/* * Cppcheck - A tool for static C/C++ code analysis * Copyright (C) 2007-2015 Daniel Marjamäki and Cppcheck team. * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ //--------------------------------------------------------------------------- #include "checkunusedvar.h" #include "symboldatabase.h" #include #include #include //--------------------------------------------------------------------------- // Register this check class (by creating a static instance of it) namespace { CheckUnusedVar instance; } /** * @brief This class is used create a list of variables within a function. */ class Variables { public: enum VariableType { standard, array, pointer, reference, pointerArray, referenceArray, pointerPointer, none }; /** Store information about variable usage */ class VariableUsage { public: explicit VariableUsage(const Variable *var = nullptr, VariableType type = standard, bool read = false, bool write = false, bool modified = false, bool allocateMemory = false) : _var(var), _lastAccess(var?var->nameToken():0), _type(type), _read(read), _write(write), _modified(modified), _allocateMemory(allocateMemory) { } /** variable is used.. set both read+write */ void use(std::list > & varReadInScope) { varReadInScope.back().insert(_var->declarationId()); _read = true; _write = true; } /** is variable unused? */ bool unused() const { return (_read == false && _write == false); } std::set _aliases; std::set _assignments; const Variable* _var; const Token* _lastAccess; VariableType _type; bool _read; bool _write; bool _modified; // read/modify/write bool _allocateMemory; }; class ScopeGuard { public: ScopeGuard(Variables & guarded, bool insideLoop) :_guarded(guarded), _insideLoop(insideLoop) { _guarded.enterScope(); } ~ScopeGuard() { _guarded.leaveScope(_insideLoop); } private: /** No implementation */ ScopeGuard& operator=(const ScopeGuard &); Variables & _guarded; bool _insideLoop; }; void clear() { _varUsage.clear(); } const std::map &varUsage() const { return _varUsage; } void addVar(const Variable *var, VariableType type, bool write_); void allocateMemory(unsigned int varid, const Token* tok); void read(unsigned int varid, const Token* tok); void readAliases(unsigned int varid, const Token* tok); void readAll(unsigned int varid, const Token* tok); void write(unsigned int varid, const Token* tok); void writeAliases(unsigned int varid, const Token* tok); void writeAll(unsigned int varid, const Token* tok); void use(unsigned int varid, const Token* tok); void modified(unsigned int varid, const Token* tok); VariableUsage *find(unsigned int varid); void alias(unsigned int varid1, unsigned int varid2, bool replace); void erase(unsigned int varid) { _varUsage.erase(varid); } void eraseAliases(unsigned int varid); void eraseAll(unsigned int varid); void clearAliases(unsigned int varid); ScopeGuard newScope(bool insideLoop) { return ScopeGuard(*this, insideLoop); } private: void enterScope(); void leaveScope(bool insideLoop); std::map _varUsage; std::list > _varAddedInScope; std::list > _varReadInScope; }; /** * Alias the 2 given variables. Either replace the existing aliases if * they exist or merge them. You would replace an existing alias when this * assignment is in the same scope as the previous assignment. You might * merge the aliases when this assignment is in a different scope from the * previous assignment depending on the relationship of the 2 scopes. */ void Variables::alias(unsigned int varid1, unsigned int varid2, bool replace) { VariableUsage *var1 = find(varid1); VariableUsage *var2 = find(varid2); if (!var1 || !var2) return; // alias to self if (varid1 == varid2) { var1->use(_varReadInScope); return; } if (replace) { // remove var1 from all aliases for (std::set::iterator i = var1->_aliases.begin(); i != var1->_aliases.end(); ++i) { VariableUsage *temp = find(*i); if (temp) temp->_aliases.erase(var1->_var->declarationId()); } // remove all aliases from var1 var1->_aliases.clear(); } // var1 gets all var2s aliases for (std::set::iterator i = var2->_aliases.begin(); i != var2->_aliases.end(); ++i) { if (*i != varid1) var1->_aliases.insert(*i); } // var2 is an alias of var1 var2->_aliases.insert(varid1); var1->_aliases.insert(varid2); if (var2->_type == Variables::pointer) { _varReadInScope.back().insert(varid2); var2->_read = true; } } void Variables::clearAliases(unsigned int varid) { VariableUsage *usage = find(varid); if (usage) { // remove usage from all aliases std::set::iterator i; for (i = usage->_aliases.begin(); i != usage->_aliases.end(); ++i) { VariableUsage *temp = find(*i); if (temp) temp->_aliases.erase(usage->_var->declarationId()); } // remove all aliases from usage usage->_aliases.clear(); } } void Variables::eraseAliases(unsigned int varid) { VariableUsage *usage = find(varid); if (usage) { std::set::iterator aliases; for (aliases = usage->_aliases.begin(); aliases != usage->_aliases.end(); ++aliases) erase(*aliases); } } void Variables::eraseAll(unsigned int varid) { eraseAliases(varid); erase(varid); } void Variables::addVar(const Variable *var, VariableType type, bool write_) { if (var->declarationId() > 0) { _varAddedInScope.back().insert(var->declarationId()); _varUsage.insert(std::make_pair(var->declarationId(), VariableUsage(var, type, false, write_, false))); } } void Variables::allocateMemory(unsigned int varid, const Token* tok) { VariableUsage *usage = find(varid); if (usage) { usage->_allocateMemory = true; usage->_lastAccess = tok; } } void Variables::read(unsigned int varid, const Token* tok) { VariableUsage *usage = find(varid); if (usage) { _varReadInScope.back().insert(varid); usage->_read = true; if (tok) usage->_lastAccess = tok; } } void Variables::readAliases(unsigned int varid, const Token* tok) { VariableUsage *usage = find(varid); if (usage) { std::set::iterator aliases; for (aliases = usage->_aliases.begin(); aliases != usage->_aliases.end(); ++aliases) { VariableUsage *aliased = find(*aliases); if (aliased) { _varReadInScope.back().insert(*aliases); aliased->_read = true; aliased->_lastAccess = tok; } } } } void Variables::readAll(unsigned int varid, const Token* tok) { read(varid, tok); readAliases(varid, tok); } void Variables::write(unsigned int varid, const Token* tok) { VariableUsage *usage = find(varid); if (usage) { usage->_write = true; if (!usage->_var->isStatic() && !Token::simpleMatch(tok->next(), "= 0 ;")) usage->_read = false; usage->_lastAccess = tok; } } void Variables::writeAliases(unsigned int varid, const Token* tok) { VariableUsage *usage = find(varid); if (usage) { std::set::iterator aliases; for (aliases = usage->_aliases.begin(); aliases != usage->_aliases.end(); ++aliases) { VariableUsage *aliased = find(*aliases); if (aliased) { aliased->_write = true; aliased->_lastAccess = tok; } } } } void Variables::writeAll(unsigned int varid, const Token* tok) { write(varid, tok); writeAliases(varid, tok); } void Variables::use(unsigned int varid, const Token* tok) { VariableUsage *usage = find(varid); if (usage) { usage->use(_varReadInScope); usage->_lastAccess = tok; std::set::iterator aliases; for (aliases = usage->_aliases.begin(); aliases != usage->_aliases.end(); ++aliases) { VariableUsage *aliased = find(*aliases); if (aliased) { aliased->use(_varReadInScope); aliased->_lastAccess = tok; } } } } void Variables::modified(unsigned int varid, const Token* tok) { VariableUsage *usage = find(varid); if (usage) { usage->_modified = true; usage->_lastAccess = tok; std::set::iterator aliases; for (aliases = usage->_aliases.begin(); aliases != usage->_aliases.end(); ++aliases) { VariableUsage *aliased = find(*aliases); if (aliased) { aliased->_modified = true; aliased->_lastAccess = tok; } } } } Variables::VariableUsage *Variables::find(unsigned int varid) { if (varid) { std::map::iterator i = _varUsage.find(varid); if (i != _varUsage.end()) return &i->second; } return 0; } void Variables::enterScope() { _varAddedInScope.push_back(std::set()); _varReadInScope.push_back(std::set()); } void Variables::leaveScope(bool insideLoop) { if (insideLoop) { // read variables are read again in subsequent run through loop std::set const & currentVarReadInScope = _varReadInScope.back(); for (std::set::const_iterator readIter = currentVarReadInScope.begin(); readIter != currentVarReadInScope.end(); ++readIter) { read(*readIter, nullptr); } } std::list >::reverse_iterator reverseReadIter = _varReadInScope.rbegin(); ++reverseReadIter; if (reverseReadIter != _varReadInScope.rend()) { // Transfer read variables into previous scope std::set const & currentVarAddedInScope = _varAddedInScope.back(); std::set & currentVarReadInScope = _varReadInScope.back(); for (std::set::const_iterator addedIter = currentVarAddedInScope.begin(); addedIter != currentVarAddedInScope.end(); ++addedIter) { currentVarReadInScope.erase(*addedIter); } std::set & previousVarReadInScope = *reverseReadIter; previousVarReadInScope.insert(currentVarReadInScope.begin(), currentVarReadInScope.end()); } _varReadInScope.pop_back(); _varAddedInScope.pop_back(); } static const Token* doAssignment(Variables &variables, const Token *tok, bool dereference, const