/* * Cppcheck - A tool for static C/C++ code analysis * Copyright (C) 2007-2014 Daniel Marjamäki and Cppcheck team. * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include "checkstl.h" #include "executionpath.h" #include "symboldatabase.h" #include "checknullpointer.h" #include // Register this check class (by creating a static instance of it) namespace { CheckStl instance; } // Error message for bad iterator usage.. void CheckStl::invalidIteratorError(const Token *tok, const std::string &iteratorName) { reportError(tok, Severity::error, "invalidIterator1", "Invalid iterator: " + iteratorName); } void CheckStl::iteratorsError(const Token *tok, const std::string &container1, const std::string &container2) { reportError(tok, Severity::error, "iterators", "Same iterator is used with different containers '" + container1 + "' and '" + container2 + "'."); } // Error message used when dereferencing an iterator that has been erased.. void CheckStl::dereferenceErasedError(const Token *erased, const Token* deref, const std::string &itername) { if (erased) { std::list callstack; callstack.push_back(deref); callstack.push_back(erased); reportError(callstack, Severity::error, "eraseDereference", "Iterator '" + itername + "' used after element has been erased.\n" "The iterator '" + itername + "' is invalid after the element it pointed to has been erased. " "Dereferencing or comparing it with another iterator is invalid operation."); } else { reportError(deref, Severity::error, "eraseDereference", "Invalid iterator '" + itername + "' used.\n" "The iterator '" + itername + "' is invalid before being assigned. " "Dereferencing or comparing it with another iterator is invalid operation."); } } static const Token *skipMembers(const Token *tok) { while (Token::Match(tok, "%var% .")) tok = tok->tokAt(2); return tok; } void CheckStl::iterators() { const SymbolDatabase *symbolDatabase = _tokenizer->getSymbolDatabase(); // Using same iterator against different containers. // for (it = foo.begin(); it != bar.end(); ++it) for (unsigned int iteratorId = 1; iteratorId < symbolDatabase->getVariableListSize(); iteratorId++) { const Variable* var = symbolDatabase->getVariableFromVarId(iteratorId); // Check that its an iterator if (!var || !var->isLocal() || !Token::Match(var->typeEndToken(), "iterator|const_iterator|reverse_iterator|const_reverse_iterator|auto")) continue; if (var->typeEndToken()->str() == "auto" && !Token::Match(var->typeEndToken(), "auto %var% ; %var% = %var% . begin|end ( )")) continue; if (var->type()) { // If it is defined, ensure that it is defined like an iterator // look for operator* and operator++ const Function* end = var->type()->getFunction("operator*"); const Function* incOperator = var->type()->getFunction("operator++"); if (!end || end->argCount() > 0 || !incOperator) continue; } // the validIterator flag says if the iterator has a valid value or not bool validIterator = Token::Match(var->nameToken()->next(), "[(=]"); const Scope* invalidationScope = 0; // The container this iterator can be used with const Variable* container = 0; const Scope* containerAssignScope = 0; // When "validatingToken" is reached the validIterator is set to true const Token* validatingToken = 0; const Token* eraseToken = 0; // Scan through the rest of the code and see if the iterator is // used against other containers. for (const Token *tok2 = var->nameToken(); tok2 && tok2 != var->scope()->classEnd; tok2 = tok2->next()) { if (invalidationScope && tok2 == invalidationScope->classEnd) validIterator = true; // Assume that the iterator becomes valid again if (containerAssignScope && tok2 == containerAssignScope->classEnd) container = 0; // We don't know which containers might be used with the iterator if (tok2 == validatingToken) validIterator = true; // Is iterator compared against different container? if (Token::Match(tok2, "%varid% !=|== %var% . end|rend|cend|crend ( )", iteratorId) && container && tok2->tokAt(2)->varId() != container->declarationId()) { iteratorsError(tok2, container->name(), tok2->strAt(2)); tok2 = tok2->tokAt(6); } // Is the iterator used in a insert/erase operation? else if (Token::Match(tok2, "%var% . insert|erase ( *| %varid% )|,", iteratorId)) { const Token* itTok = tok2->tokAt(4); if (itTok->str() == "*") { if (tok2->strAt(2) == "insert") continue; itTok = itTok->next(); } // It is bad to insert/erase an invalid iterator if (!validIterator) invalidIteratorError(tok2, itTok->str()); // If insert/erase is used on different container then // report an error if (container && tok2->varId() != container->declarationId()) { // skip error message if container is a set.. const Variable *variableInfo = tok2->variable(); const Token *decltok = variableInfo ? variableInfo->typeStartToken() : nullptr; if (Token::simpleMatch(decltok, "std :: set")) continue; // No warning // skip error message if the iterator is erased/inserted by value if (itTok->previous()->str() == "*") continue; // Show error message, mismatching iterator is used. iteratorsError(tok2, container->name(), tok2->str()); } // invalidate the iterator if it is erased else if (tok2->strAt(2) == "erase" && (tok2->strAt(4) != "*" || (container && tok2->varId() == container->declarationId()))) { validIterator = false; eraseToken = tok2; invalidationScope = tok2->scope(); } // skip the operation tok2 = itTok->next(); } // it = foo.erase(.. // taking the result of an erase is ok else if (Token::Match(tok2, "%varid% = %var% .", iteratorId) && Token::simpleMatch(skipMembers(tok2->tokAt(2)), "erase (")) { // the returned iterator is valid validatingToken = tok2->linkAt(5); tok2 = tok2->tokAt(5); } // Reassign the iterator else if (Token::Match(tok2, "%varid% = %var% . begin|rbegin|cbegin|crbegin|find (", iteratorId)) { validatingToken = tok2->linkAt(5); container = tok2->tokAt(2)->variable(); containerAssignScope = tok2->scope(); // skip ahead tok2 = tok2->tokAt(5); } // Reassign the iterator else if (Token::Match(tok2, "%varid% = %any%", iteratorId)) { // Assume that the iterator becomes valid. // TODO: add checking that checks if the iterator becomes valid or not validatingToken = Token::findmatch(tok2->tokAt(2), "[;)]"); // skip ahead tok2 = tok2->tokAt(2); } // Passing iterator to function. Iterator might be initialized else if (Token::Match(tok2, "%varid% ,|)", iteratorId)) { validIterator = true; } // Dereferencing invalid iterator? else if (!validIterator && Token::Match(tok2, "* %varid%", iteratorId)) { dereferenceErasedError(eraseToken, tok2, tok2->strAt(1)); tok2 = tok2->next(); } else if (!validIterator && Token::Match(tok2, "%varid% . %var%", iteratorId)) { dereferenceErasedError(eraseToken, tok2, tok2->str()); tok2 = tok2->tokAt(2); } // bailout handling. Assume that the iterator becomes valid if we see return/break. // TODO: better handling else if (Token::Match(tok2, "return|break")) { validatingToken = Token::findsimplematch(tok2->next(), ";"); } // bailout handling. Assume that the iterator becomes valid if we see else. // TODO: better handling else if (tok2 && tok2->str() == "else") { validIterator = true; } } } } // Error message for bad iterator usage.. void CheckStl::mismatchingContainersError(const Token *tok) { reportError(tok, Severity::error, "mismatchingContainers", "Iterators