/* * Cppcheck - A tool for static C/C++ code analysis * Copyright (C) 2007-2014 Daniel Marjamäki and Cppcheck team. * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include "mathlib.h" #include "errorlogger.h" #include #include #include MathLib::biguint MathLib::toULongNumber(const std::string & str) { // hexadecimal numbers: if (isHex(str)) { if (str[0] == '-') { biguint ret = 0; std::istringstream istr(str); istr >> std::hex >> ret; return ret; } else { unsigned long long ret = 0; std::istringstream istr(str); istr >> std::hex >> ret; return (biguint)ret; } } // octal numbers: if (isOct(str)) { biguint ret = 0; std::istringstream istr(str); istr >> std::oct >> ret; return ret; } // binary numbers: if (isBin(str)) { biguint ret = 0; for (std::string::size_type i = str[0] == '0'?2:3; i < str.length(); i++) { ret <<= 1; if (str[i] == '1') ret |= 1; } /* if (str[0] == '-') ret = -ret; */ return ret; } if (isFloat(str)) { // Things are going to be less precise now: the value can't b represented in the biguint type. // Use min/max values as an approximation. See #5843 const double doubleval = std::atof(str.c_str()); if (doubleval > (double)std::numeric_limits::max()) return std::numeric_limits::max(); else return static_cast(doubleval); } biguint ret = 0; std::istringstream istr(str); istr >> ret; return ret; } MathLib::bigint MathLib::toLongNumber(const std::string & str) { // hexadecimal numbers: if (isHex(str)) { if (str[0] == '-') { bigint ret = 0; std::istringstream istr(str); istr >> std::hex >> ret; return ret; } else { unsigned long long ret = 0; std::istringstream istr(str); istr >> std::hex >> ret; return (bigint)ret; } } // octal numbers: if (isOct(str)) { bigint ret = 0; std::istringstream istr(str); istr >> std::oct >> ret; return ret; } // binary numbers: if (isBin(str)) { bigint ret = 0; for (std::string::size_type i = str[0] == '0'?2:3; i < str.length(); i++) { ret <<= 1; if (str[i] == '1') ret |= 1; } if (str[0] == '-') ret = -ret; return ret; } if (isFloat(str)) { // Things are going to be less precise now: the value can't be represented in the bigint type. // Use min/max values as an approximation. See #5843 const double doubleval = std::atof(str.c_str()); if (doubleval > (double)std::numeric_limits::max()) return std::numeric_limits::max(); else if (doubleval < (double)std::numeric_limits::min()) return std::numeric_limits::min(); else return static_cast(doubleval); } bigint ret = 0; std::istringstream istr(str); istr >> ret; return ret; } double MathLib::toDoubleNumber(const std::string &str) { if (isHex(str)) return static_cast(toLongNumber(str)); // nullcheck else if (isNullValue(str)) return 0.0; // otherwise, convert to double std::istringstream istr(str); double ret; istr >> ret; return ret; } template<> std::string MathLib::toString(double value) { std::ostringstream result; result.precision(12); result << value; if (result.str() == "-0") return "0.0"; if (result.str().find(".") == std::string::npos) return result.str() + ".0"; return result.str(); } bool MathLib::isFloat(const std::string &s) { if (s.empty()) return false; enum State { START, BASE_PLUSMINUS, BASE_DIGITS1, LEADING_DECIMAL, TRAILING_DECIMAL, BASE_DIGITS2, E, MANTISSA_PLUSMINUS, MANTISSA_DIGITS, F } state = START; for (std::string::const_iterator it = s.begin(); it != s.end(); ++it) { switch (state) { case START: if (*it=='+' || *it=='-') state=BASE_PLUSMINUS; else if (*it=='.') state=LEADING_DECIMAL; else if (std::isdigit(*it)) state=BASE_DIGITS1; else return false; break; case BASE_PLUSMINUS: if (*it=='.') state=LEADING_DECIMAL; else if (std::isdigit(*it)) state=BASE_DIGITS1; else if (*it=='e' || *it=='E') state=E; else return false; break; case LEADING_DECIMAL: if (std::isdigit(*it)) state=BASE_DIGITS2; else