Scope *scope) { // a = a + b; if (Token::Match(tok, "%var% = %var% !!;") && tok->varId() == tok->tokAt(2)->varId()) { return tok->tokAt(2); } const Token* const tokOld = tok; // check for aliased variable const unsigned int varid1 = tok->varId(); Variables::VariableUsage *var1 = variables.find(varid1); if (var1) { // jump behind '=' tok = tok->next(); while (tok->str() != "=") { if (tok->varId()) variables.read(tok->varId(), tok); tok = tok->next(); } tok = tok->next(); if (Token::Match(tok, "( const| struct|union| %type% * ) ( (")) tok = tok->link()->next(); if (Token::Match(tok, "( [(<] const| struct|union| %type% *| [>)]")) tok = tok->next(); if (Token::Match(tok, "(| &| %var%") || Token::Match(tok->next(), "< const| struct|union| %type% *| > ( &| %var%")) { bool addressOf = false; if (Token::Match(tok, "%var% .")) variables.use(tok->varId(), tok); // use = read + write // check for C style cast if (tok->str() == "(") { tok = tok->next(); if (tok->str() == "const") tok = tok->next(); if (Token::Match(tok, "struct|union")) tok = tok->next(); while ((tok->isName() && tok->varId() == 0) || (tok->str() == "*") || (tok->str() == ")")) tok = tok->next(); if (tok->str() == "&") { addressOf = true; tok = tok->next(); } else if (tok->str() == "(") { tok = tok->next(); if (tok->str() == "&") { addressOf = true; tok = tok->next(); } } else if (Token::Match(tok, "%cop% %var%")) { variables.read(tok->next()->varId(), tok); } } // check for C++ style cast else if (tok->str().find("cast") != std::string::npos && tok->strAt(1) == "<") { tok = tok->tokAt(2); if (tok->str() == "const") tok = tok->next(); if (Token::Match(tok, "struct|union")) tok = tok->next(); tok = tok->next(); if (tok->str() == "*") tok = tok->next(); tok = tok->tokAt(2); if (tok->str() == "&") { addressOf = true; tok = tok->next(); } } // no cast, no ? else if (!Token::Match(tok, "%var% ?")) { if (tok->str() == "&") { addressOf = true; tok = tok->next(); } else if (tok->str() == "new") return tokOld; } // check if variable is local unsigned int varid2 = tok->varId(); Variables::VariableUsage* var2 = variables.find(varid2); if (var2) { // local variable (alias or read it) if (var1->_type == Variables::pointer || var1->_type == Variables::pointerArray) { if (dereference) variables.read(varid2, tok); else { if (addressOf || var2->_type == Variables::array || var2->_type == Variables::pointer) { bool replace = true; // pointerArray => don't replace if (var1->_type == Variables::pointerArray) replace = false; // check if variable declared in same scope else if (scope == var1->_var->scope()) replace = true; // not in same scope as declaration else { // no other assignment in this scope if (var1->_assignments.find(scope) == var1->_assignments.end() || scope->type == Scope::eSwitch) { // nothing to replace if (var1->_assignments.empty()) replace = false; // this variable has previous assignments else { /** * @todo determine if existing aliases should be replaced or merged */ replace = false; } } // assignment in this scope else { // replace when only one other assignment, merge them otherwise replace = (var1->_assignments.size() == 1); } } variables.alias(varid1, varid2, replace); } else if (tok->strAt(1) == "?") { if (var2->_type == Variables::reference) variables.readAliases(varid2, tok); else variables.read(varid2, tok); } else { variables.readAll(varid2, tok); } } } else if (var1->_type == Variables::reference) { variables.alias(varid1, varid2, true); } else { if ((var2->_type == Variables::pointer || var2->_type == Variables::pointerArray) && tok->strAt(1) == "[") variables.readAliases(varid2, tok); variables.read(varid2, tok); } } else { // not a local variable (or an unsupported local variable) if (var1->_type == Variables::pointer && !dereference) { // check if variable declaration is in this scope if (var1->_var->scope() == scope) variables.clearAliases(varid1); else { // no other assignment in this scope if (var1->_assignments.find(scope) == var1->_assignments.end()) { /** * @todo determine if existing aliases should be discarded */ } // this assignment replaces the last assignment in this scope else { // aliased variables in a larger scope are not supported // remove all aliases variables.clearAliases(varid1); } } } } } else tok = tokOld; var1->_assignments.insert(scope); } // check for alias to struct member // char c[10]; a.b = c; else if (Token::Match(tok->tokAt(-2), "%var% .")) { if (tok->tokAt(2)->varId()) { unsigned int varid2 = tok->tokAt(2)->varId(); Variables::VariableUsage *var2 = variables.find(varid2); // struct