of different containers are used together."); } void CheckStl::mismatchingContainers() { static const char* const algorithm2_strings[] = { // func(begin1, end1 "adjacent_find", "all_of", "any_of", "binary_search", "copy", "copy_if", "count", "count_if", "equal", "equal_range", "find", "find_if", "find_if_not", "for_each", "generate", "is_heap", "is_heap_until", "is_partitioned", "is_permutation", "is_sorted", "is_sorted_until", "lower_bound", "make_heap", "max_element", "minmax_element", "min_element", "mismatch", "move", "move_backward", "next_permutation", "none_of", "partition", "partition_copy", "partition_point", "pop_heap", "prev_permutation", "push_heap", "random_shuffle", "remove", "remove_copy", "remove_copy_if", "remove_if", "replace", "replace_copy", "replace_copy_if", "replace_if", "reverse", "reverse_copy", "search_n", "shuffle", "sort", "sort_heap", "stable_partition", "stable_sort", "swap_ranges", "transform", "unique", "unique_copy", "upper_bound" }; static const char* const algorithm22_strings[] = { // func(begin1, end1, begin2, end2 "find_end", "find_first_of", "includes", "lexicographical_compare", "merge", "partial_sort_copy", "search", "set_difference", "set_intersection", "set_symmetric_difference", "set_union" }; static const char* const algorithm1x1_strings[] = { // func(begin1, x, end1 "inplace_merge", "nth_element", "partial_sort", "rotate", "rotate_copy" }; static const std::set algorithm2(algorithm2_strings, &algorithm2_strings[sizeof(algorithm2_strings) / sizeof(*algorithm2_strings)]); static const std::set algorithm22(algorithm22_strings, &algorithm22_strings[sizeof(algorithm22_strings) / sizeof(*algorithm22_strings)]); static const std::set algorithm1x1(algorithm1x1_strings, &algorithm1x1_strings[sizeof(algorithm1x1_strings) / sizeof(*algorithm1x1_strings)]); static const std::string iteratorBeginFuncPattern = "begin|cbegin|rbegin|crbegin"; static const std::string iteratorEndFuncPattern = "end|cend|rend|crend"; static const std::string pattern1x1_1 = "%var% . " + iteratorBeginFuncPattern + " ( ) , "; static const std::string pattern1x1_2 = "%var% . " + iteratorEndFuncPattern + " ( ) ,|)"; static const std::string pattern2 = pattern1x1_1 + pattern1x1_2; // Check if different containers are used in various calls of standard functions const SymbolDatabase *symbolDatabase = _tokenizer->getSymbolDatabase(); const std::size_t functions = symbolDatabase->functionScopes.size(); for (std::size_t ii = 0; ii < functions; ++ii) { const Scope * scope = symbolDatabase->functionScopes[ii]; for (const Token* tok = scope->classStart->next(); tok != scope->classEnd; tok = tok->next()) { if (!Token::Match(tok, "std :: %type% ( !!)")) continue; const Token* arg1 = tok->tokAt(4); // TODO: If iterator variables are used instead then there are false negatives. if (Token::Match(arg1, pattern2.c_str()) && algorithm2.find(tok->strAt(2)) != algorithm2.end()) { if (arg1->str() != arg1->strAt(6)) { mismatchingContainersError(arg1); } } else if (algorithm22.find(tok->strAt(2)) != algorithm22.end()) { if (Token::Match(arg1, pattern2.c_str()) && arg1->str() != arg1->strAt(6)) mismatchingContainersError(arg1); // Find third parameter const Token* arg3 = arg1; for (unsigned int i = 0; i < 2 && arg3; i++) arg3 = arg3->nextArgument(); if (Token::Match(arg3, pattern2.c_str()) && arg3->str() != arg3->strAt(6)) mismatchingContainersError(arg3); } else if (Token::Match(arg1, pattern1x1_1.c_str()) && algorithm1x1.find(tok->strAt(2)) != algorithm1x1.end()) { // Find third parameter const Token *arg3 = arg1->tokAt(6)->nextArgument(); if (Token::Match(arg3, pattern1x1_2.c_str())) { if (arg1->str() != arg3->str()) { mismatchingContainersError(arg1); } } } tok = arg1->linkAt(-1); } } } void CheckStl::stlOutOfBounds() { // THIS ARRAY MUST BE ORDERED ALPHABETICALLY static const char* const stl_bounded_container [] = { "array", "basic_string", "deque", "string", "vector", "wstring" }; const SymbolDatabase* const symbolDatabase = _tokenizer->getSymbolDatabase(); // Scan through all scopes.. for (std::list::const_iterator i = symbolDatabase->scopeList.begin(); i != symbolDatabase->scopeList.end(); ++i) { const Token* tok = i->classDef; // only interested in conditions if ((i->type != Scope::eFor && i->type != Scope::eWhile && i->type != Scope::eIf && i->type != Scope::eElseIf) || !tok) continue; if (i->type == Scope::eElseIf) tok = tok->tokAt(2); else if (i->type == Scope::eFor) tok = Token::findsimplematch(tok->tokAt(2), ";"); else tok = tok->next(); // check if the for loop condition is wrong if (Token::Match(tok, ";|( %var% <= %var% . size|length ( ) ;|)|%oror%")) { // Is it a vector? const Variable *container = tok->tokAt(3)->variable(); if (!container) continue; if (!container->isStlType(stl_bounded_container)) continue; // variable id for loop variable. const unsigned int numId = tok->next()->varId(); // variable id for the container variable const unsigned int declarationId = container->declarationId(); for (const Token *tok3 = tok->tokAt(8); tok3 && tok3 != i->classEnd; tok3 = tok3->next()) { if (tok3->varId() == declarationId) { if (Token::Match(tok3->next(), ". size|length ( )")) break; else if (Token::Match(tok3->next(), "[ %varid% ]", numId)) stlOutOfBoundsError(tok3, tok3->strAt(2), tok3->str(), false); else if (Token::Match(tok3->next(), ". at ( %varid% )", numId)) stlOutOfBoundsError(tok3, tok3->strAt(4), tok3->str(), true); } } break; } } } // Error message for bad iterator usage.. void CheckStl::stlOutOfBoundsError(const Token *tok, const std::string &num, const std::string &var, bool at) { if (at) reportError(tok, Severity::error, "stlOutOfBounds", "When " + num + "==" + var + ".size(), " + var + ".at(" + num + ") is out of bounds."); else reportError(tok, Severity::error, "stlOutOfBounds", "When " + num + "==" + var + ".size(), " + var + "[" + num + "] is out of bounds."); } /** * @brief %Check for invalid iterator usage after erase/insert/etc */ class EraseCheckLoop : public ExecutionPath { public: static void checkScope(CheckStl *checkStl, const Token *it) { const Token *tok = it; // Search for the start of the loop body.. while (0 != (tok = tok->next())) { if (tok->str() == "(") tok = tok->link(); else if (tok->str() == ")") break; // reassigning iterator in loop head else if (Token::Match(tok, "%var% =") && tok->str() == it->str()) break; } if (! Token::simpleMatch(tok, ") {")) return; EraseCheckLoop c(checkStl, it->varId(), it); std::list checks; checks.push_back(c.copy()); ExecutionPath::checkScope(tok->tokAt(2), checks); c.end(checks, tok->link()); while (!checks.empty()) { delete checks.back(); checks.pop_back(); } } private: /** Startup constructor */ EraseCheckLoop(Check *o, unsigned int varid, const Token* usetoken) : ExecutionPath(o, varid), eraseToken(0), useToken(usetoken) { } /** @brief token where iterator is erased (non-zero => the iterator is invalid) */ const Token *eraseToken; /** @brief name of the iterator */ const Token* useToken; /** @brief Copy this check. Called from the ExecutionPath baseclass. */ ExecutionPath *copy() { return new EraseCheckLoop(*this); } /** @brief is another execution path equal? */ bool is_equal(const ExecutionPath *e) const { const EraseCheckLoop *c = static_cast(e); return (eraseToken == c->eraseToken); } /** @brief