/* * Cppcheck - A tool for static C/C++ code analysis * Copyright (C) 2007-2015 Daniel Marjamäki and Cppcheck team. * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ //--------------------------------------------------------------------------- #include "checkclass.h" #include "tokenize.h" #include "token.h" #include "errorlogger.h" #include "symboldatabase.h" #include #include #include //--------------------------------------------------------------------------- // Register CheckClass.. namespace { CheckClass instance; const char * getFunctionTypeName( Function::Type type) { switch (type) { case Function::eConstructor: return "constructor"; case Function::eCopyConstructor: return "copy constructor"; case Function::eMoveConstructor: return "move constructor"; case Function::eDestructor: return "destructor"; case Function::eFunction: return "function"; case Function::eOperatorEqual: return "operator="; } return ""; } inline bool isPureWithoutBody(Function const & func) { return func.isPure() && !func.hasBody(); } } //--------------------------------------------------------------------------- CheckClass::CheckClass(const Tokenizer *tokenizer, const Settings *settings, ErrorLogger *errorLogger) : Check(myName(), tokenizer, settings, errorLogger), symbolDatabase(tokenizer?tokenizer->getSymbolDatabase():nullptr) { } //--------------------------------------------------------------------------- // ClassCheck: Check that all class constructors are ok. //--------------------------------------------------------------------------- void CheckClass::constructors() { const bool printStyle = _settings->isEnabled("style"); const bool printWarnings = _settings->isEnabled("warning"); if (!printStyle && !printWarnings) return; const bool printInconclusive = _settings->inconclusive; const std::size_t classes = symbolDatabase->classAndStructScopes.size(); for (std::size_t i = 0; i < classes; ++i) { const Scope * scope = symbolDatabase->classAndStructScopes[i]; // There are no constructors. if (scope->numConstructors == 0 && printStyle) { // If there is a private variable, there should be a constructor.. std::list::const_iterator var; for (var = scope->varlist.begin(); var != scope->varlist.end(); ++var) { if (var->isPrivate() && !var->isStatic() && !Token::Match(var->nameToken(), "%varid% ; %varid% =", var->declarationId()) && (!var->isClass() || (var->type() && var->type()->needInitialization == Type::True))) { noConstructorError(scope->classDef, scope->className, scope->classDef->str() == "struct"); break; } } } if (!printWarnings) continue; // #3196 => bailout if there are nested unions // TODO: handle union variables better { bool bailout = false; for (std::list::const_iterator it = scope->nestedList.begin(); it != scope->nestedList.end(); ++it) { const Scope * const nestedScope = *it; if (nestedScope->type == Scope::eUnion) { bailout = true; break; } } if (bailout) continue; } std::list::const_iterator func; std::vector usage(scope->varlist.size()); for (func = scope->functionList.begin(); func != scope->functionList.end(); ++func) { if (!func->hasBody() || !(func->isConstructor() || func->type == Function::eOperatorEqual)) continue; // Mark all variables not used clearAllVar(usage); std::list callstack; initializeVarList(*func, callstack, scope, usage); // Check if any variables are uninitialized std::list::const_iterator var; unsigned int count = 0; for (var = scope->varlist.begin(); var != scope->varlist.end(); ++var, ++count) { // check for C++11 initializer if (var->hasDefault()) { usage[count].init = true; continue; } if (usage[count].assign || usage[count].init || var->isStatic()) continue; if (var->isConst() && func->isOperator()) // We can't set const members in assignment operator continue; // Check if this is a class constructor if (!var->isPointer() && var->isClass() && func->type == Function::eConstructor) { // Unknown type so assume it is initialized if (!var->type()) continue; // Known type that doesn't need initialization or // known type that has member variables of an unknown type else if (var->type()->needInitialization != Type::True) continue; } // Check if type can't be copied if (!var->isPointer() && var->typeScope()) { if (func->type == Function::eMoveConstructor) { if (canNotMove(var->typeScope())) continue; } else { if (canNotCopy(var->typeScope())) continue; } } bool inconclusive = false; // Don't warn about unknown types in copy constructors since we // don't know if they can be copied or not.. if (!var->isPointer() && !(var->type() && var->type()->needInitialization != Type::True) && (func->type == Function::eCopyConstructor || func->type == Function::eOperatorEqual)) { if (!var->typeStartToken()->isStandardType()) { if (printInconclusive) inconclusive = true; else continue; } } // It's non-static and it's not initialized => error if (func->type == Function::eOperatorEqual) { const Token *operStart = func->arg; bool classNameUsed = false; for (const Token *operTok = operStart; operTok != operStart->link(); operTok = operTok->next()) { if (operTok->str() == scope->className) { classNameUsed = true; break; } } if (classNameUsed) operatorEqVarError(func->token, scope->className, var->name(), inconclusive); } else if (func->access != Private) { const Scope *varType = var->typeScope(); if (!varType || varType->type != Scope::eUnion) { if (func->type == Function::eConstructor && func->nestedIn && (func->nestedIn->numConstructors - func->nestedIn->numCopyOrMoveConstructors) > 1 && func->argCount() == 0 && func->functionScope && func->arg && func->arg->link()->next() == func->functionScope->classStart && func->functionScope->classStart->link() == func->functionScope->classStart->next()) { // don't warn about user defined default constructor when there are other constructors if (printInconclusive) uninitVarError(func->token, scope->className, var->name(), true); } else uninitVarError(func->token, scope->className, var->name(), inconclusive); } } } } } } void CheckClass::checkExplicitConstructors() { if (!_settings->isEnabled("style")) return; const std::size_t classes = symbolDatabase->classAndStructScopes.size(); for (std::size_t i = 0; i < classes; ++i) { const Scope * scope = symbolDatabase->classAndStructScopes[i]; // Do not perform check, if the class/struct has not any constructors if (scope->numConstructors == 0) continue; // Is class abstract? Maybe this test is over-simplification, but it will suffice for simple cases, // and it will avoid false positives. bool isAbstractClass = false; for (std::list::const_iterator func = scope->functionList.begin(); func != scope->functionList.end(); ++func) { if (func->isPure()) { isAbstractClass = true; break; } } for (std::list::const_iterator func = scope->functionList.begin(); func != scope->functionList.end(); ++func) { // We are looking for constructors, which are meeting following criteria: // 1) Constructor is declared with a single parameter // 2) Constructor is not declared as explicit // 3) It is not a copy/move constructor of non-abstract class // 4) Constructor is not marked as delete (programmer can mark the default constructor as deleted, which is ok) if (!func->isConstructor() || func->isDelete() || (!func->hasBody() && func->access == Private)) continue; if (!func->isExplicit() && func->argCount() == 1) { // We must decide, if it is not a copy/move constructor, or it is a copy/move constructor of abstract class. if (func->type != Function::eCopyConstructor && func->type != Function::eMoveConstructor) { noExplicitConstructorError(func->tokenDef, scope->className, scope->type == Scope::eStruct); } else if (isAbstractClass) { noExplicitCopyMoveConstructorError(func->tokenDef, scope->className, scope->type == Scope::eStruct); } } } } } void CheckClass::copyconstructors() { if (!_settings->isEnabled("style")) return; const std::size_t classes = symbolDatabase->classAndStructScopes.size(); for (std::size_t i = 0; i < classes; ++i) { const Scope * scope = symbolDatabase->classAndStructScopes[i]; std::map allocatedVars; for (std::list::const_iterator func = scope->functionList.begin(); func != scope->functionList.end(); ++func) { if (func->type == Function::eConstructor && func->functionScope) { const Token* tok = func->functionScope->classDef->linkAt(1); for (const Token* const end = func->functionScope->classStart; tok != end; tok = tok->next()) { if (Token::Match(tok, "%var% ( new|malloc|g_malloc|g_try_malloc|realloc|g_realloc|g_try_realloc")) { const Variable* var = tok->variable(); if (var && var->isPointer() && var->scope() == scope) allocatedVars[tok->varId()] = tok; } } for (const Token* const end = func->functionScope->classEnd; tok != end; tok = tok->next()) { if (Token::Match(tok, "%var% = new|malloc|g_malloc|g_try_malloc|realloc|g_realloc|g_try_realloc")) { const Variable* var = tok->variable(); if (var && var->isPointer() && var->scope() == scope) allocatedVars[tok->varId()] = tok; } } } } std::set copiedVars; const Token* copyCtor = 0; for (std::list::const_iterator func = scope->functionList.begin(); func != scope->functionList.end(); ++func) { if (func->type == Function::eCopyConstructor) { copyCtor = func->tokenDef; if (func->functionScope) { const Token* tok = func->tokenDef->linkAt(1)->next(); if (tok->str()==":") { tok=tok->next(); while (Token::Match(tok, "%name% (")) { if (allocatedVars.find(tok->varId()) != allocatedVars.end()) { if (tok->varId() && Token::Match(tok->tokAt(2), "%name% . %name% )")) copiedVars.insert(tok); else if (!Token::Match(tok->tokAt(2), "%any% )")) allocatedVars.erase(tok->varId()); // Assume memory is allocated } tok = tok->linkAt(1)->tokAt(2); } } for (tok=func->functionScope->classStart; tok!