member aliased to local variable if (var2 && (var2->_type == Variables::array || var2->_type == Variables::pointer)) { // erase aliased variable and all variables that alias it // to prevent false positives variables.eraseAll(varid2); } } } // Possible pointer alias else if (Token::Match(tok, "%var% = %var% ;")) { const unsigned int varid2 = tok->tokAt(2)->varId(); Variables::VariableUsage *var2 = variables.find(varid2); if (var2 && (var2->_type == Variables::array || var2->_type == Variables::pointer)) { variables.use(varid2,tok); } } return tok; } static bool isPartOfClassStructUnion(const Token* tok) { for (; tok; tok = tok->previous()) { if (tok->str() == "}" || tok->str() == ")") tok = tok->link(); else if (tok->str() == "(") return (false); else if (tok->str() == "{") { return (tok->strAt(-1) == "struct" || tok->strAt(-2) == "struct" || tok->strAt(-1) == "class" || tok->strAt(-2) == "class" || tok->strAt(-1) == "union" || tok->strAt(-2) == "union"); } } return false; } // Skip [ .. ] static const Token * skipBrackets(const Token *tok) { while (tok && tok->str() == "[") tok = tok->link()->next(); return tok; } // Skip [ .. ] . x static const Token * skipBracketsAndMembers(const Token *tok) { while (tok) { if (tok->str() == "[") tok = tok->link()->next(); else if (Token::Match(tok, ". %var%")) tok = tok->tokAt(2); else break; } return tok; } //--------------------------------------------------------------------------- // Usage of function variables //--------------------------------------------------------------------------- void CheckUnusedVar::checkFunctionVariableUsage_iterateScopes(const Scope* const scope, Variables& variables, bool insideLoop) { Variables::ScopeGuard scopeGuard=variables.newScope(insideLoop); // Find declarations if the scope is executable.. if (scope->isExecutable()) { // Find declarations for (std::list::const_iterator i = scope->varlist.begin(); i != scope->varlist.end(); ++i) { if (i->isThrow() || i->isExtern()) continue; Variables::VariableType type = Variables::none; if (i->isArray() && (i->nameToken()->previous()->str() == "*" || i->nameToken()->strAt(-2) == "*")) type = Variables::pointerArray; else if (i->isArray() && i->nameToken()->previous()->str() == "&") type = Variables::referenceArray; else if (i->isArray()) type = Variables::array; else if (i->isReference()) type = Variables::reference; else if (i->nameToken()->previous()->str() == "*" && i->nameToken()->strAt(-2) == "*") type = Variables::pointerPointer; else if (i->isPointer()) type = Variables::pointer; else if (_tokenizer->isC() || i->typeEndToken()->isStandardType() || isRecordTypeWithoutSideEffects(i->type()) || (i->isStlType() && !Token::Match(i->typeStartToken()->tokAt(2), "lock_guard|unique_lock|shared_ptr|unique_ptr|auto_ptr|shared_lock"))) type = Variables::standard; if (type == Variables::none || isPartOfClassStructUnion(i->typeStartToken())) continue; const Token* defValTok = i->nameToken()->next(); for (; defValTok; defValTok = defValTok->next()) { if (defValTok->str() == "[") defValTok = defValTok->link(); else if (defValTok->str() == "(" || defValTok->str() == "{" || defValTok->str() == "=") { variables.addVar(&*i, type, true); break; } else if (defValTok->str() == ";" || defValTok->str() == "," || defValTok->str() == ")") { variables.addVar(&*i, type, i->isStatic()); break; } } if (i->isArray() && i->isClass()) // Array of class/struct members. Initialized by ctor. variables.write(i->declarationId(), i->nameToken()); if (i->isArray() && Token::Match(i->nameToken(), "%var% [ %var% ]")) // Array index variable read. variables.read(i->nameToken()->tokAt(2)->varId(), i->nameToken()); if (defValTok && defValTok->str() == "=") { if (defValTok->next() && defValTok->next()->str() == "{") { for (const Token* tok = defValTok; tok && tok != defValTok->linkAt(1); tok = tok->next()) if (tok->varId()) // Variables used to initialize the array read. variables.read(tok->varId(), i->nameToken()); } else doAssignment(variables, i->nameToken(), false, scope); } } } // Check variable usage const Token *tok; if (scope->type == Scope::eFunction) tok = scope->classStart->next(); else tok = scope->classDef->next(); for (; tok && tok != scope->classEnd; tok = tok->next()) { if (tok->str() == "for" || tok->str() == "while" || tok->str() == "do") { for (std::list::const_iterator i = scope->nestedList.begin(); i != scope->nestedList.end(); ++i) { if ((*i)->classDef == tok) { // Find associated scope checkFunctionVariableUsage_iterateScopes(*i, variables, true); // Scan child scope tok = (*i)->classStart->link(); break; } } if (!tok) break; } if (tok->str() == "{" && tok != scope->classStart && !tok->previous()->varId()) { for (std::list::const_iterator i = scope->nestedList.begin(); i != scope->nestedList.end(); ++i) { if ((*i)->classStart == tok) { // Find associated scope checkFunctionVariableUsage_iterateScopes(*i, variables, false); // Scan child scope tok = tok->link(); break; } } if (!tok) break; } if (Token::Match(tok, "asm ( %str% )")) { variables.clear(); break; } if (Token::simpleMatch(tok, "goto")) { // https://sourceforge.net/apps/trac/cppcheck/ticket/4447 variables.clear(); break; } // bailout when for_each is used if (Token::Match(tok, "%var% (") && Token::simpleMatch(tok->linkAt(1), ") {") && !Token::Match(tok, "if|for|while|switch")) { // does the name contain "for_each" or "foreach"? std::string nameTok; nameTok.resize(tok->str().size()); std::transform(tok->str().begin(), tok->str().end(), nameTok.begin(), ::tolower); if (nameTok.find("foreach") != std::string::npos || nameTok.find("for_each") != std::string::npos) { // bailout all variables in the body that are used more than once. // TODO: there is no need to bailout if variable is only read or only written std::set varid; const Token * const endTok = tok->linkAt(1)->linkAt(1); for (const Token *tok2 = endTok->link(); tok2 && tok2 != endTok; tok2 = tok2->next()) { if (tok2->varId()) { if (varid.find(tok2->varId()) == varid.end()) varid.insert(tok2->varId()); else variables.erase(tok2->varId()); } } } } // C++11 std::for_each // No warning should be written if a variable is first read and // then written in the body. else if (Token::simpleMatch(tok, "for_each (") && Token::simpleMatch(tok->linkAt(1), ") ;")) { const Token *end = tok->linkAt(1); if (end->previous()->str() == "}") { std::set readvar; for (const Token *body = end->linkAt(-1); body != end; body = body->next()) { if (body->varId() == 0U) continue; if (!Token::simpleMatch(body->next(),"=")) readvar.insert(body->varId()); else if (readvar.find(body->varId()) != readvar.end()) variables.erase(body->varId()); } } } else if (Token::Match(tok->previous(), "[;{}]")) { for (const Token* tok2 = tok->next(); tok2; tok2 = tok2->next()) { if (tok2->varId()) { const Variable *var = tok2->variable(); if (var && var->nameToken() == tok2) { // Declaration: Skip tok = tok2->next(); if (Token::Match(tok, "( %var% )")) // Simple initialization through copy ctor tok = tok->next(); else if (Token::Match(tok, "= %var% ;")) { // Simple initialization tok = tok->next(); if (!var->isReference()) variables.read(tok->varId(), tok); } else if (var->typeEndToken()->str() == ">") // Be careful with types like std::vector tok = tok->previous(); break; } } else if (Token::Match(tok2, "[;({=]")) break; } } // Freeing memory (not considered "using" the pointer if it was also allocated in this function) if (Token::Match(tok, "free|g_free|kfree|vfree ( %var% )") || Token::Match(tok, "delete %var% ;") || Token::Match(tok, "delete [ ] %var% ;")) { unsigned int varid = 0; if (tok->str() != "delete") { varid = tok->tokAt(2)->varId(); tok = tok->tokAt(3); } else if (tok->strAt(1) == "[") { varid = tok->tokAt(3)->varId(); tok = tok->tokAt(3); } else { varid = tok->next()->varId(); tok = tok->next(); } Variables::VariableUsage *var = variables.find(varid); if (var && !var->_allocateMemory) { variables.readAll(varid, tok); } } else if (Token::Match(tok, "return|throw")) { for (const Token *tok2 = tok->next(); tok2; tok2 = tok2->next()) { if (tok2->varId()) variables.readAll(tok2->varId(), tok); else if (tok2->str() == ";") break; } } else if (Token::Match(tok->tokAt(-2), "while|if") && tok->strAt(1) == "=" && tok->varId() && tok->varId() == tok->tokAt(2)->varId()) { variables.use(tok->tokAt(2)->varId(), tok); } // assignment else if (Token::Match(tok, "*| ++|--| %var% ++|--| =") || Token::Match(tok, "*| ( const| %type% *| ) %var% =")) { bool dereference = false; bool pre = false; bool post = false; if (tok->str() == "*") { dereference = true; tok = tok->next(); } if (Token::Match(tok, "( const| %type% *| ) %var% =")) tok = tok->link()->next(); else if (tok->str() == "(") tok = tok->next(); if (tok->type() == Token::eIncDecOp) { pre = true; tok = tok->next(); } if (tok->next()->type() == Token::eIncDecOp) post = true; const unsigned int varid1 = tok->varId(); const Token * const start = tok; tok = doAssignment(variables, tok, dereference, scope); if (pre || post) variables.use(varid1, tok); if (dereference) { Variables::VariableUsage *var = variables.find(varid1); if (var && var->_type == Variables::array) variables.write(varid1, tok); variables.writeAliases(varid1, tok); variables.read(varid1, tok); } else { Variables::VariableUsage *var = variables.find(varid1); if (var && start->strAt(-1) == ",") { variables.use(varid1, tok); } else if (var && var->_type == Variables::reference) { variables.writeAliases(varid1, tok); variables.read(varid1, tok); } // Consider allocating memory separately because allocating/freeing alone does not constitute using the variable else if (var && var->_type == Variables::pointer && Token::Match(start, "%var% = new|malloc|calloc|kmalloc|kzalloc|kcalloc|strdup|strndup|vmalloc|g_new0|g_try_new|g_new|g_malloc|g_malloc0|g_try_malloc|g_try_malloc0|g_strdup|g_strndup|g_strdup_printf")) { bool allocate = true; if (start->strAt(2) == "new") { const Token *type = start->tokAt(3); // skip nothrow if (Token::simpleMatch(type, "( nothrow )") || Token::simpleMatch(type, "( std :: nothrow )")) type = type->link()->next(); // is it a user defined type? if (!type->isStandardType()) { const Variable *variable = start->variable(); if (!variable || !isRecordTypeWithoutSideEffects(variable->type())) allocate = false; } } if (allocate) variables.allocateMemory(varid1, tok); else variables.write(varid1, tok); } else if (varid1 && Token::Match(tok, "%varid% .", varid1)) { variables.use(varid1, tok); } else { variables.write(varid1, tok); } Variables::VariableUsage *var2 = variables.find(tok->varId()); if (var2) { if (var2->_type == Variables::reference) { variables.writeAliases(tok->varId(), tok); variables.read(tok->varId(), tok); } else if (tok->varId() != varid1 && Token::Match(tok, "%var% .")) variables.read(tok->varId(), tok); else if (tok->varId() != varid1 && var2->_type == Variables::standard && tok->strAt(-1) != "&") variables.use(tok->varId(), tok); } } const Token * const equal = skipBracketsAndMembers(tok->next()); // checked for chained assignments if (tok != start && equal && equal->str() == "=") { unsigned int varId = tok->varId(); Variables::VariableUsage *var = variables.find(varId); if (var && var->_type != Variables::reference) { variables.read(varId,tok); } tok = tok->previous(); } } // assignment else if ((Token::Match(tok, "%var% [") && Token::simpleMatch(skipBracketsAndMembers(tok->next()), "=")) || (Token::simpleMatch(tok, "* (") && Token::simpleMatch(tok->next()->link(), ") ="))) { if (tok->str() == "*") { tok = tok->tokAt(2); if (tok->str() == "(") tok = tok->link()->next(); } unsigned int varid = tok->varId(); const Variables::VariableUsage *var = variables.find(varid); if (var) { // Consider allocating memory separately because allocating/freeing alone does not constitute using the variable if (var->_type == Variables::pointer && Token::Match(skipBrackets(tok->next()), "= new|malloc|calloc|kmalloc|kzalloc|kcalloc|strdup|strndup|vmalloc|g_new0|g_try_new|g_new|g_malloc|g_malloc0|g_try_malloc|g_try_malloc0|g_strdup|g_strndup|g_strdup_printf")) { variables.allocateMemory(varid, tok); } else if (var->_type == Variables::pointer || var->_type == Variables::reference) { variables.read(varid, tok); variables.writeAliases(varid, tok); } else if (var->_type == Variables::pointerArray) { tok = doAssignment(variables, tok, false, scope); } else variables.writeAll(varid, tok); } } else if (_tokenizer->isCPP() && Token::Match(tok, "[;{}] %var% <<")) { variables.erase(tok->next()->varId()); } else if (Token::Match(tok, "& %var%")) { if (tok->astOperand2()) { // bitop variables.read(tok->next()->varId(), tok); } else // addressof variables.use(tok->next()->varId(), tok); // use = read + write } else if (Token::Match(tok, ">>|>>= %var%")) { if (_tokenizer->isC() || (tok->previous()->variable() && tok->previous()->variable()->typeEndToken()->isStandardType() && tok->astOperand1() && tok->astOperand1()->str() != ">>")) variables.read(tok->next()->varId(), tok); else variables.use(tok->next()->varId(), tok); // use = read + write } else if (Token::Match(tok, "%var% >>|&") && Token::Match(tok->previous(), "[{};:]")) { variables.read(tok->varId(), tok); } // function parameter else if (Token::Match(tok, "[(,] %var% [")) { variables.use(tok->next()->varId(), tok); // use = read + write } else if (Token::Match(tok, "[(,] %var% [,)]") && tok->previous()->str() != "*") { variables.use(tok->next()->varId(), tok); // use = read + write } else if (Token::Match(tok, "[(,] (") && Token::Match(tok->next()->link(), ") %var% [,)]")) { variables.use(tok->next()->link()->next()->varId(), tok); // use = read + write } // function else if (Token::Match(tok, "%var% (")) { variables.read(tok->varId(), tok); } else if (Token::Match(tok->previous(), "[{,] %var% [,}]")) { variables.read(tok->varId(), tok); } else if (tok->varId() && Token::Match(tok, "%var% .")) { variables.use(tok->varId(), tok); // use = read + write } else if (tok->isExtendedOp() && tok->next() && tok->next()->varId() && tok->strAt(2) != "=") { variables.readAll(tok->next()->varId(), tok); } else if (tok->varId() && tok->next() && (tok->next()->str() == ")" || tok->next()->isExtendedOp())) { variables.readAll(tok->varId(), tok); } else if (Token::Match(tok, "%var% ;") && Token::Match(tok->previous(), "[;{}:]")) { variables.readAll(tok->varId(), tok); } // ++|-- else if (tok->next() && tok->next()->type() == Token::eIncDecOp && tok->next()->astOperand1() && tok->next()->astOperand1()->varId()) { if (tok->next()->astParent()) variables.use(tok->next()->astOperand1()->varId(), tok); else variables.modified(tok->next()->astOperand1()->varId(), tok); } else if (tok->isAssignmentOp()) { for (const Token *tok2 = tok->next(); tok2 && tok2->str() != ";"; tok2 = tok2->next()) { if (tok2->varId()) { if (tok2->strAt(1) == "=") variables.write(tok2->varId(), tok); else if (tok2->next()->isAssignmentOp()) variables.use(tok2->varId(), tok); else variables.read(tok2->varId(), tok); } } } } } void CheckUnusedVar::checkFunctionVariableUsage() { if (!_settings->isEnabled("style")) return; // Parse all executing scopes.. const SymbolDatabase *symbolDatabase = _tokenizer->getSymbolDatabase(); // only check functions const std::size_t functions = symbolDatabase->functionScopes.size(); for (std::size_t i = 0; i < functions; ++i) { const Scope * scope = symbolDatabase->functionScopes[i]; // varId, usage {read, write, modified} Variables variables; checkFunctionVariableUsage_iterateScopes(&*scope, variables, false); // Check usage of all variables in the current scope.. for (std::map::const_iterator it = variables.varUsage().begin(); it != variables.varUsage().end(); ++it) { const Variables::VariableUsage &usage = it->second; // variable has been marked as unused so ignore it if (usage._var->nameToken()->isAttributeUnused() || usage._var->nameToken()->isAttributeUsed()) continue; // skip things that are only partially implemented to prevent false positives if (usage._type == Variables::pointerPointer || usage._type == Variables::pointerArray || usage._type == Variables::referenceArray) continue; const std::string &varname = usage._var->name(); const Variable* var = symbolDatabase->getVariableFromVarId(it->first); // variable has had memory allocated for it, but hasn't done // anything with that memory other than, perhaps, freeing it if (usage.unused() && !usage._modified && usage._allocateMemory) allocatedButUnusedVariableError(usage._lastAccess, varname); // variable has not been written, read, or modified else if (usage.unused() && !usage._modified) unusedVariableError(usage._var->nameToken(), varname); // variable has not been written but has been modified else if (usage._modified && !usage._write && !usage._allocateMemory && var && !var->isStlType()) unassignedVariableError(usage._var->nameToken(), varname); // variable has been written but not read else if (!usage._read && !usage._modified) unreadVariableError(usage._lastAccess, varname); // variable has been read but not written else if (!usage._write && !usage._allocateMemory && !var->isStlType() && var && !isEmptyType(var->type())) unassignedVariableError(usage._var->nameToken(), varname); } } } void CheckUnusedVar::unusedVariableError(const Token *tok, const std::string &varname) { reportError(tok, Severity::style, "unusedVariable", "Unused variable: " + varname); } void CheckUnusedVar::allocatedButUnusedVariableError(const Token *tok, const std::string &varname) { reportError(tok, Severity::style, "unusedAllocatedMemory", "Variable '" + varname + "' is allocated memory that is never used."); } void CheckUnusedVar::unreadVariableError(const Token *tok, const std::string &varname) { reportError(tok, Severity::style, "unreadVariable", "Variable '" + varname + "' is assigned a value that is never used."); } void CheckUnusedVar::unassignedVariableError(const Token *tok, const std::string &varname) { reportError(tok, Severity::style, "unassignedVariable", "Variable '" + varname + "' is not assigned a value."); } //--------------------------------------------------------------------------- // Check that all struct members are used //--------------------------------------------------------------------------- void CheckUnusedVar::checkStructMemberUsage() { if (!