no implementation => compiler error if used by accident */ void operator=(const EraseCheckLoop &); /** @brief parse tokens */ const Token *parse(const Token &tok, std::list &checks) const { // bail out if there are assignments. We don't check the assignments properly. if (Token::Match(&tok, "[;{}] %var% =") || Token::Match(&tok, "= %var% ;")) { ExecutionPath::bailOutVar(checks, tok.next()->varId()); } // the loop stops here. Bail out all execution checks that reach // this statement if (Token::Match(&tok, "[;{}] break ;")) { ExecutionPath::bailOut(checks); } // erasing iterator => it is invalidated if (Token::Match(&tok, "erase ( ++|--| %var% )")) { // check if there is a "it = ints.erase(it);" pattern. if so // the it is not invalidated. const Token *token = &tok; while (nullptr != (token = token ? token->previous() : 0)) { if (Token::Match(token, "[;{}]")) break; else if (token->str() == "=") token = 0; } // the it is invalidated by the erase.. if (token) { // get variable id for the iterator unsigned int iteratorId = 0; if (tok.tokAt(2)->isName()) iteratorId = tok.tokAt(2)->varId(); else iteratorId = tok.tokAt(3)->varId(); // invalidate this iterator in the corresponding checks for (std::list::const_iterator it = checks.begin(); it != checks.end(); ++it) { EraseCheckLoop *c = dynamic_cast(*it); if (c && c->varId == iteratorId) { c->eraseToken = &tok; } } } } // don't skip any tokens. return the token that we received. return &tok; } /** * Parse condition. @sa ExecutionPath::parseCondition * @param tok first token in condition. * @param checks The execution paths. All execution paths in the list are executed in the current scope * @return true => bail out all checking **/ bool parseCondition(const Token &tok, std::list &checks) { // no checking of conditions. (void)tok; (void)checks; return false; } /** @brief going out of scope - all execution paths end */ void end(const std::list &checks, const Token * /*tok*/) const { // check if there are any invalid iterators. If so there is an error. for (std::list::const_iterator it = checks.begin(); it != checks.end(); ++it) { EraseCheckLoop *c = dynamic_cast(*it); if (c && c->eraseToken) { CheckStl *checkStl = dynamic_cast(c->owner); if (checkStl) { checkStl->dereferenceErasedError(c->eraseToken, c->useToken, c->useToken->str()); } } } } }; void CheckStl::erase() { const SymbolDatabase* const symbolDatabase = _tokenizer->getSymbolDatabase(); for (std::list::const_iterator i = symbolDatabase->scopeList.begin(); i != symbolDatabase->scopeList.end(); ++i) { const Token* const tok = i->classDef; if (tok && i->type == Scope::eFor) { for (const Token *tok2 = tok->tokAt(2); tok2; tok2 = tok2->next()) { if (tok2->str() == ";") { if (Token::Match(tok2, "; %var% !=")) { // Get declaration token for var.. const Variable *variableInfo = tok2->next()->variable(); const Token *decltok = variableInfo ? variableInfo->typeEndToken() : nullptr; // Is variable an iterator? bool isIterator = false; if (decltok && Token::Match(decltok->tokAt(-2), "> :: iterator %varid%", tok2->next()->varId())) isIterator = true; // If tok2->next() is an iterator, check scope if (isIterator) EraseCheckLoop::checkScope(this, tok2->next()); } break; } if (Token::Match(tok2, "%var% = %var% . begin|rbegin|cbegin|crbegin ( ) ; %var% != %var% . end|rend|cend|crend ( )") && tok2->str() == tok2->strAt(8) && tok2->strAt(2) == tok2->strAt(10)) { EraseCheckLoop::checkScope(this, tok2); break; } } } else if (i->type == Scope::eWhile && Token::Match(tok, "while ( %var% !=")) { const Variable* var = tok->tokAt(2)->variable(); if (var && Token::simpleMatch(var->typeEndToken()->tokAt(-2), "> :: iterator")) EraseCheckLoop::checkScope(this, tok->tokAt(2)); } } } void CheckStl::pushback() { // Pointer can become invalid after push_back, push_front, reserve or resize.. const SymbolDatabase* const symbolDatabase = _tokenizer->getSymbolDatabase(); const std::size_t functions = symbolDatabase->functionScopes.size(); for (std::size_t i = 0; i < functions; ++i) { const Scope * scope = symbolDatabase->functionScopes[i]; for (const Token* tok = scope->classStart->next(); tok != scope->classEnd; tok = tok->next()) { if (Token::Match(tok, "%var% = & %var% [")) { // Variable id for pointer const unsigned int pointerId(tok->varId()); // Variable id for the container variable const unsigned int containerId(tok->tokAt(3)->varId()); if (pointerId == 0 || containerId == 0) continue; bool invalidPointer = false; const Token* function = nullptr; const Token* end2 = tok->scope()->classEnd; for (const Token *tok2 = tok; tok2 != end2; tok2 = tok2->next()) { // push_back on vector.. if (Token::Match(tok2, "%varid% . push_front|push_back|insert|reserve|resize|clear", containerId)) { invalidPointer = true; function = tok2->tokAt(2); } // Using invalid pointer.. if (invalidPointer && tok2->varId() == pointerId) { bool unknown = false; if (CheckNullPointer::isPointerDeRef(tok2, unknown)) invalidPointerError(tok2, function->str(), tok2->str()); break; } } } } } // Iterator becomes invalid after reserve, resize, insert, push_back or push_front.. for (unsigned int iteratorId = 1; iteratorId < symbolDatabase->getVariableListSize(); iteratorId++) { const Variable* var = symbolDatabase->getVariableFromVarId(iteratorId); // Check that its an iterator if (!var || !var->isLocal() || !Token::Match(var->typeEndToken(), "iterator|const_iterator|reverse_iterator|const_reverse_iterator")) continue; // ... on std::vector if (!Token::Match(var->typeStartToken(), "std| ::| vector <")) continue; // the variable id for the vector unsigned int vectorid = 0; const Token* validatingToken = 0; std::string invalidIterator; const Token* end2 = var->scope()->classEnd; for (const Token *tok2 = var->nameToken(); tok2 != end2; tok2 = tok2->next()) { if (validatingToken == tok2) { invalidIterator.clear(); validatingToken = 0; } // Using push_back or push_front inside a loop.. if (Token::simpleMatch(tok2, "for (")) { tok2 = tok2->tokAt(2); } if (Token::Match(tok2, "%varid% = %var% . begin|rbegin|cbegin|crbegin ( ) ; %varid% != %var% . end|rend|cend|crend ( ) ; ++| %varid% ++| ) {", iteratorId)) { // variable id for the loop iterator const unsigned int varId(tok2->tokAt(2)->varId()); if (varId == 0) continue; const Token *pushbackTok = nullptr; // Count { and } for tok3 const Token *tok3 = tok2->tokAt(20); for (const Token* const end3 = tok3->linkAt(-1); tok3 != end3; tok3 = tok3->next()) { if (tok3->str() == "break" || tok3->str() == "return") { pushbackTok = 0; break; } else if (Token::Match(tok3, "%varid% . push_front|push_back|insert|reserve|resize|clear|erase (", varId) && !tok3->previous()->isAssignmentOp()) { if (tok3->strAt(2) != "erase" || (tok3->tokAt(4)->varId() != iteratorId && tok3->tokAt(5)->varId() != iteratorId)) // This case is handled in: CheckStl::iterators() pushbackTok = tok3->tokAt(2); } } if (pushbackTok) invalidIteratorError(pushbackTok, pushbackTok->str(), tok2->str()); } // Assigning iterator.. if (Token::Match(tok2, "%varid% =", iteratorId)) { if (Token::Match(tok2->tokAt(2), "%var% . begin|end|rbegin|rend|cbegin|cend|crbegin|crend|insert|erase|find (")) { if (!invalidIterator.empty() && Token::Match(tok2->tokAt(4), "insert|erase ( *| %varid% )|,", iteratorId)) { invalidIteratorError(tok2, invalidIterator, var->name()); break; } vectorid = tok2->tokAt(2)->varId(); tok2 = tok2->linkAt(5); } else { vectorid = 0; } invalidIterator = ""; } // push_back on vector.. if (vectorid > 0 && Token::Match(tok2, "%varid% . push_front|push_back|insert|reserve|resize|clear|erase (", vectorid)) { if (!invalidIterator.empty() && Token::Match(tok2->tokAt(2), "insert|erase ( *| %varid% ,|)", iteratorId)) { invalidIteratorError(tok2, invalidIterator, var->name()); break; } if (tok2->strAt(2) != "erase" || (tok2->tokAt(4)->varId() != iteratorId && tok2->tokAt(5)->varId() != iteratorId)) // This case is handled in: CheckStl::iterators() invalidIterator = tok2->strAt(2); tok2 = tok2->linkAt(3); } else if (tok2->str() == "return" || tok2->str() == "throw") validatingToken = Token::findsimplematch(tok2->next(), ";"); // TODO: instead of bail out for 'else' try to check all execution paths. else if (tok2->str() == "break" || tok2->str() == "else") invalidIterator.clear(); // Using invalid iterator.. if (!invalidIterator.empty()) { if (Token::Match(tok2, "++|--|*|+|-|(|,|=|!