=func->functionScope->classEnd; tok=tok->next()) { if (Token::Match(tok, "%var% = new|malloc|g_malloc|g_try_malloc|realloc|g_realloc|g_try_realloc")) { allocatedVars.erase(tok->varId()); } else if (Token::Match(tok, "%var% = %name% . %name% ;") && allocatedVars.find(tok->varId()) != allocatedVars.end()) { copiedVars.insert(tok); } } } else // non-copyable or implementation not seen allocatedVars.clear(); break; } } if (!copyCtor) { if (!allocatedVars.empty() && scope->definedType->derivedFrom.empty()) // TODO: Check if base class is non-copyable noCopyConstructorError(scope->classDef, scope->className, scope->type == Scope::eStruct); } else { if (!copiedVars.empty()) { for (std::set::const_iterator it = copiedVars.begin(); it != copiedVars.end(); ++it) { copyConstructorShallowCopyError(*it, (*it)->str()); } } // throw error if count mismatch /* FIXME: This doesn't work. See #4154 for (std::map::const_iterator i = allocatedVars.begin(); i != allocatedVars.end(); ++i) { copyConstructorMallocError(copyCtor, i->second, i->second->str()); } */ } } } /* This doesn't work. See #4154 void CheckClass::copyConstructorMallocError(const Token *cctor, const Token *alloc, const std::string& varname) { std::list callstack; callstack.push_back(cctor); callstack.push_back(alloc); reportError(callstack, Severity::warning, "copyCtorNoAllocation", "Copy constructor does not allocate memory for member '" + varname + "' although memory has been allocated in other constructors."); } */ void CheckClass::copyConstructorShallowCopyError(const Token *tok, const std::string& varname) { reportError(tok, Severity::style, "copyCtorPointerCopying", "Value of pointer '" + varname + "', which points to allocated memory, is copied in copy constructor instead of allocating new memory."); } void CheckClass::noCopyConstructorError(const Token *tok, const std::string &classname, bool isStruct) { // The constructor might be intentionally missing. Therefore this is not a "warning" reportError(tok, Severity::style, "noCopyConstructor", "'" + std::string(isStruct ? "struct" : "class") + " " + classname + "' does not have a copy constructor which is recommended since the class contains a pointer to allocated memory."); } bool CheckClass::canNotCopy(const Scope *scope) { std::list::const_iterator func; bool constructor = false; bool publicAssign = false; bool publicCopy = false; for (func = scope->functionList.begin(); func != scope->functionList.end(); ++func) { if (func->isConstructor()) constructor = true; if ((func->type == Function::eCopyConstructor) && func->access == Public) publicCopy = true; else if (func->type == Function::eOperatorEqual && func->access == Public) publicAssign = true; } return constructor && !(publicAssign || publicCopy); } bool CheckClass::canNotMove(const Scope *scope) { std::list::const_iterator func; bool constructor = false; bool publicAssign = false; bool publicCopy = false; bool publicMove = false; for (func = scope->functionList.begin(); func != scope->functionList.end(); ++func) { if (func->isConstructor()) constructor = true; if ((func->type == Function::eCopyConstructor) && func->access == Public) publicCopy = true; else if ((func->type == Function::eMoveConstructor) && func->access == Public) publicMove = true; else if (func->type == Function::eOperatorEqual && func->access == Public) publicAssign = true; } return constructor && !(publicAssign || publicCopy || publicMove); } void CheckClass::assignVar(const std::string &varname, const Scope *scope, std::vector &usage) { std::list::const_iterator var; unsigned int count = 0; for (var = scope->varlist.begin(); var != scope->varlist.end(); ++var, ++count) { if (var->name() == varname) { usage[count].assign = true; return; } } } void CheckClass::initVar(const std::string &varname, const Scope *scope, std::vector &usage) { std::list::const_iterator var; unsigned int count = 0; for (var = scope->varlist.begin(); var != scope->varlist.end(); ++var, ++count) { if (var->name() == varname) { usage[count].init = true; return; } } } void CheckClass::assignAllVar(std::vector &usage) { for (std::size_t i = 0; i < usage.size(); ++i) usage[i].assign = true; } void CheckClass::clearAllVar(std::vector &usage) { for (std::size_t i = 0; i < usage.size(); ++i) { usage[i].assign = false; usage[i].init = false; } } bool CheckClass::isBaseClassFunc(const Token *tok, const Scope *scope) { // Iterate through each base class... for (std::size_t i = 0; i < scope->definedType->derivedFrom.size(); ++i) { const Type *derivedFrom = scope->definedType->derivedFrom[i].type; // Check if base class exists in database if (derivedFrom && derivedFrom->classScope) { const std::list& functionList = derivedFrom->classScope->functionList; std::list::const_iterator func; for (func = functionList.begin(); func != functionList.end(); ++func) { if (func->tokenDef->str() == tok->str()) return true; } } // Base class not found so assume it is in it. else return true; } return false; } void CheckClass::initializeVarList(const Function &func, std::list &callstack, const Scope *scope, std::vector &usage) { if (!func.functionScope) throw InternalError(0, "Internal Error: Invalid syntax"); // #5702 bool initList = func.isConstructor(); const Token *ftok = func.arg->link()->next(); int level = 0; for (; ftok && ftok != func.functionScope->classEnd; ftok = ftok->next()) { // Class constructor.. initializing variables like this // clKalle::clKalle() : var(value) { } if (initList) { if (level == 0 && Token::Match(ftok, "%name% {|(") && Token::Match(ftok->linkAt(1), "}|) ,|{")) { if (ftok->str() != func.name()) { initVar(ftok->str(), scope, usage); } else { // c++11 delegate constructor const Function *member = ftok->function(); // member function found if (member) { // recursive call // assume that all variables are initialized if (std::find(callstack.begin(), callstack.end(), member) != callstack.end()) { /** @todo false negative: just bail */ assignAllVar(usage); return; } // member function has implementation if (member->hasBody()) { // initialize variable use list using member function callstack.push_back(member); initializeVarList(*member, callstack, scope, usage); callstack.pop_back(); } // there is a called member function, but it has no implementation, so we assume it initializes everything else { assignAllVar(usage); } } } } else if (level != 0 && Token::Match(ftok, "%name% =")) // assignment in the initializer: var(value = x) assignVar(ftok->str(), scope, usage); // Level handling if (ftok->link() && Token::Match(ftok, "(|<")) level++; else if (ftok->str() == "{") { if (level != 0 || (Token::Match(ftok->previous(), "%name%|>") && Token::Match(ftok->link(), "} ,|{"))) level++; else initList = false; } else if (ftok->link() && Token::Match(ftok, ")|>|}")) level--; } if (initList) continue; // Variable getting value from stream? if (Token::Match(ftok, ">> %name%")) { assignVar(ftok->strAt(1), scope, usage); } // Before a new statement there is "[{};()=[]" if (! Token::Match(ftok, "[{};()=[]")) continue; if (Token::simpleMatch(ftok, "( !")) ftok = ftok->next(); // Using the operator= function to initialize all variables.. if (Token::Match(ftok->next(), "return| (| * this )| =")) { assignAllVar(usage); break; } // Using swap to assign all variables.. if (func.type == Function::eOperatorEqual && Token::Match(ftok, "[;{}] %name% (") && Token::Match(ftok->linkAt(2), ") . %name% ( *| this ) ;")) { assignAllVar(usage); break; } // Calling member variable function? if (Token::Match(ftok->next(), "%var% . %name% (")) { std::list::const_iterator var; for (var = scope->varlist.begin(); var != scope->varlist.end(); ++var) { if (var->declarationId() == ftok->next()->varId()) { /** @todo false negative: we assume function changes variable state */ assignVar(ftok->next()->str(), scope, usage); break; } } ftok = ftok->tokAt(2); } if (!Token::Match(ftok->next(), "::| %name%") && !Token::Match(ftok->next(), "*| this . %name%") && !Token::Match(ftok->next(), "* %name% =") && !Token::Match(ftok->next(), "( * this ) . %name%")) continue; // Goto the first token in this statement.. ftok = ftok->next(); // skip "return" if (ftok->str() == "return") ftok = ftok->next(); // Skip "( * this )" if (Token::simpleMatch(ftok, "( * this ) .")) { ftok = ftok->tokAt(5); } // Skip "this->" if (Token::simpleMatch(ftok, "this .")) ftok = ftok->tokAt(2); // Skip "classname :: " if (Token::Match(ftok, ":: %name%")) ftok = ftok->next(); while (Token::Match(ftok, "%name% ::")) ftok = ftok->tokAt(2); // Clearing all variables.. if (Token::Match(ftok, "::| memset ( this ,")) { assignAllVar(usage); return; } // Clearing array.. else if (Token::Match(ftok, "::| memset ( %name% ,")) { if (ftok->str() == "::") ftok = ftok->next(); assignVar(ftok->strAt(2), scope, usage); ftok = ftok->linkAt(1); continue; } // Calling member function? else if (Token::simpleMatch(ftok, "operator= (") && ftok->previous()->str() != "::") { if (ftok->function() && ftok->function()->nestedIn == scope) { const Function *member = ftok->function(); // recursive call // assume that all variables are initialized if (std::find(callstack.begin(), callstack.end(), member) != callstack.end()) { /** @todo false negative: just bail */ assignAllVar(usage); return; } // member function has implementation if (member->hasBody()) { // initialize variable use list using member function callstack.push_back(member); initializeVarList(*member, callstack, scope, usage); callstack.pop_back(); } // there is a called member function, but it has no implementation, so we assume it initializes everything else { assignAllVar(usage); } } // using