer, reference, pointerArray, referenceArray, pointerPointer, none }; /** Store information about variable usage */ class VariableUsage { public: explicit VariableUsage(const Variable *var = nullptr, VariableType type = standard, bool read = false, bool write = false, bool modified = false, bool allocateMemory = false) : _var(var), _lastAccess(var ? var->nameToken() : nullptr), mType(type), _read(read), _write(write), _modified(modified), _allocateMemory(allocateMemory) {} /** variable is used.. set both read+write */ void use() { _read = true; _write = true; } /** is variable unused? */ bool unused() const { return (!_read && !_write); } std::set _aliases; std::set _assignments; const Variable* _var; const Token* _lastAccess; VariableType mType; bool _read; bool _write; bool _modified; // read/modify/write bool _allocateMemory; }; void clear() { mVarUsage.clear(); } const std::map &varUsage() const { return mVarUsage; } void addVar(const Variable *var, VariableType type, bool write_); void allocateMemory(nonneg int varid, const Token* tok); void read(nonneg int varid, const Token* tok); void readAliases(nonneg int varid, const Token* tok); void readAll(nonneg int varid, const Token* tok); void write(nonneg int varid, const Token* tok); void writeAliases(nonneg int varid, const Token* tok); void writeAll(nonneg int varid, const Token* tok); void use(nonneg int varid, const Token* tok); void modified(nonneg int varid, const Token* tok); VariableUsage *find(nonneg int varid); void alias(nonneg int varid1, nonneg int varid2, bool replace); void erase(nonneg int varid) { mVarUsage.erase(varid); } void eraseAliases(nonneg int varid); void eraseAll(nonneg int varid); void clearAliases(nonneg int varid); private: std::map mVarUsage; }; /** * Alias the 2 given variables. Either replace the existing aliases if * they exist or merge them. You would replace an existing alias when this * assignment is in the same scope as the previous assignment. You might * merge the aliases when this assignment is in a different scope from the * previous assignment depending on the relationship of the 2 scopes. */ void Variables::alias(nonneg int varid1, nonneg int varid2, bool replace) { VariableUsage *var1 = find(varid1); VariableUsage *var2 = find(varid2); if (!var1 || !var2) return; // alias to self if (varid1 == varid2) { var1->use(); return; } if (replace) { // remove var1 from all aliases for (std::set::const_iterator i = var1->_aliases.begin(); i != var1->_aliases.end(); ++i) { VariableUsage *temp = find(*i); if (temp) temp->_aliases.erase(var1->_var->declarationId()); } // remove all aliases from var1 var1->_aliases.clear(); } // var1 gets all var2s aliases for (std::set::const_iterator i = var2->_aliases.begin(); i != var2->_aliases.end(); ++i) { if (*i != varid1) var1->_aliases.insert(*i); } // var2 is an alias of var1 var2->_aliases.insert(varid1); var1->_aliases.insert(varid2); if (var2->mType == Variables::pointer) { var2->_read = true; } } void Variables::clearAliases(nonneg int varid) { VariableUsage *usage = find(varid); if (usage) { // remove usage from all aliases std::set::const_iterator i; for (i = usage->_aliases.begin(); i != usage->_aliases.end(); ++i) { VariableUsage *temp = find(*i); if (temp) temp->_aliases.erase(usage->_var->declarationId()); } // remove all aliases from usage usage->_aliases.clear(); } } void Variables::eraseAliases(nonneg int varid) { VariableUsage *usage = find(varid); if (usage) { for (std::set::const_iterator aliases = usage->_aliases.begin(); aliases != usage->_aliases.end(); ++aliases) erase(*aliases); } } void Variables::eraseAll(nonneg int varid) { eraseAliases(varid); erase(varid); } void Variables::addVar(const Variable *var, VariableType type, bool write_) { if (var->declarationId() > 0) { mVarUsage.insert(std::make_pair(var->declarationId(), VariableUsage(var, type, false, write_, false))); } } void Variables::allocateMemory(nonneg int varid, const Token* tok) { VariableUsage *usage = find(varid); if (usage) { usage->_allocateMemory = true; usage->_lastAccess = tok; } } void Variables::read(nonneg int varid, const Token* tok) { VariableUsage *usage = find(varid); if (usage) { usage->_read = true; if (tok) usage->_lastAccess = tok; } } void Variables::readAliases(nonneg int varid, const Token* tok) { VariableUsage *usage = find(varid); if (usage) { for (nonneg int aliases : usage->_aliases) { VariableUsage *aliased = find(aliases); if (aliased) { aliased->_read = true; aliased->_lastAccess = tok; } } } } void Variables::readAll(nonneg int varid, const Token* tok) { read(varid, tok); readAliases(varid, tok); } void Variables::write(nonneg int varid, const Token* tok) { VariableUsage *usage = find(varid); if (usage) { usage->_write = true; if (!usage->_var->isStatic() && !Token::simpleMatch(tok->next(), "= 0 ;")) usage->_read = false; usage->_lastAccess = tok; } } void Variables::writeAliases(nonneg int varid, const Token* tok) { VariableUsage *usage = find(varid); if (usage) { for (std::set::const_iterator aliases = usage->_aliases.begin(); aliases != usage->_aliases.end(); ++aliases) { VariableUsage *aliased = find(*aliases); if (aliased) { aliased->_write = true; aliased->_lastAccess = tok; } } } } void Variables::writeAll(nonneg int varid, const Token* tok) { write(varid, tok); writeAliases(varid, tok); } void Variables::use(nonneg int varid, const Token* tok) { VariableUsage *usage = find(varid); if (usage) { usage->use(); usage->_lastAccess = tok; for (std::set::const_iterator aliases = usage->_aliases.begin(); aliases != usage->_aliases.end(); ++aliases) { VariableUsage *aliased = find(*aliases); if (aliased) { aliased->use(); aliased->_lastAccess = tok; } } } } void Variables::modified(nonneg int varid, const Token* tok) { VariableUsage *usage = find(varid); if (usage) { if (!usage->_var->isStatic()) usage->_read = false; usage->_modified = true; usage->_lastAccess = tok; for (std::set::const_iterator aliases = usage->_aliases.begin(); aliases != usage->_aliases.end(); ++aliases) { VariableUsage *aliased = find(*aliases); if (aliased) { aliased->_modified = true; aliased->_lastAccess = tok; } } } } Variables::VariableUsage *Variables::find(nonneg int varid) { if (varid) { std::map::iterator i = mVarUsage.find(varid); if (i != mVarUsage.end()) return &i->second; } return nullptr; } static const Token* doAssignment(Variables &variables, const Token *tok, bool dereference, const Scope *scope) { // a = a + b; if (Token::Match(tok, "%var% = %var% !!;")) { const Token* rhsVarTok = tok->tokAt(2); if (tok->varId() == rhsVarTok->varId()) { return rhsVarTok; } } if (Token::Match(tok, "%var% %assign%") && tok->strAt(1) != "=") return tok->next(); const Token* const tokOld = tok; // check for aliased variable const nonneg int varid1 = tok->varId(); Variables::VariableUsage *var1 = variables.find(varid1); if (var1) { // jump behind '=' tok = tok->next(); while (!tok->isAssignmentOp()) { if (tok->varId()) variables.read(tok->varId(), tok); tok = tok->next(); } tok = tok->next(); if (Token::Match(tok, "( const| struct|union| %type% * ) ( (")) tok = tok->link()->next(); if (Token::Match(tok, "( [(<] const| struct|union| %type% *| [>)]")) tok = tok->next(); if (Token::Match(tok, "(| &| %name%") || (Token::Match(tok->next(), "< const| struct|union| %type% *| > ( &| %name%"))) { bool addressOf = false; if (Token::Match(tok, "%var% .")) variables.use(tok->varId(), tok); // use = read + write // check for C style cast if (tok->str() == "(") { tok = tok->next(); if (tok->str() == "const") tok = tok->next(); if (Token::Match(tok, "struct|union")) tok = tok->next(); while ((tok->isName() && tok->varId() == 0) || (tok->str() == "*") || (tok->str() == ")")) tok = tok->next(); if (tok->str() == "&") { addressOf = true; tok = tok->next(); } else if (tok->str() == "(") { tok = tok->next(); if (tok->str() == "&") { addressOf = true; tok = tok->next(); } } else if (Token::Match(tok, "%cop% %var%")) { variables.read(tok->next()->varId(), tok); } } // check for C++ style cast else if (tok->str().find("cast") != std::string::npos && tok->strAt(1) == "<") { tok = tok->tokAt(2); if (tok->str() == "const") tok = tok->next(); if (Token::Match(tok, "struct|union")) tok = tok->next(); tok = tok->next(); if (tok->str() == "*") tok = tok->next(); tok = tok->tokAt(2); if (!tok) return tokOld; if (tok->str() == "&") { addressOf = true; tok = tok->next(); } } // no cast, no ? else if (!Token::Match(tok, "%name% ?")) { if (tok->str() == "&") { addressOf = true; tok = tok->next(); } else if (tok->str() == "new") return tokOld; } // check if variable is local const nonneg int varid2 = tok->varId(); const Variables::VariableUsage* var2 = variables.find(varid2); if (var2) { // local variable (alias or read it) if (var1->mType == Variables::pointer || var1->mType == Variables::pointerArray) { if (dereference) variables.read(varid2, tok); else { if (addressOf || var2->mType == Variables::array || var2->mType == Variables::pointer) { bool replace = true; // pointerArray => don't replace if (var1->mType == Variables::pointerArray) replace = false; // check if variable declared in same scope else if (scope == var1->_var->scope()) replace = true; // not in same scope as declaration else { // no other assignment in this scope if (var1->_assignments.find(scope) == var1->_assignments.end() || scope->type == Scope::eSwitch) { // nothing to replace // cppcheck-suppress duplicateBranch - remove when TODO below is address if (var1->_assignments.empty()) replace = false; // this variable has previous assignments else { // TODO: determine if existing aliases should be replaced or merged replace = false; } } // assignment in this scope else { // replace when only one other assignment, merge them otherwise replace = (var1->_assignments.size() == 1); } } variables.alias(varid1, varid2, replace); } else if (tok->strAt(1) == "?") { if (var2->mType == Variables::reference) variables.readAliases(varid2, tok); else variables.read(varid2, tok); } else { variables.readAll(varid2, tok); } } } else if (var1->mType == Variables::reference) { variables.alias(varid1, varid2, true); } else if (var1->mType == Variables::standard && addressOf) { variables.alias(varid1, varid2, true); } else { if ((var2->mType == Variables::pointer || var2->mType == Variables::pointerArray) && tok->strAt(1) == "[") variables.readAliases(varid2, tok); variables.read(varid2, tok); } } else { // not a local variable (or an unsupported local variable) if (var1->mType == Variables::pointer && !dereference) { // check if variable declaration is in this scope if (var1->_var->scope() == scope) { // If variable is used in RHS then "use" variable for (const Token *rhs = tok; rhs && rhs->str() != ";"; rhs = rhs->next()) { if (rhs->varId() == varid1) { variables.use(varid1, tok); break; } } variables.clearAliases(varid1); } else { // no other assignment in this scope if (var1->_assignments.find(scope) == var1->_assignments.end()) { /** * @todo determine if existing aliases should be discarded */ } // this assignment replaces the last assignment in this scope else { // aliased variables in a larger scope are not supported // remove all aliases variables.clearAliases(varid1); } } } } } else tok = tokOld; var1->_assignments.insert(scope); } // check for alias to struct member // char c[10]; a.b = c; else if (Token::Match(tok->tokAt(-2), "%name% .")) { const Token *rhsVarTok = tok->tokAt(2); if (rhsVarTok && rhsVarTok->varId()) { const nonneg int varid2 = rhsVarTok->varId(); const Variables::VariableUsage *var2 = variables.find(varid2); // struct member aliased to local variable if (var2 && (var2->mType == Variables::array || var2->mType == Variables::pointer)) { // erase aliased variable and all variables that alias it // to prevent false positives variables.eraseAll(varid2); } } } // Possible pointer alias else if (Token::Match(tok, "%name% = %name% ;")) { const nonneg int varid2 = tok->tokAt(2)->varId(); const Variables::VariableUsage *var2 = variables.find(varid2); if (var2 && (var2->mType == Variables::array || var2->mType == Variables::pointer)) { variables.use(varid2,tok); } } return tok; } static bool isPartOfClassStructUnion(const Token* tok) { for (; tok; tok = tok->previous()) { if (tok->str() == "}" || tok->str() == ")") tok = tok->link(); else if (tok->str() == "(") return (false); else if (tok->str() == "{") { return (tok->strAt(-1) == "struct" || tok->strAt(-2) == "struct" || tok->strAt(-1) == "class" || tok->strAt(-2) == "class" || tok->strAt(-1) == "union" || tok->strAt(-2) == "union"); } } return false; } static bool isVarDecl(const Token *tok) { return tok && tok->variable() && tok->variable()->nameToken() == tok; } // Skip [ .. ] static const Token * skipBrackets(const Token *tok) { while (tok && tok->str() == "[") tok = tok->link()->next(); return tok; } // Skip [ .. ] . x static const Token * skipBracketsAndMembers(const Token *tok) { while (tok) { if (tok->str() == "[") tok = tok->link()->next(); else if (Token::Match(tok, ". %name%")) tok = tok->tokAt(2); else break; } return tok; } static void useFunctionArgs(const Token *tok, Variables& variables) { // TODO: Match function args to see if they are const or not. Assume that const data is not written. if (!tok) return; if (tok->str() == ",") { useFunctionArgs(tok->astOperand1(), variables); useFunctionArgs(tok->astOperand2(), variables); } else if (Token::Match(tok, "[+:]") && (!tok->valueType() || tok->valueType()->pointer)) { useFunctionArgs(tok->astOperand1(), variables); useFunctionArgs(tok->astOperand2(), variables); } else if (tok->variable() && tok->variable()->isArray()) { variables.use(tok->varId(), tok); } } //--------------------------------------------------------------------------- // Usage of function variables //--------------------------------------------------------------------------- void CheckUnusedVar::checkFunctionVariableUsage_iterateScopes(const Scope* const scope, Variables& variables) { // Find declarations if the scope is executable.. if (scope->isExecutable()) { // Find declarations for (std::list::const_iterator i = scope->varlist.begin(); i != scope->varlist.end(); ++i) { if (i->isThrow() || i->isExtern()) continue; Variables::VariableType type = Variables::none; if (i->isArray() && (i->nameToken()->previous()->str() == "*" || i->nameToken()->strAt(-2) == "*")) type = Variables::pointerArray; else if (i->isArray() && i->nameToken()->previous()->str() == "&") type = Variables::referenceArray; else if (i->isArray()) type = (i->dimensions().size() == 1U) ? Variables::array : Variables::pointerArray; else if (i->isReference() && !(i->valueType() && i->valueType()->type == ValueType::UNKNOWN_TYPE && Token::simpleMatch(i->typeStartToken(), "auto"))) type = Variables::reference; else if (i->nameToken()->previous()->str() == "*" && i->nameToken()->strAt(-2) == "*") type = Variables::pointerPointer; else if (i->isPointerToArray()) type = Variables::pointerPointer; else if (i->isPointer()) type = Variables::pointer; else if (mTokenizer->isC() || i->typeEndToken()->isStandardType() || isRecordTypeWithoutSideEffects(i->type()) || mSettings->library.detectContainer(i->typeStartToken(), /*iterator*/ false) || i->isStlType()) type = Variables::standard; if (type == Variables::none || isPartOfClassStructUnion(i->typeStartToken())) continue; const Token* defValTok = i->nameToken()->next(); if (Token::Match(i->nameToken()->previous(), "* %var% ) (")) // function pointer. Jump behind parameter list. defValTok = defValTok->linkAt(1)->next(); for (; defValTok; defValTok = defValTok->next()) { if (defValTok->str() == "[") defValTok = defValTok->link(); else if (defValTok->str() == "(" || defValTok->str() == "{" || defValTok->str() == "=" || defValTok->str() == ":") { variables.addVar(&*i, type, true); break; } else if (defValTok->str() == ";" || defValTok->str() == "," || defValTok->str() == ")") { variables.addVar(&*i, type, i->isStatic() && i->scope()->type != Scope::eFunction); break; } } if (i->isArray() && i->isClass() && // Array of class/struct members. Initialized by ctor except for std::array !(i->isStlType() && i->valueType() && i->valueType()->containerTypeToken && i->valueType()->containerTypeToken->isStandardType())) variables.write(i->declarationId(), i->nameToken()); if (i->isArray() && Token::Match(i->nameToken(), "%name% [ %var% ]")) // Array index variable read. variables.read(i->nameToken()->tokAt(2)->varId(), i->nameToken()); if (defValTok && defValTok->next()) { // simple assignment "var = 123" if (defValTok->str() == "=" && defValTok->next()->str() != "{") { doAssignment(variables, i->nameToken(), false, scope); } else { // could be "var = {...}" OR "var{...}" (since C++11) const Token* tokBraceStart = nullptr; if (Token::simpleMatch(defValTok, "= {")) { // "var = {...}" tokBraceStart = defValTok->next(); } else if (defValTok->str() == "{") { // "var{...}" tokBraceStart = defValTok; } if (tokBraceStart) { for (const Token* tok = tokBraceStart->next(); tok && tok != tokBraceStart->link(); tok = tok->next()) { if (tok->varId()) { // Variables used to initialize the array read. variables.read(tok->varId(), i->nameToken()); } } } } } } } // Check variable usage const Token *tok; if (scope->type == Scope::eFunction) tok = scope->bodyStart->next(); else tok = scope->classDef->next(); for (; tok && tok != scope->bodyEnd; tok = tok->next()) { if (tok->str() == "{" && tok != scope->bodyStart && !tok->previous()->varId()) { for (const Scope *i : scope->nestedList) { if (i->bodyStart == tok) { // Find associated scope checkFunctionVariableUsage_iterateScopes(tok->scope(), variables); // Scan child scope tok = tok->link(); break; } } if (!tok) break; } if (Token::Match(tok, "asm ( %str% )")) { variables.clear(); break; } // templates if (tok->isName() && endsWith(tok->str(), '>')) { // TODO: This is a quick fix to handle when constants are used // as template parameters. Try to handle this better, perhaps // only remove