cppcheck/lib/symboldatabase.cpp

7746 lines
302 KiB
C++

/*
* Cppcheck - A tool for static C/C++ code analysis
* Copyright (C) 2007-2023 Cppcheck team.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
//---------------------------------------------------------------------------
#include "symboldatabase.h"
#include "astutils.h"
#include "errorlogger.h"
#include "errortypes.h"
#include "keywords.h"
#include "library.h"
#include "mathlib.h"
#include "path.h"
#include "platform.h"
#include "settings.h"
#include "standards.h"
#include "templatesimplifier.h"
#include "token.h"
#include "tokenize.h"
#include "tokenlist.h"
#include "utils.h"
#include "valueflow.h"
#include <algorithm>
#include <cassert>
#include <cstring>
#include <initializer_list>
#include <iomanip>
#include <iostream>
#include <limits>
#include <sstream> // IWYU pragma: keep
#include <stack>
#include <string>
#include <tuple>
#include <type_traits>
#include <unordered_map>
#include <unordered_set>
//---------------------------------------------------------------------------
SymbolDatabase::SymbolDatabase(Tokenizer& tokenizer, const Settings& settings, ErrorLogger* errorLogger)
: mTokenizer(tokenizer), mSettings(settings), mErrorLogger(errorLogger)
{
if (!mTokenizer.tokens())
return;
mIsCpp = isCPP();
if (mSettings.platform.defaultSign == 's' || mSettings.platform.defaultSign == 'S')
mDefaultSignedness = ValueType::SIGNED;
else if (mSettings.platform.defaultSign == 'u' || mSettings.platform.defaultSign == 'U')
mDefaultSignedness = ValueType::UNSIGNED;
else
mDefaultSignedness = ValueType::UNKNOWN_SIGN;
createSymbolDatabaseFindAllScopes();
createSymbolDatabaseClassInfo();
createSymbolDatabaseVariableInfo();
createSymbolDatabaseCopyAndMoveConstructors();
createSymbolDatabaseFunctionScopes();
createSymbolDatabaseClassAndStructScopes();
createSymbolDatabaseFunctionReturnTypes();
createSymbolDatabaseNeedInitialization();
createSymbolDatabaseVariableSymbolTable();
createSymbolDatabaseSetScopePointers();
createSymbolDatabaseSetVariablePointers();
setValueTypeInTokenList(false);
createSymbolDatabaseSetTypePointers();
createSymbolDatabaseSetFunctionPointers(true);
createSymbolDatabaseSetSmartPointerType();
setValueTypeInTokenList(false);
createSymbolDatabaseEnums();
createSymbolDatabaseEscapeFunctions();
createSymbolDatabaseIncompleteVars();
createSymbolDatabaseExprIds();
debugSymbolDatabase();
}
static const Token* skipScopeIdentifiers(const Token* tok)
{
if (Token::Match(tok, ":: %name%"))
tok = tok->next();
while (Token::Match(tok, "%name% ::") ||
(Token::Match(tok, "%name% <") && Token::Match(tok->linkAt(1), ">|>> ::"))) {
if (tok->strAt(1) == "::")
tok = tok->tokAt(2);
else
tok = tok->linkAt(1)->tokAt(2);
}
return tok;
}
static bool isExecutableScope(const Token* tok)
{
if (!Token::simpleMatch(tok, "{"))
return false;
const Token * tok2 = tok->link()->previous();
if (Token::simpleMatch(tok2, "; }"))
return true;
if (tok2 == tok)
return false;
if (Token::simpleMatch(tok2, "} }")) { // inner scope
const Token* startTok = tok2->link();
if (Token::Match(startTok->previous(), "do|try|else {"))
return true;
if (Token::Match(startTok->previous(), ")|] {"))
return !findLambdaStartToken(tok2);
return isExecutableScope(startTok);
}
return false;
}
void SymbolDatabase::createSymbolDatabaseFindAllScopes()
{
// create global scope
scopeList.emplace_back(this, nullptr, nullptr);
// pointer to current scope
Scope *scope = &scopeList.back();
// Store the ending of init lists
std::stack<std::pair<const Token*, const Scope*>> endInitList;
auto inInitList = [&] {
if (endInitList.empty())
return false;
return endInitList.top().second == scope;
};
auto addLambda = [this, &scope](const Token* tok, const Token* lambdaEndToken) -> const Token* {
const Token* lambdaStartToken = lambdaEndToken->link();
const Token* argStart = lambdaStartToken->astParent();
const Token* funcStart = Token::simpleMatch(argStart, "[") ? argStart : argStart->astParent();
const Function* function = addGlobalFunction(scope, tok, argStart, funcStart);
if (!function)
mTokenizer.syntaxError(tok);
return lambdaStartToken;
};
// Store current access in each scope (depends on evaluation progress)
std::map<const Scope*, AccessControl> access;
// find all scopes
for (const Token *tok = mTokenizer.tokens(); tok; tok = tok ? tok->next() : nullptr) {
// #5593 suggested to add here:
if (mErrorLogger)
mErrorLogger->reportProgress(mTokenizer.list.getSourceFilePath(),
"SymbolDatabase",
tok->progressValue());
// Locate next class
if ((mTokenizer.isCPP() && tok->isKeyword() &&
((Token::Match(tok, "class|struct|union|namespace ::| %name% final| {|:|::|<") &&
!Token::Match(tok->previous(), "new|friend|const|enum|typedef|mutable|volatile|using|)|(|<")) ||
(Token::Match(tok, "enum class| %name% {") ||
Token::Match(tok, "enum class| %name% : %name% {"))))
|| (mTokenizer.isC() && tok->isKeyword() && Token::Match(tok, "struct|union|enum %name% {"))) {
const Token *tok2 = tok->tokAt(2);
if (tok->strAt(1) == "::")
tok2 = tok2->next();
else if (mTokenizer.isCPP() && tok->strAt(1) == "class")
tok2 = tok2->next();
while (Token::Match(tok2, ":: %name%"))
tok2 = tok2->tokAt(2);
while (Token::Match(tok2, "%name% :: %name%"))
tok2 = tok2->tokAt(2);
// skip over template args
while (tok2 && tok2->str() == "<" && tok2->link()) {
tok2 = tok2->link()->next();
while (Token::Match(tok2, ":: %name%"))
tok2 = tok2->tokAt(2);
}
// skip over final
if (mTokenizer.isCPP() && Token::simpleMatch(tok2, "final"))
tok2 = tok2->next();
// make sure we have valid code
if (!Token::Match(tok2, "{|:")) {
// check for qualified variable
if (tok2 && tok2->next()) {
if (tok2->next()->str() == ";")
tok = tok2->next();
else if (Token::simpleMatch(tok2->next(), "= {") &&
Token::simpleMatch(tok2->linkAt(2), "} ;"))
tok = tok2->linkAt(2)->next();
else if (Token::Match(tok2->next(), "(|{") &&
tok2->next()->link()->strAt(1) == ";")
tok = tok2->next()->link()->next();
// skip variable declaration
else if (Token::Match(tok2, "*|&|>"))
continue;
else if (Token::Match(tok2, "%name% (") && mTokenizer.isFunctionHead(tok2->next(), "{;"))
continue;
else if (Token::Match(tok2, "%name% [|="))
continue;
// skip template
else if (Token::simpleMatch(tok2, ";") &&
Token::Match(tok->previous(), "template|> class|struct")) {
tok = tok2;
continue;
}
// forward declaration
else if (Token::simpleMatch(tok2, ";") &&
Token::Match(tok, "class|struct|union")) {
// TODO: see if it can be used
tok = tok2;
continue;
}
// skip constructor
else if (Token::simpleMatch(tok2, "(") &&
Token::simpleMatch(tok2->link(), ") ;")) {
tok = tok2->link()->next();
continue;
} else
throw InternalError(tok2, "SymbolDatabase bailout; unhandled code", InternalError::SYNTAX);
continue;
}
break; // bail
}
const Token * name = tok->next();
if (name->str() == "class" && name->strAt(-1) == "enum")
name = name->next();
Scope *new_scope = findScope(name, scope);
if (new_scope) {
// only create base list for classes and structures
if (new_scope->isClassOrStruct()) {
// goto initial '{'
if (!new_scope->definedType)
mTokenizer.syntaxError(nullptr); // #6808
tok2 = new_scope->definedType->initBaseInfo(tok, tok2);
// make sure we have valid code
if (!tok2) {
break;
}
}
// definition may be different than declaration
if (mTokenizer.isCPP() && tok->str() == "class") {
access[new_scope] = AccessControl::Private;
new_scope->type = Scope::eClass;
} else if (tok->str() == "struct") {
access[new_scope] = AccessControl::Public;
new_scope->type = Scope::eStruct;
}
new_scope->classDef = tok;
new_scope->setBodyStartEnd(tok2);
// make sure we have valid code
if (!new_scope->bodyEnd) {
mTokenizer.syntaxError(tok);
}
scope = new_scope;
tok = tok2;
} else {
scopeList.emplace_back(this, tok, scope);
new_scope = &scopeList.back();
if (tok->str() == "class")
access[new_scope] = AccessControl::Private;
else if (tok->str() == "struct" || tok->str() == "union")
access[new_scope] = AccessControl::Public;
// fill typeList...
if (new_scope->isClassOrStructOrUnion() || new_scope->type == Scope::eEnum) {
Type* new_type = findType(name, scope);
if (!new_type) {
typeList.emplace_back(new_scope->classDef, new_scope, scope);
new_type = &typeList.back();
scope->definedTypesMap[new_type->name()] = new_type;
} else
new_type->classScope = new_scope;
new_scope->definedType = new_type;
}
// only create base list for classes and structures
if (new_scope->isClassOrStruct()) {
// goto initial '{'
tok2 = new_scope->definedType->initBaseInfo(tok, tok2);
// make sure we have valid code
if (!tok2) {
mTokenizer.syntaxError(tok);
}
} else if (new_scope->type == Scope::eEnum) {
if (tok2->str() == ":")
tok2 = tok2->tokAt(2);
}
new_scope->setBodyStartEnd(tok2);
// make sure we have valid code
if (!new_scope->bodyEnd) {
mTokenizer.syntaxError(tok);
}
if (new_scope->type == Scope::eEnum) {
tok2 = new_scope->addEnum(tok, mTokenizer.isCPP());
scope->nestedList.push_back(new_scope);
if (!tok2)
mTokenizer.syntaxError(tok);
} else {
// make the new scope the current scope
scope->nestedList.push_back(new_scope);
scope = new_scope;
}
tok = tok2;
}
}
// Namespace and unknown macro (#3854)
else if (mTokenizer.isCPP() && tok->isKeyword() &&
Token::Match(tok, "namespace %name% %type% (") &&
tok->tokAt(2)->isUpperCaseName() &&
Token::simpleMatch(tok->linkAt(3), ") {")) {
scopeList.emplace_back(this, tok, scope);
Scope *new_scope = &scopeList.back();
access[new_scope] = AccessControl::Public;
const Token *tok2 = tok->linkAt(3)->next();
new_scope->setBodyStartEnd(tok2);
// make sure we have valid code
if (!new_scope->bodyEnd) {
scopeList.pop_back();
break;
}
// make the new scope the current scope
scope->nestedList.push_back(new_scope);
scope = &scopeList.back();
tok = tok2;
}
// forward declaration
else if (tok->isKeyword() && Token::Match(tok, "class|struct|union %name% ;") &&
tok->strAt(-1) != "friend") {
if (!findType(tok->next(), scope)) {
// fill typeList..
typeList.emplace_back(tok, nullptr, scope);
Type* new_type = &typeList.back();
scope->definedTypesMap[new_type->name()] = new_type;
}
tok = tok->tokAt(2);
}
// using namespace
else if (mTokenizer.isCPP() && tok->isKeyword() && Token::Match(tok, "using namespace ::| %type% ;|::")) {
Scope::UsingInfo using_info;
using_info.start = tok; // save location
using_info.scope = findNamespace(tok->tokAt(2), scope);
scope->usingList.push_back(using_info);
// check for global namespace
if (tok->strAt(2) == "::")
tok = tok->tokAt(4);
else
tok = tok->tokAt(3);
// skip over qualification
while (Token::Match(tok, "%type% ::"))
tok = tok->tokAt(2);
}
// using type alias
else if (mTokenizer.isCPP() && tok->isKeyword() && Token::Match(tok, "using %name% =")) {
if (tok->strAt(-1) != ">" && !findType(tok->next(), scope)) {
// fill typeList..