default operator =, assume everything initialized else { assignAllVar(usage); } } else if (Token::Match(ftok, "::| %name% (") && ftok->str() != "if") { if (ftok->str() == "::") ftok = ftok->next(); // Passing "this" => assume that everything is initialized for (const Token *tok2 = ftok->next()->link(); tok2 && tok2 != ftok; tok2 = tok2->previous()) { if (tok2->str() == "this") { assignAllVar(usage); return; } } // check if member function if (ftok->function() && ftok->function()->nestedIn == scope && !ftok->function()->isConstructor()) { const Function *member = ftok->function(); // recursive call // assume that all variables are initialized if (std::find(callstack.begin(), callstack.end(), member) != callstack.end()) { assignAllVar(usage); return; } // member function has implementation if (member->hasBody()) { // initialize variable use list using member function callstack.push_back(member); initializeVarList(*member, callstack, scope, usage); callstack.pop_back(); // Assume that variables that are passed to it are initialized.. for (const Token *tok2 = ftok; tok2; tok2 = tok2->next()) { if (Token::Match(tok2, "[;{}]")) break; if (Token::Match(tok2, "[(,] &| %name% [,)]")) { tok2 = tok2->next(); if (tok2->str() == "&") tok2 = tok2->next(); assignVar(tok2->str(), scope, usage); } } } // there is a called member function, but it has no implementation, so we assume it initializes everything else { assignAllVar(usage); } } // not member function else { // could be a base class virtual function, so we assume it initializes everything if (!func.isConstructor() && isBaseClassFunc(ftok, scope)) { /** @todo False Negative: we should look at the base class functions to see if they * call any derived class virtual functions that change the derived class state */ assignAllVar(usage); } // has friends, so we assume it initializes everything if (!scope->definedType->friendList.empty()) assignAllVar(usage); // the function is external and it's neither friend nor inherited virtual function. // assume all variables that are passed to it are initialized.. else { for (const Token *tok = ftok->tokAt(2); tok && tok != ftok->next()->link(); tok = tok->next()) { if (tok->isName()) { assignVar(tok->str(), scope, usage); } } } } } // Assignment of member variable? else if (Token::Match(ftok, "%name% =")) { assignVar(ftok->str(), scope, usage); } // Assignment of array item of member variable? else if (Token::Match(ftok, "%name% [|.")) { const Token *tok2 = ftok; while (tok2) { if (tok2->strAt(1) == "[") tok2 = tok2->next()->link(); else if (Token::Match(tok2->next(), ". %name%")) tok2 = tok2->tokAt(2); else break; } if (tok2 && tok2->strAt(1) == "=") assignVar(ftok->str(), scope, usage); } // Assignment of array item of member variable? else if (Token::Match(ftok, "* %name% =")) { assignVar(ftok->next()->str(), scope, usage); } else if (Token::Match(ftok, "* this . %name% =")) { assignVar(ftok->strAt(3), scope, usage); } // The functions 'clear' and 'Clear' are supposed to initialize variable. if (Token::Match(ftok, "%name% . clear|Clear (")) { assignVar(ftok->str(), scope, usage); } } } void CheckClass::noConstructorError(const Token *tok, const std::string &classname, bool isStruct) { // For performance reasons the constructor might be intentionally missing. Therefore this is not a "warning" reportError(tok, Severity::style, "noConstructor", "The " + std::string(isStruct ? "struct" : "class") + " '" + classname + "' does not have a constructor.\n" "The " + std::string(isStruct ? "struct" : "class") + " '" + classname + "' does not have a constructor although it has private member variables. " "Member variables of builtin types are left uninitialized when the class is " "instantiated. That may cause bugs or undefined behavior."); } void CheckClass::noExplicitConstructorError(const Token *tok, const std::string &classname, bool isStruct) { const std::string message(std::string(isStruct ? "Struct" : "Class") + " '" + classname + "' has a constructor with 1 argument that is not explicit."); const std::string verbose(message + " Such constructors should in general be explicit for type safety reasons. Using the explicit keyword in the constructor means some mistakes when using the class can be avoided."); reportError(tok, Severity::style, "noExplicitConstructor", message + "\n" + verbose); } void CheckClass::noExplicitCopyMoveConstructorError(const Token *tok, const std::string &classname, bool isStruct) { const std::string message(std::string(isStruct ? "Abstract struct" : "Abstract class") + " '" + classname + "' has a copy/move constructor that is not explicit."); const std::string verbose(message + " For abstract classes, even copy/move constructors may be declared explicit, as, by definition, abstract classes cannot be instantiated, and so objects of such type should never be passed by value."); reportError(tok, Severity::style, "noExplicitCopyMoveConstructor", message + "\n" + verbose); } void CheckClass::uninitVarError(const Token *tok, const std::string &classname, const std::string &varname, bool inconclusive) { reportError(tok, Severity::warning, "uninitMemberVar", "Member variable '" + classname + "::" + varname + "' is not initialized in the constructor.", 0U, inconclusive); } void CheckClass::operatorEqVarError(const Token *tok, const std::string &classname, const std::string &varname, bool inconclusive) { reportError(tok, Severity::warning, "operatorEqVarError", "Member variable '" + classname + "::" + varname + "' is not assigned a value in '" + classname + "::operator='.", 0U, inconclusive); } //--------------------------------------------------------------------------- // ClassCheck: Use initialization list instead of assignment //--------------------------------------------------------------------------- void CheckClass::initializationListUsage() { if (!_settings->isEnabled("performance")) return; const std::size_t functions = symbolDatabase->functionScopes.size(); for (std::size_t i = 0; i < functions; ++i) { const Scope * scope = symbolDatabase->functionScopes[i]; // Check every constructor if (!scope->function || (!scope->function->isConstructor())) continue; const Scope* owner = scope->functionOf; for (const Token* tok = scope->classStart; tok != scope->classEnd; tok = tok->next()) { if (Token::Match(tok, "%name% (")) // Assignments might depend on this function call or if/for/while/switch statement from now on. break; if (Token::Match(tok, "try|do {")) break; if (Token::Match(tok, "%var% = %any%") && tok->strAt(-1) != "*") { const Variable* var = tok->variable(); if (var && var->scope() == owner && !var->isStatic()) { if (var->isPointer() || var->isReference() || (!var->type() && !var->isStlStringType() && !(Token::Match(var->typeStartToken(), "std :: %type% <") && !Token::simpleMatch(var->typeStartToken()->linkAt(3), "> ::")))) continue; bool allowed = true; for (const Token* tok2 = tok->tokAt(2); tok2 && tok2->str() != ";"; tok2 = tok2->next()) { const Variable* var2 = tok2->variable(); if (var2) { if (var2->scope() == owner && tok2->strAt(-1)!=".") { // Is there a dependency between two member variables? allowed = false; break; } else if (var2->isArray() && var2->isLocal()) { // Can't initialize with a local array allowed = false; break; } } else if (tok2->str() == "this") { // 'this' instance is not completely constructed in initialization list allowed = false; break; } else if (Token::Match(tok2, "%name% (") && tok2->strAt(-1) != "." && isMemberFunc(owner, tok2)) { // Member function called? allowed = false; break; } } if (!allowed) continue; suggestInitializationList(tok, tok->str()); } } } } } void CheckClass::suggestInitializationList(const Token* tok, const std::string& varname) { reportError(tok, Severity::performance, "useInitializationList", "Variable '" + varname + "' is assigned in constructor body. Consider performing initialization in initialization list.\n" "When an object of a class is created, the constructors of all member variables are called consecutively " "in the order the variables are declared, even if you don't explicitly write them to the initialization list. You " "could avoid assigning '" + varname + "' a value by passing the value to the constructor in the initialization list."); } //--------------------------------------------------------------------------- // ClassCheck: Unused private functions //--------------------------------------------------------------------------- static bool checkFunctionUsage(const std::string& name, const Scope* scope) { if (!scope) return true; // Assume it is used, if scope is not seen for (std::list::const_iterator func = scope->functionList.begin(); func != scope->functionList.end(); ++func) { if (func->functionScope) { if (Token::Match(func->tokenDef, "%name% (")) { for (const Token *ftok = func->tokenDef->tokAt(2); ftok && ftok->str() != ")"; ftok = ftok->next()) { if (Token::Match(ftok, "= %name% [(,)]") && ftok->strAt(1) == name) return true; if (ftok->str() == "(") ftok = ftok->link(); } } for (const Token *ftok = func->functionScope->classDef->linkAt(1); ftok != func->functionScope->classEnd; ftok = ftok->next()) { if (ftok->str() == name) // Function used. TODO: Handle overloads return true; } } else if ((func->type != Function::eCopyConstructor && func->type != Function::eOperatorEqual) || func->access != Private) // Assume it is used, if a function implementation isn't seen, but empty private copy constructors and assignment operators are OK return true; } for (std::list::const_iterator i = scope->nestedList.begin(); i != scope->nestedList.end(); ++i) { if ((*i)->isClassOrStruct()) if (checkFunctionUsage(name, *i)) // Check nested classes, which can access private functions of their base return true; } for (std::list::const_iterator i = scope->varlist.begin(); i != scope->varlist.end(); ++i) { if (i->isStatic()) { const Token* tok = Token::findmatch(scope->classEnd, "%varid% =|(|{", i->declarationId()); if (tok) tok = tok->tokAt(2); while (tok && tok->str() != ";") { if (tok->str() == name && (tok->strAt(-1) == "." || tok->strAt(-2) == scope->className)) return true; tok = tok->next(); } } } return false; // Unused in this scope } void CheckClass::privateFunctions() { if (!