constants. variables.clear(); } else if (Token::Match(tok->previous(), "[;{}]")) { for (const Token* tok2 = tok->next(); tok2; tok2 = tok2->next()) { if (tok2->varId()) { // Is this a variable declaration? const Variable *var = tok2->variable(); if (!var || var->nameToken() != tok2) continue; // Mark template parameters used in declaration as use.. if (tok2->strAt(-1) == ">") { for (const Token *tok3 = tok; tok3 != tok2; tok3 = tok3->next()) { if (tok3->varId()) variables.use(tok3->varId(), tok3); } } // Skip variable declaration.. tok = tok2->next(); if (Token::Match(tok, "( %name% )")) // Simple initialization through copy ctor tok = tok->next(); else if (Token::Match(tok, "= %var% ;")) { // Simple initialization tok = tok->next(); if (!var->isReference()) variables.read(tok->varId(), tok); } else if (tok->str() == "[" && Token::simpleMatch(skipBrackets(tok),"= {")) { const Token * const rhs1 = skipBrackets(tok)->next(); for (const Token *rhs = rhs1->link(); rhs != rhs1; rhs = rhs->previous()) { if (rhs->varId()) variables.readAll(rhs->varId(), rhs); } } else if (var->typeEndToken()->str() == ">") // Be careful with types like std::vector tok = tok->previous(); break; } else if (Token::Match(tok2, "[;({=]")) break; } } // Freeing memory (not considered "using" the pointer if it was also allocated in this function) if (Token::Match(tok, "free|g_free|kfree|vfree ( %var% )") || (mTokenizer->isCPP() && (Token::Match(tok, "delete %var% ;") || Token::Match(tok, "delete [ ] %var% ;")))) { nonneg int varid = 0; if (tok->str() != "delete") { const Token *varTok = tok->tokAt(2); varid = varTok->varId(); tok = varTok->next(); } else if (tok->strAt(1) == "[") { const Token *varTok = tok->tokAt(3); varid = varTok->varId(); tok = varTok; } else { varid = tok->next()->varId(); tok = tok->next(); } const Variables::VariableUsage *const var = variables.find(varid); if (var) { if (!var->_aliases.empty()) variables.use(varid, tok); else if (!var->_allocateMemory) variables.readAll(varid, tok); } } else if (Token::Match(tok, "return|throw")) { for (const Token *tok2 = tok->next(); tok2; tok2 = tok2->next()) { if (tok2->varId()) variables.readAll(tok2->varId(), tok); else if (tok2->str() == ";") break; } } // assignment else if (Token::Match(tok, "*| ++|--| %name% ++|--| %assign%") || Token::Match(tok, "*| ( const| %type% *| ) %name% %assign%")) { bool dereference = false; bool pre = false; bool post = false; if (tok->str() == "*") { dereference = true; tok = tok->next(); } if (Token::Match(tok, "( const| %type% *| ) %name% %assign%")) tok = tok->link()->next(); else if (tok->str() == "(") tok = tok->next(); if (tok->tokType() == Token::eIncDecOp) { pre = true; tok = tok->next(); } if (tok->next()->tokType() == Token::eIncDecOp) post = true; const nonneg int varid1 = tok->varId(); const Token * const start = tok; // assignment in while head.. bool inwhile = false; { const Token *parent = tok->astParent(); while (parent) { if (Token::simpleMatch(parent->previous(), "while (")) { inwhile = true; break; } parent = parent->astParent(); } } tok = doAssignment(variables, tok, dereference, scope); if (tok && tok->isAssignmentOp() && tok->str() != "=") { variables.use(varid1, tok); if (Token::Match(tok, "%assign% %name%")) { tok = tok->next(); variables.read(tok->varId(), tok); } } if (pre || post) variables.use(varid1, tok); if (dereference) { const Variables::VariableUsage *const var = variables.find(varid1); if (var && var->mType == Variables::array) variables.write(varid1, tok); variables.writeAliases(varid1, tok); variables.read(varid1, tok); } else { const Variables::VariableUsage *const var = variables.find(varid1); if (var && (inwhile || start->strAt(-1) == ",")) { variables.use(varid1, tok); } else if (var && var->mType == Variables::reference) { variables.writeAliases(varid1, tok); variables.read(varid1, tok); } // Consider allocating memory separately because allocating/freeing alone does not constitute using the variable else if (var && var->mType == Variables::pointer && Token::Match(start, "%name% =") && findAllocFuncCallToken(start->next()->astOperand2(), mSettings->library)) { const Token *allocFuncCallToken = findAllocFuncCallToken(start->next()->astOperand2(), mSettings->library); const Library::AllocFunc *allocFunc = mSettings->library.getAllocFuncInfo(allocFuncCallToken); bool allocateMemory = !allocFunc || Library::ismemory(allocFunc->groupId); if (allocFuncCallToken->str() == "new") { const Token *type = allocFuncCallToken->next(); // skip nothrow if (mTokenizer->isCPP() && (Token::simpleMatch(type, "( nothrow )") || Token::simpleMatch(type, "( std :: nothrow )"))) type = type->link()->next(); // is it a user defined type? if (!type->isStandardType()) { const Variable *variable = start->variable(); if (!variable || !isRecordTypeWithoutSideEffects(variable->type())) allocateMemory = false; } } if (allocateMemory) variables.allocateMemory(varid1, tok); else variables.write(varid1, tok); } else if (varid1 && Token::Match(tok, "%varid% .", varid1)) { variables.read(varid1, tok); variables.write(varid1, start); } else { variables.write(varid1, tok); } } const Variables::VariableUsage * const var2 = variables.find(tok->varId()); if (var2) { if (var2->mType == Variables::reference) { variables.writeAliases(tok->varId(), tok); variables.read(tok->varId(), tok); } else if (tok->varId() != varid1 && Token::Match(tok, "%name% .