typeList.emplace_back(tok, nullptr, scope);
Type* new_type = &typeList.back();
scope->definedTypesMap[new_type->name()] = new_type;
}
tok = tok->tokAt(3);
while (tok && tok->str() != ";") {
if (Token::simpleMatch(tok, "decltype ("))
tok = tok->linkAt(1);
else
tok = tok->next();
}
}
// unnamed struct and union
else if (tok->isKeyword() && Token::Match(tok, "struct|union {") &&
Token::Match(tok->next()->link(), "} *|&| %name% ;|[|=")) {
scopeList.emplace_back(this, tok, scope);
Scope *new_scope = &scopeList.back();
access[new_scope] = AccessControl::Public;
const Token* varNameTok = tok->next()->link()->next();
if (varNameTok->str() == "*") {
varNameTok = varNameTok->next();
} else if (varNameTok->str() == "&") {
varNameTok = varNameTok->next();
}
typeList.emplace_back(tok, new_scope, scope);
{
Type* new_type = &typeList.back();
new_scope->definedType = new_type;
scope->definedTypesMap[new_type->name()] = new_type;
}
scope->addVariable(varNameTok, tok, tok, access[scope], new_scope->definedType, scope, &mSettings);
const Token *tok2 = tok->next();
new_scope->setBodyStartEnd(tok2);
// make sure we have valid code
if (!new_scope->bodyEnd) {
scopeList.pop_back();
break;
}
// make the new scope the current scope
scope->nestedList.push_back(new_scope);
scope = new_scope;
tok = tok2;
}
// anonymous struct, union and namespace
else if (tok->isKeyword() && ((Token::Match(tok, "struct|union {") &&
Token::simpleMatch(tok->next()->link(), "} ;")) ||
Token::simpleMatch(tok, "namespace {"))) {
scopeList.emplace_back(this, tok, scope);
Scope *new_scope = &scopeList.back();
access[new_scope] = AccessControl::Public;
const Token *tok2 = tok->next();
new_scope->setBodyStartEnd(tok2);
typeList.emplace_back(tok, new_scope, scope);
{
Type* new_type = &typeList.back();
new_scope->definedType = new_type;
scope->definedTypesMap[new_type->name()] = new_type;
}
// make sure we have valid code
if (!new_scope->bodyEnd) {
scopeList.pop_back();
break;
}
// make the new scope the current scope
scope->nestedList.push_back(new_scope);
scope = new_scope;
tok = tok2;
}
// forward declared enum
else if (tok->isKeyword() && (Token::Match(tok, "enum class| %name% ;") || Token::Match(tok, "enum class| %name% : %name% ;"))) {
typeList.emplace_back(tok, nullptr, scope);
Type* new_type = &typeList.back();
scope->definedTypesMap[new_type->name()] = new_type;
tok = tok->tokAt(2);
}
// check for end of scope
else if (tok == scope->bodyEnd) {
do {
access.erase(scope);
scope = const_cast<Scope*>(scope->nestedIn);
} while (scope->type != Scope::eGlobal && succeeds(tok, scope->bodyEnd));
continue;
}
// check for end of init list
else if (inInitList() && tok == endInitList.top().first) {
endInitList.pop();
continue;
}
// check if in class or structure or union
else if (scope->isClassOrStructOrUnion()) {
const Token *funcStart = nullptr;
const Token *argStart = nullptr;
const Token *declEnd = nullptr;
// What section are we in..
if (tok->str() == "private:")
access[scope] = AccessControl::Private;
else if (tok->str() == "protected:")
access[scope] = AccessControl::Protected;
else if (tok->str() == "public:" || tok->str() == "__published:")
access[scope] = AccessControl::Public;
else if (Token::Match(tok, "public|protected|private %name% :")) {
if (tok->str() == "private")
access[scope] = AccessControl::Private;
else if (tok->str() == "protected")
access[scope] = AccessControl::Protected;
else
access[scope] = AccessControl::Public;
tok = tok->tokAt(2);
}
// class function?
else if (isFunction(tok, scope, &funcStart, &argStart, &declEnd)) {
if (tok->previous()->str() != "::" || tok->strAt(-2) == scope->className) {
Function function(&mTokenizer, tok, scope, funcStart, argStart);
// save the access type
function.access = access[scope];
const Token *end = function.argDef->link();
// count the number of constructors
if (function.isConstructor())
scope->numConstructors++;
// assume implementation is inline (definition and implementation same)
function.token = function.tokenDef;
function.arg = function.argDef;
// out of line function
if (const Token *endTok = mTokenizer.isFunctionHead(end, ";")) {
tok = endTok;
scope->addFunction(function);
}
// inline function
else {
// find start of function '{'
bool foundInitList = false;
while (end && end->str() != "{" && end->str() != ";") {
if (end->link() && Token::Match(end, "(|<")) {
end = end->link();
} else if (foundInitList &&
Token::Match(end, "%name%|> {") &&
Token::Match(end->linkAt(1), "} ,|{")) {
end = end->linkAt(1);
} else {
if (end->str() == ":")
foundInitList = true;
end = end->next();
}
}
if (!end || end->str() == ";")
continue;
scope->addFunction(function);
Function* funcptr = &scope->functionList.back();
const Token *tok2 = funcStart;
addNewFunction(&scope, &tok2);
if (scope) {
scope->functionOf = function.nestedIn;
scope->function = funcptr;
scope->function->functionScope = scope;
}
tok = tok2;
}
}
// nested class or friend function?
else {
/** @todo check entire qualification for match */
const Scope * const nested = scope->findInNestedListRecursive(tok->strAt(-2));
if (nested)
addClassFunction(&scope, &tok, argStart);
else {
/** @todo handle friend functions */
}
}
}
// friend class declaration?
else if (mTokenizer.isCPP() && tok->isKeyword() && Token::Match(tok, "friend class|struct| ::| %any% ;|::")) {
Type::FriendInfo friendInfo;
// save the name start
friendInfo.nameStart = tok->strAt(1) == "class" ? tok->tokAt(2) : tok->next();
friendInfo.nameEnd = friendInfo.nameStart;
// skip leading "::"
if (friendInfo.nameEnd->str() == "::")
friendInfo.nameEnd = friendInfo.nameEnd->next();
// skip qualification "name ::"
while (friendInfo.nameEnd && friendInfo.nameEnd->strAt(1) == "::")
friendInfo.nameEnd = friendInfo.nameEnd->tokAt(2);
// fill this in after parsing is complete
friendInfo.type = nullptr;
if (!scope->definedType)
mTokenizer.syntaxError(tok);
scope->definedType->friendList.push_back(friendInfo);
}
} else if (scope->type == Scope::eNamespace || scope->type == Scope::eGlobal) {
const Token *funcStart = nullptr;
const Token *argStart = nullptr;
const Token *declEnd = nullptr;
// function?
if (isFunction(tok, scope, &funcStart, &argStart, &declEnd)) {
// has body?
if (declEnd && declEnd->str() == "{") {
tok = funcStart;
// class function
if (tok->previous() && tok->previous()->str() == "::")
addClassFunction(&scope, &tok, argStart);
// class destructor
else if (tok->previous() &&
tok->previous()->str() == "~" &&
tok->strAt(-2) == "::")
addClassFunction(&scope, &tok, argStart);
// regular function
else {
const Function* const function = addGlobalFunction(scope, tok, argStart, funcStart);
if (!function)
mTokenizer.syntaxError(tok);
}
// syntax error?
if (!scope)
mTokenizer.syntaxError(tok);
}
// function prototype?
else if (declEnd && declEnd->str() == ";") {
if (tok->astParent() && tok->astParent()->str() == "::" &&
Token::Match(declEnd->previous(), "default|delete")) {
addClassFunction(&scope, &tok, argStart);
continue;
}
bool newFunc = true; // Is this function already in the database?
auto range = scope->functionMap.equal_range(tok->str());
for (std::multimap<std::string, const Function*>::const_iterator it = range.first; it != range.second; ++it) {
if (it->second->argsMatch(scope, it->second->argDef, argStart, emptyString, 0)) {
newFunc = false;
break;
}
}
// save function prototype in database
if (newFunc) {
addGlobalFunctionDecl(scope, tok, argStart, funcStart);
}
tok = declEnd;
continue;
}
} else if (const Token *lambdaEndToken = findLambdaEndToken(tok)) {
tok = addLambda(tok, lambdaEndToken);
}
} else if (scope->isExecutable()) {
if (tok->isKeyword() && Token::Match(tok, "else|try|do {")) {
const Token* tok1 = tok->next();
if (tok->str() == "else")
scopeList.emplace_back(this, tok, scope, Scope::eElse, tok1);
else if (tok->str() == "do")
scopeList.emplace_back(this, tok, scope, Scope::eDo, tok1);
else //if (tok->str() == "try")
scopeList.emplace_back(this, tok, scope, Scope::eTry, tok1);
tok = tok1;
scope->nestedList.push_back(&scopeList.back());
scope = &scopeList.back();
} else if (tok->isKeyword() && Token::Match(tok, "if|for|while|catch|switch (") && Token::simpleMatch(tok->next()->link(), ") {")) {
const Token *scopeStartTok = tok->next()->link()->next();
if (tok->str() == "if")
scopeList.emplace_back(this, tok, scope, Scope::eIf, scopeStartTok);
else if (tok->str() == "for") {
scopeList.emplace_back(this, tok, scope, Scope::eFor, scopeStartTok);
} else if (tok->str() == "while")
scopeList.emplace_back(this, tok, scope, Scope::eWhile, scopeStartTok);
else if (tok->str() == "catch") {
scopeList.emplace_back(this, tok, scope, Scope::eCatch, scopeStartTok);
} else // if (tok->str() == "switch")
scopeList.emplace_back(this, tok, scope, Scope::eSwitch, scopeStartTok);
scope->nestedList.push_back(&scopeList.back());
scope = &scopeList.back();
if (scope->type == Scope::eFor)
scope->checkVariable(tok->tokAt(2), AccessControl::Local, &mSettings); // check for variable declaration and add it to new scope if found
else if (scope->type == Scope::eCatch)
scope->checkVariable(tok->tokAt(2), AccessControl::Throw, &mSettings); // check for variable declaration and add it to new scope if found
tok = scopeStartTok;
} else if (Token::Match(tok, "%var% {")) {
endInitList.emplace(tok->next()->link(), scope);
tok = tok->next();
} else if (const Token *lambdaEndToken = findLambdaEndToken(tok)) {
tok = addLambda(tok, lambdaEndToken);
} else if (tok->str() == "{") {
if (inInitList()) {
endInitList.emplace(tok->link(), scope);
} else if (isExecutableScope(tok)) {
scopeList.emplace_back(this, tok, scope, Scope::eUnconditional, tok);
scope->nestedList.push_back(&scopeList.back());
scope = &scopeList.back();
} else if (scope->isExecutable()) {
endInitList.emplace(tok->link(), scope);
} else {
tok = tok->link();
}
}
// syntax error?
if (!scope)
mTokenizer.syntaxError(tok);
// End of scope or list should be handled above
if (tok->str() == "}")
mTokenizer.syntaxError(tok);
}
}
}
void SymbolDatabase::createSymbolDatabaseClassInfo()
{
if (mTokenizer.isC())
return;
// fill in using info
for (Scope& scope : scopeList) {
for (Scope::UsingInfo& usingInfo : scope.usingList) {
// only find if not already found
if (usingInfo.scope == nullptr) {
// check scope for match
const Scope * const found = findScope(usingInfo.start->tokAt(2), &scope);
if (found) {
// set found scope
usingInfo.scope = found;
break;
}
}
}
}
// fill in base class info
for (Type& type : typeList) {
// finish filling in base class info
for (Type::BaseInfo & i : type.derivedFrom) {
const Type* found = findType(i.nameTok, type.enclosingScope, /*lookOutside*/ true);
if (found && found->findDependency(&type)) {
// circular dependency
//mTokenizer.syntaxError(nullptr);
} else {
i.type = found;
}
}
}
// fill in friend info
for (Type & type : typeList) {
for (Type::FriendInfo &friendInfo : type.friendList) {
friendInfo.type = findType(friendInfo.nameStart, type.enclosingScope);
}
}
}
void SymbolDatabase::createSymbolDatabaseVariableInfo()
{
// fill in variable info
for (Scope& scope : scopeList) {
// find variables
scope.getVariableList(&mSettings);
}
// fill in function arguments
for (Scope& scope : scopeList) {
std::list<Function>::iterator func;
for (func = scope.functionList.begin(); func != scope.functionList.end(); ++func) {
// add arguments
func->addArguments(this, &scope);
}
}
}
void SymbolDatabase::createSymbolDatabaseCopyAndMoveConstructors()
{
// fill in class and struct copy/move constructors
for (Scope& scope : scopeList) {
if (!scope.isClassOrStruct())
continue;
std::list<Function>::iterator func;
for (func = scope.functionList.begin(); func != scope.functionList.end(); ++func) {
if (!func->isConstructor() || func->minArgCount() != 1)
continue;
const Variable* firstArg = func->getArgumentVar(0);
if (firstArg->type() == scope.definedType) {
if (firstArg->isRValueReference())
func->type = Function::eMoveConstructor;
else if (firstArg->isReference() && !firstArg->isPointer())
func->type = Function::eCopyConstructor;
}
if (func->type == Function::eCopyConstructor ||
func->type == Function::eMoveConstructor)
scope.numCopyOrMoveConstructors++;
}
}
}
void SymbolDatabase::createSymbolDatabaseFunctionScopes()
{
// fill in function scopes
for (const Scope & scope : scopeList) {
if (scope.type == Scope::eFunction)
functionScopes.push_back(&scope);
}
}
void SymbolDatabase::createSymbolDatabaseClassAndStructScopes()
{
// fill in class and struct scopes
for (const Scope& scope : scopeList) {
if (scope.isClassOrStruct())
classAndStructScopes.push_back(&scope);
}
}
void SymbolDatabase::createSymbolDatabaseFunctionReturnTypes()
{
// fill in function return types
for (Scope& scope : scopeList) {
std::list<Function>::iterator func;
for (func = scope.functionList.begin(); func != scope.functionList.end(); ++func) {
// add return types
if (func->retDef) {
const Token *type = func->retDef;
while (Token::Match(type, "static|const|struct|union|enum"))
type = type->next();
if (type) {
func->retType = findVariableTypeInBase(&scope, type);
if (!func->retType)
func->retType = findTypeInNested(type, func->nestedIn);
}
}
}
}
}
void SymbolDatabase::createSymbolDatabaseNeedInitialization()
{
if (mTokenizer.isC()) {
// For C code it is easy, as there are no constructors and no default values
for (const Scope& scope : scopeList) {
if (scope.definedType)
scope.definedType->needInitialization = Type::NeedInitialization::True;
}
} else {
// For C++, it is more difficult: Determine if user defined type needs initialization...