_settings->isEnabled("style")) return; const std::size_t classes = symbolDatabase->classAndStructScopes.size(); for (std::size_t i = 0; i < classes; ++i) { const Scope * scope = symbolDatabase->classAndStructScopes[i]; // do not check borland classes with properties.. if (Token::findsimplematch(scope->classStart, "; __property ;", scope->classEnd)) continue; std::list privateFuncs; for (std::list::const_iterator func = scope->functionList.begin(); func != scope->functionList.end(); ++func) { // Get private functions.. if (func->type == Function::eFunction && func->access == Private && !func->isOperator()) // TODO: There are smarter ways to check private operator usage privateFuncs.push_back(&*func); } // Bailout for overridden virtual functions of base classes if (!scope->definedType->derivedFrom.empty()) { // Check virtual functions for (std::list::iterator it = privateFuncs.begin(); it != privateFuncs.end();) { if ((*it)->isImplicitlyVirtual(true)) // Give true as default value to be returned if we don't see all base classes privateFuncs.erase(it++); else ++it; } } while (!privateFuncs.empty()) { const std::string& funcName = privateFuncs.front()->tokenDef->str(); // Check that all private functions are used bool used = checkFunctionUsage(funcName, scope); // Usage in this class // Check in friend classes const std::list& friendList = scope->definedType->friendList; for (std::list::const_iterator it = friendList.begin(); !used && it != friendList.end(); ++it) { if (it->type) used = checkFunctionUsage(funcName, it->type->classScope); else used = true; // Assume, it is used if we do not see friend class } if (!used) unusedPrivateFunctionError(privateFuncs.front()->tokenDef, scope->className, funcName); privateFuncs.pop_front(); } } } void CheckClass::unusedPrivateFunctionError(const Token *tok, const std::string &classname, const std::string &funcname) { reportError(tok, Severity::style, "unusedPrivateFunction", "Unused private function: '" + classname + "::" + funcname + "'"); } //--------------------------------------------------------------------------- // ClassCheck: Check that memset is not used on classes //--------------------------------------------------------------------------- static const Scope* findFunctionOf(const Scope* scope) { while (scope) { if (scope->type == Scope::eFunction) return scope->functionOf; scope = scope->nestedIn; } return 0; } void CheckClass::checkMemset() { const bool printWarnings = _settings->isEnabled("warning"); const std::size_t functions = symbolDatabase->functionScopes.size(); for (std::size_t i = 0; i < functions; ++i) { const Scope * scope = symbolDatabase->functionScopes[i]; for (const Token *tok = scope->classStart; tok && tok != scope->classEnd; tok = tok->next()) { if (Token::Match(tok, "memset|memcpy|memmove ( %any%")) { const Token* arg1 = tok->tokAt(2); const Token* arg3 = arg1->nextArgument(); if (arg3) arg3 = arg3->nextArgument(); if (!arg3) // weird, shouldn't happen: memset etc should have // 3 arguments. continue; const Token *typeTok = nullptr; const Scope *type = nullptr; if (Token::Match(arg3, "sizeof ( %type% ) )")) typeTok = arg3->tokAt(2); else if (Token::Match(arg3, "sizeof ( %type% :: %type% ) )")) typeTok = arg3->tokAt(4); else if (Token::Match(arg3, "sizeof ( struct %type% ) )")) typeTok = arg3->tokAt(3); else if (Token::simpleMatch(arg3, "sizeof ( * this ) )") || Token::simpleMatch(arg1, "this ,")) { type = findFunctionOf(arg3->scope()); } else if (Token::Match(arg1, "&|*|%var%")) { int numIndirToVariableType = 0; // Offset to the actual type in terms of dereference/addressof for (;; arg1 = arg1->next()) { if (arg1->str() == "&") ++numIndirToVariableType; else if (arg1->str() == "*") --numIndirToVariableType; else break; } const Variable *var = arg1->variable(); if (var && arg1->strAt(1) == ",") { if (var->isArrayOrPointer()) { const Token *endTok = var->typeEndToken(); while (endTok && Token::simpleMatch(endTok, "*")) { --numIndirToVariableType; endTok = endTok->previous(); } } if (var->isArray()) numIndirToVariableType += (int)var->dimensions().size(); if (numIndirToVariableType == 1) type = var->typeScope(); } } // No type defined => The tokens didn't match if (!typeTok && !type) continue; if (typeTok && typeTok->str() == "(") typeTok = typeTok->next(); if (!type && typeTok->type()) type = typeTok->type()->classScope; if (type) { std::list parsedTypes; checkMemsetType(scope, tok, type, false, parsedTypes); } } else if (tok->variable() && tok->variable()->typeScope() && Token::Match(tok, "%var% = calloc|malloc|realloc|g_malloc|g_try_malloc|g_realloc|g_try_realloc (")) { std::list parsedTypes; checkMemsetType(scope, tok->tokAt(2), tok->variable()->typeScope(), true, parsedTypes); if (tok->variable()->typeScope()->numConstructors > 0 && printWarnings) mallocOnClassWarning(tok, tok->strAt(2), tok->variable()->typeScope()->classDef); } } } } void CheckClass::checkMemsetType(const Scope *start, const Token *tok, const Scope *type, bool allocation, std::list parsedTypes) { const bool printPortability = _settings->isEnabled("portability"); // If type has been checked there is no need to check it again if (std::find(parsedTypes.begin(), parsedTypes.end(), type) != parsedTypes.end()) return; parsedTypes.push_back(type); // recursively check all parent classes for (std::size_t i = 0; i < type->definedType->derivedFrom.size(); i++) { const Type* derivedFrom = type->definedType->derivedFrom[i].type; if (derivedFrom && derivedFrom->classScope) checkMemsetType(start, tok, derivedFrom->classScope, allocation, parsedTypes); } // Warn if type is a class that contains any virtual functions std::list::const_iterator func; for (func = type->functionList.begin(); func != type->functionList.end(); ++func) { if (func->isVirtual()) { if (allocation) mallocOnClassError(tok, tok->str(), type->classDef, "virtual method"); else memsetError(tok, tok->str(), "virtual method", type->classDef->str()); } } // Warn if type is a class or struct that contains any std::* variables std::list::const_iterator var; for (var = type->varlist.begin(); var != type->varlist.end(); ++var) { if (var->isReference() && !var->isStatic()) { memsetErrorReference(tok, tok->str(), type->classDef->str()); continue; } // don't warn if variable static or const, pointer or reference if (!var->isStatic() && !var->isConst() && !var->isPointer()) { const Token *tok1 = var->typeStartToken(); const Scope *typeScope = var->typeScope(); // check for std:: type if (var->isStlType() && tok1->strAt(2) != "array" && !_settings->library.podtype(tok1->strAt(2))) if (allocation) mallocOnClassError(tok, tok->str(), type->classDef, "'std::" + tok1->strAt(2) + "'"); else memsetError(tok, tok->str(), "'std::" + tok1->strAt(2) + "'", type->classDef->str()); // check for known type else if (typeScope && typeScope != type) checkMemsetType(start, tok, typeScope, allocation, parsedTypes); // check for float else if (tok->str() == "memset" && var->isFloatingType() && printPortability) memsetErrorFloat(tok, type->classDef->str()); } } } void CheckClass::mallocOnClassWarning(const Token* tok, const std::string &memfunc, const Token* classTok) { std::list toks; toks.push_back(tok); toks.push_back(classTok); reportError(toks, Severity::warning, "mallocOnClassWarning", "Memory for class instance allocated with " + memfunc + "(), but class provides constructors.\n" "Memory for class instance allocated with " + memfunc + "(), but class provides constructors. This is unsafe, " "since no constructor is called and class members remain uninitialized. Consider using 'new' instead.", 0U, false); } void CheckClass::mallocOnClassError(const Token* tok, const std::string &memfunc, const Token* classTok, const std::string &classname) { std::list toks; toks.push_back(tok); toks.push_back(classTok); reportError(toks, Severity::error, "mallocOnClassError", "Memory for class instance allocated with " + memfunc + "(), but class contains a " + classname + ".\n" "Memory for class instance allocated with " + memfunc + "(), but class a " + classname + ". This is unsafe, " "since no constructor is called and class members remain uninitialized. Consider using 'new' instead.", 0U, false); } void CheckClass::memsetError(const Token *tok, const std::string &memfunc, const std::string &classname, const std::string &type) { reportError(tok, Severity::error, "memsetClass", "Using '" + memfunc + "' on " + type + " that contains a " + classname + ".\n" "Using '" + memfunc + "' on " + type + " that contains a " + classname + " is unsafe, because constructor, destructor " "and copy operator calls are omitted. These are necessary for this non-POD type to ensure that a valid object " "is created."); } void CheckClass::memsetErrorReference(const Token *tok, const std::string &memfunc, const std::string &type) { reportError(tok, Severity::error, "memsetClassReference", "Using '" + memfunc + "' on " + type + " that contains a reference."); } void CheckClass::memsetErrorFloat(const Token *tok, const std::string &type) { reportError(tok, Severity::portability, "memsetClassFloat", "Using memset() on " + type + " which contains a floating point number.