|[")) variables.read(tok->varId(), tok); else if (tok->varId() != varid1 && var2->mType == Variables::standard && tok->strAt(-1) != "&") variables.use(tok->varId(), tok); } const Token * const equal = skipBracketsAndMembers(tok->next()); // checked for chained assignments if (tok != start && equal && equal->str() == "=") { const nonneg int varId = tok->varId(); const Variables::VariableUsage * const var = variables.find(varId); if (var && var->mType != Variables::reference) { variables.read(varId,tok); } tok = tok->previous(); } } // assignment else if ((Token::Match(tok, "%name% [") && Token::simpleMatch(skipBracketsAndMembers(tok->next()), "=")) || (Token::simpleMatch(tok, "* (") && Token::simpleMatch(tok->next()->link(), ") ="))) { const Token *eq = tok; while (eq && !eq->isAssignmentOp()) eq = eq->astParent(); const bool deref = eq && eq->astOperand1() && eq->astOperand1()->valueType() && eq->astOperand1()->valueType()->pointer == 0U; if (tok->str() == "*") { tok = tok->tokAt(2); if (tok->str() == "(") tok = tok->link()->next(); } const nonneg int varid = tok->varId(); const Variables::VariableUsage *var = variables.find(varid); if (var) { // Consider allocating memory separately because allocating/freeing alone does not constitute using the variable if (var->mType == Variables::pointer && Token::Match(skipBrackets(tok->next()), "= new|malloc|calloc|kmalloc|kzalloc|kcalloc|strdup|strndup|vmalloc|g_new0|g_try_new|g_new|g_malloc|g_malloc0|g_try_malloc|g_try_malloc0|g_strdup|g_strndup|g_strdup_printf")) { variables.allocateMemory(varid, tok); } else if (var->mType == Variables::pointer || var->mType == Variables::reference) { variables.read(varid, tok); variables.writeAliases(varid, tok); } else if (var->mType == Variables::pointerArray) { tok = doAssignment(variables, tok, deref, scope); } else variables.writeAll(varid, tok); } } else if (mTokenizer->isCPP() && Token::Match(tok, "[;{}] %var% <<")) { variables.erase(tok->next()->varId()); } else if (Token::Match(tok, "& %var%")) { if (tok->astOperand2()) { // bitop variables.read(tok->next()->varId(), tok); } else // addressof variables.use(tok->next()->varId(), tok); // use = read + write } else if (Token::Match(tok, ">>|>>= %name%")) { if (isLikelyStreamRead(mTokenizer->isCPP(), tok)) variables.use(tok->next()->varId(), tok); // use = read + write else variables.read(tok->next()->varId(), tok); } else if (Token::Match(tok, "%var% >>|&") && Token::Match(tok->previous(), "[{};:]")) { variables.read(tok->varId(), tok); } else if (isLikelyStreamRead(mTokenizer->isCPP(),tok->previous())) { variables.use(tok->varId(), tok); } // function parameter else if (Token::Match(tok, "[(,] %var% [")) { variables.use(tok->next()->varId(), tok); // use = read + write } else if (Token::Match(tok, "[(,] %var% [,)]") && tok->previous()->str() != "*") { variables.use(tok->next()->varId(), tok); // use = read + write } else if (Token::Match(tok, "[(,] & %var% [,)]")) { variables.eraseAll(tok->tokAt(2)->varId()); } else if (Token::Match(tok, "[(,] (") && Token::Match(tok->next()->link(), ") %var% [,)]")) { variables.use(tok->next()->link()->next()->varId(), tok); // use = read + write } else if (Token::Match(tok, "[(,] *| %var% =")) { tok = tok->next(); if (tok->str() == "*") tok = tok->next(); variables.use(tok->varId(), tok); } // function else if (Token::Match(tok, "%name% (")) { variables.read(tok->varId(), tok); useFunctionArgs(tok->next()->astOperand2(), variables); } else if (Token::Match(tok, "std :: ref ( %var% )")) { variables.eraseAll(tok->tokAt(4)->varId()); } else if (Token::Match(tok->previous(), "[{,] %var% [,}]")) { variables.read(tok->varId(), tok); } else if (tok->varId() && Token::Match(tok, "%var% .")) { variables.use(tok->varId(), tok); // use = read + write } else if (tok->str() == ":" && (!tok->valueType() || tok->valueType()->pointer)) { if (tok->astOperand1()) variables.use(tok->astOperand1()->varId(), tok->astOperand1()); if (tok->astOperand2()) variables.use(tok->astOperand2()->varId(), tok->astOperand2()); } else if (tok->isExtendedOp() && tok->next() && tok->next()->varId() && tok->strAt(2) != "=" && !isVarDecl(tok->next())) { variables.readAll(tok->next()->varId(), tok); } else if (tok->varId() && !isVarDecl(tok) && tok->next() && (tok->next()->str() == ")" || tok->next()->isExtendedOp())) { if (Token::Match(tok->tokAt(-2), "%name% ( %var% [,)]") && !(tok->tokAt(-2)->variable() && tok->tokAt(-2)->variable()->isReference())) variables.use(tok->varId(), tok); else variables.readAll(tok->varId(), tok); } else if (Token::Match(tok, "%var% ;") && Token::Match(tok->previous(), "[;{}:]")) { variables.readAll(tok->varId(), tok); } // ++|-- else if (tok->next() && tok->next()->tokType() == Token::eIncDecOp && tok->next()->astOperand1() && tok->next()->astOperand1()->varId()) { if (tok->next()->astParent()) variables.use(tok->next()->astOperand1()->varId(), tok); else variables.modified(tok->next()->astOperand1()->varId(), tok); } else if (tok->isAssignmentOp()) { for (const Token *tok2 = tok->next(); tok2 && tok2->str() != ";"; tok2 = tok2->next()) { if (tok2->varId()) { if (tok2->strAt(1) == "=") variables.write(tok2->varId(), tok); else if (tok2->next() && tok2->next()->isAssignmentOp()) variables.use(tok2->varId(), tok); else variables.read(tok2->varId(), tok); } } } else if (tok->variable() && tok->variable()->isClass() && tok->variable()->type() && (tok->variable()->type()->needInitialization == Type::NeedInitialization::False) && tok->next()->str() == ";") { variables.write(tok->varId(), tok); } } } void CheckUnusedVar::checkFunctionVariableUsage() { if (!mSettings->severity.isEnabled(Severity::style)) return; // Parse all executing scopes.. const SymbolDatabase *symbolDatabase = mTokenizer->getSymbolDatabase(); auto reportLibraryCfgError = [this](const Token* tok, const std::string& typeName) { if (mSettings->checkLibrary && mSettings->severity.isEnabled(Severity::information)) { reportError(tok, Severity::information, "checkLibraryCheckType", "--check-library: Provide configuration for " + typeName); } }; // only check functions for (const Scope * scope : symbolDatabase->functionScopes) { // Bailout when there are lambdas or inline functions // TODO: Handle lambdas and inline functions properly if (scope->hasInlineOrLambdaFunction()) continue; for (const Token *tok = scope->bodyStart; tok != scope->bodyEnd; tok = tok->next()) { if (findLambdaEndToken(tok)) // todo: handle lambdas break; if (Token::simpleMatch(tok, "try {")) // todo: check try blocks tok = tok->linkAt(1); const Token *varDecl = nullptr; if (tok->variable() && tok->variable()->nameToken() == tok) { const Token * eq = tok->next(); while (Token::simpleMatch(eq, "[")) eq = eq->link()->next(); if (Token::simpleMatch(eq, "=")) { varDecl = tok; tok = eq; } } // not assignment/initialization/increment => continue const bool isAssignment = tok->isAssignmentOp() && tok->astOperand1(); const bool isInitialization = (Token::Match(tok, "%var% (|{") && tok->variable() && tok->variable()->nameToken() == tok); const bool isIncrementOrDecrement = (tok->tokType() == Token::Type::eIncDecOp); if (!isAssignment && !isInitialization && !isIncrementOrDecrement) continue; if (isInitialization && Token::Match(tok, "%var% { }")) // don't warn for trivial initialization continue; if (isIncrementOrDecrement && tok->astParent() && precedes(tok, tok->astOperand1())) continue; if (tok->str() == "=" && !