unsigned int unknowns = 0; // stop checking when there are no unknowns
unsigned int retry = 0; // bail if we don't resolve all the variable types for some reason
do {
unknowns = 0;
for (Scope& scope : scopeList) {
if (!scope.isClassOrStructOrUnion())
continue;
if (scope.classDef && Token::simpleMatch(scope.classDef->previous(), ">")) // skip uninstantiated template
continue;
if (!scope.definedType) {
mBlankTypes.emplace_back();
scope.definedType = &mBlankTypes.back();
}
if (scope.isClassOrStruct() && scope.definedType->needInitialization == Type::NeedInitialization::Unknown) {
// check for default constructor
bool hasDefaultConstructor = false;
for (const Function& func : scope.functionList) {
if (func.type == Function::eConstructor) {
// check for no arguments: func ( )
if (func.argCount() == 0) {
hasDefaultConstructor = true;
break;
}
/** check for arguments with default values */
if (func.argCount() == func.initializedArgCount()) {
hasDefaultConstructor = true;
break;
}
}
}
// User defined types with user defined default constructor doesn't need initialization.
// We assume the default constructor initializes everything.
// Another check will figure out if the constructor actually initializes everything.
if (hasDefaultConstructor)
scope.definedType->needInitialization = Type::NeedInitialization::False;
// check each member variable to see if it needs initialization
else {
bool needInitialization = false;
bool unknown = false;
for (const Variable& var: scope.varlist) {
if (var.isClass()) {
if (var.type()) {
// does this type need initialization?
if (var.type()->needInitialization == Type::NeedInitialization::True && !var.hasDefault() && !var.isStatic())
needInitialization = true;
else if (var.type()->needInitialization == Type::NeedInitialization::Unknown) {
if (!(var.valueType() && var.valueType()->type == ValueType::CONTAINER))
unknown = true;
}
}
} else if (!var.hasDefault() && !var.isStatic()) {
needInitialization = true;
break;
}
}
if (needInitialization)
scope.definedType->needInitialization = Type::NeedInitialization::True;
else if (!unknown)
scope.definedType->needInitialization = Type::NeedInitialization::False;
else {
if (scope.definedType->needInitialization == Type::NeedInitialization::Unknown)
unknowns++;
}
}
} else if (scope.type == Scope::eUnion && scope.definedType->needInitialization == Type::NeedInitialization::Unknown)
scope.definedType->needInitialization = Type::NeedInitialization::True;
}
retry++;
} while (unknowns && retry < 100);
// this shouldn't happen so output a debug warning
if (retry == 100 && mSettings.debugwarnings) {
for (const Scope& scope : scopeList) {
if (scope.isClassOrStruct() && scope.definedType->needInitialization == Type::NeedInitialization::Unknown)
debugMessage(scope.classDef, "debug", "SymbolDatabase couldn't resolve all user defined types.");
}
}
}
}
void SymbolDatabase::createSymbolDatabaseVariableSymbolTable()
{
// create variable symbol table
mVariableList.resize(mTokenizer.varIdCount() + 1);
std::fill_n(mVariableList.begin(), mVariableList.size(), nullptr);
// check all scopes for variables
for (Scope& scope : scopeList) {
// add all variables
for (Variable& var: scope.varlist) {
const unsigned int varId = var.declarationId();
if (varId)
mVariableList[varId] = &var;
// fix up variables without type
if (!var.type() && !var.typeStartToken()->isStandardType()) {
const Type *type = findType(var.typeStartToken(), &scope);
if (type)
var.type(type);
}
}
// add all function parameters
for (Function& func : scope.functionList) {
for (Variable& arg: func.argumentList) {
// check for named parameters
if (arg.nameToken() && arg.declarationId()) {
const unsigned int declarationId = arg.declarationId();
mVariableList[declarationId] = &arg;
// fix up parameters without type
if (!arg.type() && !arg.typeStartToken()->isStandardType()) {
const Type *type = findTypeInNested(arg.typeStartToken(), &scope);
if (type)
arg.type(type);
}
}
}
}
}
// fill in missing variables if possible
for (const Scope *func: functionScopes) {
for (const Token *tok = func->bodyStart->next(); tok && tok != func->bodyEnd; tok = tok->next()) {
// check for member variable
if (!Token::Match(tok, "%var% .|["))
continue;
const Token* tokDot = tok->next();
while (Token::simpleMatch(tokDot, "["))
tokDot = tokDot->link()->next();
if (!Token::Match(tokDot, ". %var%"))
continue;
const Token *member = tokDot->next();
if (mVariableList[member->varId()] == nullptr) {
const Variable *var1 = mVariableList[tok->varId()];
if (var1 && var1->typeScope()) {
const Variable* memberVar = var1->typeScope()->getVariable(member->str());
if (memberVar) {
// add this variable to the look up table
mVariableList[member->varId()] = memberVar;
}
}
}
}
}
}
void SymbolDatabase::createSymbolDatabaseSetScopePointers()
{
auto setScopePointers = [](const Scope &scope, const Token *bodyStart, const Token *bodyEnd) {
assert(bodyStart);
assert(bodyEnd);
const_cast<Token *>(bodyEnd)->scope(&scope);
for (Token* tok = const_cast<Token *>(bodyStart); tok != bodyEnd; tok = tok->next()) {
if (bodyStart != bodyEnd && tok->str() == "{") {
bool isEndOfScope = false;
for (Scope* innerScope: scope.nestedList) {
const auto &list = innerScope->bodyStartList;
if (std::find(list.cbegin(), list.cend(), tok) != list.cend()) { // Is begin of inner scope
tok = tok->link();
if (tok->next() == bodyEnd || !tok->next()) {
isEndOfScope = true;
break;
}
tok = tok->next();
break;
}
}
if (isEndOfScope)
break;
}
tok->scope(&scope);
}
};
// Set scope pointers
for (const Scope& scope: scopeList) {
if (scope.type == Scope::eGlobal)
setScopePointers(scope, mTokenizer.list.front(), mTokenizer.list.back());
else {
for (const Token *bodyStart: scope.bodyStartList)
setScopePointers(scope, bodyStart, bodyStart->link());
}
}
}
void SymbolDatabase::createSymbolDatabaseSetFunctionPointers(bool firstPass)
{
if (firstPass) {
// Set function definition and declaration pointers
for (const Scope& scope: scopeList) {
for (const Function& func: scope.functionList) {
if (func.tokenDef)
const_cast<Token *>(func.tokenDef)->function(&func);
if (func.token)
const_cast<Token *>(func.token)->function(&func);
}
}
}
// Set function call pointers
for (const Token* tok = mTokenizer.list.front(); tok != mTokenizer.list.back(); tok = tok->next()) {
if (tok->isName() && !tok->function() && tok->varId() == 0 && Token::Match(tok, "%name% [{(,)>;]") && !isReservedName(tok->str())) {
if (tok->next()->str() == ">" && !tok->next()->link())
continue;
bool isTemplateArg = false;
if (tok->next()->str() != "(") {
const Token *start = tok;
while (Token::Match(start->tokAt(-2), "%name% ::"))
start = start->tokAt(-2);
if (!Token::Match(start->previous(), "[(,<=]") && !Token::simpleMatch(start->previous(), "::") && !Token::Match(start->tokAt(-2), "[(,<=] &") && !Token::Match(start, "%name% ;"))
continue;
isTemplateArg = Token::simpleMatch(start->previous(), "<") || Token::simpleMatch(start->tokAt(-2), "<");
}
const Function *function = findFunction(tok);
if (!function || (isTemplateArg && function->isConstructor()))
continue;
const_cast<Token *>(tok)->function(function);
if (tok->next()->str() != "(")
const_cast<Function *>(function)->functionPointerUsage = tok;
}
}
// Set C++ 11 delegate constructor function call pointers
for (const Scope& scope: scopeList) {
for (const Function& func: scope.functionList) {
// look for initializer list
if (func.isConstructor() && func.functionScope && func.functionScope->functionOf && func.arg) {
const Token * tok = func.arg->link()->next();
if (tok->str() == "noexcept") {
const Token * closingParenTok = tok->linkAt(1);
if (!closingParenTok || !closingParenTok->next()) {
continue;
}
tok = closingParenTok->next();
}
if (tok->str() != ":") {
continue;
}
tok = tok->next();
while (tok && tok != func.functionScope->bodyStart) {
if (Token::Match(tok, "%name% {|(")) {
if (tok->str() == func.tokenDef->str()) {
const Function *function = func.functionScope->functionOf->findFunction(tok);
if (function)
const_cast<Token *>(tok)->function(function);
break;
}
tok = tok->linkAt(1);
}
tok = tok->next();
}
}
}
}
}
void SymbolDatabase::createSymbolDatabaseSetTypePointers()
{
std::unordered_set<std::string> typenames;
for (const Type &t : typeList) {
typenames.insert(t.name());
}
// Set type pointers
for (const Token* tok = mTokenizer.list.front(); tok != mTokenizer.list.back(); tok = tok->next()) {
if (!tok->isName() || tok->varId() || tok->function() || tok->type() || tok->enumerator())
continue;
if (typenames.find(tok->str()) == typenames.end())
continue;
const Type *type = findVariableType(tok->scope(), tok);
if (type)
const_cast<Token *>(tok)->type(type); // TODO: avoid const_cast
}
}
void SymbolDatabase::createSymbolDatabaseSetSmartPointerType()
{
for (Scope &scope: scopeList) {
for (Variable &var: scope.varlist) {
if (var.valueType() && var.valueType()->smartPointerTypeToken && !var.valueType()->smartPointerType) {
ValueType vt(*var.valueType());
vt.smartPointerType = vt.smartPointerTypeToken->type();
var.setValueType(vt);
}
}
}
}
void SymbolDatabase::fixVarId(VarIdMap & varIds, const Token * vartok, Token * membertok, const Variable * membervar)
{
VarIdMap::iterator varId = varIds.find(vartok->varId());
if (varId == varIds.end()) {
MemberIdMap memberId;
if (membertok->varId() == 0) {
memberId[membervar->nameToken()->varId()] = const_cast<Tokenizer &>(mTokenizer).newVarId();
mVariableList.push_back(membervar);
} else
mVariableList[membertok->varId()] = membervar;
varIds.insert(std::make_pair(vartok->varId(), memberId));
varId = varIds.find(vartok->varId());
}
MemberIdMap::iterator memberId = varId->second.find(membervar->nameToken()->varId());
if (memberId == varId->second.end()) {
if (membertok->varId() == 0) {
varId->second.insert(std::make_pair(membervar->nameToken()->varId(), const_cast<Tokenizer &>(mTokenizer).newVarId()));
mVariableList.push_back(membervar);
memberId = varId->second.find(membervar->nameToken()->varId());
} else
mVariableList[membertok->varId()] = membervar;
}
if (membertok->varId() == 0)
membertok->varId(memberId->second);
}
static bool isContainerYieldElement(Library::Container::Yield yield);
void SymbolDatabase::createSymbolDatabaseSetVariablePointers()
{
VarIdMap varIds;
auto setMemberVar = [&](const Variable* membervar, Token* membertok, const Token* vartok) -> void {
if (membervar) {
membertok->variable(membervar);
if (vartok && (membertok->varId() == 0 || mVariableList[membertok->varId()] == nullptr))
fixVarId(varIds, vartok, membertok, membervar);
}
};
// Set variable pointers
for (Token* tok = mTokenizer.list.front(); tok != mTokenizer.list.back(); tok = tok->next()) {
if (!tok->isName() || tok->isKeyword() || tok->isStandardType())
continue;
if (tok->varId())
const_cast<Token*>(tok)->variable(getVariableFromVarId(tok->varId()));
// Set Token::variable pointer for array member variable
// Since it doesn't point at a fixed location it doesn't have varid
const bool isVar = tok->variable() && (tok->variable()->typeScope() || tok->variable()->isSmartPointer() ||
(tok->valueType() && (tok->valueType()->type == ValueType::CONTAINER || tok->valueType()->type == ValueType::ITERATOR)));
const bool isArrayAccess = isVar && Token::simpleMatch(tok->astParent(), "[");
const bool isDirectAccess = isVar && !isArrayAccess && Token::simpleMatch(tok->astParent(), ".");
const bool isDerefAccess = isVar && !isDirectAccess && Token::simpleMatch(tok->astParent(), "*") && Token::simpleMatch(tok->astParent()->astParent(), ".");
if (isVar && (isArrayAccess || isDirectAccess || isDerefAccess)) {
Token* membertok{};
if (isArrayAccess) {
membertok = const_cast<Token*>(tok->astParent());
while (Token::simpleMatch(membertok, "["))
membertok = membertok->astParent();
if (membertok)
membertok = membertok->astOperand2();
}
else if (isDirectAccess) {
membertok = const_cast<Token*>(tok->astParent()->astOperand2());
if (membertok == tok) {
Token* gptok = const_cast<Token*>(tok->astParent()->astParent());
if (Token::simpleMatch(gptok, ".")) // chained access
membertok = gptok->astOperand2();
else if (Token::simpleMatch(gptok, "[") && Token::simpleMatch(gptok->astParent(), "."))