\n" "Using memset() on " + type + " which contains a floating point number." " This is not portable because memset() sets each byte of a block of memory to a specific value and" " the actual representation of a floating-point value is implementation defined." " Note: In case of an IEEE754-1985 compatible implementation setting all bits to zero results in the value 0.0."); } //--------------------------------------------------------------------------- // ClassCheck: "void operator=(" and "const type & operator=(" //--------------------------------------------------------------------------- void CheckClass::operatorEq() { if (!_settings->isEnabled("style")) return; const std::size_t classes = symbolDatabase->classAndStructScopes.size(); for (std::size_t i = 0; i < classes; ++i) { const Scope * scope = symbolDatabase->classAndStructScopes[i]; std::list::const_iterator func; for (func = scope->functionList.begin(); func != scope->functionList.end(); ++func) { if (func->type == Function::eOperatorEqual && func->access == Public) { // skip "deleted" functions - cannot be called anyway if (func->isDelete()) continue; // use definition for check so we don't have to deal with qualification if (!(Token::Match(func->retDef, "%type% &") && func->retDef->str() == scope->className)) { // make sure we really have a copy assignment operator if (Token::Match(func->tokenDef->tokAt(2), "const| %name% &")) { if (func->tokenDef->strAt(2) == "const" && func->tokenDef->strAt(3) == scope->className) operatorEqReturnError(func->retDef, scope->className); else if (func->tokenDef->strAt(2) == scope->className) operatorEqReturnError(func->retDef, scope->className); } } } } } } void CheckClass::operatorEqReturnError(const Token *tok, const std::string &className) { reportError(tok, Severity::style, "operatorEq", "'" + className + "::operator=' should return '" + className + " &'.\n" "The "+className+"::operator= does not conform to standard C/C++ behaviour. To conform to standard C/C++ behaviour, return a reference to self (such as: '"+className+" &"+className+"::operator=(..) { .. return *this; }'. For safety reasons it might be better to not fix this message. If you think that safety is always more important than conformance then please ignore/suppress this message. For more details about this topic, see the book \"Effective C++\" by Scott Meyers." ); } //--------------------------------------------------------------------------- // ClassCheck: "C& operator=(const C&) { ... return *this; }" // operator= should return a reference to *this //--------------------------------------------------------------------------- void CheckClass::operatorEqRetRefThis() { if (!_settings->isEnabled("style")) return; const std::size_t classes = symbolDatabase->classAndStructScopes.size(); for (std::size_t i = 0; i < classes; ++i) { const Scope * scope = symbolDatabase->classAndStructScopes[i]; std::list::const_iterator func; for (func = scope->functionList.begin(); func != scope->functionList.end(); ++func) { if (func->type == Function::eOperatorEqual && func->hasBody()) { // make sure return signature is correct if (Token::Match(func->retDef, "%type% &") && func->retDef->str() == scope->className) { checkReturnPtrThis(scope, &(*func), func->functionScope->classStart, func->functionScope->classEnd); } } } } } void CheckClass::checkReturnPtrThis(const Scope *scope, const Function *func, const Token *tok, const Token *last) { std::set analyzedFunctions; checkReturnPtrThis(scope, func, tok, last, analyzedFunctions); } void CheckClass::checkReturnPtrThis(const Scope *scope, const Function *func, const Token *tok, const Token *last, std::set& analyzedFunctions) { bool foundReturn = false; const Token* const startTok = tok; for (; tok && tok != last; tok = tok->next()) { // check for return of reference to this if (tok->str() == "return") { foundReturn = true; std::string cast("( " + scope->className + " & )"); if (Token::simpleMatch(tok->next(), cast.c_str())) tok = tok->tokAt(4); // check if a function is called if (tok->strAt(2) == "(" && tok->linkAt(2)->next()->str() == ";") { std::list::const_iterator it; // check if it is a member function for (it = scope->functionList.begin(); it != scope->functionList.end(); ++it) { // check for a regular function with the same name and a body if (it->type == Function::eFunction && it->hasBody() && it->token->str() == tok->next()->str()) { // check for the proper return type if (it->tokenDef->previous()->str() == "&" && it->tokenDef->strAt(-2) == scope->className) { // make sure it's not a const function if (!it->isConst()) { /** @todo make sure argument types match */ // avoid endless recursions if (analyzedFunctions.find(&*it) == analyzedFunctions.end()) { analyzedFunctions.insert(&*it); checkReturnPtrThis(scope, &*it, it->arg->link()->next(), it->arg->link()->next()->link(), analyzedFunctions); } // just bail for now else return; } } } } } // check if *this is returned else if (!(Token::Match(tok->next(), "(| * this ;|=") || Token::simpleMatch(tok->next(), "operator= (") || Token::simpleMatch(tok->next(), "this . operator= (") || (Token::Match(tok->next(), "%type% :: operator= (") && tok->next()->str() == scope->className))) operatorEqRetRefThisError(func->token); } } if (foundReturn) { return; } if (startTok->next() == last) { if (Token::Match(func->argDef, std::string("( const " + scope->className + " &").c_str())) { // Typical wrong way to suppress default assignment operator by declaring it and leaving empty operatorEqMissingReturnStatementError(func->token, func->access == Public); } else { operatorEqMissingReturnStatementError(func->token, true); } return; } if (_settings->library.isScopeNoReturn(last, 0)) { // Typical wrong way to prohibit default assignment operator // by always throwing an exception or calling a noreturn function operatorEqShouldBeLeftUnimplementedError(func->token); return; } operatorEqMissingReturnStatementError(func->token, func->access == Public); } void CheckClass::operatorEqRetRefThisError(const Token *tok) { reportError(tok, Severity::style, "operatorEqRetRefThis", "'operator=' should return reference to 'this' instance."); } void CheckClass::operatorEqShouldBeLeftUnimplementedError(const Token *tok) { reportError(tok, Severity::style, "operatorEqShouldBeLeftUnimplemented", "'operator=' should either return reference to 'this' instance or be declared private and left unimplemented."); } void CheckClass::operatorEqMissingReturnStatementError(const Token *tok, bool error) { if (error) { reportError(tok, Severity::error, "operatorEqMissingReturnStatement", "No 'return' statement in non-void function causes undefined behavior."); } else { operatorEqRetRefThisError(tok); } } //--------------------------------------------------------------------------- // ClassCheck: "C& operator=(const C& rhs) { if (this == &rhs) ... }" // operator= should check for assignment to self // // For simple classes, an assignment to self check is only a potential optimization. // // For classes that allocate dynamic memory, assignment to self can be a real error // if it is deallocated and allocated again without being checked for. // // This check is not valid for classes with multiple inheritance because a // class can have multiple addresses so there is no trivial way to check for // assignment to self. //--------------------------------------------------------------------------- void CheckClass::operatorEqToSelf() { if (!_settings->isEnabled("warning")) return; const std::size_t classes = symbolDatabase->classAndStructScopes.size(); for (std::size_t i = 0; i < classes; ++i) { const Scope * scope = symbolDatabase->classAndStructScopes[i]; // skip classes with multiple inheritance if (scope->definedType->derivedFrom.size() > 1) continue; std::list::const_iterator func; for (func = scope->functionList.begin(); func != scope->functionList.end(); ++func) { if (func->type == Function::eOperatorEqual && func->hasBody()) { // make sure that the operator takes an object of the same type as *this, otherwise we can't detect self-assignment checks if (func->argumentList.empty()) continue; const Token* typeTok = func->argumentList.front().typeEndToken(); while (typeTok->str() == "const" || typeTok->str() == "&" || typeTok->str() == "*") typeTok = typeTok->previous(); if (typeTok->str() != scope->className) continue; // make sure return signature is correct if (Token::Match(func->retDef, "%type% &") && func->retDef->str() == scope->className) { // find the parameter name const Token *rhs = func->argumentList.begin()->nameToken(); if (!hasAssignSelf(&(*func), rhs)) { if (hasAllocation(&(*func), scope)) operatorEqToSelfError(func->token); } } } } } } bool CheckClass::hasAllocation(const Function *func, const Scope* scope) const { // This function is called when no simple check was found for assignment // to self. We are currently looking for: // - deallocate member ; ... member = // - alloc member // That is not ideal because it can cause false negatives but its currently // necessary to prevent false positives. const Token *last = func->functionScope->classEnd; for (const Token *tok = func->functionScope->classStart; tok && (tok != last); tok = tok->next()) { if (Token::Match(tok, "%var% = malloc|realloc|calloc|new") && isMemberVar(scope, tok)) return true; // check for deallocating memory const Token *var = nullptr; if (Token::Match(tok, "free ( %var%")) var = tok->tokAt(2); else if (Token::Match(tok, "delete [ ] %var%")) var = tok->tokAt(3); else if (Token::Match(tok, "delete %var%")) var = tok->next(); // Check for assignment to the deleted pointer (only if its a member of the class) if (var && isMemberVar(scope, var)) { for (const Token *tok1 = var->next(); tok1 && (tok1 != last); tok1 = tok1->next()) { if (Token::Match(tok1, "%varid% =", var->varId())) return true; } } } return false; } bool CheckClass::hasAssignSelf(const Function *func, const Token *rhs) { if (!rhs) return false; const Token *last = func->functionScope->classEnd; for (const Token *tok = func->functionScope->classStart; tok && tok != last; tok = tok->next()) { if (Token::simpleMatch(tok, "if (")) { const Token *tok1 = tok->tokAt(2); const Token *tok2 = tok->next()->link(); if (tok1 && tok2) { for (; tok1 && tok1 != tok2; tok1 = tok1->next()) { if (Token::Match(tok1, "this ==|!