= %varid%", iteratorId)) invalidIteratorError(tok2, invalidIterator, tok2->strAt(1)); if (Token::Match(tok2, "%varid% ++|--|+|-|.", iteratorId)) invalidIteratorError(tok2, invalidIterator, tok2->str()); } } } } // Error message for bad iterator usage.. void CheckStl::invalidIteratorError(const Token *tok, const std::string &func, const std::string &iterator_name) { reportError(tok, Severity::error, "invalidIterator2", "After " + func + "(), the iterator '" + iterator_name + "' may be invalid."); } // Error message for bad iterator usage.. void CheckStl::invalidPointerError(const Token *tok, const std::string &func, const std::string &pointer_name) { reportError(tok, Severity::error, "invalidPointer", "Invalid pointer '" + pointer_name + "' after " + func + "()."); } void CheckStl::stlBoundaries() { const SymbolDatabase* const symbolDatabase = _tokenizer->getSymbolDatabase(); const std::size_t functions = symbolDatabase->functionScopes.size(); for (std::size_t i = 0; i < functions; ++i) { const Scope * scope = symbolDatabase->functionScopes[i]; for (const Token* tok = scope->classStart->next(); tok != scope->classEnd; tok = tok->next()) { // Declaring iterator.. if (tok->str() == "<" && Token::Match(tok->previous(), "bitset|deque|list|forward_list|map|multimap|multiset|priority_queue|queue|set|stack|hash_map|hash_multimap|hash_set|unordered_map|unordered_multimap|unordered_set|unordered_multiset")) { const std::string& container_name(tok->strAt(-1)); if (tok->link()) tok = tok->link(); else continue; if (Token::Match(tok, "> :: iterator|const_iterator %var% =|;")) { const unsigned int iteratorid(tok->tokAt(3)->varId()); if (iteratorid == 0) continue; // Using "iterator < ..." is not allowed const Token* const end = tok->scope()->classEnd; for (const Token *tok2 = tok; tok2 != end; tok2 = tok2->next()) { if (Token::Match(tok2, "!!* %varid% <", iteratorid)) { stlBoundariesError(tok2, container_name); } else if (Token::Match(tok2, "> %varid% !!.", iteratorid)) { stlBoundariesError(tok2, container_name); } } } } } } } // Error message for bad boundary usage.. void CheckStl::stlBoundariesError(const Token *tok, const std::string &container_name) { reportError(tok, Severity::error, "stlBoundaries", "Dangerous iterator comparison using operator< on 'std::" + container_name + "'.\n" "Iterator of container 'std::" + container_name + "' compared with operator<. " "This is dangerous since the order of items in the container is not guaranteed. " "One should use operator!= instead to compare iterators."); } static bool if_findCompare(const Token * const tokBack, bool str) { const Token *tok = tokBack; while (tok && tok->str() == ")") { tok = tok->next(); if (Token::Match(tok, ") !!{") && tok->link()->previous() && (Token::Match(tok->link()->previous(),",|==|!=") || tok->link()->previous()->isName())) return true; } if (Token::Match(tok,",|==|!=")) return true; if (str && tok->isComparisonOp()) return true; if (tok->isArithmeticalOp()) // result is used in some calculation return true; // TODO: check if there is a comparison of the result somewhere return false; } void CheckStl::if_find() { bool warning = _settings->isEnabled("warning"); bool performance = _settings->isEnabled("performance"); if (!warning && !performance) return; const SymbolDatabase *symbolDatabase = _tokenizer->getSymbolDatabase(); for (std::list::const_iterator i = symbolDatabase->scopeList.begin(); i != symbolDatabase->scopeList.end(); ++i) { if ((i->type != Scope::eIf && i->type != Scope::eElseIf && i->type != Scope::eWhile) || !i->classDef) continue; const Token* tok = i->classDef->next(); if (tok->str() == "if") tok = tok->next(); for (const Token* const end = tok->link(); tok != end; tok = (tok == end) ? end : tok->next()) { if (Token::Match(tok, "&&|(|%oror%")) tok = tok->next(); else continue; while (tok->str() == "(") tok = tok->next(); if (tok->str() == "!") tok = tok->next(); if (Token::Match(tok, "%var% . find (")) { const Variable *var = tok->variable(); if (var) { // Is the variable a std::string or STL container? const Token * decl = var->typeStartToken(); const unsigned int varid = tok->varId(); bool str = Token::Match(decl, "std :: string|wstring &| %varid%", varid); if (if_findCompare(tok->linkAt(3), str)) continue; // stl container if (Token::Match(decl, "std :: %var% < %type% > &| %varid%", varid) && warning) if_findError(tok, false); else if (str && performance) if_findError(tok, true); } } //check also for vector-like or pointer containers else if (Token::Match(tok, "* %var%") || Token::Match(tok, "%var% [")) { // goto %var% if (tok->str() == "*") tok = tok->next(); const Token *tok2 = tok->next(); if (tok2->str() == "[") tok2 = tok2->link()->next(); if (!Token::simpleMatch(tok2, ". find (")) continue; if (if_findCompare(tok2->linkAt(2), false)) continue; const Variable *var = tok->variable(); if (var) { // Is the variable a std::string or STL container? const Token * decl = var->typeStartToken(); const unsigned int varid = tok->varId(); //pretty bad limitation.. but it is there in order to avoid //own implementations of 'find' or any container if (!var->isStlType()) continue; decl = decl->tokAt(2); if (Token::Match(decl, "%var% <")) { decl = decl->tokAt(2); //stl-like if (Token::Match(decl, "std :: %var% < %type% > > &| %varid%", varid) && warning) if_findError(tok, false); //not stl-like, then let's hope it's a pointer or an array else if (Token::Match(decl, "%type% >")) { decl = decl->tokAt(2); if ((Token::Match(decl, "* &| %varid%", varid) || Token::Match(decl, "&| %varid% [ ]| %any% ]| ", varid)) && warning) if_findError(tok, false); } else if (Token::Match(decl, "std :: string|wstring > &| %varid%", varid) && performance) if_findError(tok, true); } else if (decl && decl->str() == "string") { decl = decl->next(); if ((Token::Match(decl, "* &| %varid%", varid) || Token::Match(decl, "&| %varid% [ ]| %any% ]| ", varid)) && performance) if_findError(tok, true); } } } else if (Token::Match(tok, "std :: find|find_if (")) { // check that result is checked properly if (!if_findCompare(tok->linkAt(3), false) && warning) { if_findError(tok, false); } } } } } void CheckStl::if_findError(const Token *tok, bool str) { if (str) reportError(tok, Severity::performance, "stlIfStrFind", "Inefficient usage of string::find() in condition; string::compare() would be faster.