membertok = gptok->astParent()->astOperand2();
}
}
else { // isDerefAccess
membertok = const_cast<Token*>(tok->astParent());
while (Token::simpleMatch(membertok, "*"))
membertok = membertok->astParent();
if (membertok)
membertok = membertok->astOperand2();
}
if (membertok && membertok != tok) {
const Variable *var = tok->variable();
if (var->typeScope()) {
const Variable *membervar = var->typeScope()->getVariable(membertok->str());
setMemberVar(membervar, membertok, tok);
} else if (const ::Type *type = var->smartPointerType()) {
const Scope *classScope = type->classScope;
const Variable *membervar = classScope ? classScope->getVariable(membertok->str()) : nullptr;
setMemberVar(membervar, membertok, tok);
} else if (tok->valueType() && tok->valueType()->type == ValueType::CONTAINER) {
if (const Token* ctt = tok->valueType()->containerTypeToken) {
while (ctt && ctt->isKeyword())
ctt = ctt->next();
const Type* ct = findTypeInNested(ctt, tok->scope());
if (ct && ct->classScope && ct->classScope->definedType) {
const Variable *membervar = ct->classScope->getVariable(membertok->str());
setMemberVar(membervar, membertok, tok);
}
}
} else if (const Type* iterType = var->iteratorType()) {
if (iterType->classScope && iterType->classScope->definedType) {
const Variable *membervar = iterType->classScope->getVariable(membertok->str());
setMemberVar(membervar, membertok, tok);
}
}
}
}
// check for function returning record type
// func(...).var
// func(...)[...].var
else if (tok->function() && tok->next()->str() == "(" &&
(Token::Match(tok->next()->link(), ") . %name% !!(") ||
(Token::Match(tok->next()->link(), ") [") && Token::Match(tok->next()->link()->next()->link(), "] . %name% !!(")))) {
const Type *type = tok->function()->retType;
Token* membertok;
if (tok->next()->link()->next()->str() == ".")
membertok = tok->next()->link()->next()->next();
else
membertok = tok->next()->link()->next()->link()->next()->next();
if (type) {
const Variable *membervar = membertok->variable();
if (!membervar) {
if (type->classScope) {
membervar = type->classScope->getVariable(membertok->str());
setMemberVar(membervar, membertok, tok->function()->retDef);
}
}
} else if (mSettings.library.detectSmartPointer(tok->function()->retDef)) {
if (const Token* templateArg = Token::findsimplematch(tok->function()->retDef, "<")) {
if (const Type* spType = findTypeInNested(templateArg->next(), tok->scope())) {
if (spType->classScope) {
const Variable* membervar = spType->classScope->getVariable(membertok->str());
setMemberVar(membervar, membertok, tok->function()->retDef);
}
}
}
}
}
else if (Token::simpleMatch(tok->astParent(), ".") && tok->next()->str() == "(" &&
astIsContainer(tok->astParent()->astOperand1()) && Token::Match(tok->next()->link(), ") . %name% !!(")) {
const ValueType* vt = tok->astParent()->astOperand1()->valueType();
const Library::Container* cont = vt->container;
auto it = cont->functions.find(tok->str());
if (it != cont->functions.end() && isContainerYieldElement(it->second.yield) && vt->containerTypeToken) {
Token* memberTok = tok->next()->link()->tokAt(2);
const Scope* scope = vt->containerTypeToken->scope();
const Type* contType{};
const std::string& typeStr = vt->containerTypeToken->str(); // TODO: handle complex type expressions
while (scope && !contType) {
contType = scope->findType(typeStr); // find the type stored in the container
scope = scope->nestedIn;
}
if (contType && contType->classScope) {
const Variable* membervar = contType->classScope->getVariable(memberTok->str());
setMemberVar(membervar, memberTok, vt->containerTypeToken);
}
}
}
}
}
void SymbolDatabase::createSymbolDatabaseEnums()
{
// fill in enumerators in enum
for (const Scope &scope : scopeList) {
if (scope.type != Scope::eEnum)
continue;
// add enumerators to enumerator tokens
for (const Enumerator & i : scope.enumeratorList)
const_cast<Token *>(i.name)->enumerator(&i);
}
std::set<std::string> tokensThatAreNotEnumeratorValues;
for (const Scope &scope : scopeList) {
if (scope.type != Scope::eEnum)
continue;
for (const Enumerator & enumerator : scope.enumeratorList) {
// look for initialization tokens that can be converted to enumerators and convert them
if (enumerator.start) {
if (!enumerator.end)
mTokenizer.syntaxError(enumerator.start);
for (const Token * tok3 = enumerator.start; tok3 && tok3 != enumerator.end->next(); tok3 = tok3->next()) {
if (tok3->tokType() == Token::eName) {
const Enumerator * e = findEnumerator(tok3, tokensThatAreNotEnumeratorValues);
if (e)
const_cast<Token *>(tok3)->enumerator(e);
}
}
}
}
}
// find enumerators
for (const Token* tok = mTokenizer.list.front(); tok != mTokenizer.list.back(); tok = tok->next()) {
const bool isVariable = (tok->tokType() == Token::eVariable && !tok->variable());
if (tok->tokType() != Token::eName && !isVariable)
continue;
const Enumerator * enumerator = findEnumerator(tok, tokensThatAreNotEnumeratorValues);
if (enumerator) {
if (isVariable)
const_cast<Token*>(tok)->varId(0);
const_cast<Token*>(tok)->enumerator(enumerator);
}
}
}
void SymbolDatabase::createSymbolDatabaseIncompleteVars()
{
// TODO: replace with Keywords::getX()
static const std::unordered_set<std::string> cpp20keywords = {
"alignas",
"alignof",
"axiom",
"co_await",
"co_return",
"co_yield",
"concept",
"synchronized",
"consteval",
"reflexpr",
"requires",
};
static const std::unordered_set<std::string> cppkeywords = {
"asm",
"auto",
"catch",
"char",
"class",
"const",
"constexpr",
"decltype",
"default",
"do",
"enum",
"explicit",
"export",
"extern",
"final",
"friend",
"inline",
"mutable",
"namespace",
"new",
"noexcept",
"nullptr",
"override",
"private",
"protected",
"public",
"register",
"sizeof",
"static",
"static_assert",
"struct",
"template",
"this",
"thread_local",
"throw",
"try",
"typedef",
"typeid",
"typename",
"union",
"using",
"virtual",
"void",
"volatile",
"NULL",
};
for (const Token* tok = mTokenizer.list.front(); tok != mTokenizer.list.back(); tok = tok->next()) {
const Scope * scope = tok->scope();
if (!scope)
continue;
if (!scope->isExecutable())
continue;
if (tok->varId() != 0)
continue;
if (!tok->isNameOnly())
continue;
if (tok->type())
continue;
if (Token::Match(tok->next(), "::|.|(|:|%var%"))
continue;
if (Token::Match(tok->next(), "&|&&|* )|,|%var%"))
continue;
if (Token::simpleMatch(tok->next(), ")") && Token::simpleMatch(tok->next()->link()->previous(), "catch ("))
continue;
// Very likely a typelist
if (Token::Match(tok->tokAt(-2), "%type% ,") || Token::Match(tok->next(), ", %type%"))
continue;
// Inside template brackets
if (Token::Match(tok->next(), "<|>") && tok->next()->link())
continue;
if (Token::simpleMatch(tok->previous(), "<") && tok->previous()->link())
continue;
// Skip goto labels
if (Token::simpleMatch(tok->previous(), "goto"))
continue;
// TODO: handle all C/C++ standards
if (cppkeywords.count(tok->str()) > 0)
continue;
if (mSettings.standards.cpp >= Standards::CPP20 && cpp20keywords.count(tok->str()) > 0)
continue;
const_cast<Token *>(tok)->isIncompleteVar(true); // TODO: avoid const_cast
}
}
void SymbolDatabase::createSymbolDatabaseEscapeFunctions()
{
for (const Scope& scope : scopeList) {
if (scope.type != Scope::eFunction)
continue;
Function * function = scope.function;
if (!function)
continue;
if (Token::findsimplematch(scope.bodyStart, "return", scope.bodyEnd))
continue;
function->isEscapeFunction(isReturnScope(scope.bodyEnd, &mSettings.library, nullptr, true));
}
}
static bool isExpression(const Token* tok)
{
if (!tok)
return false;
if (Token::simpleMatch(tok, "{") && tok->scope() && tok->scope()->bodyStart != tok &&
(tok->astOperand1() || tok->astOperand2()))
return true;
if (!Token::Match(tok, "(|.|[|::|?|:|++|--|%cop%|%assign%"))
return false;
if (Token::Match(tok, "*|&|&&")) {
const Token* vartok = findAstNode(tok, [&](const Token* tok2) {
const Variable* var = tok2->variable();
if (!var)
return false;
return var->nameToken() == tok2;
});
if (vartok)
return false;
}
return true;
}
static std::string getIncompleteNameID(const Token* tok)
{
std::string result = tok->str() + "@";
while (Token::Match(tok->astParent(), ".|::"))
tok = tok->astParent();
return result + tok->expressionString();
}
void SymbolDatabase::createSymbolDatabaseExprIds()
{
nonneg int base = 0;
// Find highest varId
for (const Variable *var : mVariableList) {
if (!var)
continue;
base = std::max<MathLib::bigint>(base, var->declarationId());
}
nonneg int id = base + 1;
// Find incomplete vars that are used in constant context
std::unordered_map<std::string, nonneg int> unknownConstantIds;
const Token* inConstExpr = nullptr;
for (const Token* tok = mTokenizer.list.front(); tok != mTokenizer.list.back(); tok = tok->next()) {
if (Token::Match(tok, "decltype|sizeof|typeof (") && tok->next()->link()) {
tok = tok->next()->link()->previous();
} else if (tok == inConstExpr) {
inConstExpr = nullptr;
} else if (inConstExpr) {
if (!tok->isIncompleteVar())
continue;
if (!isExpression(tok->astParent()))
continue;
const std::string& name = getIncompleteNameID(tok);
if (unknownConstantIds.count(name) > 0)
continue;
unknownConstantIds[name] = id++;
} else if (tok->link() && tok->str() == "<") {
inConstExpr = tok->link();
} else if (Token::Match(tok, "%var% [") && tok->variable() && tok->variable()->nameToken() == tok) {
inConstExpr = tok->next()->link();
}
}
auto exprScopes = functionScopes; // functions + global lambdas
std::copy_if(scopeList.front().nestedList.begin(), scopeList.front().nestedList.end(), std::back_inserter(exprScopes), [](const Scope* scope) {
return scope && scope->type == Scope::eLambda;
});
for (const Scope * scope : exprScopes) {
nonneg int thisId = 0;
std::unordered_map<std::string, std::vector<Token*>> exprs;
std::unordered_map<std::string, nonneg int> unknownIds;
// Assign IDs to incomplete vars which are part of an expression
// Such variables should be assumed global
for (Token* tok = const_cast<Token*>(scope->bodyStart); tok != scope->bodyEnd; tok = tok->next()) {
if (!tok->isIncompleteVar())
continue;
if (!isExpression(tok->astParent()))
continue;
const std::string& name = getIncompleteNameID(tok);
nonneg int sid = 0;
if (unknownConstantIds.count(name) > 0) {
sid = unknownConstantIds.at(name);
tok->isIncompleteConstant(true);
} else if (unknownIds.count(name) == 0) {
sid = id++;