= & %name%")) { if (tok1->strAt(3) == rhs->str()) return true; } else if (Token::Match(tok1, "& %name% ==|!= this")) { if (tok1->strAt(1) == rhs->str()) return true; } } } } } return false; } void CheckClass::operatorEqToSelfError(const Token *tok) { reportError(tok, Severity::warning, "operatorEqToSelf", "'operator=' should check for assignment to self to avoid problems with dynamic memory.\n" "'operator=' should check for assignment to self to ensure that each block of dynamically " "allocated memory is owned and managed by only one instance of the class."); } //--------------------------------------------------------------------------- // A destructor in a base class should be virtual //--------------------------------------------------------------------------- void CheckClass::virtualDestructor() { // This error should only be given if: // * base class doesn't have virtual destructor // * derived class has non-empty destructor // * base class is deleted // unless inconclusive in which case: // * base class has virtual members but doesn't have virtual destructor const bool printInconclusive = _settings->inconclusive; std::list inconclusive_errors; const std::size_t classes = symbolDatabase->classAndStructScopes.size(); for (std::size_t i = 0; i < classes; ++i) { const Scope * scope = symbolDatabase->classAndStructScopes[i]; // Skip base classes (unless inconclusive) if (scope->definedType->derivedFrom.empty()) { if (printInconclusive) { const Function *destructor = scope->getDestructor(); if (destructor && !destructor->isVirtual()) { std::list::const_iterator func; for (func = scope->functionList.begin(); func != scope->functionList.end(); ++func) { if (func->isVirtual()) { inconclusive_errors.push_back(destructor); break; } } } } continue; } // Find the destructor const Function *destructor = scope->getDestructor(); // Check for destructor with implementation if (!destructor || !destructor->hasBody()) continue; // Empty destructor if (destructor->token->linkAt(3) == destructor->token->tokAt(4)) continue; const Token *derived = scope->classDef; const Token *derivedClass = derived->next(); // Iterate through each base class... for (std::size_t j = 0; j < scope->definedType->derivedFrom.size(); ++j) { // Check if base class is public and exists in database if (scope->definedType->derivedFrom[j].access != Private && scope->definedType->derivedFrom[j].type) { const Type *derivedFrom = scope->definedType->derivedFrom[j].type; const Scope *derivedFromScope = derivedFrom->classScope; if (!derivedFromScope) continue; // Check for this pattern: // 1. Base class pointer is given the address of derived class instance // 2. Base class pointer is deleted // // If this pattern is not seen then bailout the checking of these base/derived classes { // pointer variables of type 'Base *' std::set basepointer; for (std::size_t k = 1; k < symbolDatabase->getVariableListSize(); k++) { const Variable* var = symbolDatabase->getVariableFromVarId(k); if (var && var->isPointer() && var->type() == derivedFrom) basepointer.insert(var->declarationId()); } // pointer variables of type 'Base *' that should not be deleted std::set dontDelete; // No deletion of derived class instance through base class pointer found => the code is ok bool ok = true; for (const Token *tok = _tokenizer->tokens(); tok; tok = tok->next()) { if (Token::Match(tok, "[;{}] %var% =") && basepointer.find(tok->next()->varId()) != basepointer.end()) { // new derived class.. if (Token::simpleMatch(tok->tokAt(3), ("new " + derivedClass->str()).c_str())) { dontDelete.insert(tok->next()->varId()); } } // Delete base class pointer that might point at derived class else if (Token::Match(tok, "delete %var% ;") && dontDelete.find(tok->next()->varId()) != dontDelete.end()) { ok = false; break; } } // No base class pointer that points at a derived class is deleted if (ok) continue; } // Find the destructor declaration for the base class. const Function *base_destructor = derivedFromScope->getDestructor(); const Token *base = nullptr; if (base_destructor) base = base_destructor->token; // Check that there is a destructor.. if (!base_destructor) { if (derivedFrom->derivedFrom.empty()) { virtualDestructorError(derivedFrom->classDef, derivedFrom->name(), derivedClass->str(), false); // check for duplicate error and remove if if found std::list::iterator found = find(inconclusive_errors.begin(), inconclusive_errors.end(), base_destructor); if (found != inconclusive_errors.end()) inconclusive_errors.erase(found); } } else if (!base_destructor->isVirtual()) { // TODO: This is just a temporary fix, better solution is needed. // Skip situations where base class has base classes of its own, because // some of the base classes might have virtual destructor. // Proper solution is to check all of the base classes. If base class is not // found or if one of the base classes has virtual destructor, error should not // be printed. See TODO test case "virtualDestructorInherited" if (derivedFrom->derivedFrom.empty()) { // Make sure that the destructor is public (protected or private // would not compile if inheritance is used in a way that would // cause the bug we are trying to find here.) if (base_destructor->access == Public) { virtualDestructorError(base, derivedFrom->name(), derivedClass->str(), false); // check for duplicate error and remove if if found std::list::iterator found = find(inconclusive_errors.begin(), inconclusive_errors.end(), base_destructor); if (found != inconclusive_errors.end()) inconclusive_errors.erase(found); } } } } } } for (std::list::const_iterator i = inconclusive_errors.begin(); i != inconclusive_errors.end(); ++i) virtualDestructorError((*i)->tokenDef, (*i)->name(), "", true); } void CheckClass::virtualDestructorError(const Token *tok, const std::string &Base, const std::string &Derived, bool inconclusive) { if (inconclusive) reportError(tok, Severity::warning, "virtualDestructor", "Class '" + Base + "' which has virtual members does not have a virtual destructor.", 0U, true); else reportError(tok, Severity::error, "virtualDestructor", "Class '" + Base + "' which is inherited by class '" + Derived + "' does not have a virtual destructor.\n" "Class '" + Base + "' which is inherited by class '" + Derived + "' does not have a virtual destructor. " "If you destroy instances of the derived class by deleting a pointer that points to the base class, only " "the destructor of the base class is executed. Thus, dynamic memory that is managed by the derived class " "could leak. This can be avoided by adding a virtual destructor to the base class."); } //--------------------------------------------------------------------------- // warn for "this-x". The indented code may be "this->x" //--------------------------------------------------------------------------- void CheckClass::thisSubtraction() { if (!_settings->isEnabled("warning")) return; const Token *tok = _tokenizer->tokens(); for (;;) { tok = Token::findmatch(tok, "this - %name%"); if (!tok) break; if (tok->strAt(-1) != "*") thisSubtractionError(tok); tok = tok->next(); } } void CheckClass::thisSubtractionError(const Token *tok) { reportError(tok, Severity::warning, "thisSubtraction", "Suspicious pointer subtraction. Did you intend to write '->'?"); } //--------------------------------------------------------------------------- // can member function be const? //--------------------------------------------------------------------------- void CheckClass::checkConst() { // This is an inconclusive check. False positives: #3322. if (!_settings->inconclusive) return; if (!