/* * Cppcheck - A tool for static C/C++ code analysis * Copyright (C) 2007-2018 Cppcheck team. * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ //--------------------------------------------------------------------------- #include "checkclass.h" #include "astutils.h" #include "errorlogger.h" #include "library.h" #include "settings.h" #include "standards.h" #include "symboldatabase.h" #include "token.h" #include "tokenize.h" #include "utils.h" #include #include #include #include //--------------------------------------------------------------------------- // Register CheckClass.. namespace { CheckClass instance; } static const CWE CWE398(398U); // Indicator of Poor Code Quality static const CWE CWE404(404U); // Improper Resource Shutdown or Release static const CWE CWE665(665U); // Improper Initialization static const CWE CWE758(758U); // Reliance on Undefined, Unspecified, or Implementation-Defined Behavior static const CWE CWE762(762U); // Mismatched Memory Management Routines static const char * getFunctionTypeName(Function::Type type) { switch (type) { case Function::eConstructor: return "constructor"; case Function::eCopyConstructor: return "copy constructor"; case Function::eMoveConstructor: return "move constructor"; case Function::eDestructor: return "destructor"; case Function::eFunction: return "function"; case Function::eOperatorEqual: return "operator="; } return ""; } //--------------------------------------------------------------------------- CheckClass::CheckClass(const Tokenizer *tokenizer, const Settings *settings, ErrorLogger *errorLogger) : Check(myName(), tokenizer, settings, errorLogger), mSymbolDatabase(tokenizer?tokenizer->getSymbolDatabase():nullptr) { } //--------------------------------------------------------------------------- // ClassCheck: Check that all class constructors are ok. //--------------------------------------------------------------------------- void CheckClass::constructors() { const bool printStyle = mSettings->isEnabled(Settings::STYLE); const bool printWarnings = mSettings->isEnabled(Settings::WARNING); if (!printStyle && !printWarnings) return; const bool printInconclusive = mSettings->inconclusive; for (const Scope * scope : mSymbolDatabase->classAndStructScopes) { bool usedInUnion = false; for (const Scope &unionScope : mSymbolDatabase->scopeList) { if (unionScope.type != Scope::eUnion) continue; for (const Variable &var : unionScope.varlist) { if (var.type() && var.type()->classScope == scope) { usedInUnion = true; break; } } } // There are no constructors. if (scope->numConstructors == 0 && printStyle && !usedInUnion) { // If there is a private variable, there should be a constructor.. for (const Variable &var : scope->varlist) { if (var.isPrivate() && !var.isStatic() && !Token::Match(var.nameToken(), "%varid% ; %varid% =", var.declarationId()) && (!var.isClass() || (var.type() && var.type()->needInitialization == Type::True))) { noConstructorError(scope->classDef, scope->className, scope->classDef->str() == "struct"); break; } } } if (!printWarnings) continue; // #3196 => bailout if there are nested unions // TODO: handle union variables better { bool bailout = false; for (const Scope * const nestedScope : scope->nestedList) { if (nestedScope->type == Scope::eUnion) { bailout = true; break; } } if (bailout) continue; } std::vector usage(scope->varlist.size()); for (std::list::const_iterator func = scope->functionList.begin(); func != scope->functionList.end(); ++func) { if (!func->hasBody() || !(func->isConstructor() || func->type == Function::eOperatorEqual)) continue; // Mark all variables not used clearAllVar(usage); std::list callstack; initializeVarList(*func, callstack, scope, usage); // Check if any variables are uninitialized std::list::const_iterator var; unsigned int count = 0; for (var = scope->varlist.begin(); var != scope->varlist.end(); ++var, ++count) { // check for C++11 initializer if (var->hasDefault()) { usage[count].init = true; continue; } if (usage[count].assign || usage[count].init || var->isStatic()) continue; if (var->isConst() && func->isOperator()) // We can't set const members in assignment operator continue; // Check if this is a class constructor if (!var->isPointer() && !var->isPointerArray() && var->isClass() && func->type == Function::eConstructor) { // Unknown type so assume it is initialized if (!var->type()) continue; // Known type that doesn't need initialization or // known type that has member variables of an unknown type else if (var->type()->needInitialization != Type::True) continue; } // Check if type can't be copied if (!var->isPointer() && !var->isPointerArray() && var->typeScope()) { if (func->type == Function::eMoveConstructor) { if (canNotMove(var->typeScope())) continue; } else { if (canNotCopy(var->typeScope())) continue; } } bool inconclusive = false; // Don't warn about unknown types in copy constructors since we // don't know if they can be copied or not.. if (!var->isPointer() && !(var->type() && var->type()->needInitialization != Type::True) && (func->type == Function::eCopyConstructor || func->type == Function::eOperatorEqual)) { if (var->valueType()->type <= ValueType::Type::RECORD) { if (printInconclusive) inconclusive = true; else continue; } } // It's non-static and it's not initialized => error if (func->type == Function::eOperatorEqual) { const Token *operStart = func->arg; bool classNameUsed = false; for (const Token *operTok = operStart; operTok != operStart->link(); operTok = operTok->next()) { if (operTok->str() == scope->className) { classNameUsed = true; break; } } if (classNameUsed) operatorEqVarError(func->token, scope->className, var->name(), inconclusive); } else if (func->access != Private || mSettings->standards.cpp >= Standards::CPP11) { const Scope *varType = var->typeScope(); if (!varType || varType->type != Scope::eUnion) { if (func->type == Function::eConstructor && func->nestedIn && (func->nestedIn->numConstructors - func->nestedIn->numCopyOrMoveConstructors) > 1 && func->argCount() == 0 && func->functionScope && func->arg && func->arg->link()->next() == func->functionScope->bodyStart && func->functionScope->bodyStart->link() == func->functionScope->bodyStart->next()) { // don't warn about user defined default constructor when there are other constructors if (printInconclusive) uninitVarError(func->token, func->access == Private, scope->className, var->name(), true); } else uninitVarError(func->token, func->access == Private, scope->className, var->name(), inconclusive); } } } } } } void CheckClass::checkExplicitConstructors() { if (!mSettings->isEnabled(Settings::STYLE)) return; for (const Scope * scope : mSymbolDatabase->classAndStructScopes) { // Do not perform check, if the class/struct has not any constructors if (scope->numConstructors == 0) continue; // Is class abstract? Maybe this test is over-simplification, but it will suffice for simple cases, // and it will avoid false positives. bool isAbstractClass = false; for (const Function &func : scope->functionList) { if (func.isPure()) { isAbstractClass = true; break; } } // Abstract classes can't be instantiated. But if there is C++11 // "misuse" by derived classes then these constructors must be explicit. if (isAbstractClass && mSettings->standards.cpp != Standards::CPP11) continue; for (const Function &func : scope->functionList) { // We are looking for constructors, which are meeting following criteria: // 1) Constructor is declared with a single parameter // 2) Constructor is not declared as explicit // 3) It is not a copy/move constructor of non-abstract class // 4) Constructor is not marked as delete (programmer can mark the default constructor as deleted, which is ok) if (!func.isConstructor() || func.isDelete() || (!func.hasBody() && func.access == Private)) continue; if (!func.isExplicit() && func.argCount() == 1 && func.type != Function::eCopyConstructor && func.type != Function::eMoveConstructor) { noExplicitConstructorError(func.tokenDef, scope->className, scope->type == Scope::eStruct); } } } } static bool isNonCopyable(const Scope *scope, bool *unknown) { bool u = false; // check if there is base class that is not copyable for (const Type::BaseInfo &baseInfo : scope->definedType->derivedFrom) { if (!baseInfo.type || !baseInfo.type->classScope) { u = true; continue; } if (isNonCopyable(baseInfo.type->classScope, &u)) return true; for (const Function &func : baseInfo.type->classScope->functionList) { if (func.type != Function::eCopyConstructor) continue; if (func.access == Private || func.isDelete()) return true; } } *unknown = u; return false; } void CheckClass::copyconstructors() { if (!mSettings->isEnabled(Settings::STYLE)) return; for (const Scope * scope : mSymbolDatabase->classAndStructScopes) { std::map allocatedVars; for (const Function &func : scope->functionList) { if (func.type != Function::eConstructor || !func.functionScope) continue; const Token* tok = func.token->linkAt(1); for (const Token* const end = func.functionScope->bodyStart; tok != end; tok = tok->next()) { if (Token::Match(tok, "%var% ( new") || (Token::Match(tok, "%var% ( %name% (") && mSettings->library.alloc(tok->tokAt(2)))) { const Variable* var = tok->variable(); if (var && var->isPointer() && var->scope() == scope) allocatedVars[tok->varId()] = tok; } } for (const Token* const end = func.functionScope->bodyEnd; tok != end; tok = tok->next()) { if (Token::Match(tok, "%var% = new") || (Token::Match(tok, "%var% = %name% (") && mSettings->library.alloc(tok->tokAt(2)))) { const Variable* var = tok->variable(); if (var && var->isPointer() && var->scope() == scope && !var->isStatic()) allocatedVars[tok->varId()] = tok; } } } if (!allocatedVars.empty()) { const Function *funcCopyCtor = nullptr; const Function *funcOperatorEq = nullptr; const Function *funcDestructor = nullptr; for (const Function &func : scope->functionList) { if (func.type == Function::eCopyConstructor) funcCopyCtor = &func; else if (func.type == Function::eOperatorEqual) funcOperatorEq = &func; else if (func.type == Function::eDestructor) funcDestructor = &func; } if (!funcCopyCtor || funcCopyCtor->isDefault()) { bool unknown = false; if (!isNonCopyable(scope, &unknown) && !unknown) noCopyConstructorError(scope, funcCopyCtor, allocatedVars.begin()->second, unknown); } if (!funcOperatorEq || funcOperatorEq->isDefault()) { bool unknown = false; if (!isNonCopyable(scope, &unknown) && !unknown) noOperatorEqError(scope, funcOperatorEq, allocatedVars.begin()->second, unknown); } if (!funcDestructor || funcDestructor->isDefault()) { const Token * mustDealloc = nullptr; for (std::map::const_iterator it = allocatedVars.begin(); it != allocatedVars.end(); ++it) { if (!Token::Match(it->second, "%var% [(=] new %type%")) { mustDealloc = it->second; break; } if (it->second->valueType() && it->second->valueType()->isIntegral()) { mustDealloc = it->second; break; } const Variable *var = it->second->variable(); if (var && var->typeScope() && var->typeScope()->functionList.empty() && var->type()->derivedFrom.empty()) mustDealloc = it->second; } if (mustDealloc) noDestructorError(scope, funcDestructor, mustDealloc); } } std::set copiedVars; const Token* copyCtor = nullptr; for (const Function &func : scope->functionList) { if (func.type != Function::eCopyConstructor) continue; copyCtor = func.tokenDef; if (!func.functionScope) { allocatedVars.clear(); break; } const Token* tok = func.tokenDef->linkAt(1)->next(); if (tok->str()==":") { tok=tok->next(); while (Token::Match(tok, "%name% (")) { if (allocatedVars.find(tok->varId()) != allocatedVars.end()) { if (tok->varId() && Token::Match(tok->tokAt(2), "%name% . %name% )")) copiedVars.insert(tok); else if (!Token::Match(tok->tokAt(2), "%any% )")) allocatedVars.erase(tok->varId()); // Assume memory is allocated } tok = tok->linkAt(1)->tokAt(2); } } for (tok = func.functionScope->bodyStart; tok != func.functionScope->bodyEnd; tok = tok->next()) { if (Token::Match(tok, "%var% = new|malloc|g_malloc|g_try_malloc|realloc|g_realloc|g_try_realloc")) { allocatedVars.erase(tok->varId()); } else if (Token::Match(tok, "%var% = %name% . %name% ;") && allocatedVars.find(tok->varId()) != allocatedVars.end()) { copiedVars.insert(tok); } } break; } if (copyCtor && !copiedVars.empty()) { for (std::set::const_iterator it = copiedVars.begin(); it != copiedVars.end(); ++it) { copyConstructorShallowCopyError(*it, (*it)->str()); } // throw error if count mismatch /* FIXME: This doesn't work. See #4154 for (std::map::const_iterator i = allocatedVars.begin(); i != allocatedVars.end(); ++i) { copyConstructorMallocError(copyCtor, i->second, i->second->str()); } */ } } } /* This doesn't work. See #4154 void CheckClass::copyConstructorMallocError(const Token *cctor, const Token *alloc, const std::string& varname) { std::list callstack; callstack.push_back(cctor); callstack.push_back(alloc); reportError(callstack, Severity::warning, "copyCtorNoAllocation", "Copy constructor does not allocate memory for member '" + varname + "' although memory has been allocated in other constructors."); } */ void CheckClass::copyConstructorShallowCopyError(const Token *tok, const std::string& varname) { reportError(tok, Severity::style, "copyCtorPointerCopying", "$symbol:" + varname + "\nValue of pointer '$symbol', which points to allocated memory, is copied in copy constructor instead of allocating new memory.", CWE398, false); } static std::string noMemberErrorMessage(const Scope *scope, const char function[], bool isdefault) { const std::string &classname = scope ? scope->className : "class"; const std::string type = (scope && scope->type == Scope::eStruct) ? "Struct" : "Class"; const bool isDestructor = (function[0] == 'd'); std::string errmsg = "$symbol:" + classname + '\n'; if (isdefault) { errmsg += type + " '$symbol' has dynamic memory/resource allocation(s). The " + function + " is explicitly defaulted but the default " + function + " does not work well."; if (isDestructor) errmsg += " It is recommended to define the " + std::string(function) + '.'; else errmsg += " It is recommended to define or delete the " + std::string(function) + '.'; } else { errmsg += type + " '$symbol' does not have a " + function + " which is recommended since it has dynamic memory/resource allocation(s)."; } return errmsg; } void CheckClass::noCopyConstructorError(const Scope *scope, bool isdefault, const Token *alloc, bool inconclusive) { reportError(alloc, Severity::style, "noCopyConstructor", noMemberErrorMessage(scope, "copy constructor", isdefault), CWE398, inconclusive); } void CheckClass::noOperatorEqError(const Scope *scope, bool isdefault, const Token *alloc, bool inconclusive) { reportError(alloc, Severity::style, "noOperatorEq", noMemberErrorMessage(scope, "operator=", isdefault), CWE398, inconclusive); } void CheckClass::noDestructorError(const Scope *scope, bool isdefault, const Token *alloc) { reportError(alloc, Severity::style, "noDestructor", noMemberErrorMessage(scope, "destructor", isdefault), CWE398, false); } bool CheckClass::canNotCopy(const Scope *scope) { bool constructor = false; bool publicAssign = false; bool publicCopy = false; for (std::list::const_iterator func = scope->functionList.begin(); func != scope->functionList.end(); ++func) { if (func->isConstructor()) constructor = true; if (func->access != Public) continue; if (func->type == Function::eCopyConstructor) { publicCopy = true; break; } else if (func->type == Function::eOperatorEqual) { publicAssign = true; break; } } return constructor && !(publicAssign || publicCopy); } bool CheckClass::canNotMove(const Scope *scope) { bool constructor = false; bool publicAssign = false; bool publicCopy = false; bool publicMove = false; for (std::list::const_iterator func = scope->functionList.begin(); func != scope->functionList.end(); ++func) { if (func->isConstructor()) constructor = true; if (func->access != Public) continue; if (func->type == Function::eCopyConstructor) { publicCopy = true; break; } else if (func->type == Function::eMoveConstructor) { publicMove = true; break; } else if (func->type == Function::eOperatorEqual) { publicAssign = true; break; } } return constructor && !(publicAssign || publicCopy || publicMove); } void CheckClass::assignVar(unsigned int varid, const Scope *scope, std::vector &usage) { unsigned int count = 0; for (std::list::const_iterator var = scope->varlist.begin(); var != scope->varlist.end(); ++var, ++count) { if (var->declarationId() == varid) { usage[count].assign = true; return; } } } void CheckClass::initVar(unsigned int varid, const Scope *scope, std::vector &usage) { unsigned int count = 0; for (std::list::const_iterator var = scope->varlist.begin(); var != scope->varlist.end(); ++var, ++count) { if (var->declarationId() == varid) { usage[count].init = true; return; } } } void CheckClass::assignAllVar(std::vector &usage) { for (std::size_t i = 0; i < usage.size(); ++i) usage[i].assign = true; } void CheckClass::clearAllVar(std::vector &usage) { for (std::size_t i = 0; i < usage.size(); ++i) { usage[i].assign = false; usage[i].init = false; } } bool CheckClass::isBaseClassFunc(const Token *tok, const Scope *scope) { // Iterate through each base class... for (std::size_t i = 0; i < scope->definedType->derivedFrom.size(); ++i) { const Type *derivedFrom = scope->definedType->derivedFrom[i].type; // Check if base class exists in database if (derivedFrom && derivedFrom->classScope) { const std::list& functionList = derivedFrom->classScope->functionList; for (std::list::const_iterator func = functionList.begin(); func != functionList.end(); ++func) { if (func->tokenDef->str() == tok->str()) return true; } } // Base class not found so assume it is in it. else return true; } return false; } void CheckClass::initializeVarList(const Function &func, std::list &callstack, const Scope *scope, std::vector &usage) { if (!func.functionScope) throw InternalError(nullptr, "Internal Error: Invalid syntax"); // #5702 bool initList = func.isConstructor(); const Token *ftok = func.arg->link()->next(); int level = 0; for (; ftok && ftok != func.functionScope->bodyEnd; ftok = ftok->next()) { // Class constructor.. initializing variables like this // clKalle::clKalle() : var(value) { } if (initList) { if (level == 0 && Token::Match(ftok, "%name% {|(") && Token::Match(ftok->linkAt(1), "}|) ,|{")) { if (ftok->str() != func.name()) { initVar(ftok->varId(), scope, usage); } else { // c++11 delegate constructor const Function *member = ftok->function(); // member function found if (member) { // recursive call // assume that all variables are initialized if (std::find(callstack.begin(), callstack.end(), member) != callstack.end()) { /** @todo false negative: just bail */ assignAllVar(usage); return; } // member function has implementation if (member->hasBody()) { // initialize variable use list using member function callstack.push_back(member); initializeVarList(*member, callstack, scope, usage); callstack.pop_back(); } // there is a called member function, but it has no implementation, so we assume it initializes everything else { assignAllVar(usage); } } } } else if (level != 0 && Token::Match(ftok, "%name% =")) // assignment in the initializer: var(value = x) assignVar(ftok->varId(), scope, usage); // Level handling if (ftok->link() && Token::Match(ftok, "(|<")) level++; else if (ftok->str() == "{") { if (level != 0 || (Token::Match(ftok->previous(), "%name%|>") && Token::Match(ftok->link(), "} ,|{"))) level++; else initList = false; } else if (ftok->link() && Token::Match(ftok, ")|>|}")) level--; } if (initList) continue; // Variable getting value from stream? if (Token::Match(ftok, ">>|& %name%") && isLikelyStreamRead(true, ftok)) { assignVar(ftok->next()->varId(), scope, usage); } // If assignment comes after an && or || this is really inconclusive because of short circuiting if (Token::Match(ftok, "%oror%|&&")) continue; if (Token::simpleMatch(ftok, "( !")) ftok = ftok->next(); // Using the operator= function to initialize all variables.. if (Token::Match(ftok->next(), "return| (| * this )| =")) { assignAllVar(usage); break; } // Using swap to assign all variables.. if (func.type == Function::eOperatorEqual && Token::Match(ftok, "[;{}] %name% (") && Token::Match(ftok->linkAt(2), ") . %name% ( *| this ) ;")) { assignAllVar(usage); break; } // Calling member variable function? if (Token::Match(ftok->next(), "%var% . %name% (")) { for (std::list::const_iterator var = scope->varlist.begin(); var != scope->varlist.end(); ++var) { if (var->declarationId() == ftok->next()->varId()) { /** @todo false negative: we assume function changes variable state */ assignVar(ftok->next()->varId(), scope, usage); break; } } ftok = ftok->tokAt(2); } if (!Token::Match(ftok->next(), "::| %name%") && !Token::Match(ftok->next(), "*| this . %name%") && !Token::Match(ftok->next(), "* %name% =") && !Token::Match(ftok->next(), "( * this ) . %name%")) continue; // Goto the first token in this statement.. ftok = ftok->next(); // skip "return" if (ftok->str() == "return") ftok = ftok->next(); // Skip "( * this )" if (Token::simpleMatch(ftok, "( * this ) .")) { ftok = ftok->tokAt(5); } // Skip "this->" if (Token::simpleMatch(ftok, "this .")) ftok = ftok->tokAt(2); // Skip "classname :: " if (Token::Match(ftok, ":: %name%")) ftok = ftok->next(); while (Token::Match(ftok, "%name% ::")) ftok = ftok->tokAt(2); // Clearing all variables.. if (Token::Match(ftok, "::| memset ( this ,")) { assignAllVar(usage); return; } // Ticket #7068 else if (Token::Match(ftok, "::| memset ( &| this . %name%")) { if (ftok->str() == "::") ftok = ftok->next(); int offsetToMember = 4; if (ftok->strAt(2) == "&") ++offsetToMember; assignVar(ftok->tokAt(offsetToMember)->varId(), scope, usage); ftok = ftok->linkAt(1); continue; } // Clearing array.. else if (Token::Match(ftok, "::| memset ( %name% ,")) { if (ftok->str() == "::") ftok = ftok->next(); assignVar(ftok->tokAt(2)->varId(), scope, usage); ftok = ftok->linkAt(1); continue; } // Calling member function? else if (Token::simpleMatch(ftok, "operator= (") && ftok->previous()->str() != "::") { if (ftok->function() && ftok->function()->nestedIn == scope) { const Function *member = ftok->function(); // recursive call // assume that all variables are initialized if (std::find(callstack.begin(), callstack.end(), member) != callstack.end()) { /** @todo false negative: just bail */ assignAllVar(usage); return; } // member function has implementation if (member->hasBody()) { // initialize variable use list using member function callstack.push_back(member); initializeVarList(*member, callstack, scope, usage); callstack.pop_back(); } // there is a called member function, but it has no implementation, so we assume it initializes everything else { assignAllVar(usage); } } // using default operator =, assume everything initialized else { assignAllVar(usage); } } else if (Token::Match(ftok, "::| %name% (") && ftok->str() != "if") { if (ftok->str() == "::") ftok = ftok->next(); // Passing "this" => assume that everything is initialized for (const Token *tok2 = ftok->next()->link(); tok2 && tok2 != ftok; tok2 = tok2->previous()) { if (tok2->str() == "this") { assignAllVar(usage); return; } } // check if member function if (ftok->function() && ftok->function()->nestedIn == scope && !ftok->function()->isConstructor()) { const Function *member = ftok->function(); // recursive call // assume that all variables are initialized if (std::find(callstack.begin(), callstack.end(), member) != callstack.end()) { assignAllVar(usage); return; } // member function has implementation if (member->hasBody()) { // initialize variable use list using member function callstack.push_back(member); initializeVarList(*member, callstack, scope, usage); callstack.pop_back(); // Assume that variables that are passed to it are initialized.. for (const Token *tok2 = ftok; tok2; tok2 = tok2->next()) { if (Token::Match(tok2, "[;{}]")) break; if (Token::Match(tok2, "[(,] &| %name% [,)]")) { tok2 = tok2->next(); if (tok2->str() == "&") tok2 = tok2->next(); assignVar(tok2->varId(), scope, usage); } } } // there is a called member function, but it has no implementation, so we assume it initializes everything else { assignAllVar(usage); } } // not member function else { // could be a base class virtual function, so we assume it initializes everything if (!func.isConstructor() && isBaseClassFunc(ftok, scope)) { /** @todo False Negative: we should look at the base class functions to see if they * call any derived class virtual functions that change the derived class state */ assignAllVar(usage); } // has friends, so we assume it initializes everything if (!scope->definedType->friendList.empty()) assignAllVar(usage); // the function is external and it's neither friend nor inherited virtual function. // assume all variables that are passed to it are initialized.. else { for (const Token *tok = ftok->tokAt(2); tok && tok != ftok->next()->link(); tok = tok->next()) { if (tok->isName()) { assignVar(tok->varId(), scope, usage); } } } } } // Assignment of member variable? else if (Token::Match(ftok, "%name% =")) { assignVar(ftok->varId(), scope, usage); bool bailout = ftok->variable() && ftok->variable()->isReference(); const Token* tok2 = ftok->tokAt(2); if (tok2->str() == "&") { tok2 = tok2->next(); bailout = true; } if (tok2->variable() && (bailout || tok2->variable()->isArray()) && tok2->strAt(1) != "[") assignVar(tok2->varId(), scope, usage); } // Assignment of array item of member variable? else if (Token::Match(ftok, "%name% [|.")) { const Token *tok2 = ftok; while (tok2) { if (tok2->strAt(1) == "[") tok2 = tok2->next()->link(); else if (Token::Match(tok2->next(), ". %name%")) tok2 = tok2->tokAt(2); else break; } if (tok2 && tok2->strAt(1) == "=") assignVar(ftok->varId(), scope, usage); } // Assignment of array item of member variable? else if (Token::Match(ftok, "* %name% =")) { assignVar(ftok->next()->varId(), scope, usage); } else if (Token::Match(ftok, "* this . %name% =")) { assignVar(ftok->tokAt(3)->varId(), scope, usage); } // The functions 'clear' and 'Clear' are supposed to initialize variable. if (Token::Match(ftok, "%name% . clear|Clear (")) { assignVar(ftok->varId(), scope, usage); } } } void CheckClass::noConstructorError(const Token *tok, const std::string &classname, bool isStruct) { // For performance reasons the constructor might be intentionally missing. Therefore this is not a "warning" reportError(tok, Severity::style, "noConstructor", "$symbol:" + classname + "\n" + "The " + std::string(isStruct ? "struct" : "class") + " '$symbol' does not have a constructor although it has private member variables.\n" "The " + std::string(isStruct ? "struct" : "class") + " '$symbol' does not have a constructor " "although it has private member variables. Member variables of builtin types are left " "uninitialized when the class is instantiated. That may cause bugs or undefined behavior.", CWE398, false); } void CheckClass::noExplicitConstructorError(const Token *tok, const std::string &classname, bool isStruct) { const std::string message(std::string(isStruct ? "Struct" : "Class") + " '$symbol' has a constructor with 1 argument that is not explicit."); const std::string verbose(message + " Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided."); reportError(tok, Severity::style, "noExplicitConstructor", "$symbol:" + classname + '\n' + message + '\n' + verbose, CWE398, false); } void CheckClass::uninitVarError(const Token *tok, bool isprivate, const std::string &classname, const std::string &varname, bool inconclusive) { reportError(tok, Severity::warning, isprivate ? "uninitMemberVarPrivate" : "uninitMemberVar", "$symbol:" + classname + "::" + varname + "\nMember variable '$symbol' is not initialized in the constructor.", CWE398, inconclusive); } void CheckClass::operatorEqVarError(const Token *tok, const std::string &classname, const std::string &varname, bool inconclusive) { reportError(tok, Severity::warning, "operatorEqVarError", "$symbol:" + classname + "::" + varname + "\nMember variable '$symbol' is not assigned a value in '" + classname + "::operator='.", CWE398, inconclusive); } //--------------------------------------------------------------------------- // ClassCheck: Use initialization list instead of assignment //--------------------------------------------------------------------------- void CheckClass::initializationListUsage() { if (!mSettings->isEnabled(Settings::PERFORMANCE)) return; for (const Scope *scope : mSymbolDatabase->functionScopes) { // Check every constructor if (!scope->function || (!scope->function->isConstructor())) continue; const Scope* owner = scope->functionOf; for (const Token* tok = scope->bodyStart; tok != scope->bodyEnd; tok = tok->next()) { if (Token::Match(tok, "%name% (")) // Assignments might depend on this function call or if/for/while/switch statement from now on. break; if (Token::Match(tok, "try|do {")) break; if (Token::Match(tok, "%var% =") && tok->strAt(-1) != "*") { const Variable* var = tok->variable(); if (var && var->scope() == owner && !var->isStatic()) { if (var->isPointer() || var->isReference() || var->isEnumType() || (!var->type() && !var->isStlStringType() && !(Token::Match(var->typeStartToken(), "std :: %type% <") && !Token::simpleMatch(var->typeStartToken()->linkAt(3), "> ::")))) continue; bool allowed = true; for (const Token* tok2 = tok->tokAt(2); tok2 && tok2->str() != ";"; tok2 = tok2->next()) { const Variable* var2 = tok2->variable(); if (var2) { if (var2->scope() == owner && tok2->strAt(-1)!=".") { // Is there a dependency between two member variables? allowed = false; break; } else if (var2->isArray() && var2->isLocal()) { // Can't initialize with a local array allowed = false; break; } } else if (tok2->str() == "this") { // 'this' instance is not completely constructed in initialization list allowed = false; break; } else if (Token::Match(tok2, "%name% (") && tok2->strAt(-1) != "." && isMemberFunc(owner, tok2)) { // Member function called? allowed = false; break; } } if (!allowed) continue; suggestInitializationList(tok, tok->str()); } } } } } void CheckClass::suggestInitializationList(const Token* tok, const std::string& varname) { reportError(tok, Severity::performance, "useInitializationList", "$symbol:" + varname + "\nVariable '$symbol' is assigned in constructor body. Consider performing initialization in initialization list.\n" "When an object of a class is created, the constructors of all member variables are called consecutively " "in the order the variables are declared, even if you don't explicitly write them to the initialization list. You " "could avoid assigning '$symbol' a value by passing the value to the constructor in the initialization list.", CWE398, false); } //--------------------------------------------------------------------------- // ClassCheck: Unused private functions //--------------------------------------------------------------------------- static bool checkFunctionUsage(const Function *privfunc, const Scope* scope) { if (!scope) return true; // Assume it is used, if scope is not seen for (std::list::const_iterator func = scope->functionList.begin(); func != scope->functionList.end(); ++func) { if (func->functionScope) { if (Token::Match(func->tokenDef, "%name% (")) { for (const Token *ftok = func->tokenDef->tokAt(2); ftok && ftok->str() != ")"; ftok = ftok->next()) { if (Token::Match(ftok, "= %name% [(,)]") && ftok->strAt(1) == privfunc->name()) return true; if (ftok->str() == "(") ftok = ftok->link(); } } for (const Token *ftok = func->functionScope->classDef->linkAt(1); ftok != func->functionScope->bodyEnd; ftok = ftok->next()) { if (ftok->function() == privfunc) return true; if (ftok->varId() == 0U && ftok->str() == privfunc->name()) // TODO: This condition should be redundant return true; } } else if ((func->type != Function::eCopyConstructor && func->type != Function::eOperatorEqual) || func->access != Private) // Assume it is used, if a function implementation isn't seen, but empty private copy constructors and assignment operators are OK return true; } const std::map::const_iterator end = scope->definedTypesMap.end(); for (std::map::const_iterator iter = scope->definedTypesMap.begin(); iter != end; ++ iter) { const Type *type = (*iter).second; if (type->enclosingScope == scope && checkFunctionUsage(privfunc, type->classScope)) return true; } for (std::list::const_iterator i = scope->varlist.begin(); i != scope->varlist.end(); ++i) { if (i->isStatic()) { const Token* tok = Token::findmatch(scope->bodyEnd, "%varid% =|(|{", i->declarationId()); if (tok) tok = tok->tokAt(2); while (tok && tok->str() != ";") { if (tok->function() == privfunc) return true; tok = tok->next(); } } } return false; // Unused in this scope } void CheckClass::privateFunctions() { if (!mSettings->isEnabled(Settings::STYLE)) return; for (const Scope * scope : mSymbolDatabase->classAndStructScopes) { // do not check borland classes with properties.. if (Token::findsimplematch(scope->bodyStart, "; __property ;", scope->bodyEnd)) continue; std::list privateFuncs; for (std::list::const_iterator func = scope->functionList.begin(); func != scope->functionList.end(); ++func) { // Get private functions.. if (func->type == Function::eFunction && func->access == Private && !func->isOperator()) // TODO: There are smarter ways to check private operator usage privateFuncs.push_back(&*func); } // Bailout for overridden virtual functions of base classes if (!scope->definedType->derivedFrom.empty()) { // Check virtual functions for (std::list::iterator it = privateFuncs.begin(); it != privateFuncs.end();) { if ((*it)->isImplicitlyVirtual(true)) // Give true as default value to be returned if we don't see all base classes privateFuncs.erase(it++); else ++it; } } while (!privateFuncs.empty()) { // Check that all private functions are used bool used = checkFunctionUsage(privateFuncs.front(), scope); // Usage in this class // Check in friend classes const std::vector& friendList = scope->definedType->friendList; for (size_t i = 0; i < friendList.size() && !used; i++) { if (friendList[i].type) used = checkFunctionUsage(privateFuncs.front(), friendList[i].type->classScope); else used = true; // Assume, it is used if we do not see friend class } if (!used) unusedPrivateFunctionError(privateFuncs.front()->tokenDef, scope->className, privateFuncs.front()->name()); privateFuncs.pop_front(); } } } void CheckClass::unusedPrivateFunctionError(const Token *tok, const std::string &classname, const std::string &funcname) { reportError(tok, Severity::style, "unusedPrivateFunction", "$symbol:" + classname + "::" + funcname + "\nUnused private function: '$symbol'", CWE398, false); } //--------------------------------------------------------------------------- // ClassCheck: Check that memset is not used on classes //--------------------------------------------------------------------------- static const Scope* findFunctionOf(const Scope* scope) { while (scope) { if (scope->type == Scope::eFunction) return scope->functionOf; scope = scope->nestedIn; } return nullptr; } void CheckClass::checkMemset() { const bool printWarnings = mSettings->isEnabled(Settings::WARNING); for (const Scope *scope : mSymbolDatabase->functionScopes) { for (const Token *tok = scope->bodyStart; tok && tok != scope->bodyEnd; tok = tok->next()) { if (Token::Match(tok, "memset|memcpy|memmove (")) { const Token* arg1 = tok->tokAt(2); const Token* arg3 = arg1->nextArgument(); if (arg3) arg3 = arg3->nextArgument(); if (!arg3) // weird, shouldn't happen: memset etc should have // 3 arguments. continue; const Token *typeTok = nullptr; const Scope *type = nullptr; if (Token::Match(arg3, "sizeof ( %type% ) )")) typeTok = arg3->tokAt(2); else if (Token::Match(arg3, "sizeof ( %type% :: %type% ) )")) typeTok = arg3->tokAt(4); else if (Token::Match(arg3, "sizeof ( struct %type% ) )")) typeTok = arg3->tokAt(3); else if (Token::simpleMatch(arg3, "sizeof ( * this ) )") || Token::simpleMatch(arg1, "this ,")) { type = findFunctionOf(arg3->scope()); } else if (Token::Match(arg1, "&|*|%var%")) { int numIndirToVariableType = 0; // Offset to the actual type in terms of dereference/addressof for (;; arg1 = arg1->next()) { if (arg1->str() == "&") ++numIndirToVariableType; else if (arg1->str() == "*") --numIndirToVariableType; else break; } const Variable * const var = arg1->variable(); if (var && arg1->strAt(1) == ",") { if (var->isArrayOrPointer()) { const Token *endTok = var->typeEndToken(); while (Token::simpleMatch(endTok, "*")) { ++numIndirToVariableType; endTok = endTok->previous(); } } if (var->isArray()) numIndirToVariableType += int(var->dimensions().size()); if (numIndirToVariableType == 1) type = var->typeScope(); } } // No type defined => The tokens didn't match if (!typeTok && !type) continue; if (typeTok && typeTok->str() == "(") typeTok = typeTok->next(); if (!type && typeTok->type()) type = typeTok->type()->classScope; if (type) { const std::set parsedTypes; checkMemsetType(scope, tok, type, false, parsedTypes); } } else if (tok->variable() && tok->variable()->typeScope() && Token::Match(tok, "%var% = calloc|malloc|realloc|g_malloc|g_try_malloc|g_realloc|g_try_realloc (")) { const std::set parsedTypes; checkMemsetType(scope, tok->tokAt(2), tok->variable()->typeScope(), true, parsedTypes); if (printWarnings && tok->variable()->typeScope()->numConstructors > 0) mallocOnClassWarning(tok, tok->strAt(2), tok->variable()->typeScope()->classDef); } } } } void CheckClass::checkMemsetType(const Scope *start, const Token *tok, const Scope *type, bool allocation, std::set parsedTypes) { // If type has been checked there is no need to check it again if (parsedTypes.find(type) != parsedTypes.end()) return; parsedTypes.insert(type); const bool printPortability = mSettings->isEnabled(Settings::PORTABILITY); // recursively check all parent classes for (std::size_t i = 0; i < type->definedType->derivedFrom.size(); i++) { const Type* derivedFrom = type->definedType->derivedFrom[i].type; if (derivedFrom && derivedFrom->classScope) checkMemsetType(start, tok, derivedFrom->classScope, allocation, parsedTypes); } // Warn if type is a class that contains any virtual functions std::list::const_iterator func; for (func = type->functionList.begin(); func != type->functionList.end(); ++func) { if (func->isVirtual()) { if (allocation) mallocOnClassError(tok, tok->str(), type->classDef, "virtual method"); else memsetError(tok, tok->str(), "virtual method", type->classDef->str()); } } // Warn if type is a class or struct that contains any std::* variables std::list::const_iterator var; for (var = type->varlist.begin(); var != type->varlist.end(); ++var) { if (var->isReference() && !var->isStatic()) { memsetErrorReference(tok, tok->str(), type->classDef->str()); continue; } // don't warn if variable static or const, pointer or array of pointers if (!var->isStatic() && !var->isConst() && !var->isPointer() && (!var->isArray() || var->typeEndToken()->str() != "*")) { const Token *tok1 = var->typeStartToken(); const Scope *typeScope = var->typeScope(); // check for std:: type if (var->isStlType() && tok1->strAt(2) != "array" && !mSettings->library.podtype(tok1->strAt(2))) if (allocation) mallocOnClassError(tok, tok->str(), type->classDef, "'std::" + tok1->strAt(2) + "'"); else memsetError(tok, tok->str(), "'std::" + tok1->strAt(2) + "'", type->classDef->str()); // check for known type else if (typeScope && typeScope != type) checkMemsetType(start, tok, typeScope, allocation, parsedTypes); // check for float else if (printPortability && var->isFloatingType() && tok->str() == "memset") memsetErrorFloat(tok, type->classDef->str()); } } } void CheckClass::mallocOnClassWarning(const Token* tok, const std::string &memfunc, const Token* classTok) { std::list toks = { tok, classTok }; reportError(toks, Severity::warning, "mallocOnClassWarning", "$symbol:" + memfunc +"\n" "Memory for class instance allocated with $symbol(), but class provides constructors.\n" "Memory for class instance allocated with $symbol(), but class provides constructors. This is unsafe, " "since no constructor is called and class members remain uninitialized. Consider using 'new' instead.", CWE762, false); } void CheckClass::mallocOnClassError(const Token* tok, const std::string &memfunc, const Token* classTok, const std::string &classname) { std::list toks = { tok, classTok }; reportError(toks, Severity::error, "mallocOnClassError", "$symbol:" + memfunc +"\n" "$symbol:" + classname +"\n" "Memory for class instance allocated with " + memfunc + "(), but class contains a " + classname + ".\n" "Memory for class instance allocated with " + memfunc + "(), but class a " + classname + ". This is unsafe, " "since no constructor is called and class members remain uninitialized. Consider using 'new' instead.", CWE665, false); } void CheckClass::memsetError(const Token *tok, const std::string &memfunc, const std::string &classname, const std::string &type) { reportError(tok, Severity::error, "memsetClass", "$symbol:" + memfunc +"\n" "$symbol:" + classname +"\n" "Using '" + memfunc + "' on " + type + " that contains a " + classname + ".\n" "Using '" + memfunc + "' on " + type + " that contains a " + classname + " is unsafe, because constructor, destructor " "and copy operator calls are omitted. These are necessary for this non-POD type to ensure that a valid object " "is created.", CWE762, false); } void CheckClass::memsetErrorReference(const Token *tok, const std::string &memfunc, const std::string &type) { reportError(tok, Severity::error, "memsetClassReference", "$symbol:" + memfunc +"\n" "Using '" + memfunc + "' on " + type + " that contains a reference.", CWE665, false); } void CheckClass::memsetErrorFloat(const Token *tok, const std::string &type) { reportError(tok, Severity::portability, "memsetClassFloat", "Using memset() on " + type + " which contains a floating point number.\n" "Using memset() on " + type + " which contains a floating point number." " This is not portable because memset() sets each byte of a block of memory to a specific value and" " the actual representation of a floating-point value is implementation defined." " Note: In case of an IEEE754-1985 compatible implementation setting all bits to zero results in the value 0.0.", CWE758, false); } //--------------------------------------------------------------------------- // ClassCheck: "void operator=(" and "const type & operator=(" //--------------------------------------------------------------------------- void CheckClass::operatorEq() { if (!mSettings->isEnabled(Settings::STYLE)) return; for (const Scope * scope : mSymbolDatabase->classAndStructScopes) { for (std::list::const_iterator func = scope->functionList.begin(); func != scope->functionList.end(); ++func) { if (func->type == Function::eOperatorEqual && func->access == Public) { // skip "deleted" functions - cannot be called anyway if (func->isDelete()) continue; // use definition for check so we don't have to deal with qualification bool returnSelfRef = false; if (func->retDef->str() == scope->className) { if (Token::Match(func->retDef, "%type% &")) { returnSelfRef = true; } else { // We might have "Self&"" const Token * const tok = func->retDef->next(); if (tok && tok->str() == "<" && tok->link() && tok->link()->next() && tok->link()->next()->str() == "&") returnSelfRef = true; } } if (!returnSelfRef) { // make sure we really have a copy assignment operator const Token *paramTok = func->tokenDef->tokAt(2); if (Token::Match(paramTok, "const| %name% &")) { if (paramTok->str() == "const" && paramTok->strAt(1) == scope->className) operatorEqReturnError(func->retDef, scope->className); else if (paramTok->str() == scope->className) operatorEqReturnError(func->retDef, scope->className); } } } } } } void CheckClass::operatorEqReturnError(const Token *tok, const std::string &className) { reportError(tok, Severity::style, "operatorEq", "$symbol:" + className +"\n" "'$symbol::operator=' should return '$symbol &'.