unknownIds[name] = sid;
} else {
sid = unknownIds.at(name);
}
assert(sid > 0);
tok->exprId(sid);
}
// Assign IDs
for (Token* tok = const_cast<Token*>(scope->bodyStart); tok != scope->bodyEnd; tok = tok->next()) {
if (tok->varId() > 0) {
tok->exprId(tok->varId());
} else if (isExpression(tok)) {
exprs[tok->str()].push_back(tok);
tok->exprId(id++);
if (id == std::numeric_limits<nonneg int>::max() / 4) {
throw InternalError(nullptr, "Ran out of expression ids.", InternalError::INTERNAL);
}
} else if (isCPP() && Token::simpleMatch(tok, "this")) {
if (thisId == 0)
thisId = id++;
tok->exprId(thisId);
}
}
// Apply CSE
for (const auto& p:exprs) {
const std::vector<Token*>& tokens = p.second;
const std::size_t N = tokens.size();
for (std::size_t i = 0; i < N; ++i) {
Token* const tok1 = tokens[i];
for (std::size_t j = i + 1; j < N; ++j) {
Token* const tok2 = tokens[j];
if (tok1->exprId() == tok2->exprId())
continue;
if (!isSameExpression(isCPP(), true, tok1, tok2, mSettings.library, false, false))
continue;
nonneg int const cid = std::min(tok1->exprId(), tok2->exprId());
tok1->exprId(cid);
tok2->exprId(cid);
}
}
}
// Mark expressions that are unique
std::unordered_map<nonneg int, Token*> exprMap;
for (Token* tok = const_cast<Token*>(scope->bodyStart); tok != scope->bodyEnd; tok = tok->next()) {
if (tok->exprId() == 0)
continue;
auto p = exprMap.emplace(tok->exprId(), tok);
// Already exists so set it to null
if (!p.second) {
p.first->second = nullptr;
}
}
for (const auto& p : exprMap) {
if (!p.second)
continue;
if (p.second->variable()) {
const Variable* var = p.second->variable();
if (var->nameToken() != p.second)
continue;
}
p.second->setUniqueExprId();
}
}
}
void SymbolDatabase::setArrayDimensionsUsingValueFlow()
{
// set all unknown array dimensions
for (const Variable *var : mVariableList) {
// check each array variable
if (!var || !var->isArray())
continue;
// check each array dimension
for (const Dimension &const_dimension : var->dimensions()) {
Dimension &dimension = const_cast<Dimension &>(const_dimension);
if (dimension.num != 0 || !dimension.tok)
continue;
if (Token::Match(dimension.tok->previous(), "[<,]")) {
if (dimension.known)
continue;
if (!Token::Match(dimension.tok->previous(), "[<,]"))
continue;
// In template arguments, there might not be AST
// Determine size by using the "raw tokens"
TokenList tokenList(&mSettings);
tokenList.addtoken(";", 0, 0, 0, false);
bool fail = false;
for (const Token *tok = dimension.tok; tok && !Token::Match(tok, "[,>]"); tok = tok->next()) {
if (!tok->isName())
tokenList.addtoken(tok->str(), 0, 0, 0, false);
else if (tok->hasKnownIntValue())
tokenList.addtoken(std::to_string(tok->getKnownIntValue()), 0, 0, 0, false);
else {
fail = true;
break;
}
}
if (fail)
continue;
tokenList.addtoken(";", 0, 0, 0, false);
for (Token *tok = tokenList.front(); tok;) {
if (TemplateSimplifier::simplifyNumericCalculations(tok, false))
tok = tokenList.front();
else
tok = tok->next();
}
if (Token::Match(tokenList.front(), "; %num% ;")) {
dimension.known = true;
dimension.num = MathLib::toLongNumber(tokenList.front()->next()->str());
}
continue;
}
// Normal array [..dimension..]
dimension.known = false;
// check for a single token dimension
if (dimension.tok->hasKnownIntValue()) {
dimension.known = true;
dimension.num = dimension.tok->getKnownIntValue();
continue;
}
if (dimension.tok->valueType() && dimension.tok->valueType()->pointer == 0) {
int bits = 0;
switch (dimension.tok->valueType()->type) {
case ValueType::Type::CHAR:
bits = mSettings.platform.char_bit;
break;
case ValueType::Type::SHORT:
bits = mSettings.platform.short_bit;
break;
case ValueType::Type::INT:
bits = mSettings.platform.int_bit;
break;
case ValueType::Type::LONG:
bits = mSettings.platform.long_bit;
break;
case ValueType::Type::LONGLONG:
bits = mSettings.platform.long_long_bit;
break;
default:
break;
}
if (bits > 0 && bits <= 62) {
if (dimension.tok->valueType()->sign == ValueType::Sign::UNSIGNED)
dimension.num = 1LL << bits;
else
dimension.num = 1LL << (bits - 1);
}
}
}
}
}
SymbolDatabase::~SymbolDatabase()
{
// Clear scope, type, function and variable pointers
for (const Token* tok = mTokenizer.list.front(); tok; tok = tok->next()) {
const_cast<Token *>(tok)->scope(nullptr);
const_cast<Token *>(tok)->type(nullptr);
const_cast<Token *>(tok)->function(nullptr);
const_cast<Token *>(tok)->variable(nullptr);
const_cast<Token *>(tok)->enumerator(nullptr);
const_cast<Token *>(tok)->setValueType(nullptr);
}
}
bool SymbolDatabase::isFunction(const Token *tok, const Scope* outerScope, const Token **funcStart, const Token **argStart, const Token** declEnd) const
{
if (tok->varId())
return false;
// function returning function pointer? '... ( ... %name% ( ... ))( ... ) {'
// function returning reference to array '... ( & %name% ( ... ))[ ... ] {'
// TODO: Activate this again
if ((false) && tok->str() == "(" && tok->strAt(1) != "*" && // NOLINT(readability-simplify-boolean-expr)
(tok->link()->previous()->str() == ")" || Token::simpleMatch(tok->link()->tokAt(-2), ") const"))) {
const Token* tok2 = tok->link()->next();
if (tok2 && tok2->str() == "(" && Token::Match(tok2->link()->next(), "{|;|const|=")) {
const Token* argStartTok;
if (tok->link()->previous()->str() == "const")
argStartTok = tok->link()->linkAt(-2);
else
argStartTok = tok->link()->linkAt(-1);
*funcStart = argStartTok->previous();
*argStart = argStartTok;
*declEnd = Token::findmatch(tok2->link()->next(), "{|;");
return true;
}
if (tok2 && tok2->str() == "[") {
while (tok2 && tok2->str() == "[")
tok2 = tok2->link()->next();
if (Token::Match(tok2, "{|;|const|=")) {
const Token* argStartTok;
if (tok->link()->previous()->str() == "const")
argStartTok = tok->link()->linkAt(-2);
else
argStartTok = tok->link()->linkAt(-1);
*funcStart = argStartTok->previous();
*argStart = argStartTok;
*declEnd = Token::findmatch(tok2, "{|;");
return true;
}
}
}
else if (!tok->isName() || !tok->next() || !tok->next()->link())
return false;
// regular function?
else if (Token::Match(tok, "%name% (") && !isReservedName(tok->str()) && tok->previous() &&
(Token::Match(tok->previous(), "%name%|>|&|&&|*|::|~") || // Either a return type or scope qualifier in front of tok
outerScope->isClassOrStructOrUnion())) { // or a ctor/dtor
const Token* tok1 = tok->previous();
const Token* tok2 = tok->next()->link()->next();
if (!mTokenizer.isFunctionHead(tok->next(), ";:{"))
return false;
// skip over destructor "~"
if (tok1->str() == "~")
tok1 = tok1->previous();
// skip over qualification
while (Token::simpleMatch(tok1, "::")) {
tok1 = tok1->previous();
if (tok1 && tok1->isName())
tok1 = tok1->previous();
else if (tok1 && tok1->str() == ">" && tok1->link() && Token::Match(tok1->link()->previous(), "%name%"))
tok1 = tok1->link()->tokAt(-2);
}
// skip over const, noexcept, throw, override, final and volatile specifiers
while (Token::Match(tok2, "const|noexcept|throw|override|final|volatile|&|&&")) {
tok2 = tok2->next();
if (tok2 && tok2->str() == "(")
tok2 = tok2->link()->next();
}
// skip over trailing return type
if (tok2 && tok2->str() == ".") {
for (tok2 = tok2->next(); tok2; tok2 = tok2->next()) {
if (Token::Match(tok2, ";|{|=|override|final"))
break;
if (tok2->link() && Token::Match(tok2, "<|[|("))
tok2 = tok2->link();
}
}
// done if constructor or destructor
if (!Token::Match(tok1, "{|}|;|public:|protected:|private:") && tok1) {
// skip over pointers and references
while (Token::Match(tok1, "%type%|*|&|&&") && !endsWith(tok1->str(), ':') && (!isReservedName(tok1->str()) || tok1->str() == "const"))
tok1 = tok1->previous();
// skip over decltype
if (Token::simpleMatch(tok1, ")") && tok1->link() &&
Token::simpleMatch(tok1->link()->previous(), "decltype ("))
tok1 = tok1->link()->tokAt(-2);
// skip over template
if (tok1 && tok1->str() == ">") {
if (tok1->link())
tok1 = tok1->link()->previous();
else
return false;
}
// function can't have number or variable as return type
if (tok1 && (tok1->isNumber() || tok1->varId()))
return false;
// skip over return type
if (tok1 && tok1->isName()) {
if (tok1->str() == "return")
return false;
if (tok1->str() != "friend")
tok1 = tok1->previous();
}
// skip over qualification
while (Token::simpleMatch(tok1, "::")) {
tok1 = tok1->previous();
if (tok1 && tok1->isName())
tok1 = tok1->previous();
else if (tok1 && tok1->str() == ">" && tok1->link() && Token::Match(tok1->link()->previous(), "%name%"))
tok1 = tok1->link()->tokAt(-2);
else if (Token::simpleMatch(tok1, ")") && tok1->link() &&
Token::simpleMatch(tok1->link()->previous(), "decltype ("))
tok1 = tok1->link()->tokAt(-2);
}
// skip over modifiers and other stuff
while (Token::Match(tok1, "const|static|extern|template|virtual|struct|class|enum|%name%")) {
// friend type func(); is not a function
if (isCPP() && tok1->str() == "friend" && tok2->str() == ";")
return false;
tok1 = tok1->previous();
}
// should be at a sequence point if this is a function
if (!Token::Match(tok1, ">|{|}|;|public:|protected:|private:") && tok1)
return false;
}
if (tok2 &&
(Token::Match(tok2, ";|{|=") ||
(tok2->isUpperCaseName() && Token::Match(tok2, "%name% ;|{")) ||
(tok2->isUpperCaseName() && Token::Match(tok2, "%name% (") && tok2->next()->link()->strAt(1) == "{") ||
Token::Match(tok2, ": ::| %name% (|::|<|{") ||
Token::Match(tok2, "&|&&| ;|{") ||
Token::Match(tok2, "= delete|default ;"))) {
*funcStart = tok;
*argStart = tok->next();
*declEnd = Token::findmatch(tok2, "{|;");
return true;
}
}
// UNKNOWN_MACRO(a,b) { ... }
else if (outerScope->type == Scope::eGlobal &&
Token::Match(tok, "%name% (") &&
tok->isUpperCaseName() &&
Token::simpleMatch(tok->linkAt(1), ") {") &&
(!tok->previous() || Token::Match(tok->previous(), "[;{}]"))) {
*funcStart = tok;
*argStart = tok->next();
*declEnd = tok->linkAt(1)->next();
return true;
}
// template constructor?
else if (Token::Match(tok, "%name% <") && Token::simpleMatch(tok->next()->link(), "> (")) {
const Token* tok2 = tok->next()->link()->next()->link();
if (Token::Match(tok2, ") const| ;|{|=") ||
Token::Match(tok2, ") : ::| %name% (|::|<|{") ||
Token::Match(tok2, ") const| noexcept {|;|(")) {
*funcStart = tok;
*argStart = tok2->link();
*declEnd = Token::findmatch(tok2->next(), "{|;");
return true;
}
}
// regular C function with missing return or invalid C++ ?