\n" "Either inefficient or wrong usage of string::find(). string::compare() will be faster if " "string::find's result is compared with 0, because it will not scan the whole " "string. If your intention is to check that there are no findings in the string, " "you should compare with std::string::npos."); else reportError(tok, Severity::warning, "stlIfFind", "Suspicious condition. The result of find() is an iterator, but it is not properly checked."); } /** * Is container.size() slow? */ static bool isContainerSizeSlow(const Token *tok) { // THIS ARRAY MUST BE ORDERED ALPHABETICALLY static const char* stl_size_slow[] = { "array", "bitset", "forward_list", "hash_map", "hash_multimap", "hash_set", "list", "map", "multimap", "multiset", "priority_queue", "queue", "set", "stack", "unordered_map", "unordered_multimap", "unordered_multiset", "unordered_set" }; if (!tok) return false; const Variable* var = tok->variable(); return var && var->isStlType(stl_size_slow); } void CheckStl::size() { if (!_settings->isEnabled("performance")) return; const SymbolDatabase* const symbolDatabase = _tokenizer->getSymbolDatabase(); const std::size_t functions = symbolDatabase->functionScopes.size(); for (std::size_t i = 0; i < functions; ++i) { const Scope * scope = symbolDatabase->functionScopes[i]; for (const Token* tok = scope->classStart->next(); tok != scope->classEnd; tok = tok->next()) { if (Token::Match(tok, "%var% . size ( )") || Token::Match(tok, "%var% . %var% . size ( )")) { const Token *tok1 = tok; // get the variable if (tok->strAt(2) != "size") tok1 = tok1->tokAt(2); const Token* const end = tok1->tokAt(5); if (tok1->varId()) { // check for comparison to zero if ((tok->previous() && !tok->previous()->isArithmeticalOp() && Token::Match(end, "==|<=|!=|> 0")) || (end->next() && !end->next()->isArithmeticalOp() && Token::Match(tok->tokAt(-2), "0 ==|>=|!=|<"))) { if (isContainerSizeSlow(tok1)) sizeError(tok1); } // check for comparison to one if ((tok->previous() && !tok->previous()->isArithmeticalOp() && Token::Match(end, ">=|< 1") && !end->tokAt(2)->isArithmeticalOp()) || (end->next() && !end->next()->isArithmeticalOp() && Token::Match(tok->tokAt(-2), "1 <=|>") && !tok->tokAt(-3)->isArithmeticalOp())) { if (isContainerSizeSlow(tok1)) sizeError(tok1); } // check for using as boolean expression else if ((Token::Match(tok->tokAt(-2), "if|while (") && end->str() == ")") || (tok->previous()->type() == Token::eLogicalOp && Token::Match(end, "&&|)|,|;|%oror%"))) { if (isContainerSizeSlow(tok1)) sizeError(tok1); } } } } } } void CheckStl::sizeError(const Token *tok) { const std::string varname = tok ? tok->str() : std::string("list"); reportError(tok, Severity::performance, "stlSize", "Possible inefficient checking for '" + varname + "' emptiness.\n" "Checking for '" + varname + "' emptiness might be inefficient. " "Using " + varname + ".empty() instead of " + varname + ".size() can be faster. " + varname + ".size() can take linear time but " + varname + ".empty() is " "guaranteed to take constant time."); } void CheckStl::redundantCondition() { const SymbolDatabase *symbolDatabase = _tokenizer->getSymbolDatabase(); for (std::list::const_iterator i = symbolDatabase->scopeList.begin(); i != symbolDatabase->scopeList.end(); ++i) { if (i->type != Scope::eIf && i->type != Scope::eElseIf) continue; const Token* tok = i->classDef->tokAt(2); if (i->type == Scope::eElseIf) tok = tok->next(); if (!Token::Match(tok, "%var% . find ( %any% ) != %var% . end|rend|cend|crend ( ) ) { %var% . remove|erase ( %any% ) ;")) continue; // Get tokens for the fields %var% and %any% const Token *var1 = tok; const Token *any1 = var1->tokAt(4); const Token *var2 = any1->tokAt(3); const Token *var3 = var2->tokAt(7); const Token *any2 = var3->tokAt(4); // Check if all the "%var%" fields are the same and if all the "%any%" are the same.. if (var1->str() == var2->str() && var2->str() == var3->str() && any1->str() == any2->str()) { redundantIfRemoveError(tok); } } } void CheckStl::redundantIfRemoveError(const Token *tok) { reportError(tok, Severity::style, "redundantIfRemove", "Redundant checking of STL container element existence before removing it.\n" "Redundant checking of STL container element existence before removing it. " "It is safe to call the remove method on a non-existing element."); } void CheckStl::missingComparison() { if (!_settings->isEnabled("warning")) return; const SymbolDatabase* const symbolDatabase = _tokenizer->getSymbolDatabase(); for (std::list::const_iterator i = symbolDatabase->scopeList.begin(); i != symbolDatabase->scopeList.end(); ++i) { if (i->type != Scope::eFor || !i->classDef) continue; for (const Token *tok2 = i->classDef->tokAt(2); tok2 != i->classStart; tok2 = tok2->next()) { if (tok2->str() == ";") break; if (!Token::Match(tok2, "%var% = %var% . begin|rbegin|cbegin|crbegin ( ) ; %var% != %var% . end|rend|cend|crend ( ) ; ++| %var% ++| ) {")) continue; // same container if (tok2->strAt(2) != tok2->strAt(10)) break; const unsigned int iteratorId(tok2->varId()); if (iteratorId == 0) break; // same iterator if (iteratorId == tok2->tokAt(10)->varId()) break; // increment iterator if (!Token::Match(tok2->tokAt(16), "++ %varid% )", iteratorId) && !Token::Match(tok2->tokAt(16), "%varid% ++ )", iteratorId)) { break; } const Token *incrementToken = nullptr; // Parse loop.. for (const Token *tok3 = i->classStart; tok3 != i->classEnd; tok3 = tok3->next()) { if (Token::Match(tok3, "%varid% ++", iteratorId)) incrementToken = tok3; else if (Token::Match(tok3->previous(), "++ %varid% !!.", iteratorId)) incrementToken = tok3; else if (Token::Match(tok3, "%varid% !=|==", iteratorId)) incrementToken = 0; else if (tok3->str() == "break" || tok3->str() == "return") incrementToken = 0; else if (Token::Match(tok3, "%varid% = %var% . insert ( ++| %varid% ++| ,", iteratorId)) { // skip insertion.. tok3 = tok3->linkAt(6); if (!tok3) break; } } if (incrementToken) missingComparisonError(incrementToken, tok2->tokAt(16)); } } } void CheckStl::missingComparisonError(const Token *incrementToken1, const Token *incrementToken2) { std::list callstack; callstack.push_back(incrementToken1); callstack.push_back(incrementToken2); std::ostringstream errmsg; errmsg << "Missing bounds check for extra iterator increment in loop.