if (*it=='e' || *it=='E') state=E; else return false; break; case BASE_DIGITS1: if (*it=='e' || *it=='E') state=E; else if (*it=='.') state=TRAILING_DECIMAL; else if (!std::isdigit(*it)) return false; break; case TRAILING_DECIMAL: if (*it=='e' || *it=='E') state=E; else if (std::isdigit(*it)) state=BASE_DIGITS2; else return false; break; case BASE_DIGITS2: if (*it=='e' || *it=='E') state=E; else if (*it=='f' || *it=='F') state=F; else if (!std::isdigit(*it)) return false; break; case E: if (*it=='+' || *it=='-') state=MANTISSA_PLUSMINUS; else if (std::isdigit(*it)) state=MANTISSA_DIGITS; else return false; break; case MANTISSA_PLUSMINUS: if (!std::isdigit(*it)) return false; else state=MANTISSA_DIGITS; break; case MANTISSA_DIGITS: if (*it=='f' || *it=='F') state=F; else if (!std::isdigit(*it)) return false; break; case F: return false; } } return (state==BASE_DIGITS2 || state==MANTISSA_DIGITS || state==TRAILING_DECIMAL || state==F); } bool MathLib::isNegative(const std::string &s) { // remember position std::string::size_type n = 0; // eat up whitespace while (std::isspace(s[n])) ++n; // every negative number has a negative sign return (s[n] == '-'); } bool MathLib::isPositive(const std::string &s) { return !MathLib::isNegative(s); } /*! \brief Does the string represent an octal number? * In case leading or trailing white space is provided, the function * returns false. * Additional information can be found here: * http://gcc.gnu.org/onlinedocs/gcc/Binary-constants.html * * \param[in] s The string to check. In case the string is empty, the function returns false. * \return Return true in case a octal number is provided and false otherwise. **/ bool MathLib::isOct(const std::string& s) { enum Status { START, PLUSMINUS, OCTAL_PREFIX, DIGITS } state = START; for (std::string::const_iterator it = s.begin(); it != s.end(); ++it) { switch (state) { case START: if (*it == '+' || *it == '-') state = PLUSMINUS; else if (*it == '0') state = OCTAL_PREFIX; else return false; break; case PLUSMINUS: if (*it == '0') state = OCTAL_PREFIX; else return false; break; case OCTAL_PREFIX: if (isOctalDigit(*it)) state = DIGITS; else return false; break; case DIGITS: if (isOctalDigit(*it)) state = DIGITS; else return isValidSuffix(it,s.end()); break; } } return state == DIGITS; } bool MathLib::isHex(const std::string& s) { enum Status { START, PLUSMINUS, HEX_PREFIX, DIGIT, DIGITS } state = START; for (std::string::const_iterator it = s.begin(); it != s.end(); ++it) { switch (state) { case START: if (*it == '+' || *it == '-') state = PLUSMINUS; else if (*it == '0') state = HEX_PREFIX; else return false; break; case PLUSMINUS: if (*it == '0') state = HEX_PREFIX; else return false; break; case HEX_PREFIX: if (*it == 'x' || *it == 'X') state = DIGIT; else return false; break; case DIGIT: if (isxdigit(*it)) state = DIGITS; else return false; break; case DIGITS: if (isxdigit(*it)) state = DIGITS; else return isValidSuffix(it,s.end()); break; } } return state == DIGITS; } bool MathLib::isValidSuffix(std::string::const_iterator it, std::string::const_iterator end) { enum Status { START, SUFFIX_U, SUFFIX_UL, SUFFIX_ULL, SUFFIX_L, SUFFIX_LU, SUFFIX_LL, SUFFIX_LLU } state = START; for (; it != end; ++it) { switch (state) { case START: if (*it == 'u' || *it == 'U') state = SUFFIX_U; else if (*it == 'l' || *it == 'L') state = SUFFIX_L; else return false; break; case SUFFIX_U: if (*it == 'l' || *it == 'L') state = SUFFIX_UL; // UL else return false; break; case SUFFIX_UL: if (*it == 'l' || *it == 'L') state = SUFFIX_ULL; // ULL else return false; break; case SUFFIX_L: if (*it == 'u' || *it == 'U') state = SUFFIX_LU; // LU else if (*it == 'l' || *it == 'L') state = SUFFIX_LL; // LL else return false; break; case SUFFIX_LU: return