(tok->valueType() && tok->valueType()->pointer) && isRaiiClass(tok->valueType(), mTokenizer->isCPP(), false)) continue; const bool isPointer = tok->valueType() && tok->valueType()->pointer; if (tok->isName()) { if (isRaiiClass(tok->valueType(), mTokenizer->isCPP(), false)) continue; tok = tok->next(); } if (tok->astParent() && !tok->astParent()->isAssignmentOp() && tok->str() != "(") { const Token *parent = tok->astParent(); while (Token::Match(parent, "%oror%|%comp%|!|&&")) parent = parent->astParent(); if (!parent) continue; if (!Token::simpleMatch(parent->previous(), "if (")) continue; } // Do not warn about assignment with NULL if (isPointer && isNullOperand(tok->astOperand2())) continue; if (!tok->astOperand1()) continue; const Token *iteratorToken = tok->astOperand1(); while (Token::Match(iteratorToken, "[.*]")) iteratorToken = iteratorToken->astOperand1(); if (iteratorToken && iteratorToken->variable() && iteratorToken->variable()->typeEndToken()->str().find("iterator") != std::string::npos) continue; const Token *op1tok = tok->astOperand1(); while (Token::Match(op1tok, ".|[|*")) op1tok = op1tok->astOperand1(); const Variable *op1Var = op1tok ? op1tok->variable() : nullptr; if (!op1Var && Token::Match(tok, "(|{") && tok->previous() && tok->previous()->variable()) op1Var = tok->previous()->variable(); std::string bailoutTypeName; if (op1Var) { if (op1Var->isReference() && op1Var->nameToken() != tok->astOperand1()) // todo: check references continue; if (op1Var->isStatic()) // todo: check static variables continue; if (op1Var->nameToken()->isAttributeUnused()) continue; // Avoid FP for union.. if (op1Var->type() && op1Var->type()->isUnionType()) continue; // Bailout for unknown template classes, we have no idea what side effects such assignments have if (mTokenizer->isCPP() && op1Var->isClass() && (!op1Var->valueType() || op1Var->valueType()->type == ValueType::Type::UNKNOWN_TYPE)) { // Check in the library if we should bailout or not.. const std::string typeName = op1Var->getTypeName(); switch (mSettings->library.getTypeCheck("unusedvar", typeName)) { case Library::TypeCheck::def: bailoutTypeName = typeName; break; case Library::TypeCheck::check: break; case Library::TypeCheck::suppress: continue; } } } // Is there a redundant assignment? const Token *start = tok->findExpressionStartEndTokens().second->next(); const Token *expr = varDecl ? varDecl : tok->astOperand1(); if (isInitialization) expr = tok->previous(); // Is variable in lhs a union member? if (tok->previous() && tok->previous()->variable() && tok->previous()->variable()->nameToken()->scope()->type == Scope::eUnion) continue; FwdAnalysis fwdAnalysis(mTokenizer->isCPP(), mSettings->library); const Token* scopeEnd = getEndOfExprScope(expr, scope, /*smallest*/ false); if (fwdAnalysis.unusedValue(expr, start, scopeEnd)) { if (!bailoutTypeName.empty()) { if (bailoutTypeName != "auto") reportLibraryCfgError(tok, bailoutTypeName); continue; } // warn if (!expr->variable() || !expr->variable()->isMaybeUnused()) unreadVariableError(tok, expr->expressionString(), false); } } // varId, usage {read, write, modified} Variables variables; checkFunctionVariableUsage_iterateScopes(scope, variables); // Check usage of all variables in the current scope.. for (std::map::const_iterator it = variables.varUsage().begin(); it != variables.varUsage().end(); ++it) { const Variables::VariableUsage &usage = it->second; // variable has been marked as unused so ignore it if (usage._var->nameToken()->isAttributeUnused() || usage._var->nameToken()->isAttributeUsed()) continue; // skip things that are only partially implemented to prevent false positives if (usage.mType == Variables::pointerPointer || usage.mType == Variables::pointerArray || usage.mType == Variables::referenceArray) continue; const std::string &varname = usage._var->name(); const Variable* var = symbolDatabase->getVariableFromVarId(it->first); // variable has had memory allocated for it, but hasn't done // anything with that memory other than, perhaps, freeing it if (usage.unused() && !usage._modified && usage._allocateMemory) allocatedButUnusedVariableError(usage._lastAccess, varname); // variable has not been written, read, or modified else if (usage.unused() && !usage._modified) { if (!usage._var->isMaybeUnused()) { unusedVariableError(usage._var->nameToken(), varname); } } // variable has not been written but has been modified else if (usage._modified && !usage._write && !usage._allocateMemory && var && !var->isStlType()) unassignedVariableError(usage._var->nameToken(), varname); // variable has been read but not written else if (!usage._write && !usage._allocateMemory && var && !var->isStlType() && !isEmptyType(var->type())) unassignedVariableError(usage._var->nameToken(), varname); else if (!usage._var->isMaybeUnused() && !usage._modified && !usage._read && var) { const Token* vnt = var->nameToken(); bool error = false; if (vnt->next()->isSplittedVarDeclEq()) { const Token* nextStmt = vnt->tokAt(2); while (nextStmt && nextStmt->str() != ";") nextStmt = nextStmt->next(); error = precedes(usage._lastAccess, nextStmt); } if (error) { if (mTokenizer->isCPP() && var->isClass() && (!var->valueType() || var->valueType()->type == ValueType::Type::UNKNOWN_TYPE)) { const std::string typeName = var->getTypeName(); switch (mSettings->library.getTypeCheck("unusedvar", typeName)) { case Library::TypeCheck::def: reportLibraryCfgError(vnt, typeName); break; case Library::TypeCheck::check: break; case Library::TypeCheck::suppress: error = false; } } if (error) unreadVariableError(vnt, varname, false); } } } } } void CheckUnusedVar::unusedVariableError(const Token *tok, const std::string &varname) { reportError(tok, Severity::style, "unusedVariable", "$symbol:" + varname + "\nUnused variable: $symbol", CWE563, Certainty::normal); } void CheckUnusedVar::allocatedButUnusedVariableError(const Token *tok, const std::string &varname) { reportError(tok, Severity::style, "unusedAllocatedMemory", "$symbol:" + varname + "\nVariable '$symbol' is allocated memory that is never used.", CWE563, Certainty::normal); } void CheckUnusedVar::unreadVariableError(const Token *tok, const std::string &varname, bool modified) { if (modified) reportError(tok, Severity::style, "unreadVariable", "$symbol:" + varname + "\nVariable '$symbol' is modified but its new value is never used.", CWE563, Certainty::normal); else reportError(tok, Severity::style, "unreadVariable", "$symbol:" + varname + "\nVariable '$symbol' is assigned a value that is never used.", CWE563, Certainty::normal); } void CheckUnusedVar::unassignedVariableError(const Token *tok, const std::string &varname) { reportError(tok, Severity::style, "unassignedVariable", "$symbol:" + varname + "\nVariable '$symbol' is not assigned a value.", CWE665, Certainty::normal); } //--------------------------------------------------------------------------- // Check that all struct members are used //--------------------------------------------------------------------------- void CheckUnusedVar::checkStructMemberUsage() { if (!mSettings->severity.isEnabled(Severity::style)) return; const SymbolDatabase *symbolDatabase = mTokenizer->getSymbolDatabase(); for (const Scope &scope : symbolDatabase->scopeList) { if (scope.type != Scope::eStruct && scope.type != Scope::eUnion) continue; if (scope.bodyStart->fileIndex() != 0 || scope.className.empty()) continue; // Packed struct => possibly used by lowlevel code. Struct members might be required by hardware. if (scope.bodyEnd->isAttributePacked()) continue; if (const Preprocessor *preprocessor = mTokenizer->getPreprocessor()) { bool isPacked = false; for (const Directive &d: preprocessor->getDirectives()) { if (d.str == "#pragma pack(1)" && d.file == mTokenizer->list.getFiles().front() && d.linenr < scope.bodyStart->linenr()) { isPacked=true; break; } } if (isPacked) continue; } // Bail out if struct/union contains any functions if (!scope.functionList.empty()) continue; // Bail out for template struct, members might be used in non-matching instantiations if (scope.className.find("<") != std::string::npos) continue; // bail out if struct is inherited bool bailout = false; for (const Scope &derivedScope : symbolDatabase->scopeList) { if (derivedScope.definedType) { for (const Type::BaseInfo &derivedFrom : derivedScope.definedType->derivedFrom) { if (derivedFrom.type == scope.definedType) { bailout = true; break; } } } } if (bailout) continue; // bail out for extern/global struct for (const Variable* var : symbolDatabase->variableList()) { if (var && (var->isExtern() || (var->isGlobal() && !var->isStatic())) && var->typeEndToken()->str() == scope.className) { bailout = true; break; } if (var && (var->typeStartToken()->str() == scope.className || var->typeEndToken()->str() == scope.className)) { const std::string addressPattern("!!" + scope.className + " & " + var->name()); // cast from struct const Token* addrTok = scope.bodyEnd; do { addrTok = Token::findmatch(addrTok, addressPattern.c_str()); if ((addrTok && addrTok->str() == ")" && addrTok->link()->isCast()) || isCPPCast(addrTok)) { bailout = true; break; } if (addrTok) addrTok = addrTok->next(); } while (addrTok); } } if (bailout) continue; // Bail out if some data is casted to struct.. const std::string castPattern("( struct| " + scope.className + " * ) &| %name%"); if (Token::findmatch(scope.bodyEnd, castPattern.c_str())) continue; // (struct S){..} const std::string initPattern("( struct| " + scope.className + " ) {"); if (Token::findmatch(scope.bodyEnd, initPattern.c_str())) continue; // Bail out if struct is used in sizeof.. for (const Token *tok = scope.bodyEnd; nullptr != (tok = Token::findsimplematch(tok, "sizeof ("));) { tok = tok->tokAt(2); if (Token::Match(tok, ("struct| " + scope.className).c_str())) { bailout = true; break; } } if (bailout) continue; for (const Variable &var : scope.varlist) { // only warn for variables without side effects if (!var.typeStartToken()->isStandardType() && !var.isPointer() && !astIsContainer(var.nameToken()) && !isRecordTypeWithoutSideEffects(var.type())) continue; // Check if the struct member variable is used anywhere in the file bool use = false; for (const Token *tok = mTokenizer->tokens(); tok; tok = tok->next()) { if (tok->variable() != &var) continue; if (tok != var.nameToken()) { use = true; break; } } if (!use) unusedStructMemberError(var.nameToken(), scope.className, var.name(), scope.type == Scope::eUnion); } } } void CheckUnusedVar::unusedStructMemberError(const Token *tok, const std::string &structname, const std::string &varname, bool isUnion) { const std::string prefix = isUnion ? "union member " : "struct member "; reportError(tok, Severity::style, "unusedStructMember", "$symbol:" + structname + "::" + varname + '\n' + prefix + "'$symbol' is never used.", CWE563, Certainty::normal); } bool CheckUnusedVar::isRecordTypeWithoutSideEffects(const Type* type) { // a type that has no side effects (no constructors and no members with constructors) /** @todo false negative: check constructors for side effects */ const