\n" << "The iterator incrementing is suspicious - it is incremented at line "; if (incrementToken1) errmsg << incrementToken1->linenr(); errmsg << " and then at line "; if (incrementToken2) errmsg << incrementToken2->linenr(); errmsg << ". The loop might unintentionally skip an element in the container. " << "There is no comparison between these increments to prevent that the iterator is " << "incremented beyond the end."; reportError(callstack, Severity::warning, "StlMissingComparison", errmsg.str()); } static bool isLocal(const Token *tok) { const Variable *var = tok->variable(); return var && !var->isStatic() && var->isLocal(); } void CheckStl::string_c_str() { // THIS ARRAY MUST BE ORDERED ALPHABETICALLY static const char* const stl_string[] = { "string", "u16string", "u32string", "wstring" }; // THIS ARRAY MUST BE ORDERED ALPHABETICALLY static const char* const stl_string_stream[] = { "istringstream", "ostringstream", "stringstream", "wstringstream" }; const SymbolDatabase* symbolDatabase = _tokenizer->getSymbolDatabase(); // Find all functions that take std::string as argument std::multimap c_strFuncParam; if (_settings->isEnabled("performance")) { for (std::list::const_iterator scope = symbolDatabase->scopeList.begin(); scope != symbolDatabase->scopeList.end(); ++scope) { for (std::list::const_iterator func = scope->functionList.begin(); func != scope->functionList.end(); ++func) { if (c_strFuncParam.erase(func->tokenDef->str()) != 0) { // Check if function with this name was already found c_strFuncParam.insert(std::make_pair(func->tokenDef->str(), 0)); // Disable, because there are overloads. TODO: Handle overloads continue; } unsigned int numpar = 0; c_strFuncParam.insert(std::make_pair(func->tokenDef->str(), numpar)); // Insert function as dummy, to indicate that there is at least one function with that name for (const Token* tok = func->argDef->next(); tok != 0; tok = tok->nextArgument()) { numpar++; if (Token::Match(tok, "std :: string|wstring !!&") || Token::Match(tok, "const std :: string|wstring")) c_strFuncParam.insert(std::make_pair(func->tokenDef->str(), numpar)); } } } } // Try to detect common problems when using string::c_str() for (std::list::const_iterator scope = symbolDatabase->scopeList.begin(); scope != symbolDatabase->scopeList.end(); ++scope) { if (scope->type != Scope::eFunction || !scope->function) continue; enum {charPtr, stdString, stdStringConstRef, Other} returnType = Other; if (Token::Match(scope->function->tokenDef->tokAt(-2), "char|wchar_t *")) returnType = charPtr; else if (Token::Match(scope->function->tokenDef->tokAt(-5), "const std :: string|wstring &")) returnType = stdStringConstRef; else if (Token::Match(scope->function->tokenDef->tokAt(-3), "std :: string|wstring !!&")) returnType = stdString; for (const Token *tok = scope->classStart; tok && tok != scope->classEnd; tok = tok->next()) { // Invalid usage.. if (Token::Match(tok, "throw %var% . c_str|data ( ) ;") && isLocal(tok->next()) && tok->next()->variable() && tok->next()->variable()->isStlType(stl_string)) { string_c_strThrowError(tok); } else if (Token::Match(tok, "[;{}] %var% = %var% . str ( ) . c_str|data ( ) ;")) { const Variable* var = tok->next()->variable(); const Variable* var2 = tok->tokAt(3)->variable(); if (var && var->isPointer() && var2 && var2->isStlType(stl_string_stream)) string_c_strError(tok); } else if (Token::Match(tok, "[;{}] %var% = %var% (") && Token::Match(tok->linkAt(4), ") . c_str|data ( ) ;") && tok->tokAt(3)->function() && Token::Match(tok->tokAt(3)->function()->retDef, "std :: string|wstring %var%")) { const Variable* var = tok->next()->variable(); if (var && var->isPointer()) string_c_strError(tok); } else if (Token::Match(tok, "%var% ( !!)") && c_strFuncParam.find(tok->str()) != c_strFuncParam.end() && _settings->isEnabled("performance") && !Token::Match(tok->previous(), "::|.") && tok->varId() == 0 && tok->str() != scope->className) { // calling function. TODO: Add support for member functions std::pair::const_iterator, std::multimap::const_iterator> range = c_strFuncParam.equal_range(tok->str()); for (std::multimap::const_iterator i = range.first; i != range.second; ++i) { if (i->second == 0) continue; const Token* tok2 = tok->tokAt(2); unsigned int j; for (j = 0; tok2 && j < i->second-1; j++) tok2 = tok2->nextArgument(); if (tok2) tok2 = tok2->nextArgument(); else break; if (!tok2 && j == i->second-1) tok2 = tok->next()->link(); else tok2 = tok2->previous(); if (tok2 && Token::Match(tok2->tokAt(-4), ". c_str|data ( )")) { const Variable* var = tok2->tokAt(-5)->variable(); if (var && var->isStlType(stl_string)) { string_c_strParam(tok, i->second); } else if (Token::Match(tok2->tokAt(-9), "%var% . str ( )")) { // Check ss.str().c_str() as parameter const Variable* ssVar = tok2->tokAt(-9)->variable(); if (ssVar && ssVar->isStlType(stl_string_stream)) string_c_strParam(tok, i->second); } } } } // Using c_str() to get the return value is only dangerous if the function returns a char* if (returnType == charPtr) { if (Token::Match(tok, "return %var% . c_str|data ( ) ;") && isLocal(tok->next()) && tok->next()->variable() && tok->next()->variable()->isStlType(stl_string)) { string_c_strError(tok); } else if (Token::Match(tok, "return %var% . str ( ) . c_str|data ( ) ;") && isLocal(tok->next()) && tok->next()->variable() && tok->next()->variable()->isStlType(stl_string_stream)) { string_c_strError(tok); } else if (Token::Match(tok, "return std :: string|wstring (") && Token::Match(tok->linkAt(4), ") . c_str|data ( ) ;")) { string_c_strError(tok); } else if (Token::Match(tok, "return %var% (") && Token::Match(tok->linkAt(2), ") . c_str|data ( ) ;")) { const Function* func = tok->next()->function(); if (func && Token::Match(func->tokenDef->tokAt(-3), "std :: string|wstring")) string_c_strError(tok); } else if (Token::simpleMatch(tok, "return (") && Token::Match(tok->next()->link(), ") . c_str|data ( ) ;")) { // Check for "+ localvar" or "+ std::string(" inside the bracket bool is_implicit_std_string = _settings->inconclusive; const Token *search_end = tok->next()->link(); for (const Token *search_tok = tok->tokAt(2); search_tok != search_end; search_tok = search_tok->next()) { if (Token::Match(search_tok, "+ %var%") && isLocal(search_tok->next()) && search_tok->next()->variable() && search_tok->next()->variable()->isStlType(stl_string)) { is_implicit_std_string = true; break; } else if (Token::Match(search_tok, "+ std :: string|wstring (")) { is_implicit_std_string = true; break; } } if (is_implicit_std_string) string_c_strError(tok); } } // Using c_str() to get the return value is redundant if the function returns std::string or const std::string&. else if ((returnType == stdString || returnType == stdStringConstRef) && _settings->isEnabled("performance")) { if (tok->str() == "return") { const Token* tok2 = Token::findsimplematch(tok->next(), ";"); if (Token::Match(tok2->tokAt(-4), ". c_str|data ( )")) { tok2 = tok2->tokAt(-5); if (tok2->variable() && tok2->variable()->isStlType(stl_string)) { // return var.c_str(); string_c_strReturn(tok); } } } } } } } void CheckStl::string_c_strThrowError(const Token* tok) { reportError(tok, Severity::error, "stlcstrthrow", "Dangerous usage of c_str(). The value returned by c_str() is invalid after throwing exception.\n" "Dangerous usage of c_str(). The string is destroyed after the c_str() call so the thrown pointer is invalid."); } void CheckStl::string_c_strError(const Token* tok) { reportError(tok, Severity::error, "stlcstr", "Dangerous usage of c_str(). The value returned by c_str() is invalid after this call.\n" "Dangerous usage of c_str(). The c_str() return value is only valid until its string is deleted."); } void CheckStl::string_c_strReturn(const Token* tok) { reportError(tok, Severity::performance, "stlcstrReturn", "Returning the result of c_str() in a function that returns std::string is slow and redundant.\n" "The conversion from const char* as returned by c_str() to std::string creates an unnecessary string copy. Solve that by directly returning the string."); } void CheckStl::string_c_strParam(const Token* tok, unsigned int number) { std::ostringstream oss; oss << "Passing the result of c_str() to a function that takes std::string as argument no. " << number << " is slow and redundant.