\n" "The $symbol::operator= does not conform to standard C/C++ behaviour. To conform to standard C/C++ behaviour, return a reference to self (such as: '$symbol &$symbol::operator=(..) { .. return *this; }'. For safety reasons it might be better to not fix this message. If you think that safety is always more important than conformance then please ignore/suppress this message. For more details about this topic, see the book \"Effective C++\" by Scott Meyers." , CWE398, false); } //--------------------------------------------------------------------------- // ClassCheck: "C& operator=(const C&) { ... return *this; }" // operator= should return a reference to *this //--------------------------------------------------------------------------- void CheckClass::operatorEqRetRefThis() { if (!mSettings->isEnabled(Settings::STYLE)) return; for (const Scope * scope : mSymbolDatabase->classAndStructScopes) { for (std::list::const_iterator func = scope->functionList.begin(); func != scope->functionList.end(); ++func) { if (func->type == Function::eOperatorEqual && func->hasBody()) { // make sure return signature is correct if (Token::Match(func->retDef, "%type% &") && func->retDef->str() == scope->className) { checkReturnPtrThis(scope, &(*func), func->functionScope->bodyStart, func->functionScope->bodyEnd); } } } } } void CheckClass::checkReturnPtrThis(const Scope *scope, const Function *func, const Token *tok, const Token *last) { std::set analyzedFunctions; checkReturnPtrThis(scope, func, tok, last, analyzedFunctions); } void CheckClass::checkReturnPtrThis(const Scope *scope, const Function *func, const Token *tok, const Token *last, std::set& analyzedFunctions) { bool foundReturn = false; const Token* const startTok = tok; for (; tok && tok != last; tok = tok->next()) { // check for return of reference to this if (tok->str() != "return") continue; foundReturn = true; std::string cast("( " + scope->className + " & )"); if (Token::simpleMatch(tok->next(), cast.c_str())) tok = tok->tokAt(4); // check if a function is called if (tok->strAt(2) == "(" && tok->linkAt(2)->next()->str() == ";") { // check if it is a member function for (std::list::const_iterator it = scope->functionList.begin(); it != scope->functionList.end(); ++it) { // check for a regular function with the same name and a body if (it->type == Function::eFunction && it->hasBody() && it->token->str() == tok->next()->str()) { // check for the proper return type if (it->tokenDef->previous()->str() == "&" && it->tokenDef->strAt(-2) == scope->className) { // make sure it's not a const function if (!it->isConst()) { /** @todo make sure argument types match */ // avoid endless recursions if (analyzedFunctions.find(&*it) == analyzedFunctions.end()) { analyzedFunctions.insert(&*it); checkReturnPtrThis(scope, &*it, it->arg->link()->next(), it->arg->link()->next()->link(), analyzedFunctions); } // just bail for now else return; } } } } } // check if *this is returned else if (!(Token::Match(tok->next(), "(| * this ;|=") || Token::simpleMatch(tok->next(), "operator= (") || Token::simpleMatch(tok->next(), "this . operator= (") || (Token::Match(tok->next(), "%type% :: operator= (") && tok->next()->str() == scope->className))) operatorEqRetRefThisError(func->token); } if (foundReturn) { return; } if (startTok->next() == last) { if (Token::simpleMatch(func->argDef, std::string("( const " + scope->className + " &").c_str())) { // Typical wrong way to suppress default assignment operator by declaring it and leaving empty operatorEqMissingReturnStatementError(func->token, func->access == Public); } else { operatorEqMissingReturnStatementError(func->token, true); } return; } if (mSettings->library.isScopeNoReturn(last, nullptr)) { // Typical wrong way to prohibit default assignment operator // by always throwing an exception or calling a noreturn function operatorEqShouldBeLeftUnimplementedError(func->token); return; } operatorEqMissingReturnStatementError(func->token, func->access == Public); } void CheckClass::operatorEqRetRefThisError(const Token *tok) { reportError(tok, Severity::style, "operatorEqRetRefThis", "'operator=' should return reference to 'this' instance.", CWE398, false); } void CheckClass::operatorEqShouldBeLeftUnimplementedError(const Token *tok) { reportError(tok, Severity::style, "operatorEqShouldBeLeftUnimplemented", "'operator=' should either return reference to 'this' instance or be declared private and left unimplemented.", CWE398, false); } void CheckClass::operatorEqMissingReturnStatementError(const Token *tok, bool error) { if (error) { reportError(tok, Severity::error, "operatorEqMissingReturnStatement", "No 'return' statement in non-void function causes undefined behavior.", CWE398, false); } else { operatorEqRetRefThisError(tok); } } //--------------------------------------------------------------------------- // ClassCheck: "C& operator=(const C& rhs) { if (this == &rhs) ... }" // operator= should check for assignment to self // // For simple classes, an assignment to self check is only a potential optimization. // // For classes that allocate dynamic memory, assignment to self can be a real error // if it is deallocated and allocated again without being checked for. // // This check is not valid for classes with multiple inheritance because a // class can have multiple addresses so there is no trivial way to check for // assignment to self. //--------------------------------------------------------------------------- void CheckClass::operatorEqToSelf() { if (!mSettings->isEnabled(Settings::WARNING)) return; for (const Scope * scope : mSymbolDatabase->classAndStructScopes) { // skip classes with multiple inheritance if (scope->definedType->derivedFrom.size() > 1) continue; for (std::list::const_iterator func = scope->functionList.begin(); func != scope->functionList.end(); ++func) { if (func->type == Function::eOperatorEqual && func->hasBody()) { // make sure that the operator takes an object of the same type as *this, otherwise we can't detect self-assignment checks if (func->argumentList.empty()) continue; const Token* typeTok = func->argumentList.front().typeEndToken(); while (typeTok->str() == "const" || typeTok->str() == "&" || typeTok->str() == "*") typeTok = typeTok->previous(); if (typeTok->str() != scope->className) continue; // make sure return signature is correct if (Token::Match(func->retDef, "%type% &") && func->retDef->str() == scope->className) { // find the parameter name const Token *rhs = func->argumentList.begin()->nameToken(); if (!hasAssignSelf(&(*func), rhs)) { if (hasAllocation(&(*func), scope)) operatorEqToSelfError(func->token); } } } } } } bool CheckClass::hasAllocation(const Function *func, const Scope* scope) const { // This function is called when no simple check was found for assignment // to self. We are currently looking for: // - deallocate member ; ... member = // - alloc member // That is not ideal because it can cause false negatives but its currently // necessary to prevent false positives. const Token *last = func->functionScope->bodyEnd; for (const Token *tok = func->functionScope->bodyStart; tok && (tok != last); tok = tok->next()) { if (Token::Match(tok, "%var% = malloc|realloc|calloc|new") && isMemberVar(scope, tok)) return true; // check for deallocating memory const Token *var; if (Token::Match(tok, "free ( %var%")) var = tok->tokAt(2); else if (Token::Match(tok, "delete [ ] %var%")) var = tok->tokAt(3); else if (Token::Match(tok, "delete %var%")) var = tok->next(); else continue; // Check for assignment to the deleted pointer (only if its a member of the class) if (isMemberVar(scope, var)) { for (const Token *tok1 = var->next(); tok1 && (tok1 != last); tok1 = tok1->next()) { if (Token::Match(tok1, "%varid% =", var->varId())) return true; } } } return false; } bool CheckClass::hasAssignSelf(const Function *func, const Token *rhs) { if (!rhs) return false; const Token *last = func->functionScope->bodyEnd; for (const Token *tok = func->functionScope->bodyStart; tok && tok != last; tok = tok->next()) { if (!Token::simpleMatch(tok, "if (")) continue; std::stack tokens; tokens.push(tok->next()->astOperand2()); while (!tokens.empty()) { const Token *tok2 = tokens.top(); tokens.pop(); if (!tok2) continue; tokens.push(tok2->astOperand1()); tokens.push(tok2->astOperand2()); if (!Token::Match(tok2, "==|!=")) continue; if (Token::simpleMatch(tok2->astOperand1(), "this")) tok2 = tok2->astOperand2(); else if (Token::simpleMatch(tok2->astOperand2(), "this")) tok2 = tok2->astOperand1(); else continue; if (tok2 && tok2->str() == "&" && !tok2->astOperand2() && tok2->astOperand1() && tok2->astOperand1()->str() == rhs->str()) return true; } } return false; } void CheckClass::operatorEqToSelfError(const Token *tok) { reportError(tok, Severity::warning, "operatorEqToSelf", "'operator=' should check for assignment to self to avoid problems with dynamic memory.\n" "'operator=' should check for assignment to self to ensure that each block of dynamically " "allocated memory is owned and managed by only one instance of the class.", CWE398, false); } //--------------------------------------------------------------------------- // A destructor in a base class should be virtual //--------------------------------------------------------------------------- void CheckClass::virtualDestructor() { // This error should only be given if: // * base class doesn't have virtual destructor // * derived class has non-empty destructor // * base class is deleted // unless inconclusive in which case: // * base class has virtual members but doesn't have virtual destructor const bool printInconclusive = mSettings->inconclusive; std::list inconclusiveErrors; for (const Scope * scope : mSymbolDatabase->classAndStructScopes) { // Skip base classes (unless inconclusive) if (scope->definedType->derivedFrom.empty()) { if (printInconclusive) { const Function *destructor = scope->getDestructor(); if (destructor && !destructor->isVirtual()) { for (std::list::const_iterator func = scope->functionList.begin(); func != scope->functionList.end(); ++func) { if (func->isVirtual()) { inconclusiveErrors.push_back(destructor); break; } } } } continue; } // Find the destructor const Function *destructor = scope->getDestructor(); // Check for destructor with implementation if (!destructor || !destructor->hasBody()) continue; // Empty destructor if (destructor->token->linkAt(3) == destructor->token->tokAt(4)) continue; const Token *derived = scope->classDef; const Token *derivedClass = derived->next(); // Iterate through each base class... for (std::size_t j = 0; j < scope->definedType->derivedFrom.size(); ++j) { // Check if base class is public and exists in database if (scope->definedType->derivedFrom[j].access != Private && scope->definedType->derivedFrom[j].type) { const Type *derivedFrom = scope->definedType->derivedFrom[j].type; const Scope *derivedFromScope = derivedFrom->classScope; if (!derivedFromScope) continue; // Check for this pattern: // 1. Base class pointer is given the address of derived class instance // 2. Base class pointer is deleted // // If this pattern is not seen then bailout the checking of