false; case SUFFIX_LL: if (*it == 'u' || *it == 'U') state = SUFFIX_LLU; // LLU else return false; break; default: return false; } } return (state == SUFFIX_U) || (state == SUFFIX_L) || (state == SUFFIX_UL) || (state == SUFFIX_LU) || (state == SUFFIX_LL) || (state == SUFFIX_ULL) || (state == SUFFIX_LLU); } /*! \brief Does the string represent a binary number? * In case leading or trailing white space is provided, the function * returns false. * Additional information can be found here: * http://gcc.gnu.org/onlinedocs/gcc/Binary-constants.html * * \param[in] s The string to check. In case the string is empty, the function returns false. * \return Return true in case a binary number is provided and false otherwise. **/ bool MathLib::isBin(const std::string& s) { enum Status { START, PLUSMINUS, GNU_BIN_PREFIX, DIGIT, DIGITS } state = START; for (std::string::const_iterator it = s.begin(); it != s.end(); ++it) { switch (state) { case START: if (*it == '+' || *it == '-') state = PLUSMINUS; else if (*it == '0') state = GNU_BIN_PREFIX; else return false; break; case PLUSMINUS: if (*it == '0') state = GNU_BIN_PREFIX; else return false; break; case GNU_BIN_PREFIX: if (*it == 'b' || *it == 'B') state = DIGIT; else return false; break; case DIGIT: if (*it == '0' || *it == '1') state = DIGITS; else return false; break; case DIGITS: if (*it == '0' || *it == '1') state = DIGITS; else return isValidSuffix(it,s.end()); break; } } return state == DIGITS; } bool MathLib::isDec(const std::string & s) { enum Status { START, PLUSMINUS, DIGIT, SUFFIX } state = START; for (std::string::const_iterator it = s.begin(); it != s.end(); ++it) { switch (state) { case START: if (*it == '+' || *it == '-') state = PLUSMINUS; else if (isdigit(*it)) state = DIGIT; else return false; break; case PLUSMINUS: if (isdigit(*it)) state = DIGIT; else return false; break; case DIGIT: if (isdigit(*it)) state = DIGIT; else return isValidSuffix(it,s.end()); break; case SUFFIX: break; } } return state == DIGIT; } bool MathLib::isInt(const std::string & s) { return isDec(s) || isHex(s) || isOct(s); } std::string MathLib::add(const std::string & first, const std::string & second) { if (MathLib::isInt(first) && MathLib::isInt(second)) { return toString(toLongNumber(first) + toLongNumber(second)); } double d1 = toDoubleNumber(first); double d2 = toDoubleNumber(second); int count = 0; while (d1 > 100000.0 * d2 && toString(d1+d2)==first && ++count<5) d2 *= 10.0; while (d2 > 100000.0 * d1 && toString(d1+d2)==second && ++count<5) d1 *= 10.0; return toString(d1 + d2); } std::string MathLib::subtract(const std::string &first, const std::string &second) { if (MathLib::isInt(first) && MathLib::isInt(second)) { return toString(toLongNumber(first) - toLongNumber(second)); } if (first == second) return "0.0" ; double d1 = toDoubleNumber(first); double d2 = toDoubleNumber(second); int count = 0; while (d1 > 100000.0 * d2 && toString(d1-d2)==first && ++count<5) d2 *= 10.0; while (d2 > 100000.0 * d1 && toString(d1-d2)==second && ++count<5) d1 *= 10.0; return toString(d1 - d2); } std::string MathLib::divide(const std::string &first, const std::string &second) { if (MathLib::isInt(first) && MathLib::isInt(second)) { const bigint a = toLongNumber(first); const bigint b = toLongNumber(second); if (a == std::numeric_limits::min()) throw InternalError(0, "Internal Error: Division overflow"); if (b == 0) throw InternalError(0, "Internal Error: Division by zero"); return toString(toLongNumber(first) / b); } else if (isNullValue(second)) { if (isNullValue(first)) return "nan.0"; const int sign_first = (isPositive(first)) ? 1 : -1; const int sign_second = (isPositive(second)) ? 