\n" "The conversion from const char* as returned by c_str() to std::string creates an unnecessary string copy. Solve that by directly passing the string."; reportError(tok, Severity::performance, "stlcstrParam", oss.str()); } static bool hasArrayEnd(const Token *tok1) { const Token *end = Token::findsimplematch(tok1, ";"); return (end && Token::simpleMatch(end->previous(), "] ;")); } static bool hasArrayEndParen(const Token *tok1) { const Token *end = Token::findsimplematch(tok1, ";"); return (end && end->previous() && Token::simpleMatch(end->tokAt(-2), "] ) ;")); } //--------------------------------------------------------------------------- // //--------------------------------------------------------------------------- void CheckStl::checkAutoPointer() { std::set autoPtrVarId; static const char STL_CONTAINER_LIST[] = "array|bitset|deque|list|forward_list|map|multimap|multiset|priority_queue|queue|set|stack|vector|hash_map|hash_multimap|hash_set|unordered_map|unordered_multimap|unordered_set|unordered_multiset|basic_string"; for (const Token *tok = _tokenizer->tokens(); tok; tok = tok->next()) { if (Token::simpleMatch(tok, "auto_ptr <")) { if ((tok->strAt(-1) == "<" && Token::Match(tok->tokAt(-2), STL_CONTAINER_LIST)) || (Token::simpleMatch(tok->tokAt(-3), "< std :: auto_ptr") && Token::Match(tok->tokAt(-4), STL_CONTAINER_LIST))) { autoPointerContainerError(tok); } else { const Token *tok2 = tok->linkAt(1); if (Token::Match(tok2, "> %var%")) { const Token *tok3 = tok2->tokAt(2); if (Token::Match(tok3, "( new %type%") && hasArrayEndParen(tok3)) { autoPointerArrayError(tok2->next()); } while (tok3 && tok3->str() != ";") { tok3 = tok3->next(); } if (tok3) { tok3 = tok3->tokAt(-2); if (Token::simpleMatch(tok3->previous(), "[ ] )")) { autoPointerArrayError(tok2->next()); } else if (tok3->varId()) { const Token *decltok = Token::findmatch(_tokenizer->tokens(), "%varid% = new %type%", tok3->varId()); if (decltok && hasArrayEnd(decltok)) { autoPointerArrayError(tok2->next()); } } if (tok2->next()->varId()) { autoPtrVarId.insert(tok2->next()->varId()); } } } } } else { if (Token::Match(tok, "%var% = %var% ;")) { if (_settings->isEnabled("style")) { std::set::const_iterator iter = autoPtrVarId.find(tok->tokAt(2)->varId()); if (iter != autoPtrVarId.end()) { autoPointerError(tok->tokAt(2)); } } } else if ((Token::Match(tok, "%var% = new %type% ") && hasArrayEnd(tok)) || (Token::Match(tok, "%var% . reset ( new %type% ") && hasArrayEndParen(tok))) { std::set::const_iterator iter = autoPtrVarId.find(tok->varId()); if (iter != autoPtrVarId.end()) { autoPointerArrayError(tok); } } } } } void CheckStl::autoPointerError(const Token *tok) { reportError(tok, Severity::style, "useAutoPointerCopy", "Copying 'auto_ptr' pointer to another does not create two equal objects since one has lost its ownership of the pointer.\n" "'std::auto_ptr' has semantics of strict ownership, meaning that the 'auto_ptr' instance is the sole entity responsible for the object's lifetime. If an 'auto_ptr' is copied, the source looses the reference." ); } void CheckStl::autoPointerContainerError(const Token *tok) { reportError(tok, Severity::error, "useAutoPointerContainer", "You can randomly lose access to pointers if you store 'auto_ptr' pointers in an STL container.\n" "An element of container must be able to be copied but 'auto_ptr' does not fulfill this requirement. You should consider to use 'shared_ptr' or 'unique_ptr'. It is suitable for use in containers, because they no longer copy their values, they move them." ); } void CheckStl::autoPointerArrayError(const Token *tok) { reportError(tok, Severity::error, "useAutoPointerArray", "Object pointed by an 'auto_ptr' is destroyed using operator 'delete'. You should not use 'auto_ptr' for pointers obtained with operator 'new[]'.\n" "Object pointed by an 'auto_ptr' is destroyed using operator 'delete'. This means that you should only use 'auto_ptr' for pointers obtained with operator 'new'. This excludes arrays, which are allocated by operator 'new[]' and must be deallocated by operator 'delete[]'." ); } void CheckStl::uselessCalls() { // THIS ARRAY MUST BE ORDERED ALPHABETICALLY static const char* const stl_containers_with_empty_and_clear[] = { "deque", "forward_list", "list", "map", "multimap", "multiset", "set", "string", "unordered_map", "unordered_multimap", "unordered_multiset", "unordered_set", "vector", "wstring" }; bool performance = _settings->isEnabled("performance"); bool warning = _settings->isEnabled("warning"); if (!performance && !warning) return; const SymbolDatabase* symbolDatabase = _tokenizer->getSymbolDatabase(); const std::size_t functions = symbolDatabase->functionScopes.size(); for (std::size_t i = 0; i < functions; ++i) { const Scope * scope = symbolDatabase->functionScopes[i]; for (const Token* tok = scope->classStart; tok != scope->classEnd; tok = tok->next()) { if (tok->varId() && Token::Match(tok, "%var% . compare|find|rfind|find_first_not_of|find_first_of|find_last_not_of|find_last_of ( %var% [,)]") && tok->varId() == tok->tokAt(4)->varId() && warning) { uselessCallsReturnValueError(tok->tokAt(4), tok->str(), tok->strAt(2)); } else if (tok->varId() && Token::Match(tok, "%var% . swap ( %var% )") && tok->varId() == tok->tokAt(4)->varId() && performance) { uselessCallsSwapError(tok, tok->str()); } else if (Token::simpleMatch(tok, ". substr (") && performance) { if (Token::Match(tok->tokAt(3), "0| )")) uselessCallsSubstrError(tok, false); else if (tok->strAt(3) == "0" && tok->linkAt(2)->strAt(-1) == "npos") { if (!tok->linkAt(2)->previous()->variable()) // Make sure that its no variable uselessCallsSubstrError(tok, false); } else if (Token::simpleMatch(tok->linkAt(2)->tokAt(-2), ", 0 )")) uselessCallsSubstrError(tok, true); } else if (Token::Match(tok, "[{};] %var% . empty ( ) ;") && warning && tok->next()->variable() && tok->next()->variable()->isStlType(stl_containers_with_empty_and_clear)) uselessCallsEmptyError(tok->next()); else if (Token::Match(tok, "[{};] std :: remove|remove_if|unique (") && tok->tokAt(5)->nextArgument()) uselessCallsRemoveError(tok->next(), tok->strAt(3)); } } } void CheckStl::uselessCallsReturnValueError(const Token *tok, const std::string &varname, const std::string &function) { std::ostringstream errmsg; errmsg << "It is inefficient to call '" << varname << "." << function << "(" << varname << ")' as it always returns 0.