these base/derived classes { // pointer variables of type 'Base *' std::set baseClassPointers; for (const Variable* var : mSymbolDatabase->variableList()) { if (var && var->isPointer() && var->type() == derivedFrom) baseClassPointers.insert(var->declarationId()); } // pointer variables of type 'Base *' that should not be deleted std::set dontDelete; // No deletion of derived class instance through base class pointer found => the code is ok bool ok = true; for (const Token *tok = mTokenizer->tokens(); tok; tok = tok->next()) { if (Token::Match(tok, "[;{}] %var% =") && baseClassPointers.find(tok->next()->varId()) != baseClassPointers.end()) { // new derived class.. if (Token::simpleMatch(tok->tokAt(3), ("new " + derivedClass->str()).c_str())) { dontDelete.insert(tok->next()->varId()); } } // Delete base class pointer that might point at derived class else if (Token::Match(tok, "delete %var% ;") && dontDelete.find(tok->next()->varId()) != dontDelete.end()) { ok = false; break; } } // No base class pointer that points at a derived class is deleted if (ok) continue; } // Find the destructor declaration for the base class. const Function *baseDestructor = derivedFromScope->getDestructor(); // Check that there is a destructor.. if (!baseDestructor) { if (derivedFrom->derivedFrom.empty()) { virtualDestructorError(derivedFrom->classDef, derivedFrom->name(), derivedClass->str(), false); } } else if (!baseDestructor->isVirtual()) { // TODO: This is just a temporary fix, better solution is needed. // Skip situations where base class has base classes of its own, because // some of the base classes might have virtual destructor. // Proper solution is to check all of the base classes. If base class is not // found or if one of the base classes has virtual destructor, error should not // be printed. See TODO test case "virtualDestructorInherited" if (derivedFrom->derivedFrom.empty()) { // Make sure that the destructor is public (protected or private // would not compile if inheritance is used in a way that would // cause the bug we are trying to find here.) if (baseDestructor->access == Public) { virtualDestructorError(baseDestructor->token, derivedFrom->name(), derivedClass->str(), false); // check for duplicate error and remove it if found const std::list::iterator found = find(inconclusiveErrors.begin(), inconclusiveErrors.end(), baseDestructor); if (found != inconclusiveErrors.end()) inconclusiveErrors.erase(found); } } } } } } for (std::list::const_iterator i = inconclusiveErrors.begin(); i != inconclusiveErrors.end(); ++i) virtualDestructorError((*i)->tokenDef, (*i)->name(), emptyString, true); } void CheckClass::virtualDestructorError(const Token *tok, const std::string &Base, const std::string &Derived, bool inconclusive) { if (inconclusive) { if (mSettings->isEnabled(Settings::WARNING)) reportError(tok, Severity::warning, "virtualDestructor", "$symbol:" + Base + "\nClass '$symbol' which has virtual members does not have a virtual destructor.", CWE404, true); } else { reportError(tok, Severity::error, "virtualDestructor", "$symbol:" + Base +"\n" "$symbol:" + Derived +"\n" "Class '" + Base + "' which is inherited by class '" + Derived + "' does not have a virtual destructor.\n" "Class '" + Base + "' which is inherited by class '" + Derived + "' does not have a virtual destructor. " "If you destroy instances of the derived class by deleting a pointer that points to the base class, only " "the destructor of the base class is executed. Thus, dynamic memory that is managed by the derived class " "could leak. This can be avoided by adding a virtual destructor to the base class.", CWE404, false); } } //--------------------------------------------------------------------------- // warn for "this-x". The indented code may be "this->x" //--------------------------------------------------------------------------- void CheckClass::thisSubtraction() { if (!mSettings->isEnabled(Settings::WARNING)) return; const Token *tok = mTokenizer->tokens(); for (;;) { tok = Token::findmatch(tok, "this - %name%"); if (!tok) break; if (tok->strAt(-1) != "*") thisSubtractionError(tok); tok = tok->next(); } } void CheckClass::thisSubtractionError(const Token *tok) { reportError(tok, Severity::warning, "thisSubtraction", "Suspicious pointer subtraction. Did you intend to write '->'?", CWE398, false); } //--------------------------------------------------------------------------- // can member function be const? //--------------------------------------------------------------------------- void CheckClass::checkConst() { // This is an inconclusive check. False positives: #3322. if (!mSettings->inconclusive) return; if (!mSettings->isEnabled(Settings::STYLE)) return; for (const Scope * scope : mSymbolDatabase->classAndStructScopes) { for (std::list::const_iterator func = scope->functionList.begin(); func != scope->functionList.end(); ++func) { // does the function have a body? if (func->type != Function::eFunction || !func->hasBody()) continue; // don't warn for friend/static/virtual methods if (func->isFriend() || func->isStatic() || func->isVirtual()) continue; // get last token of return type const Token *previous = func->tokenDef->previous(); // does the function return a pointer or reference? if (Token::Match(previous, "*|&")) { if (func->retDef->str() != "const") continue; } else if (Token::Match(previous->previous(), "*|& >")) { const Token *temp = previous->previous(); bool foundConst = false; while (!Token::Match(temp->previous(), ";|}|{|public:|protected:|private:")) { temp = temp->previous(); if (temp->str() == "const") { foundConst = true; break; } } if (!foundConst) continue; } else if (func->isOperator() && Token::Match(previous, ";|{|}|public:|private:|protected:")) { // Operator without return type: conversion operator const std::string& opName = func->tokenDef->str(); if (opName.compare(8, 5, "const") != 0 && (endsWith(opName,'&') || endsWith(opName,'*'))) continue; } else { // don't warn for unknown types.. // LPVOID, HDC, etc if (previous->str().size() > 2 && !previous->type() && previous->isUpperCaseName()) continue; } // check if base class function is virtual if (!scope->definedType->derivedFrom.empty() && func->isImplicitlyVirtual(true)) continue; bool memberAccessed = false; // if nothing non-const was found. write error.. if (!checkConstFunc(scope, &*func, memberAccessed)) continue; if (func->isConst() && (memberAccessed || func->isOperator())) continue; std::string classname = scope->className; const Scope *nest = scope->nestedIn; while (nest && nest->type != Scope::eGlobal) { classname = std::string(nest->className + "::" + classname); nest = nest->nestedIn; } // get function name std::string functionName = (func->tokenDef->isName() ? "" : "operator") + func->tokenDef->str(); if (func->tokenDef->str() == "(") functionName += ")"; else if (func->tokenDef->str() == "[") functionName += "]"; if (func->isInline()) checkConstError(func->token, classname, functionName, !memberAccessed && !func->isOperator()); else // not inline checkConstError2(func->token, func->tokenDef, classname, functionName, !memberAccessed && !func->isOperator()); } } } bool CheckClass::isMemberVar(const Scope *scope, const Token *tok) const { bool again = false; // try to find the member variable do { again = false; if (tok->str() == "this") { return true; } else if (Token::simpleMatch(tok->tokAt(-3), "( * this )")) { return true; } else if (Token::Match(tok->tokAt(-2), "%name% . %name%")) { tok = tok->tokAt(-2); again = true; } else if (Token::Match(tok->tokAt(-2), "] . %name%")) { tok = tok->linkAt(-2)->previous(); again = true; } else if (tok->str() == "]") { tok = tok->link()->previous(); again = true; } } while (again); for (std::list::const_iterator var = scope->varlist.begin(); var != scope->varlist.end(); ++var) { if (var->name() == tok->str()) { if (tok->varId() == 0) mSymbolDatabase->debugMessage(tok, "CheckClass::isMemberVar found used member variable \'" + tok->str() + "\' with varid 0"); return !var->isStatic(); } } // not found in this class if (!scope->definedType->derivedFrom.empty()) { // check each base class for (std::size_t i = 0; i < scope->definedType->derivedFrom.size(); ++i) { // find the base class const Type *derivedFrom = scope->definedType->derivedFrom[i].type; // find the function in the base class if (derivedFrom && derivedFrom->classScope) { if (isMemberVar(derivedFrom->classScope, tok)) return true; } } } return false; } bool CheckClass::isMemberFunc(const Scope *scope, const Token *tok) const { if (!tok->function()) { for (std::list::const_iterator i = scope->functionList.cbegin(); i != scope->functionList.cend(); ++i) { if (i->name() == tok->str()) { const Token* tok2 = tok->tokAt(2); size_t argsPassed = tok2->str() == ")" ? 0 : 1; for (;;) { tok2 = tok2->nextArgument(); if (tok2) argsPassed++; else break; } if (argsPassed == i->argCount() || (argsPassed < i->argCount() && argsPassed >= i->minArgCount())) return true; } } } else if (tok->function()->nestedIn == scope) return !tok->function()->isStatic(); // not found in this class if (!scope->definedType->derivedFrom.empty()) { // check each base class for (std::size_t i = 0; i < scope->definedType->derivedFrom.size(); ++i) { // find the base class const Type *derivedFrom = scope->definedType->derivedFrom[i].type; // find the function in the base class if (derivedFrom && derivedFrom->classScope) { if (isMemberFunc(derivedFrom->classScope, tok)) return true; } } } return false; } bool CheckClass::isConstMemberFunc(const Scope *scope, const Token *tok) const { if (!tok->function()) return false; else if (tok->function()->nestedIn == scope) return tok->function()->isConst(); // not found in this class if (!scope->definedType->derivedFrom.empty()) { // check each base class for (std::size_t i = 0; i < scope->definedType->derivedFrom.size(); ++i) { // find the base class const Type *derivedFrom = scope->definedType->derivedFrom[i].type; // find the function in the base class if (derivedFrom && derivedFrom->classScope) { if (isConstMemberFunc(derivedFrom->classScope, tok)) return true; } } } return false; } namespace { // The container contains the STL types whose operator[] is not a const. const std::set stl_containers_not_const = { "map", "unordered_map" }; } bool CheckClass::checkConstFunc(const Scope *scope, const Function *func, bool& memberAccessed) const { // if the function doesn't have any assignment nor function call, // it can be a const function.. for (const Token *tok1 = func->functionScope->bodyStart; tok1 && tok1 != func->functionScope->bodyEnd; tok1 = tok1->next()) { if (tok1->isName() && isMemberVar(scope, tok1)) { memberAccessed = true; const Variable* v = tok1->variable(); if (v && v->isMutable()) continue; if (tok1->str() == "this" && tok1->previous()->isAssignmentOp()) return false; const Token* lhs = tok1->previous(); if (lhs->str() == "&") { lhs = lhs->previous(); if (lhs->tokType() == Token::eAssignmentOp && lhs->previous()->variable()) { if (lhs->previous()->variable()->typeStartToken()->strAt(-1) != "const" && lhs->previous()->variable()->isPointer()) return false; } } else if (lhs->str() == ":" && lhs->astParent() && lhs->astParent()->str() == "(" && tok1->strAt(1) == ")") { // range-based for-loop (C++11) // TODO: We could additionally check what is done with the elements to avoid false negatives. Here we just rely on "const" keyword being used. if (lhs->astParent()->strAt(1) != "const") return false; } else { if (lhs->tokType() == Token::eAssignmentOp) { const Variable* lhsVar = lhs->previous()->variable(); if (lhsVar && !lhsVar->isConst() && lhsVar->isReference() && lhs == lhsVar->nameToken()->next()) return false; } } const Token* jumpBackToken = nullptr; const Token *lastVarTok = tok1; const Token *end = tok1; for (;;) { if (Token::Match(end->next(), ". %name%")) { end = end->tokAt(2); if (end->varId()) lastVarTok = end; } else if (end->strAt(1) == "[") { if (end->varId()) { const Variable *var = end->variable(); if (var && var->isStlType(stl_containers_not_const)) return false; } if (!jumpBackToken) jumpBackToken = end->next(); // Check inside the [] brackets end = end->linkAt(1); } else if (end->strAt(1) == ")") end = end->next(); else break; } if (end->strAt(1) == "(") { const Variable *var = lastVarTok->variable(); if (!var) return false; if (var->isStlType() // assume all std::*::size() and std::*::empty() are const && (Token::Match(end, "size|empty|cend|crend|cbegin|crbegin|max_size|length|count|capacity|get_allocator|c_str|str ( )") || Token::Match(end, "rfind|copy"))) ; else if (!var->typeScope() || !isConstMemberFunc(var->typeScope(), end)) return false; } // Assignment else if (end->next()->tokType() == Token::eAssignmentOp) return false; // Streaming else if (end->strAt(1) == "<<" && tok1->strAt(-1) != "<<") return false; else if (isLikelyStreamRead(true, tok1->previous())) return false; // ++/-- else if (end->next()->tokType() == Token::eIncDecOp || tok1->previous()->tokType() == Token::eIncDecOp) return false; const Token* start = tok1; while (tok1->strAt(-1) == ")") tok1 = tok1->linkAt(-1); if (start->strAt(-1) == "delete") return false; tok1 = jumpBackToken?jumpBackToken:end; // Jump back to first [ to check inside, or jump to end of expression } // streaming: << else if (Token::simpleMatch(tok1->previous(), ") <<") && isMemberVar(scope, tok1->tokAt(-2))) { const Variable* var = tok1->tokAt(-2)->variable(); if (!var || !var->isMutable()) return false; } // function call.. else if (Token::Match(tok1, "%name% (") && !tok1->isStandardType() && !Token::Match(tok1, "return|if|string|switch|while|catch|for")) { if (isMemberFunc(scope, tok1) && tok1->strAt(-1) != ".") { if (!isConstMemberFunc(scope, tok1)) return false; memberAccessed = true; } // Member variable given as parameter const Token *lpar = tok1->next(); if (Token::simpleMatch(lpar, "( ) (")) lpar = lpar->tokAt(2); for (const Token* tok2 = lpar->next(); tok2 && tok2 != tok1->next()->link(); tok2 = tok2->next()) { if (tok2->str() == "(") tok2 = tok2->link(); else if (tok2->isName() && isMemberVar(scope, tok2)) { const Variable* var = tok2->variable(); if (!var || !var->isMutable()) return false; // TODO: Only bailout if function takes argument as non-const reference } } } else if (Token::simpleMatch(tok1, "> (") && (!tok1->link() || !Token::Match(tok1->link()->previous(), "static_cast|const_cast|dynamic_cast|reinterpret_cast"))) { return false; } } return true; } void CheckClass::checkConstError(const Token *tok, const std::string &classname, const std::string &funcname, bool suggestStatic) { checkConstError2(tok, nullptr, classname, funcname, suggestStatic); } void CheckClass::checkConstError2(const Token *tok1, const Token *tok2, const std::string &classname, const std::string &funcname, bool suggestStatic) { std::list toks; toks.push_back(tok1); if (tok2) toks.push_back(tok2); if (!suggestStatic) reportError(toks, Severity::style, "functionConst", "$symbol:" + classname + "::" + funcname +"\n" "Technically the member function '$symbol' can be const.\n" "The member function '$symbol' can be made a const " "function. Making this function 'const' should not cause compiler errors. " "Even though the function can be made const function technically it may not make " "sense conceptually. Think about your design and the task of the function first - is " "it a function that must not change object internal state?", CWE398, true); else reportError(toks, Severity::performance, "functionStatic", "$symbol:" + classname + "::" + funcname +"\n" "Technically the member function '$symbol' can be static.\n" "The member function '$symbol' can be made a static " "function. Making a function static can bring a performance benefit since no 'this' instance is " "passed to the function. This change should not cause compiler errors but it does not " "necessarily make sense conceptually. Think about your design and the task of the function first - " "is it a function that must not access members of class instances?", CWE398, true); } //--------------------------------------------------------------------------- // ClassCheck: Check that initializer list is in declared order. //--------------------------------------------------------------------------- namespace { // avoid one-definition-rule violation struct VarInfo { VarInfo(const Variable *_var, const Token *_tok) : var(_var), tok(_tok) { } const Variable *var; const Token *tok; }; } void CheckClass::initializerListOrder() { if (!mSettings->isEnabled(Settings::STYLE)) return; // This check is not inconclusive. However it only determines if the initialization // order is incorrect. It does not determine if being out of order causes // a real error. Out of order is not necessarily an error but you can never // have an error if the list is in order so this enforces defensive programming. if (!mSettings->inconclusive) return; for (const Scope * scope : mSymbolDatabase->classAndStructScopes) { // iterate through all member functions looking for constructors for (std::list::const_iterator func = scope->functionList.begin(); func != scope->functionList.end(); ++func) { if (func->isConstructor() && func->hasBody()) { // check for initializer list const Token *tok = func->arg->link()->next(); if (tok->str() == ":") { std::vector vars; tok = tok->next(); // find all variable initializations in list while (tok && tok != func->functionScope->bodyStart) { if (Token::Match(tok, "%name% (|{")) { const Variable *var = scope->getVariable(tok->str()); if (var) vars.emplace_back(var, tok); if (Token::Match(tok->tokAt(2), "%name% =")) { var = scope->getVariable(tok->strAt(2)); if (var) vars.emplace_back(var, tok->tokAt(2)); } tok = tok->next()->link()->next(); } else tok = tok->next(); } // need at least 2 members to have out of order initialization for (std::size_t j = 1; j < vars.size(); j++) { // check for out of order initialization if (vars[j].var->index() < vars[j - 1].var->index()) initializerListError(vars[j].tok,vars[j].var->nameToken(), scope->className, vars[j].var->name()); } } } } } } void CheckClass::initializerListError(const Token *tok1, const Token *tok2, const std::string &classname, const std::string &varname) { std::list toks = { tok1, tok2 }; reportError(toks, Severity::style, "initializerList", "$symbol:" + classname + "::" + varname +"\n" "Member variable '$symbol' is in the wrong place in the initializer list.\n" "Member variable '$symbol' is in the wrong place in the initializer list. " "Members are initialized in the order they are declared, not in the " "order they are in the initializer list. Keeping the initializer list " "in the same order that the members were declared prevents order dependent " "initialization errors.", CWE398, true); } //--------------------------------------------------------------------------- // Check for self initialization in initialization list //--------------------------------------------------------------------------- void CheckClass::checkSelfInitialization() { for (const Scope *scope : mSymbolDatabase->functionScopes) { const Function* function = scope->function; if (!function || !function->isConstructor()) continue; const Token* tok = function->arg->link()->next(); if (tok->str() != ":") continue; for (; tok != scope->bodyStart; tok = tok->next()) { if (Token::Match(tok, "[:,] %var% (|{ %var% )|}") && tok->next()->varId() == tok->tokAt(3)->varId()) { selfInitializationError(tok, tok->strAt(1)); } } } } void CheckClass::selfInitializationError(const Token* tok, const std::string& varname) { reportError(tok, Severity::error, "selfInitialization", "$symbol:" + varname + "\nMember variable '$symbol' is initialized by itself.", CWE665, false); } //--------------------------------------------------------------------------- // Check for virtual function calls in constructor/destructor //--------------------------------------------------------------------------- void CheckClass::checkVirtualFunctionCallInConstructor() { if (! mSettings->isEnabled(Settings::WARNING)) return; std::map > virtualFunctionCallsMap; for (const Scope *scope : mSymbolDatabase->functionScopes) { if (scope->function == nullptr || !scope->function->hasBody() || !(scope->function->isConstructor() || scope->function->isDestructor())) continue; const std::list & virtualFunctionCalls = getVirtualFunctionCalls(*scope->function, virtualFunctionCallsMap); for (std::list::const_iterator it = virtualFunctionCalls.begin(); it != virtualFunctionCalls.end(); ++it) { const Token * callToken = *it; std::list callstack(1, callToken); getFirstVirtualFunctionCallStack(virtualFunctionCallsMap, callToken, callstack); if (callstack.empty()) continue; if (callstack.back()->function()->isPure()) pureVirtualFunctionCallInConstructorError(scope->function, callstack, callstack.back()->str()); else virtualFunctionCallInConstructorError(scope->function, callstack, callstack.back()->str()); } } } const std::list & CheckClass::getVirtualFunctionCalls(const Function & function, std::map > & virtualFunctionCallsMap) { const std::map >::const_iterator found = virtualFunctionCallsMap.find(&function); if (found != virtualFunctionCallsMap.end()) return found->second; virtualFunctionCallsMap[&function] = std::list(); std::list & virtualFunctionCalls = virtualFunctionCallsMap.find(&function)->second; if (!function.hasBody()) return virtualFunctionCalls; for (const Token *tok = function.arg->link(); tok != function.functionScope->bodyEnd; tok = tok->next()) { if (function.type != Function::eConstructor && function.type != Function::eCopyConstructor && function.type != Function::eMoveConstructor && function.type != Function::eDestructor) { if ((Token::simpleMatch(tok, ") {") && tok->link() && Token::Match(tok->link()->previous(), "if|switch")) || Token::simpleMatch(tok, "else {")) { // Assume pure virtual function call is prevented by "if|else|switch" condition tok = tok->linkAt(1); continue; } } if (tok->scope()->type == Scope::eLambda) tok = tok->scope()->bodyEnd->next(); const Function * callFunction = tok->function(); if (!callFunction || function.nestedIn != callFunction->nestedIn || (tok->previous() && tok->previous()->str() == ".")) continue; if (tok->previous() && tok->previous()->str() == "(") { const Token * prev = tok->previous(); if (prev->previous() && (mSettings->library.ignorefunction(tok->str()) || mSettings->library.ignorefunction(prev->previous()->str()))) continue; } if (callFunction->isVirtual()) { if (!callFunction->isPure() && Token::simpleMatch(tok->previous(), "::")) continue; virtualFunctionCalls.push_back(tok); continue; } const std::list & virtualFunctionCallsOfTok = getVirtualFunctionCalls(*callFunction, virtualFunctionCallsMap); if (!virtualFunctionCallsOfTok.empty()) virtualFunctionCalls.push_back(tok); } return virtualFunctionCalls; } void CheckClass::getFirstVirtualFunctionCallStack( std::map > & virtualFunctionCallsMap, const Token * callToken, std::list & pureFuncStack) { const Function *callFunction = callToken->function(); if (callFunction->isVirtual() && (!callFunction->isPure() || !callFunction->hasBody())) { pureFuncStack.push_back(callFunction->tokenDef); return; } std::map >::const_iterator found = virtualFunctionCallsMap.find(callFunction); if (found == virtualFunctionCallsMap.end() || found->second.empty()) { pureFuncStack.clear(); return; } const Token * firstCall = *found->second.begin(); pureFuncStack.push_back(firstCall); getFirstVirtualFunctionCallStack(virtualFunctionCallsMap, firstCall, pureFuncStack); } void CheckClass::virtualFunctionCallInConstructorError( const Function * scopeFunction, const std::list & tokStack, const std::string &funcname) { const char * scopeFunctionTypeName = scopeFunction ? getFunctionTypeName(scopeFunction->type) : "constructor"; ErrorPath errorPath; int lineNumber = 1; for (std::list::const_iterator it = tokStack.begin(); it != tokStack.end(); ++it) errorPath.emplace_back(*it, "Calling " + (*it)->str()); if (!errorPath.empty()) { lineNumber = errorPath.front().first->linenr(); errorPath.back().second = funcname + " is a virtual method"; } std::string constructorName; if (scopeFunction) { const Token *endToken = scopeFunction->argDef->link()->next(); if (scopeFunction->type == Function::Type::eDestructor) constructorName = "~"; for (const Token *tok = scopeFunction->tokenDef; tok != endToken; tok = tok->next()) { if (!constructorName.empty() && Token::Match(tok->previous(), "%name%|%num% %name%|%num%")) constructorName += ' '; constructorName += tok->str(); if (tok->str() == ")") break; } } reportError(errorPath, Severity::warning, "virtualCallInConstructor", "Virtual function '" + funcname + "' is called from " + scopeFunctionTypeName + " '" + constructorName + "' at line " + MathLib::toString(lineNumber) + ".\n" "Call of pure virtual function '" + funcname + "' in " + scopeFunctionTypeName + ". Dynamic binding is not used.", CWE(0U), false); } void CheckClass::pureVirtualFunctionCallInConstructorError( const Function * scopeFunction, const std::list & tokStack, const std::string &purefuncname) { const char * scopeFunctionTypeName = scopeFunction ? getFunctionTypeName(scopeFunction->type) : "constructor"; ErrorPath errorPath; for (std::list::const_iterator it = tokStack.begin(); it != tokStack.end(); ++it) errorPath.emplace_back(*it, "Calling " + (*it)->str()); if (!errorPath.empty()) errorPath.back().second = purefuncname + " is a pure virtual method without body"; reportError(tokStack, Severity::warning, "pureVirtualCall", "$symbol:" + purefuncname +"\n" "Call of pure virtual function '$symbol' in " + scopeFunctionTypeName + ".\n" "Call of pure virtual function '$symbol' in " + scopeFunctionTypeName + ". The call will fail during runtime.", CWE(0U), false); } //--------------------------------------------------------------------------- // Check for members hiding inherited members with the same name //--------------------------------------------------------------------------- void CheckClass::checkDuplInheritedMembers() { if (!mSettings->isEnabled(Settings::WARNING)) return; // Iterate over all classes for (std::list::const_iterator classIt = mSymbolDatabase->typeList.begin(); classIt != mSymbolDatabase->typeList.end(); ++classIt) { // Iterate over the parent classes for (std::vector::const_iterator parentClassIt = classIt->derivedFrom.begin(); parentClassIt != classIt->derivedFrom.end(); ++parentClassIt) { // Check if there is info about the 'Base' class if (!parentClassIt->type || !parentClassIt->type->classScope) continue; // Check if they have a member variable in common for (std::list::const_iterator classVarIt = classIt->classScope->varlist.begin(); classVarIt != classIt->classScope->varlist.end(); ++classVarIt) { for (std::list::const_iterator parentClassVarIt = parentClassIt->type->classScope->varlist.begin(); parentClassVarIt != parentClassIt->type->classScope->varlist.end(); ++parentClassVarIt) { if (classVarIt->name() == parentClassVarIt->name() && !parentClassVarIt->isPrivate()) { // Check if the class and its parent have a common variable duplInheritedMembersError(classVarIt->nameToken(), parentClassVarIt->nameToken(), classIt->name(), parentClassIt->type->name(), classVarIt->name(), classIt->classScope->type == Scope::eStruct, parentClassIt->type->classScope->type == Scope::eStruct); } } } } } } void CheckClass::duplInheritedMembersError(const Token *tok1, const Token* tok2, const std::string &derivedname, const std::string &basename, const std::string &variablename, bool derivedIsStruct, bool baseIsStruct) { std::list toks = { tok1, tok2 }; const std::string symbols = "$symbol:" + derivedname + "\n$symbol:" + variablename + "\n$symbol:" + basename; const std::string message = "The " + std::string(derivedIsStruct ? "struct" : "class") + " '" + derivedname + "' defines member variable with name '" + variablename + "' also defined in its parent " + std::string(baseIsStruct ? "struct" : "class") + " '" + basename + "'."; reportError(toks, Severity::warning, "duplInheritedMember", symbols + '\n' + message, CWE398, false); } //--------------------------------------------------------------------------- // Check that copy constructor and operator defined together //--------------------------------------------------------------------------- enum CtorType { NO, WITHOUT_BODY, WITH_BODY }; void CheckClass::checkCopyCtorAndEqOperator() { if (!mSettings->isEnabled(Settings::WARNING)) return; for (const Scope * scope : mSymbolDatabase->classAndStructScopes) { bool hasNonStaticVars = false; for (std::list::const_iterator var = scope->varlist.begin(); var != scope->varlist.end(); ++var) { if (!var->isStatic()) { hasNonStaticVars = true; break; } } if (!hasNonStaticVars) continue; CtorType copyCtors = CtorType::NO; bool moveCtor = false; CtorType assignmentOperators = CtorType::NO; for (const Function &func : scope->functionList) { if (copyCtors == CtorType::NO && func.type == Function::eCopyConstructor) { copyCtors = func.hasBody() ? CtorType::WITH_BODY : CtorType::WITHOUT_BODY; } if (assignmentOperators == CtorType::NO && func.type == Function::eOperatorEqual) { const Variable * variable = func.getArgumentVar(0); if (variable && variable->type() && variable->type()->classScope == scope) { assignmentOperators = func.hasBody() ? CtorType::WITH_BODY : CtorType::WITHOUT_BODY; } } if (func.type == Function::eMoveConstructor) { moveCtor = true; break; } } if (moveCtor) continue; // No method defined if (copyCtors != CtorType::WITH_BODY && assignmentOperators != CtorType::WITH_BODY) continue; // both methods are defined if (copyCtors != CtorType::NO && assignmentOperators != CtorType::NO) continue; copyCtorAndEqOperatorError(scope->classDef, scope->className, scope->type == Scope::eStruct, copyCtors == CtorType::WITH_BODY); } } void CheckClass::copyCtorAndEqOperatorError(const Token *tok, const std::string &classname, bool isStruct, bool hasCopyCtor) { const std::string message = "$symbol:" + classname + "\n" "The " + std::string(isStruct ? "struct" : "class") + " '$symbol' has '" + getFunctionTypeName(hasCopyCtor ? Function::eCopyConstructor : Function::eOperatorEqual) + "' but lack of '" + getFunctionTypeName(hasCopyCtor ? Function::eOperatorEqual : Function::eCopyConstructor) + "'."; reportError(tok, Severity::warning, "copyCtorAndEqOperator", message); } void CheckClass::checkUnsafeClassDivZero(bool test) { // style severity: it is a style decision if classes should be safe or // if users should be required to be careful. I expect that many users // will disagree about these reports. if (!mSettings->isEnabled(Settings::STYLE)) return; for (const Scope * classScope : mSymbolDatabase->classAndStructScopes) { if (!test && classScope->classDef->fileIndex() != 1) continue; for (const Function &func : classScope->functionList) { if (func.access != AccessControl::Public) continue; if (!func.hasBody()) continue; if (func.name().compare(0,8,"operator")==0) continue; for (const Token *tok = func.functionScope->bodyStart; tok; tok = tok->next()) { if (Token::Match(tok, "if|switch|while|for|do|}")) break; if (tok->str() != "/") continue; if (!tok->valueType() || !tok->valueType()->isIntegral()) continue; if (!tok->astOperand2()) continue; const Variable *var = tok->astOperand2()->variable(); if (!var || !var->isArgument()) continue; unsafeClassDivZeroError(tok, classScope->className, func.name(), var->name()); break; } } } } void CheckClass::unsafeClassDivZeroError(const Token *tok, const std::string &className, const std::string &methodName, const std::string &varName) { const std::string symbols = "$symbol:" + className + "\n$symbol:" + methodName + "\n$symbol:" + varName + '\n'; const std::string s = className + "::" + methodName + "()"; reportError(tok, Severity::style, "unsafeClassDivZero", symbols + "Public interface of " + className + " is not safe. When calling " + s + ", if parameter " + varName + " is 0 that leads to division by zero."); } void CheckClass::checkOverride() { if (!mSettings->isEnabled(Settings::STYLE)) return; if (mSettings->standards.cpp < Standards::CPP11) return; for (const Scope * classScope : mSymbolDatabase->classAndStructScopes) { if (!classScope->definedType || classScope->definedType->derivedFrom.empty()) continue; for (const Function &func : classScope->functionList) { if (func.hasOverrideSpecifier() || func.hasFinalSpecifier()) continue; const Function *baseFunc = func.getOverridenFunction(); if (baseFunc) overrideError(baseFunc, &func); } } } void CheckClass::overrideError(const Function *funcInBase, const Function *funcInDerived) { const std::string functionName = funcInDerived ? funcInDerived->name() : ""; ErrorPath errorPath; if (funcInBase && funcInDerived) { errorPath.push_back(ErrorPathItem(funcInBase->tokenDef, "Virtual function in base class")); errorPath.push_back(ErrorPathItem(funcInDerived->tokenDef, "Function in derived class")); } reportError(errorPath, Severity::style, "missingOverride", "$symbol:" + functionName + "\n" "The function '$symbol' overrides a function in a base class but is not marked with a 'override' specifier.", CWE(0U) /* Unknown CWE! */, false); }