_settings->isEnabled("style")) return; std::string structname; for (const Token *tok = _tokenizer->tokens(); tok; tok = tok->next()) { if (tok->fileIndex() != 0) continue; if (Token::Match(tok, "struct|union %type% {")) { structname = tok->strAt(1); // Bail out if struct/union contain any functions for (const Token *tok2 = tok->tokAt(2); tok2; tok2 = tok2->next()) { if (tok2->str() == "(") { structname.clear(); break; } if (tok2->str() == "}") break; } // bail out if struct is inherited if (!structname.empty() && Token::findmatch(tok, (",|private|protected|public " + structname).c_str())) structname.clear(); // Bail out if some data is casted to struct.. const std::string s("( struct| " + tok->next()->str() + " * ) & %var% ["); if (Token::findmatch(tok, s.c_str())) structname.clear(); // Bail out if instance is initialized with {}.. if (!structname.empty()) { const std::string pattern1(structname + " %var% ;"); const Token *tok2 = tok; while (nullptr != (tok2 = Token::findmatch(tok2->next(), pattern1.c_str()))) { if (Token::simpleMatch(tok2->tokAt(3), (tok2->strAt(1) + " = {").c_str())) { structname.clear(); break; } } } // bail out for extern/global struct for (const Token *tok2 = Token::findmatch(tok, (structname + " %var%").c_str()); tok2 && tok2->next(); tok2 = Token::findmatch(tok2->next(), (structname + " %var%").c_str())) { const Variable *var = tok2->next()->variable(); if (var && (var->isExtern() || (var->isGlobal() && !var->isStatic()))) { structname.clear(); break; } } if (structname.empty()) continue; // Try to prevent false positives when struct members are not used directly. if (Token::findmatch(tok, (structname + " *").c_str())) structname.clear(); else if (Token::findmatch(tok, (structname + " %type% *").c_str())) structname = ""; } if (tok->str() == "}") structname.clear(); if (!structname.empty() && Token::Match(tok, "[{;]")) { // Declaring struct variable.. std::string varname; // declaring a POD variable? if (!tok->next()->isStandardType()) continue; if (Token::Match(tok->next(), "%type% %var% [;[]")) varname = tok->strAt(2); else if (Token::Match(tok->next(), "%type% %type%|* %var% [;[]")) varname = tok->strAt(3); else if (Token::Match(tok->next(), "%type% %type% * %var% [;[]")) varname = tok->strAt(4); else continue; // Check if the struct variable is used anywhere in the file const std::string usagePattern(". " + varname); bool used = false; for (const Token *tok2 = _tokenizer->tokens(); tok2; tok2 = tok2->next()) { if (Token::simpleMatch(tok2, usagePattern.c_str())) { used = true; break; } } if (! used) { unusedStructMemberError(tok->next(), structname, varname); } } } } void CheckUnusedVar::unusedStructMemberError(const Token *tok, const std::string &structname, const std::string &varname) { reportError(tok, Severity::style, "unusedStructMember", "struct or union member '" + structname + "::" + varname + "' is never used."); } bool CheckUnusedVar::isRecordTypeWithoutSideEffects(const Type* type) { // a type that has no side effects (no constructors and no members with constructors) /** @todo false negative: check constructors for side effects */ std::pair::iterator,bool> found=isRecordTypeWithoutSideEffectsMap.insert( std::pair(type,false)); //Initialize with side effects for possible recursions bool & withoutSideEffects=found.first->second; if (!found.second) return withoutSideEffects; if (type && type->classScope && type->classScope->numConstructors == 0 && (type->classScope->varlist.empty() || type->needInitialization == Type::True)) { for (std::vector::const_iterator i = type->derivedFrom.begin(); i != type->derivedFrom.end(); ++i) { if (!isRecordTypeWithoutSideEffects(i->type)) { withoutSideEffects=false; return withoutSideEffects; } } withoutSideEffects=true; return withoutSideEffects; } withoutSideEffects=false; // unknown types are assumed to have side effects return withoutSideEffects; } bool CheckUnusedVar::isEmptyType(const Type* type) { // a type that has no variables and no constructor std::pair::iterator,bool> found=isEmptyTypeMap.insert( std::pair(type,false)); bool & emptyType=found.first->second; if (!found.second) return emptyType; if (type && type->classScope && type->classScope->numConstructors == 0 && (type->classScope->varlist.empty())) { for (std::vector::const_iterator i = type->derivedFrom.begin(); i != type->derivedFrom.end(); ++i) { if (!isEmptyType(i->type)) { emptyType=false; return emptyType; } } emptyType=true; return emptyType; } emptyType=false; // unknown types are assumed to be nonempty return emptyType; }