std::pair::iterator,bool> found=mIsRecordTypeWithoutSideEffectsMap.insert( std::pair(type,false)); //Initialize with side effects for possible recursions bool & withoutSideEffects = found.first->second; if (!found.second) return withoutSideEffects; // unknown types are assumed to have side effects if (!type || !type->classScope) return (withoutSideEffects = false); // Non-empty constructors => possible side effects for (const Function& f : type->classScope->functionList) { if (!f.isConstructor()) continue; if (f.argDef && Token::simpleMatch(f.argDef->link(), ") =")) continue; // ignore default/deleted constructors const bool emptyBody = (f.functionScope && Token::simpleMatch(f.functionScope->bodyStart, "{ }")); Token* nextToken = f.argDef->link(); if (Token::simpleMatch(nextToken, ") :")) { // validating initialization list nextToken = nextToken->next(); // goto ":" for (const Token *initListToken = nextToken; Token::Match(initListToken, "[:,] %var% [({]"); initListToken = initListToken->linkAt(2)->next()) { const Token* varToken = initListToken->next(); const Variable* variable = varToken->variable(); if (variable && !isVariableWithoutSideEffects(*variable)) { return withoutSideEffects = false; } const Token* valueEnd = initListToken->linkAt(2); for (const Token* valueToken = initListToken->tokAt(3); valueToken != valueEnd; valueToken = valueToken->next()) { const Variable* initValueVar = valueToken->variable(); if (initValueVar && !isVariableWithoutSideEffects(*initValueVar)) { return withoutSideEffects = false; } if ((valueToken->tokType() == Token::Type::eName) || (valueToken->tokType() == Token::Type::eLambda) || (valueToken->tokType() == Token::Type::eOther)) { return withoutSideEffects = false; } const Function* initValueFunc = valueToken->function(); if (initValueFunc && !isFunctionWithoutSideEffects(*initValueFunc, valueToken, std::list {})) { return withoutSideEffects = false; } } } } if (!emptyBody) return (withoutSideEffects = false); } // Derived from type that has side effects? for (const Type::BaseInfo& derivedFrom : type->derivedFrom) { if (!isRecordTypeWithoutSideEffects(derivedFrom.type)) return (withoutSideEffects = false); } // Is there a member variable with possible side effects for (const Variable& var : type->classScope->varlist) { withoutSideEffects = isVariableWithoutSideEffects(var); if (!withoutSideEffects) { return withoutSideEffects; } } return (withoutSideEffects = true); } bool CheckUnusedVar::isVariableWithoutSideEffects(const Variable& var) { if (var.isPointer()) return true; const Type* variableType = var.type(); if (variableType) { if (!isRecordTypeWithoutSideEffects(variableType)) return false; } else { if (WRONG_DATA(!var.valueType(), var.typeStartToken())) return false; ValueType::Type valueType = var.valueType()->type; if ((valueType == ValueType::Type::UNKNOWN_TYPE) || (valueType == ValueType::Type::NONSTD)) return false; } return true; } bool CheckUnusedVar::isEmptyType(const Type* type) { // a type that has no variables and no constructor const std::pair::iterator,bool> found=mIsEmptyTypeMap.insert( std::pair(type,false)); bool & emptyType=found.first->second; if (!found.second) return emptyType; if (type && type->classScope && type->classScope->numConstructors == 0 && (type->classScope->varlist.empty())) { for (std::vector::const_iterator i = type->derivedFrom.begin(); i != type->derivedFrom.end(); ++i) { if (!isEmptyType(i->type)) { emptyType=false; return emptyType; } } emptyType=true; return emptyType; } emptyType=false; // unknown types are assumed to be nonempty return emptyType; } bool CheckUnusedVar::isFunctionWithoutSideEffects(const Function& func, const Token* functionUsageToken, std::list checkedFuncs) { // no body to analyze if (!func.hasBody()) { return false; } for (const Token* argsToken = functionUsageToken->next(); !Token::simpleMatch(argsToken, ")"); argsToken = argsToken->next()) { const Variable* argVar = argsToken->variable(); if (argVar && argVar->isGlobal()) { return false; // TODO: analyze global variable usage } } bool sideEffectReturnFound = false; std::set pointersToGlobals; for (Token* bodyToken = func.functionScope->bodyStart->next(); bodyToken != func.functionScope->bodyEnd; bodyToken = bodyToken->next()) { // check variable inside function body const Variable* bodyVariable = bodyToken->variable(); if (bodyVariable) { if (!isVariableWithoutSideEffects(*bodyVariable)) { return false; } // check if global variable is changed if (bodyVariable->isGlobal() || (pointersToGlobals.find(bodyVariable) != pointersToGlobals.end())) { const int depth = 20; if (isVariableChanged(bodyToken, depth, mSettings, mTokenizer->isCPP())) { return false; } // check if pointer to global variable assigned to another variable (another_var = &global_var) if (Token::simpleMatch(bodyToken->tokAt(-1), "&") && Token::simpleMatch(bodyToken->tokAt(-2), "=")) { const Token* assigned_var_token = bodyToken->tokAt(-3); if (assigned_var_token && assigned_var_token->variable()) { pointersToGlobals.insert(assigned_var_token->variable()); } } } } // check nested function const Function* bodyFunction = bodyToken->function(); if (bodyFunction) { if (std::find(checkedFuncs.begin(), checkedFuncs.end(), bodyFunction) != checkedFuncs.end()) { // recursion found continue; } checkedFuncs.push_back(bodyFunction); if (!isFunctionWithoutSideEffects(*bodyFunction, bodyToken, checkedFuncs)) { return false; } } // check returned value if (Token::simpleMatch(bodyToken, "return")) { const Token* returnValueToken = bodyToken->next(); // TODO: handle complex return expressions if (!Token::simpleMatch(returnValueToken->next(), ";")) { sideEffectReturnFound = true; continue; } // simple one-token return const Variable* returnVariable = returnValueToken->variable(); if (returnValueToken->isLiteral() || (returnVariable && isVariableWithoutSideEffects(*returnVariable))) { continue; } sideEffectReturnFound = true; } // unknown name if (bodyToken->isNameOnly()) { return false; } } return !sideEffectReturnFound; }