_settings->isEnabled("style")) return; const std::size_t classes = symbolDatabase->classAndStructScopes.size(); for (std::size_t i = 0; i < classes; ++i) { const Scope * scope = symbolDatabase->classAndStructScopes[i]; std::list::const_iterator func; for (func = scope->functionList.begin(); func != scope->functionList.end(); ++func) { // does the function have a body? if (func->type == Function::eFunction && func->hasBody() && !func->isFriend() && !func->isStatic() && !func->isVirtual()) { // get last token of return type const Token *previous = func->tokenDef->previous(); // does the function return a pointer or reference? if (Token::Match(previous, "*|&")) { if (func->retDef->str() != "const") continue; } else if (Token::Match(previous->previous(), "*|& >")) { const Token *temp = previous->previous(); bool foundConst = false; while (!Token::Match(temp->previous(), ";|}|{|public:|protected:|private:")) { temp = temp->previous(); if (temp->str() == "const") { foundConst = true; break; } } if (!foundConst) continue; } else if (func->isOperator() && Token::Match(previous, ";|{|}|public:|private:|protected:")) { // Operator without return type: conversion operator const std::string& opName = func->tokenDef->str(); if (opName.compare(8, 5, "const") != 0 && opName.back() == '&') continue; } else { // don't warn for unknown types.. // LPVOID, HDC, etc if (previous->str().size() > 2 && !previous->type() && previous->isUpperCaseName()) continue; } // check if base class function is virtual if (!scope->definedType->derivedFrom.empty()) { if (func->isImplicitlyVirtual(true)) continue; } bool memberAccessed = false; // if nothing non-const was found. write error.. if (checkConstFunc(scope, &*func, memberAccessed)) { std::string classname = scope->className; const Scope *nest = scope->nestedIn; while (nest && nest->type != Scope::eGlobal) { classname = std::string(nest->className + "::" + classname); nest = nest->nestedIn; } // get function name std::string functionName = (func->tokenDef->isName() ? "" : "operator") + func->tokenDef->str(); if (func->tokenDef->str() == "(") functionName += ")"; else if (func->tokenDef->str() == "[") functionName += "]"; if (!func->isConst() || (!memberAccessed && !func->isOperator())) { if (func->isInline()) checkConstError(func->token, classname, functionName, !memberAccessed && !func->isOperator()); else // not inline checkConstError2(func->token, func->tokenDef, classname, functionName, !memberAccessed && !func->isOperator()); } } } } } } bool CheckClass::isMemberVar(const Scope *scope, const Token *tok) const { bool again = false; // try to find the member variable do { again = false; if (tok->str() == "this") { return true; } else if (Token::simpleMatch(tok->tokAt(-3), "( * this )")) { return true; } else if (Token::Match(tok->tokAt(-2), "%name% . %name%")) { tok = tok->tokAt(-2); again = true; } else if (Token::Match(tok->tokAt(-2), "] . %name%")) { tok = tok->linkAt(-2)->previous(); again = true; } else if (tok->str() == "]") { tok = tok->link()->previous(); again = true; } } while (again); std::list::const_iterator var; for (var = scope->varlist.begin(); var != scope->varlist.end(); ++var) { if (var->name() == tok->str()) { if (tok->varId() == 0) symbolDatabase->debugMessage(tok, "CheckClass::isMemberVar found used member variable \'" + tok->str() + "\' with varid 0"); return !var->isStatic(); } } // not found in this class if (!scope->definedType->derivedFrom.empty()) { // check each base class for (std::size_t i = 0; i < scope->definedType->derivedFrom.size(); ++i) { // find the base class const Type *derivedFrom = scope->definedType->derivedFrom[i].type; // find the function in the base class if (derivedFrom && derivedFrom->classScope) { if (isMemberVar(derivedFrom->classScope, tok)) return true; } } } return false; } bool CheckClass::isMemberFunc(const Scope *scope, const Token *tok) const { if (tok->function() && tok->function()->nestedIn == scope) return !tok->function()->isStatic(); // not found in this class if (!scope->definedType->derivedFrom.empty()) { // check each base class for (std::size_t i = 0; i < scope->definedType->derivedFrom.size(); ++i) { // find the base class const Type *derivedFrom = scope->definedType->derivedFrom[i].type; // find the function in the base class if (derivedFrom && derivedFrom->classScope) { if (isMemberFunc(derivedFrom->classScope, tok)) return true; } } } return false; } bool CheckClass::isConstMemberFunc(const Scope *scope, const Token *tok) const { if (tok->function() && tok->function()->nestedIn == scope) return tok->function()->isConst(); // not found in this class if (!scope->definedType->derivedFrom.empty()) { // check each base class for (std::size_t i = 0; i < scope->definedType->derivedFrom.size(); ++i) { // find the base class const Type *derivedFrom = scope->definedType->derivedFrom[i].type; // find the function in the base class if (derivedFrom && derivedFrom->classScope) { if (isConstMemberFunc(derivedFrom->classScope, tok)) return true; } } } return false; } namespace { // The container contains the STL types whose operator[] is not a const. static const std::set stl_containers_not_const = make_container< std::set >() << "map" << "unordered_map"; } bool CheckClass::checkConstFunc(const Scope *scope, const Function *func, bool& memberAccessed) const { // if the function doesn't have any assignment nor function call, // it can be a const function.. for (const Token *tok1 = func->functionScope->classStart; tok1 && tok1 != func->functionScope->classEnd; tok1 = tok1->next()) { if (tok1->isName() && isMemberVar(scope, tok1)) { memberAccessed = true; const Variable* v = tok1->variable(); if (v && v->isMutable()) continue; if (tok1->str() == "this" && tok1->previous()->isAssignmentOp()) return (false); const Token* lhs = tok1->tokAt(-1); if (lhs->str() == "&") { lhs = lhs->previous(); if (lhs->tokType() == Token::eAssignmentOp && lhs->previous()->variable()) { if (lhs->previous()->variable()->typeStartToken()->strAt(-1) != "const" && lhs->previous()->variable()->isPointer()) return false; } } else { const Variable* v2 = lhs->previous()->variable(); if (lhs->tokType() == Token::eAssignmentOp && v2) if (!v2->isConst() && v2->isReference() && lhs == v2->nameToken()->next()) return false; } const Token* jumpBackToken = nullptr; const Token *lastVarTok = tok1; const Token *end = tok1; for (;;) { if (Token::Match(end->next(), ". %name%")) { end = end->tokAt(2); if (end->varId()) lastVarTok = end; } else if (end->strAt(1) == "[") { if (end->varId()) { const Variable *var = end->variable(); if (var && var->isStlType(stl_containers_not_const)) return false; } if (!jumpBackToken) jumpBackToken = end->next(); // Check inside the [] brackets end = end->linkAt(1); } else if (end->strAt(1) == ")") end = end->next(); else break; } if (end->strAt(1) == "(") { const Variable *var = lastVarTok->variable(); if (!var) return false; if (var->isStlType() // assume all std::*::size() and std::*::empty() are const && (Token::Match(end, "size|empty|cend|crend|cbegin|crbegin|max_size|length|count|capacity|get_allocator|c_str|str ( )") || Token::Match(end, "rfind|copy"))) ; else if (!var->typeScope() || !isConstMemberFunc(var->typeScope(), end)) return (false); } // Assignment else if (end->next()->tokType() == Token::eAssignmentOp) return (false); // Streaming else if (end->strAt(1) == "<<" && tok1->strAt(-1) != "<<") return (false); else if (tok1->strAt(-1) == ">>") return (false); // ++/-- else if (end->next()->tokType() == Token::eIncDecOp || tok1->previous()->tokType() == Token::eIncDecOp) return (false); const Token* start = tok1; while (tok1->strAt(-1) == ")") tok1 = tok1->linkAt(-1); if (start->strAt(-1) == "delete") return (false); tok1 = jumpBackToken?jumpBackToken:end; // Jump back to first [ to check inside, or jump to end of expression } // streaming: << else if (Token::simpleMatch(tok1->previous(), ") <<") && isMemberVar(scope, tok1->tokAt(-2))) { const Variable* var = tok1->tokAt(-2)->variable(); if (!var || !var->isMutable()) return (false); } // function call.. else if (Token::Match(tok1, "%name% (") && !tok1->isStandardType() && !Token::Match(tok1, "return|if|string|switch|while|catch|for")) { if (isMemberFunc(scope, tok1) && tok1->strAt(-1) != ".") { if (!isConstMemberFunc(scope, tok1)) return (false); memberAccessed = true; } // Member variable given as parameter for (const Token* tok2 = tok1->tokAt(2); tok2 && tok2 != tok1->next()->link(); tok2 = tok2->next()) { if (tok2->str() == "(") tok2 = tok2->link(); else if (tok2->isName() && isMemberVar(scope, tok2)) { const Variable* var = tok2->variable(); if (!var || !var->isMutable()) return (false); // TODO: Only bailout if function takes argument as non-const reference } } } else if (Token::simpleMatch(tok1, "> (") && (!tok1->link() || !Token::Match(tok1->link()->previous(), "static_cast|const_cast|dynamic_cast|reinterpret_cast"))) { return (false); } } return (true); } void CheckClass::checkConstError(const Token *tok, const std::string &classname, const std::string &funcname, bool suggestStatic) { checkConstError2(tok, 0, classname, funcname, suggestStatic); } void CheckClass::checkConstError2(const Token *tok1, const Token *tok2, const std::string &classname, const std::string &funcname, bool suggestStatic) { std::list toks; toks.push_back(tok1); if (tok2) toks.push_back(tok2); if (!suggestStatic) reportError(toks, Severity::style, "functionConst", "Technically the member function '" + classname + "::" + funcname + "' can be const.\n" "The member function '" + classname + "::" + funcname + "' can be made a const " "function. Making this function 'const' should not cause compiler errors. " "Even though the function can be made const function technically it may not make " "sense conceptually. Think about your design and the task of the function first - is " "it a function that must not change object internal state?", 0U, true); else reportError(toks, Severity::performance, "functionStatic", "Technically the member function '" + classname + "::" + funcname + "' can be static.\n" "The member function '" + classname + "::" + funcname + "' can be made a static " "function. Making a function static can bring a performance benefit since no 'this' instance is " "passed to the function. This change should not cause compiler errors but it does not " "necessarily make sense conceptually. Think about your design and the task of the function first - " "is it a function that must not access members of class instances?", 0U, true); } //--------------------------------------------------------------------------- // ClassCheck: Check that initializer list is in declared order. //--------------------------------------------------------------------------- struct VarInfo { VarInfo(const Variable *_var, const Token *_tok) : var(_var), tok(_tok) { } const Variable *var; const Token *tok; }; void CheckClass::initializerListOrder() { if (!