1 : -1; return (sign_first*sign_second == 1) ? "inf.0" : "-inf.0"; } return toString(toDoubleNumber(first) / toDoubleNumber(second)); } std::string MathLib::multiply(const std::string &first, const std::string &second) { if (MathLib::isInt(first) && MathLib::isInt(second)) { return toString(toLongNumber(first) * toLongNumber(second)); } return toString(toDoubleNumber(first) * toDoubleNumber(second)); } std::string MathLib::mod(const std::string &first, const std::string &second) { if (MathLib::isInt(first) && MathLib::isInt(second)) { bigint b = toLongNumber(second); if (b == 0) throw InternalError(0, "Internal Error: Division by zero"); return toString(toLongNumber(first) % b); } return toString(std::fmod(toDoubleNumber(first),toDoubleNumber(second))); } std::string MathLib::calculate(const std::string &first, const std::string &second, char action) { switch (action) { case '+': return MathLib::add(first, second); case '-': return MathLib::subtract(first, second); case '*': return MathLib::multiply(first, second); case '/': return MathLib::divide(first, second); case '%': return MathLib::mod(first, second); case '&': return MathLib::toString(MathLib::toLongNumber(first) & MathLib::toLongNumber(second)); case '|': return MathLib::toString(MathLib::toLongNumber(first) | MathLib::toLongNumber(second)); case '^': return MathLib::toString(MathLib::toLongNumber(first) ^ MathLib::toLongNumber(second)); default: throw InternalError(0, std::string("Unexpected action '") + action + "' in MathLib::calculate(). Please report this to Cppcheck developers."); } } std::string MathLib::sin(const std::string &tok) { return toString(std::sin(toDoubleNumber(tok))); } std::string MathLib::cos(const std::string &tok) { return toString(std::cos(toDoubleNumber(tok))); } std::string MathLib::tan(const std::string &tok) { return toString(std::tan(toDoubleNumber(tok))); } std::string MathLib::abs(const std::string &tok) { return toString(std::abs(toDoubleNumber(tok))); } bool MathLib::isEqual(const std::string &first, const std::string &second) { // this conversion is needed for formatting // e.g. if first=0.1 and second=1.0E-1, the direct comparison of the strings would fail return toString(toDoubleNumber(first)) == toString(toDoubleNumber(second)); } bool MathLib::isNotEqual(const std::string &first, const std::string &second) { return !isEqual(first, second); } bool MathLib::isGreater(const std::string &first, const std::string &second) { return toDoubleNumber(first) > toDoubleNumber(second); } bool MathLib::isGreaterEqual(const std::string &first, const std::string &second) { return toDoubleNumber(first) >= toDoubleNumber(second); } bool MathLib::isLess(const std::string &first, const std::string &second) { return toDoubleNumber(first) < toDoubleNumber(second); } bool MathLib::isLessEqual(const std::string &first, const std::string &second) { return toDoubleNumber(first) <= toDoubleNumber(second); } /*! \brief Does the string represent the numerical value of 0? * In case leading or trailing white space is provided, the function * returns false. * Requirement for this function: * - This code is allowed to be slow because of simplicity of the code. * * \param[in] str The string to check. In case the string is empty, the function returns false. * \return Return true in case the string represents a numerical null value. **/ bool MathLib::isNullValue(const std::string &str) { if (str.empty() || (!std::isdigit(static_cast(str[0])) && (str.size() < 1 || (str[0] != '.' && str[0] != '-' && str[0] != '+')))) return false; // Has to be a number for (size_t i = 0; i < str.size(); i++) { if (std::isdigit(static_cast(str[i])) && str[i] != '0') // May not contain digits other than 0 return false; if (str[i] == 'E' || str[i] == 'e') return true; } return true; } bool MathLib::isOctalDigit(char c) { return (c >= '0' && c <= '7'); }