else if (Token::Match(tok, "%name% (") && !isReservedName(tok->str()) &&
Token::simpleMatch(tok->linkAt(1), ") {") &&
(!tok->previous() || Token::Match(tok->previous(), ";|}"))) {
if (mTokenizer.isC()) {
debugMessage(tok, "debug", "SymbolDatabase::isFunction found C function '" + tok->str() + "' without a return type.");
*funcStart = tok;
*argStart = tok->next();
*declEnd = tok->linkAt(1)->next();
return true;
}
mTokenizer.syntaxError(tok);
}
return false;
}
void SymbolDatabase::validateExecutableScopes() const
{
const std::size_t functions = functionScopes.size();
for (std::size_t i = 0; i < functions; ++i) {
const Scope* const scope = functionScopes[i];
const Function* const function = scope->function;
if (scope->isExecutable() && !function) {
const std::list<const Token*> callstack(1, scope->classDef);
const std::string msg = std::string("Executable scope '") + scope->classDef->str() + "' with unknown function.";
const ErrorMessage errmsg(callstack, &mTokenizer.list, Severity::debug,
"symbolDatabaseWarning",
msg,
Certainty::normal);
mErrorLogger->reportErr(errmsg);
}
}
}
namespace {
const Function* getFunctionForArgumentvariable(const Variable * const var, const std::vector<const Scope *>& functionScopes)
{
const std::size_t functions = functionScopes.size();
for (std::size_t i = 0; i < functions; ++i) {
const Scope* const scope = functionScopes[i];
const Function* const function = scope->function;
if (function) {
for (std::size_t arg=0; arg < function->argCount(); ++arg) {
if (var==function->getArgumentVar(arg))
return function;
}
}
}
return nullptr;
}
}
void SymbolDatabase::validateVariables() const
{
for (std::vector<const Variable *>::const_iterator iter = mVariableList.cbegin(); iter!=mVariableList.cend(); ++iter) {
const Variable * const var = *iter;
if (var) {
if (!var->scope()) {
const Function* function = getFunctionForArgumentvariable(var, functionScopes);
if (!var->isArgument() || (function && function->hasBody())) {
throw InternalError(var->nameToken(), "Analysis failed (variable without scope). If the code is valid then please report this failure.", InternalError::INTERNAL);
//std::cout << "!!!Variable found without scope: " << var->nameToken()->str() << std::endl;
}
}
}
}
}
void SymbolDatabase::validate() const
{
if (mSettings.debugwarnings) {
validateExecutableScopes();
}
// TODO
//validateVariables();
}
void SymbolDatabase::clangSetVariables(const std::vector<const Variable *> &variableList)
{
mVariableList = variableList;
}
void SymbolDatabase::debugSymbolDatabase() const
{
if (!mSettings.debugnormal && !mSettings.debugwarnings)
return;
for (const Token* tok = mTokenizer.list.front(); tok != mTokenizer.list.back(); tok = tok->next()) {
if (tok->astParent() && tok->astParent()->getTokenDebug() == tok->getTokenDebug())
continue;
if (tok->getTokenDebug() == TokenDebug::ValueType) {
std::string msg = "Value type is ";
ErrorPath errorPath;
if (tok->valueType()) {
msg += tok->valueType()->str();
errorPath.insert(errorPath.end(), tok->valueType()->debugPath.cbegin(), tok->valueType()->debugPath.cend());
} else {
msg += "missing";
}
errorPath.emplace_back(tok, "");
mErrorLogger->reportErr(
{errorPath, &mTokenizer.list, Severity::debug, "valueType", msg, CWE{0}, Certainty::normal});
}
}
}
Variable::Variable(const Token *name_, const std::string &clangType, const Token *typeStart,
const Token *typeEnd, nonneg int index_, AccessControl access_,
const Type *type_, const Scope *scope_)
: mNameToken(name_),
mTypeStartToken(typeStart),
mTypeEndToken(typeEnd),
mIndex(index_),
mAccess(access_),
mFlags(0),
mType(type_),
mScope(scope_),
mValueType(nullptr)
{
if (!mTypeStartToken && mTypeEndToken) {
mTypeStartToken = mTypeEndToken;
while (Token::Match(mTypeStartToken->previous(), "%type%|*|&"))
mTypeStartToken = mTypeStartToken->previous();
}
while (Token::Match(mTypeStartToken, "const|struct|static")) {
if (mTypeStartToken->str() == "static")
setFlag(fIsStatic, true);
mTypeStartToken = mTypeStartToken->next();
}
if (Token::simpleMatch(mTypeEndToken, "&"))
setFlag(fIsReference, true);
else if (Token::simpleMatch(mTypeEndToken, "&&")) {
setFlag(fIsReference, true);
setFlag(fIsRValueRef, true);
}
std::string::size_type pos = clangType.find('[');
if (pos != std::string::npos) {
setFlag(fIsArray, true);
do {
const std::string::size_type pos1 = pos+1;
pos = clangType.find(']', pos1);
Dimension dim;
dim.tok = nullptr;
dim.known = pos > pos1;
if (pos > pos1)
dim.num = MathLib::toLongNumber(clangType.substr(pos1, pos-pos1));
else
dim.num = 0;
mDimensions.push_back(dim);
++pos;
} while (pos < clangType.size() && clangType[pos] == '[');
}
// Is there initialization in variable declaration
const Token *initTok = mNameToken ? mNameToken->next() : nullptr;
while (initTok && initTok->str() == "[")
initTok = initTok->link()->next();
if (Token::Match(initTok, "=|{") || (initTok && initTok->isSplittedVarDeclEq()))
setFlag(fIsInit, true);
}
Variable::Variable(const Variable &var, const Scope *scope)
: mValueType(nullptr)
{
*this = var;
mScope = scope;
}
Variable::Variable(const Variable &var)
: mValueType(nullptr)
{
*this = var;
}
Variable::~Variable()
{
delete mValueType;
}
Variable& Variable::operator=(const Variable &var)
{
if (this == &var)
return *this;
mNameToken = var.mNameToken;
mTypeStartToken = var.mTypeStartToken;
mTypeEndToken = var.mTypeEndToken;
mIndex = var.mIndex;
mAccess = var.mAccess;
mFlags = var.mFlags;
mType = var.mType;
mScope = var.mScope;
mDimensions = var.mDimensions;
delete mValueType;
if (var.mValueType)
mValueType = new ValueType(*var.mValueType);
else
mValueType = nullptr;
return *this;
}
bool Variable::isMember() const {
return mScope && mScope->isClassOrStructOrUnion();
}
bool Variable::isPointerArray() const
{
return isArray() && nameToken() && nameToken()->previous() && (nameToken()->previous()->str() == "*");
}
bool Variable::isUnsigned() const
{
return mValueType ? (mValueType->sign == ValueType::Sign::UNSIGNED) : mTypeStartToken->isUnsigned();
}
const Token * Variable::declEndToken() const
{
Token const * declEnd = typeStartToken();
while (declEnd && !Token::Match(declEnd, "[;,)={]")) {
if (declEnd->link() && Token::Match(declEnd,"(|[|<"))
declEnd = declEnd->link();
declEnd = declEnd->next();
}
return declEnd;
}
void Variable::evaluate(const Settings* settings)
{
// Is there initialization in variable declaration
const Token *initTok = mNameToken ? mNameToken->next() : nullptr;
while (Token::Match(initTok, "[|(")) {
initTok = initTok->link()->next();
if (Token::simpleMatch(initTok, ")"))
initTok = initTok->next();
}
if (Token::Match(initTok, "=|{") || (initTok && initTok->isSplittedVarDeclEq()))
setFlag(fIsInit, true);
if (!settings)
return;
const Library * const lib = &settings->library;
bool isContainer = false;
if (mNameToken)
setFlag(fIsArray, arrayDimensions(settings, isContainer));
if (mTypeStartToken)
setValueType(ValueType::parseDecl(mTypeStartToken,*settings, true)); // TODO: set isCpp
const Token* tok = mTypeStartToken;
while (tok && tok->previous() && tok->previous()->isName())
tok = tok->previous();
const Token* end = mTypeEndToken;
if (end)
end = end->next();
while (tok != end) {
if (tok->str() == "static")
setFlag(fIsStatic, true);
else if (tok->str() == "extern")
setFlag(fIsExtern, true);
else if (tok->str() == "volatile" || Token::simpleMatch(tok, "std :: atomic <"))
setFlag(fIsVolatile, true);
else if (tok->str() == "mutable")
setFlag(fIsMutable, true);
else if (tok->str() == "const")
setFlag(fIsConst, true);
else if (tok->str() == "constexpr") {
setFlag(fIsConst, true);
setFlag(fIsStatic, true);
} else if (tok->str() == "*") {
setFlag(fIsPointer, !isArray() || (isContainer && !Token::Match(tok->next(), "%name% [")) || Token::Match(tok->previous(), "( * %name% )"));
setFlag(fIsConst, false); // Points to const, isn't necessarily const itself
} else if (tok->str() == "&") {
if (isReference())
setFlag(fIsRValueRef, true);
setFlag(fIsReference, true);
} else if (tok->str() == "&&") { // Before simplification, && isn't split up
setFlag(fIsRValueRef, true);
setFlag(fIsReference, true); // Set also fIsReference
}
if (tok->isAttributeMaybeUnused()) {
setFlag(fIsMaybeUnused, true);
}
if (tok->str() == "<" && tok->link())
tok = tok->link();
else
tok = tok->next();
}
while (Token::Match(mTypeStartToken, "static|const|constexpr|volatile %any%"))
mTypeStartToken = mTypeStartToken->next();
while (mTypeEndToken && mTypeEndToken->previous() && Token::Match(mTypeEndToken, "const|volatile"))
mTypeEndToken = mTypeEndToken->previous();
if (mTypeStartToken) {
std::string strtype = mTypeStartToken->str();
for (const Token *typeToken = mTypeStartToken; Token::Match(typeToken, "%type% :: %type%"); typeToken = typeToken->tokAt(2))
strtype += "::" + typeToken->strAt(2);
setFlag(fIsClass, !lib->podtype(strtype) && !mTypeStartToken->isStandardType() && !isEnumType() && !isPointer() && !isReference() && strtype != "...");
setFlag(fIsStlType, Token::simpleMatch(mTypeStartToken, "std ::"));
setFlag(fIsStlString, ::isStlStringType(mTypeStartToken));
setFlag(fIsSmartPointer, lib->isSmartPointer(mTypeStartToken));
}
if (mAccess == AccessControl::Argument) {
tok = mNameToken;
if (!tok) {
// Argument without name
tok = mTypeEndToken;
// back up to start of array dimensions
while (tok && tok->str() == "]")
tok = tok->link()->previous();
// add array dimensions if present
if (tok && tok->next()->str() == "[")
setFlag(fIsArray, arrayDimensions(settings, isContainer));
}
if (!tok)
return;
tok = tok->next();
while (tok->str() == "[")
tok = tok->link();
setFlag(fHasDefault, tok->str() == "=");
}
// check for C++11 member initialization
if (mScope && mScope->isClassOrStruct()) {
// type var = x or
// type var = {x}
// type var = x; gets simplified to: type var ; var = x ;
Token const * declEnd = declEndToken();
if ((Token::Match(declEnd, "; %name% =") && declEnd->strAt(1) == mNameToken->str()) ||
Token::Match(declEnd, "=|{"))
setFlag(fHasDefault, true);
}
if (mTypeStartToken) {
if (Token::Match(mTypeStartToken, "float|double"))
setFlag(fIsFloatType, true);
}
}
void Variable::setValueType(const ValueType &valueType)
{
if (valueType.type == ValueType::Type::UNKNOWN_TYPE) {
const Token *declType = Token::findsimplematch(mTypeStartToken, "decltype (", mTypeEndToken);
if (declType && !declType->next()->valueType())
return;
}
delete mValueType;
mValueType = new ValueType(valueType);
if ((mValueType->pointer > 0) && (!isArray() || Token::Match(mNameToken->previous(), "( * %name% )")))
setFlag(fIsPointer, true);
setFlag(fIsConst, mValueType->constness & (1U << mValueType->pointer));
if (mValueType->smartPointerType)
setFlag(fIsSmartPointer, true);
}
const Type* Variable::smartPointerType() const
{
if (!isSmartPointer())
return nullptr;
if (mValueType->smartPointerType)
return mValueType->smartPointerType;
// TODO: Cache result, handle more complex type expression
const Token* typeTok = typeStartToken();
while (Token::Match(typeTok, "%name%|::"))
typeTok = typeTok->next();
if (Token::Match(typeTok, "< %name% >")) {
const Scope* scope = typeTok->scope();
const Type* ptrType{};
while (scope && !ptrType) {
ptrType = scope->findType(typeTok->next()->str());
scope = scope->nestedIn;
}
return ptrType;
}
return nullptr;
}
const Type* Variable::iteratorType() const
{
if (!mValueType || mValueType->type != ValueType::ITERATOR)
return nullptr;
if (mValueType->containerTypeToken)
return mValueType->containerTypeToken->type();
return nullptr;
}
bool Variable::isStlStringViewType() const
{
return getFlag(fIsStlType) && valueType() && valueType()->container && valueType()->container->stdStringLike && valueType()->container->view;
}
std::string Variable::getTypeName() const
{
std::string ret;
// TODO: For known types, generate the full type name
for (const Token *typeTok = mTypeStartToken; Token::Match(typeTok, "%name%|::") && typeTok->varId() == 0; typeTok = typeTok->next()) {
ret += typeTok->str();
if (Token::simpleMatch(typeTok->next(), "<") && typeTok->next()->link()) // skip template arguments
typeTok = typeTok->next()->link();
}
return ret;
}
static bool isOperator(const Token *tokenDef)
{
if (!tokenDef)
return false;
if (tokenDef->isOperatorKeyword())
return true;
const std::string &name = tokenDef->str();
return name.size() > 8 && name.compare(0,8,"operator")==0 && std::strchr("+-*/%&|~^<>!=[(", name[8]);
}
Function::Function(const Tokenizer *mTokenizer,
const Token *tok,
const Scope *scope,
const Token *tokDef,
const Token *tokArgDef)
: tokenDef(tokDef),
argDef(tokArgDef),
token(nullptr),
arg(nullptr),
retDef(nullptr),
retType(nullptr),
functionScope(nullptr),
nestedIn(scope),
initArgCount(0),
type(eFunction),
noexceptArg(nullptr),
throwArg(nullptr),
templateDef(nullptr),
functionPointerUsage(nullptr),
access(AccessControl::Public),
mFlags(0)
{
// operator function
if (::isOperator(tokenDef)) {
isOperator(true);
// 'operator =' is special
if (tokenDef->str() == "operator=")
type = Function::eOperatorEqual;
}
else if (tokenDef->str() == "[") {
type = Function::eLambda;
}
// class constructor/destructor
else if (((tokenDef->str() == scope->className) ||
(tokenDef->str().substr(0, scope->className.size()) == scope->className &&
tokenDef->str().size() > scope->className.size() + 1 &&
tokenDef->str()[scope->className.size() + 1] == '<')) &&
scope->type != Scope::ScopeType::eNamespace) {
// destructor
if (tokenDef->previous()->str() == "~")
type = Function::eDestructor;
// constructor of any kind
else
type = Function::eConstructor;
isExplicit(tokenDef->strAt(-1) == "explicit" || tokenDef->strAt(-2) == "explicit");
}
const Token *tok1 = setFlags(tok, scope);
// find the return type
if (!isConstructor() && !isDestructor() && !isLambda()) {
// @todo auto type deduction should be checked
// @todo attributes and exception specification can also precede trailing return type
if (Token::Match(argDef->link()->next(), "const|volatile| &|&&| .")) { // Trailing return type
hasTrailingReturnType(true);
if (argDef->link()->strAt(1) == ".")