\n" << "'std::string::" << function << "()' returns zero when given itself as parameter " << "(" << varname << "." << function << "(" << varname << ")). As it is currently the " << "code is inefficient. It is possible either the string searched ('" << varname << "') or searched for ('" << varname << "') is wrong."; reportError(tok, Severity::warning, "uselessCallsCompare", errmsg.str()); } void CheckStl::uselessCallsSwapError(const Token *tok, const std::string &varname) { std::ostringstream errmsg; errmsg << "It is inefficient to swap a object with itself by calling '" << varname << ".swap(" << varname << ")'\n" << "The 'swap()' function has no logical effect when given itself as parameter " << "(" << varname << ".swap(" << varname << ")). As it is currently the " << "code is inefficient. Is the object or the parameter wrong here?"; reportError(tok, Severity::performance, "uselessCallsSwap", errmsg.str()); } void CheckStl::uselessCallsSubstrError(const Token *tok, bool empty) { if (empty) reportError(tok, Severity::performance, "uselessCallsSubstr", "Ineffective call of function 'substr' because it returns an empty string."); else reportError(tok, Severity::performance, "uselessCallsSubstr", "Ineffective call of function 'substr' because it returns a copy of the object. Use operator= instead."); } void CheckStl::uselessCallsEmptyError(const Token *tok) { reportError(tok, Severity::warning, "uselessCallsEmpty", "Ineffective call of function 'empty()'. Did you intend to call 'clear()' instead?"); } void CheckStl::uselessCallsRemoveError(const Token *tok, const std::string& function) { reportError(tok, Severity::warning, "uselessCallsRemove", "Return value of std::" + function + "() ignored. Elements remain in container.\n" "The return value of std::" + function + "() is ignored. This function returns an iterator to the end of the range containing those elements that should be kept. " "Elements past new end remain valid but with unspecified values. Use the erase method of the container to delete them."); } // Check for iterators being dereferenced before being checked for validity. // E.g. if (*i && i != str.end()) { } void CheckStl::checkDereferenceInvalidIterator() { if (!_settings->isEnabled("warning")) return; // Iterate over "if", "while", and "for" conditions where there may // be an iterator that is dereferenced before being checked for validity. const std::list& scopeList = _tokenizer->getSymbolDatabase()->scopeList; for (std::list::const_iterator i = scopeList.begin(); i != scopeList.end(); ++i) { if (i->type == Scope::eIf || i->type == Scope::eElseIf || i->type == Scope::eDo || i->type == Scope::eWhile || i->type == Scope::eFor) { const Token* const tok = i->classDef; const Token* startOfCondition = tok->next(); if (i->type == Scope::eElseIf) startOfCondition = startOfCondition->next(); else if (i->type == Scope::eDo) startOfCondition = startOfCondition->link()->tokAt(2); const Token* endOfCondition = startOfCondition->link(); if (!endOfCondition) continue; // For "for" loops, only search between the two semicolons if (i->type == Scope::eFor) { startOfCondition = Token::findsimplematch(tok->tokAt(2), ";", endOfCondition); if (!startOfCondition) continue; endOfCondition = Token::findsimplematch(startOfCondition->next(), ";", endOfCondition); if (!endOfCondition) continue; } // Only consider conditions composed of all "&&" terms and // conditions composed of all "||" terms const bool isOrExpression = Token::findsimplematch(startOfCondition, "||", endOfCondition) != 0; const bool isAndExpression = Token::findsimplematch(startOfCondition, "&&", endOfCondition) != 0; // Look for a check of the validity of an iterator const Token* validityCheckTok = 0; if (!isOrExpression && isAndExpression) { validityCheckTok = Token::findmatch(startOfCondition, "&& %var% != %var% . end|rend|cend|crend ( )", endOfCondition); } else if (isOrExpression && !isAndExpression) { validityCheckTok = Token::findmatch(startOfCondition, "%oror% %var% == %var% . end|rend|cend|crend ( )", endOfCondition); } if (!validityCheckTok) continue; const unsigned int iteratorVarId = validityCheckTok->next()->varId(); if (!iteratorVarId) continue; // If the iterator dereference is to the left of the check for // the iterator's validity, report an error. const Token* const dereferenceTok = Token::findmatch(startOfCondition, "* %varid%", validityCheckTok, iteratorVarId); if (dereferenceTok) dereferenceInvalidIteratorError(dereferenceTok, dereferenceTok->strAt(1)); } } } void CheckStl::dereferenceInvalidIteratorError(const Token* deref, const std::string &iterName) { reportError(deref, Severity::warning, "derefInvalidIterator", "Possible dereference of an invalid iterator: " + iterName + "\n" + "Make sure to check that the iterator is valid before dereferencing it - not after."); } void CheckStl::readingEmptyStlContainer() { if (!_settings->isEnabled("style")) return; if (!_settings->inconclusive) return; std::set empty_map; // empty std::map-like instances of STL containers std::set empty_nonmap; // empty non-std::map-like instances of STL containers static const char *MAP_STL_CONTAINERS[] = { "map", "multimap", "unordered_map", "unordered_multimap" }; static const char *NONMAP_STL_CONTAINERS[] = { "deque", "forward_list", "list", "multiset", "queue", "set", "stack", "string", "unordered_multiset", "unordered_set", "vector" }; const std::list& scopeList = _tokenizer->getSymbolDatabase()->scopeList; for (std::list::const_iterator i = scopeList.begin(); i != scopeList.end(); ++i) { if (i->type != Scope::eFunction) continue; for (const Token *tok = i->classStart->next(); tok != i->classEnd; tok = tok->next()) { if (Token::Match(tok, "for|while|do|}")) { // Loops and end of scope clear the sets. empty_map.clear(); empty_nonmap.clear(); } if (!tok->varId()) continue; // Check whether a variable should be marked as "empty" const Variable* var = tok->variable(); if (var) { bool insert = false; if (tok->variable()->nameToken() == tok && var->isLocal() && !var->isStatic()) { // Local variable declared insert = !Token::Match(tok->tokAt(1), "[(=]"); // Only if not initialized } else if (Token::Match(tok, "%var% . clear ( ) ;")) { insert = true; } if (insert) { if (var->isStlType(MAP_STL_CONTAINERS)) empty_map.insert(var->declarationId()); else if (var->isStlType(NONMAP_STL_CONTAINERS)) empty_nonmap.insert(var->declarationId()); continue; } } bool map = empty_map.find(tok->varId()) != empty_map.end(); if (!map && empty_nonmap.find(tok->varId()) == empty_nonmap.end()) continue; // Check for various conditions for the way stl containers and variables can be used if (tok->strAt(1) == "=" || (tok->strAt(1) == "[" && Token::simpleMatch(tok->linkAt(1), "] ="))) { // Assignment (LHS) if (map) empty_map.erase(tok->varId()); else empty_nonmap.erase(tok->varId()); } else if (Token::Match(tok, "%var% [")) { // Access through operator[] if (map) { // operator[] inserts an element, if used on a std::map if (tok->strAt(-1) == "=") readingEmptyStlContainerError(tok); empty_map.erase(tok->varId()); } else if ((map && empty_map.find(tok->varId()) != empty_map.end()) || (!map && empty_nonmap.find(tok->varId()) != empty_nonmap.end())) readingEmptyStlContainerError(tok); } else if (Token::Match(tok, "%var% . %type% (")) { // Member function call if (Token::Match(tok->tokAt(2), "find|at|data|c_str|back|front|empty|top|size|count")) // These functions read from the container readingEmptyStlContainerError(tok); else if (map) empty_map.erase(tok->varId()); else empty_nonmap.erase(tok->varId()); } else if (tok->strAt(-1) == "=") { // Assignment (RHS) readingEmptyStlContainerError(tok); } else { // Unknown usage. Assume it is initialized. if (map) empty_map.erase(tok->varId()); else empty_nonmap.erase(tok->varId()); } } empty_map.clear(); empty_nonmap.clear(); } } void CheckStl::readingEmptyStlContainerError(const Token *tok) { reportError(tok, Severity::style, "reademptycontainer", "Reading from empty STL container", true); }