_settings->isEnabled("style")) return; // This check is not inconclusive. However it only determines if the initialization // order is incorrect. It does not determine if being out of order causes // a real error. Out of order is not necessarily an error but you can never // have an error if the list is in order so this enforces defensive programming. if (!_settings->inconclusive) return; const std::size_t classes = symbolDatabase->classAndStructScopes.size(); for (std::size_t i = 0; i < classes; ++i) { const Scope * scope = symbolDatabase->classAndStructScopes[i]; std::list::const_iterator func; // iterate through all member functions looking for constructors for (func = scope->functionList.begin(); func != scope->functionList.end(); ++func) { if ((func->isConstructor()) && func->hasBody()) { // check for initializer list const Token *tok = func->arg->link()->next(); if (tok->str() == ":") { std::vector vars; tok = tok->next(); // find all variable initializations in list while (tok && tok != func->functionScope->classStart) { if (Token::Match(tok, "%name% (|{")) { const Variable *var = scope->getVariable(tok->str()); if (var) vars.push_back(VarInfo(var, tok)); if (Token::Match(tok->tokAt(2), "%name% =")) { var = scope->getVariable(tok->strAt(2)); if (var) vars.push_back(VarInfo(var, tok->tokAt(2))); } tok = tok->next()->link()->next(); } else tok = tok->next(); } // need at least 2 members to have out of order initialization for (std::size_t j = 1; j < vars.size(); j++) { // check for out of order initialization if (vars[j].var->index() < vars[j - 1].var->index()) initializerListError(vars[j].tok,vars[j].var->nameToken(), scope->className, vars[j].var->name()); } } } } } } void CheckClass::initializerListError(const Token *tok1, const Token *tok2, const std::string &classname, const std::string &varname) { std::list toks; toks.push_back(tok1); toks.push_back(tok2); reportError(toks, Severity::style, "initializerList", "Member variable '" + classname + "::" + varname + "' is in the wrong place in the initializer list.\n" "Member variable '" + classname + "::" + varname + "' is in the wrong place in the initializer list. " "Members are initialized in the order they are declared, not in the " "order they are in the initializer list. Keeping the initializer list " "in the same order that the members were declared prevents order dependent " "initialization errors.", 0U, true); } //--------------------------------------------------------------------------- // Check for self initialization in initialization list //--------------------------------------------------------------------------- void CheckClass::checkSelfInitialization() { for (std::size_t i = 0; i < symbolDatabase->functionScopes.size(); ++i) { const Scope* scope = symbolDatabase->functionScopes[i]; const Function* function = scope->function; if (!function || !function->isConstructor()) continue; const Token* tok = function->arg->link()->next(); if (tok->str() != ":") continue; for (; tok != scope->classStart; tok = tok->next()) { if (Token::Match(tok, "[:,] %var% (|{ %var% )|}") && tok->next()->varId() == tok->tokAt(3)->varId()) { selfInitializationError(tok, tok->strAt(1)); } } } } void CheckClass::selfInitializationError(const Token* tok, const std::string& varname) { reportError(tok, Severity::error, "selfInitialization", "Member variable '" + varname + "' is initialized by itself."); } //--------------------------------------------------------------------------- // Check for pure virtual function calls //--------------------------------------------------------------------------- void CheckClass::checkPureVirtualFunctionCall() { if (! _settings->isEnabled("warning")) return; const std::size_t functions = symbolDatabase->functionScopes.size(); std::map > callsPureVirtualFunctionMap; for (std::size_t i = 0; i < functions; ++i) { const Scope * scope = symbolDatabase->functionScopes[i]; if (scope->function == nullptr || !scope->function->hasBody() || !(scope->function->isConstructor() || scope->function->isDestructor())) continue; const std::list & pureVirtualFunctionCalls=callsPureVirtualFunction(*scope->function,callsPureVirtualFunctionMap); for (std::list::const_iterator pureCallIter=pureVirtualFunctionCalls.begin(); pureCallIter!=pureVirtualFunctionCalls.end(); ++pureCallIter) { const Token & pureCall=**pureCallIter; std::list pureFuncStack; pureFuncStack.push_back(&pureCall); getFirstPureVirtualFunctionCallStack(callsPureVirtualFunctionMap, pureCall, pureFuncStack); if (!pureFuncStack.empty()) callsPureVirtualFunctionError(*scope->function, pureFuncStack, pureFuncStack.back()->str()); } } } const std::list & CheckClass::callsPureVirtualFunction(const Function & function, std::map > & callsPureVirtualFunctionMap) { std::pair >::iterator, bool > found = callsPureVirtualFunctionMap.insert(std::pair >(&function, std::list())); std::list & pureFunctionCalls = found.first->second; if (found.second) { if (function.hasBody()) { for (const Token *tok = function.arg->link(); tok && tok != function.functionScope->classEnd; tok = tok->next()) { if (function.type != Function::eConstructor && function.type != Function::eCopyConstructor && function.type != Function::eMoveConstructor && function.type != Function::eDestructor) { if ((Token::simpleMatch(tok, ") {") && tok->link() && Token::Match(tok->link()->previous(), "if|switch")) || Token::simpleMatch(tok, "else {") ) { // Assume pure virtual function call is prevented by "if|else|switch" condition tok = tok->linkAt(1); continue; } } const Function * callFunction = tok->function(); if (!callFunction || function.nestedIn != callFunction->nestedIn || (tok->previous() && tok->previous()->str() == ".")) continue; if (tok->previous() && tok->previous()->str() == "(") { const Token * prev = tok->previous(); if (prev->previous() && (_settings->library.ignorefunction(tok->str()) || _settings->library.ignorefunction(prev->previous()->str()))) continue; } if (isPureWithoutBody(*callFunction)) { pureFunctionCalls.push_back(tok); continue; } const std::list & pureFunctionCallsOfTok = callsPureVirtualFunction(*callFunction, callsPureVirtualFunctionMap); if (!pureFunctionCallsOfTok.empty()) { pureFunctionCalls.push_back(tok); continue; } } } } return pureFunctionCalls; } void CheckClass::getFirstPureVirtualFunctionCallStack( std::map > & callsPureVirtualFunctionMap, const Token & pureCall, std::list & pureFuncStack) { if (isPureWithoutBody(*pureCall.function())) { pureFuncStack.push_back(pureCall.function()->token); return; } std::map >::const_iterator found = callsPureVirtualFunctionMap.find(pureCall.function()); if (found == callsPureVirtualFunctionMap.end() || found->second.empty()) { pureFuncStack.clear(); return; } const Token & firstPureCall = **found->second.begin(); pureFuncStack.push_back(&firstPureCall); getFirstPureVirtualFunctionCallStack(callsPureVirtualFunctionMap, firstPureCall, pureFuncStack); } void CheckClass::callsPureVirtualFunctionError( const Function & scopeFunction, const std::list & tokStack, const std::string &purefuncname) { const char * scopeFunctionTypeName = getFunctionTypeName(scopeFunction.type); reportError(tokStack, Severity::warning, "pureVirtualCall", "Call of pure virtual function '" + purefuncname + "' in " + scopeFunctionTypeName + ".\n" "Call of pure virtual function '" + purefuncname + "' in " + scopeFunctionTypeName + ". The call will fail during runtime.", 0U, false); } //--------------------------------------------------------------------------- // Check for members hiding inherited members with the same name //--------------------------------------------------------------------------- void CheckClass::checkDuplInheritedMembers() { if (!_settings->isEnabled("warning")) return; // Iterate over all classes for (std::list::const_iterator classIt = symbolDatabase->typeList.begin(); classIt != symbolDatabase->typeList.end(); ++classIt) { // Iterate over the parent classes for (std::vector::const_iterator parentClassIt = classIt->derivedFrom.begin(); parentClassIt != classIt->derivedFrom.end(); ++parentClassIt) { // Check if there is info about the 'Base' class if (!parentClassIt->type || !parentClassIt->type->classScope) continue; // Check if they have a member variable in common for (std::list::const_iterator classVarIt = classIt->classScope->varlist.begin(); classVarIt != classIt->classScope->varlist.end(); ++classVarIt) { for (std::list::const_iterator parentClassVarIt = parentClassIt->type->classScope->varlist.begin(); parentClassVarIt != parentClassIt->type->classScope->varlist.end(); ++parentClassVarIt) { if (classVarIt->name() == parentClassVarIt->name() && !parentClassVarIt->isPrivate()) { // Check if the class and its parent have a common variable duplInheritedMembersError(classVarIt->nameToken(), parentClassVarIt->nameToken(), classIt->name(), parentClassIt->type->name(), classVarIt->name(), classIt->classScope->type == Scope::eStruct, parentClassIt->type->classScope->type == Scope::eStruct); } } } } } } void CheckClass::duplInheritedMembersError(const Token *tok1, const Token* tok2, const std::string &derivedname, const std::string &basename, const std::string &variablename, bool derivedIsStruct, bool baseIsStruct) { std::list toks; toks.push_back(tok1); toks.push_back(tok2); const std::string message = "The " + std::string(derivedIsStruct ? "struct" : "class") + " '" + derivedname + "' defines member variable with name '" + variablename + "' also defined in its parent " + std::string(baseIsStruct ? "struct" : "class") + " '" + basename + "'."; reportError(toks, Severity::warning, "duplInheritedMember", message, 0U, false); }