retDef = argDef->link()->tokAt(2);
else if (argDef->link()->strAt(2) == ".")
retDef = argDef->link()->tokAt(3);
else if (argDef->link()->strAt(3) == ".")
retDef = argDef->link()->tokAt(4);
} else {
if (tok1->str() == ">")
tok1 = tok1->next();
while (Token::Match(tok1, "extern|virtual|static|friend|struct|union|enum"))
tok1 = tok1->next();
retDef = tok1;
}
}
const Token *end = argDef->link();
// parse function attributes..
tok = end->next();
while (tok) {
if (tok->str() == "const")
isConst(true);
else if (tok->str() == "&")
hasLvalRefQualifier(true);
else if (tok->str() == "&&")
hasRvalRefQualifier(true);
else if (tok->str() == "override")
setFlag(fHasOverrideSpecifier, true);
else if (tok->str() == "final")
setFlag(fHasFinalSpecifier, true);
else if (tok->str() == "volatile")
isVolatile(true);
else if (tok->str() == "noexcept") {
isNoExcept(!Token::simpleMatch(tok->next(), "( false )"));
if (tok->next()->str() == "(")
tok = tok->linkAt(1);
} else if (Token::simpleMatch(tok, "throw (")) {
isThrow(true);
if (tok->strAt(2) != ")")
throwArg = tok->next();
tok = tok->linkAt(1);
} else if (Token::Match(tok, "= 0|default|delete ;")) {
const std::string& modifier = tok->strAt(1);
isPure(modifier == "0");
isDefault(modifier == "default");
isDelete(modifier == "delete");
} else if (tok->str() == ".") { // trailing return type
// skip over return type
while (tok && !Token::Match(tok->next(), ";|{|override|final"))
tok = tok->next();
} else
break;
if (tok)
tok = tok->next();
}
if (mTokenizer->isFunctionHead(end, ":{")) {
// assume implementation is inline (definition and implementation same)
token = tokenDef;
arg = argDef;
isInline(true);
hasBody(true);
}
}
Function::Function(const Token *tokenDef, const std::string &clangType)
: tokenDef(tokenDef),
argDef(nullptr),
token(nullptr),
arg(nullptr),
retDef(nullptr),
retType(nullptr),
functionScope(nullptr),
nestedIn(nullptr),
initArgCount(0),
type(eFunction),
noexceptArg(nullptr),
throwArg(nullptr),
templateDef(nullptr),
functionPointerUsage(nullptr),
access(AccessControl::Public),
mFlags(0)
{
// operator function
if (::isOperator(tokenDef)) {
isOperator(true);
// 'operator =' is special
if (tokenDef->str() == "operator=")
type = Function::eOperatorEqual;
}
setFlags(tokenDef, tokenDef->scope());
if (endsWith(clangType, " const"))
isConst(true);
}
const Token *Function::setFlags(const Token *tok1, const Scope *scope)
{
if (tok1->isInline())
isInlineKeyword(true);
// look for end of previous statement
while (tok1->previous() && !Token::Match(tok1->previous(), ";|}|{|public:|protected:|private:")) {
tok1 = tok1->previous();
if (tok1->isInline())
isInlineKeyword(true);
// extern function
if (tok1->isExternC() || tok1->str() == "extern") {
isExtern(true);
}
// virtual function
else if (tok1->str() == "virtual") {
hasVirtualSpecifier(true);
}
// static function
else if (tok1->str() == "static") {
isStatic(true);
if (scope->type == Scope::eNamespace || scope->type == Scope::eGlobal)
isStaticLocal(true);
}
// friend function
else if (tok1->str() == "friend") {
isFriend(true);
}
// constexpr function
else if (tok1->str() == "constexpr") {
isConstexpr(true);
}
// decltype
else if (tok1->str() == ")" && Token::simpleMatch(tok1->link()->previous(), "decltype (")) {
tok1 = tok1->link()->previous();
}
else if (tok1->link() && tok1->str() == ">") {
// Function template
if (Token::simpleMatch(tok1->link()->previous(), "template <")) {
templateDef = tok1->link()->previous();
break;
}
tok1 = tok1->link();
}
}
return tok1;
}
std::string Function::fullName() const
{
std::string ret = name();
for (const Scope *s = nestedIn; s; s = s->nestedIn) {
if (!s->className.empty())
ret = s->className + "::" + ret;
}
ret += "(";
for (const Variable &a : argumentList)
ret += (a.index() == 0 ? "" : ",") + a.name();
return ret + ")";
}
static std::string qualifiedName(const Scope *scope)
{
std::string name = scope->className;
while (scope->nestedIn) {
if (!scope->nestedIn->className.empty())
name = (scope->nestedIn->className + " :: ") + name;
scope = scope->nestedIn;
}
return name;
}
static bool usingNamespace(const Scope *scope, const Token *first, const Token *second, int &offset)
{
// check if qualifications match first before checking if using is needed
const Token *tok1 = first;
const Token *tok2 = second;
bool match = false;
while (Token::Match(tok1, "%type% :: %type%") && Token::Match(tok2, "%type% :: %type%")) {
if (tok1->str() == tok2->str()) {
tok1 = tok1->tokAt(2);
tok2 = tok2->tokAt(2);
match = true;
} else {
match = false;
break;
}
}
if (match)
return false;
offset = 0;
std::string name = first->str();
while (Token::Match(first, "%type% :: %type%")) {
if (offset)
name += (" :: " + first->str());
offset += 2;
first = first->tokAt(2);
if (first->str() == second->str()) {
break;
}
}
if (offset) {
while (scope) {
for (const auto & info : scope->usingList) {
if (info.scope) {
if (name == qualifiedName(info.scope))
return true;
}
// no scope so get name from using
else {
const Token *start = info.start->tokAt(2);
std::string nsName;
while (start && start->str() != ";") {
if (!nsName.empty())
nsName += " ";
nsName += start->str();
start = start->next();
}
if (nsName == name)
return true;
}
}
scope = scope->nestedIn;
}
}
return false;
}
static bool typesMatch(
const Scope *first_scope,
const Token *first_token,
const Scope *second_scope,
const Token *second_token,
const Token **new_first,
const Token **new_second)
{
// get first type
const Type* first_type = first_scope->check->findType(first_token, first_scope, /*lookOutside*/ true);
if (first_type) {
// get second type
const Type* second_type = second_scope->check->findType(second_token, second_scope, /*lookOutside*/ true);
// check if types match
if (first_type == second_type) {
const Token* tok1 = first_token;
while (tok1 && tok1->str() != first_type->name())
tok1 = tok1->next();
const Token *tok2 = second_token;
while (tok2 && tok2->str() != second_type->name())
tok2 = tok2->next();
// update parser token positions
if (tok1 && tok2) {
*new_first = tok1->previous();
*new_second = tok2->previous();
return true;
}
}
}
return false;
}
bool Function::argsMatch(const Scope *scope, const Token *first, const Token *second, const std::string &path, nonneg int path_length) const
{
const bool isCPP = scope->check->isCPP();
if (!isCPP) // C does not support overloads
return true;
int arg_path_length = path_length;
int offset = 0;
int openParen = 0;
// check for () == (void) and (void) == ()
if ((Token::simpleMatch(first, "( )") && Token::simpleMatch(second, "( void )")) ||
(Token::simpleMatch(first, "( void )") && Token::simpleMatch(second, "( )")))
return true;
auto skipTopLevelConst = [](const Token* start) -> const Token* {
const Token* tok = start->next();
if (Token::simpleMatch(tok, "const")) {
tok = tok->next();
while (Token::Match(tok, "%name%|%type%|::"))
tok = tok->next();
if (Token::Match(tok, ",|)|="))
return start->next();
}
return start;
};
while (first->str() == second->str() &&
first->isLong() == second->isLong() &&
first->isUnsigned() == second->isUnsigned()) {
if (first->str() == "(")
openParen++;
// at end of argument list
else if (first->str() == ")") {
if (openParen == 1)
return true;
--openParen;
}
// skip optional type information
if (Token::Match(first->next(), "struct|enum|union|class"))
first = first->next();
if (Token::Match(second->next(), "struct|enum|union|class"))
second = second->next();
// skip const on type passed by value
const Token* const oldSecond = second;
first = skipTopLevelConst(first);
second = skipTopLevelConst(second);
// skip default value assignment
if (oldSecond == second && first->next()->str() == "=") {
first = first->nextArgument();
if (first)
first = first->tokAt(-2);
if (second->next()->str() == "=") {
second = second->nextArgument();
if (second)
second = second->tokAt(-2);
if (!first || !second) { // End of argument list (first or second)
return !first && !second;
}
} else if (!first) { // End of argument list (first)
return !second->nextArgument(); // End of argument list (second)
}
} else if (oldSecond == second && second->next()->str() == "=") {
second = second->nextArgument();
if (second)
second = second->tokAt(-2);
if (!second) { // End of argument list (second)
return false;
}
}
// definition missing variable name
else if ((first->next()->str() == "," && second->next()->str() != ",") ||
(Token::Match(first, "!!( )") && second->next()->str() != ")")) {
second = second->next();
// skip default value assignment
if (second->next()->str() == "=") {
do {
second = second->next();
} while (!Token::Match(second->next(), ",|)"));
}
} else if (first->next()->str() == "[" && second->next()->str() != "[")
second = second->next();
// function missing variable name
else if ((second->next()->str() == "," && first->next()->str() != ",") ||
(Token::Match(second, "!!( )") && first->next()->str() != ")")) {
first = first->next();
// skip default value assignment
if (first->next()->str() == "=") {
do {
first = first->next();
} while (!Token::Match(first->next(), ",|)"));
}
} else if (second->next()->str() == "[" && first->next()->str() != "[")
first = first->next();
// unnamed parameters
else if (Token::Match(first, "(|, %type% ,|)") && Token::Match(second, "(|, %type% ,|)")) {
if (first->next()->expressionString() != second->next()->expressionString())
break;
first = first->next();
second = second->next();
continue;
}
// argument list has different number of arguments
else if (openParen == 1 && second->str() == ")" && first->str() != ")")
break;
// ckeck for type * x == type x[]
else if (Token::Match(first->next(), "* %name%| ,|)|=") &&
Token::Match(second->next(), "%name%| [ ] ,|)")) {
do {
first = first->next();
} while (!Token::Match(first->next(), ",|)"));
do {
second = second->next();
} while (!Token::Match(second->next(), ",|)"));
}
// const after *
else if (first->next()->str() == "*" && second->next()->str() == "*" &&
((first->strAt(2) != "const" && second->strAt(2) == "const") ||
(first->strAt(2) == "const" && second->strAt(2) != "const"))) {
if (first->strAt(2) != "const") {
if (Token::Match(first->tokAt(2), "%name%| ,|)") && Token::Match(second->tokAt(3), "%name%| ,|)")) {
first = first->tokAt(Token::Match(first->tokAt(2), "%name%") ? 2 : 1);
second = second->tokAt(Token::Match(second->tokAt(3), "%name%") ? 3 : 2);
} else {
first = first->next();
second = second->tokAt(2);
}
} else {
if (Token::Match(second->tokAt(2), "%name%| ,|)") && Token::Match(first->tokAt(3), "%name%| ,|)")) {
first = first->tokAt(Token::Match(first->tokAt(3), "%name%") ? 3 : 2);
second = second->tokAt(Token::Match(second->tokAt(2), "%name%") ? 2 : 1);
} else {
first = first->tokAt(2);
second = second->next();
}
}
}
// variable names are different
else if ((Token::Match(first->next(), "%name% ,|)|=|[") &&
Token::Match(second->next(), "%name% ,|)|[")) &&
(first->next()->str() != second->next()->str())) {
// skip variable names
first = first->next();
second = second->next();
// skip default value assignment
if (first->next()->str() == "=") {
do {
first = first->next();
} while (!Token::Match(first->next(), ",|)"));
}
}
// using namespace
else if (usingNamespace(scope, first->next(), second->next(), offset))
first = first->tokAt(offset);
// same type with different qualification
else if (typesMatch(scope, first->next(), nestedIn, second->next(), &first, &second))
;
// variable with class path
else if (arg_path_length && Token::Match(first->next(), "%name%") && first->strAt(1) != "const") {
std::string param = path;
if (Token::simpleMatch(second->next(), param.c_str(), param.size())) {
// check for redundant qualification before skipping it
if (!Token::simpleMatch(first->next(), param.c_str(), param.size())) {
second = second->tokAt(int(arg_path_length));
arg_path_length = 0;
}
}
// nested or base class variable
else if (arg_path_length <= 2 && Token::Match(first->next(), "%name%") &&
(Token::Match(second->next(), "%name% :: %name%") ||
(Token::Match(second->next(), "%name% <") &&
Token::Match(second->linkAt(1), "> :: %name%"))) &&
((second->next()->str() == scope->className) ||
(scope->nestedIn && second->next()->str() == scope->nestedIn->className) ||
(scope->definedType && scope->definedType->isDerivedFrom(second->next()->str()))) &&
(first->next()->str() == second->strAt(3))) {
if (Token::Match(second->next(), "%name% <"))
second = second->linkAt(1)->next();
else
second = second->tokAt(2);
}
// remove class name
else if (arg_path_length > 2 && first->strAt(1) != second->strAt(1)) {
std::string short_path = path;
unsigned int short_path_length = arg_path_length;
// remove last " :: "
short_path.resize(short_path.size() - 4);
short_path_length--;
// remove last name
std::string::size_type lastSpace = short_path.find_last_of(' ');
if (lastSpace != std::string::npos) {
short_path.resize(lastSpace+1);
short_path_length--;
if (short_path[short_path.size() - 1] == '>') {
short_path.resize(short_path.size() - 3);
while (short_path[short_path.size() - 1] == '<') {
lastSpace = short_path.find_last_of(' ');
short_path.resize(lastSpace+1);
short_path_length--;
}
}
}
param = short_path;
if (Token::simpleMatch(second->next(), param.c_str(), param.size())) {
second = second->tokAt(int(short_path_length));
arg_path_length = 0;
}
}
}
first = first->next();
second = second->next();
// reset path length
if (first->str() == "," || second->str() == ",")
arg_path_length = path_length;
}
return false;
}
static bool isUnknownType(const Token* start, const Token* end)
{
while (Token::Match(start, "const|volatile"))
start = start->next();
start = skipScopeIdentifiers(start);
if (start->tokAt(1) == end && !start->type() && !start->isStandardType())
return true;
// TODO: Try to deduce the type of the expression
if (Token::Match(start, "decltype|typeof"))
return true;
return false;
}
static const Token* getEnableIfReturnType(const Token* start)
{
if (!start)
return nullptr;
for (const Token* tok = start->next(); precedes(tok, start->link()); tok = tok->next()) {
if (tok->link() && Token::Match(tok, "(|[|{|<")) {
tok = tok->link();
continue;
}
if (Token::simpleMatch(tok, ","))
return tok->next();
}
return nullptr;
}
template<class Predicate>
static bool checkReturns(const Function* function, bool unknown, bool emptyEnableIf, Predicate pred)
{
if (!function)
return false;
if (function->type != Function::eFunction && function->type != Function::eOperatorEqual)
return false;
const Token* defStart = function->retDef;
if (!defStart)
return unknown;
const Token* defEnd = function->returnDefEnd();
if (!defEnd)
return unknown;
if (defEnd == defStart)
return unknown;
if (pred(defStart, defEnd))
return true;
if (Token::Match(defEnd->tokAt(-1), "*|&|&&"))
return false;
// void STDCALL foo()
while (defEnd->previous() != defStart && Token::Match(defEnd->tokAt(-2), "%name%|> %name%") &&
!Token::Match(defEnd->tokAt(-2), "const|volatile"))
defEnd = defEnd->previous();
// enable_if
const Token* enableIfEnd = nullptr;
if (Token::simpleMatch(defEnd->previous(), ">"))
enableIfEnd = defEnd->previous();
else if (Token::simpleMatch(defEnd->tokAt(-3), "> :: type"))
enableIfEnd = defEnd->tokAt(-3);
if (enableIfEnd && enableIfEnd->link() &&
Token::Match(enableIfEnd->link()->previous(), "enable_if|enable_if_t|EnableIf")) {
if (const Token* start = getEnableIfReturnType(enableIfEnd->link())) {
defStart = start;
defEnd = enableIfEnd;
} else {
return emptyEnableIf;
}
}
assert(defEnd != defStart);
if (pred(defStart, defEnd))
return true;
if (isUnknownType(defStart, defEnd))
return unknown;
return false;
}
bool Function::returnsConst(const Function* function, bool unknown)
{
return checkReturns(function, unknown, false, [](const Token* defStart, const Token* defEnd) {
return Token::findsimplematch(defStart, "const", defEnd);
});
}
bool Function::returnsReference(const Function* function, bool unknown, bool includeRValueRef)
{
return checkReturns(function, unknown, false, [includeRValueRef](UNUSED const Token* defStart, const Token* defEnd) {
return includeRValueRef ? Token::Match(defEnd->previous(), "&|&&") : Token::simpleMatch(defEnd->previous(), "&");
});
}
bool Function::returnsPointer(const Function* function, bool unknown)
{
return checkReturns(function, unknown, false, [](UNUSED const Token* defStart, const Token* defEnd) {
return Token::simpleMatch(defEnd->previous(), "*");
});
}
bool Function::returnsStandardType(const Function* function, bool unknown)
{
return checkReturns(function, unknown, true, [](UNUSED const Token* defStart, const Token* defEnd) {
return defEnd->previous() && defEnd->previous()->isStandardType();
});
}
bool Function::returnsVoid(const Function* function, bool unknown)
{
return checkReturns(function, unknown, true, [](UNUSED const Token* defStart, const Token* defEnd) {
return Token::simpleMatch(defEnd->previous(), "void");
});
}
std::vector<const Token*> Function::findReturns(const Function* f)
{
std::vector<const Token*> result;
if (!f)
return result;
const Scope* scope = f->functionScope;
if (!scope)
return result;
if (!scope->bodyStart)
return result;
for (const Token* tok = scope->bodyStart->next(); tok && tok != scope->bodyEnd; tok = tok->next()) {
if (tok->str() == "{" && tok->scope() &&
(tok->scope()->type == Scope::eLambda || tok->scope()->type == Scope::eClass)) {
tok = tok->link();
continue;
}
if (Token::simpleMatch(tok->astParent(), "return")) {
result.push_back(tok);
}
// Skip lambda functions since the scope may not be set correctly
const Token* lambdaEndToken = findLambdaEndToken(tok);
if (lambdaEndToken) {
tok = lambdaEndToken;
}
}
return result;
}
const Token * Function::constructorMemberInitialization() const
{
if (!isConstructor() || !arg)
return nullptr;
if (Token::simpleMatch(arg->link(), ") :"))
return arg->link()->next();
if (Token::simpleMatch(arg->link(), ") noexcept (") && arg->link()->linkAt(2)->strAt(1) == ":")
return arg->link()->linkAt(2)->next();
return nullptr;
}
bool Function::isSafe(const Settings *settings) const
{
if (settings->safeChecks.externalFunctions) {
if (nestedIn->type == Scope::ScopeType::eNamespace && token->fileIndex() != 0)
return true;
if (nestedIn->type == Scope::ScopeType::eGlobal && (token->fileIndex() != 0 || !isStatic()))
return true;
}
if (settings->safeChecks.internalFunctions) {
if (nestedIn->type == Scope::ScopeType::eNamespace && token->fileIndex() == 0)
return true;
if (nestedIn->type == Scope::ScopeType::eGlobal && (token->fileIndex() == 0 || isStatic()))
return true;
}
if (settings->safeChecks.classes && access == AccessControl::Public && (nestedIn->type == Scope::ScopeType::eClass || nestedIn->type == Scope::ScopeType::eStruct))
return true;
return false;
}
Function* SymbolDatabase::addGlobalFunction(Scope*& scope, const Token*& tok, const Token *argStart, const Token* funcStart)
{
Function* function = nullptr;
// Lambda functions are always unique
if (tok->str() != "[") {
auto range = scope->functionMap.equal_range(tok->str());
for (std::multimap<std::string, const Function*>::const_iterator it = range.first; it != range.second; ++it) {
const Function *f = it->second;
if (f->hasBody())
continue;
if (f->argsMatch(scope, f->argDef, argStart, emptyString, 0)) {
function = const_cast<Function *>(it->second);
break;
}
}
}
if (!function)
function = addGlobalFunctionDecl(scope, tok, argStart, funcStart);
function->arg = argStart;
function->token = funcStart;
function->hasBody(true);
addNewFunction(&scope, &tok);
if (scope) {
scope->function = function;
function->functionScope = scope;
return function;
}
return nullptr;
}
Function* SymbolDatabase::addGlobalFunctionDecl(Scope*& scope, const Token *tok, const Token *argStart, const Token* funcStart)
{
Function function(&mTokenizer, tok, scope, funcStart, argStart);
scope->addFunction(std::move(function));
return &scope->functionList.back();
}
void SymbolDatabase::addClassFunction(Scope **scope, const Token **tok, const Token *argStart)
{
const bool destructor((*tok)->previous()->str() == "~");
const bool has_const(argStart->link()->strAt(1) == "const");
const bool lval(argStart->link()->strAt(has_const ? 2 : 1) == "&");
const bool rval(argStart->link()->strAt(has_const ? 2 : 1) == "&&");
int count = 0;
std::string path;
unsigned int path_length = 0;
const Token *tok1 = (*tok);
if (destructor)
tok1 = tok1->previous();
// back up to head of path
while (tok1 && tok1->previous() && tok1->previous()->str() == "::" && tok1->tokAt(-2) &&
((tok1->tokAt(-2)->isName() && !tok1->tokAt(-2)->isStandardType()) ||
(tok1->strAt(-2) == ">" && tok1->linkAt(-2) && Token::Match(tok1->linkAt(-2)->previous(), "%name%")))) {
count++;
const Token * tok2 = tok1->tokAt(-2);
if (tok2->str() == ">")
tok2 = tok2->link()->previous();
if (tok2) {
do {
path = tok1->previous()->str() + " " + path;
tok1 = tok1->previous();
path_length++;
} while (tok1 != tok2);
} else
return; // syntax error ?
}
// syntax error?
if (!tok1)
return;
// add global namespace if present
if (tok1->strAt(-1) == "::") {
path_length++;
path.insert(0, ":: ");
}
std::list<Scope>::iterator it1;
// search for match
for (it1 = scopeList.begin(); it1 != scopeList.end(); ++it1) {
Scope *scope1 = &(*it1);
bool match = false;
// check in namespace if using found
if (*scope == scope1 && !scope1->usingList.empty()) {
std::vector<Scope::UsingInfo>::const_iterator it2;
for (it2 = scope1->usingList.cbegin(); it2 != scope1->usingList.cend(); ++it2) {
if (it2->scope) {
Function * func = findFunctionInScope(tok1, it2->scope, path, path_length);
if (func) {
if (!func->hasBody()) {
const Token *closeParen = (*tok)->next()->link();
if (closeParen) {
const Token *eq = mTokenizer.isFunctionHead(closeParen, ";");
if (eq && Token::simpleMatch(eq->tokAt(-2), "= default ;")) {
func->isDefault(true);
return;
}
}
func->hasBody(true);
func->token = *tok;
func->arg = argStart;
addNewFunction(scope, tok);
if (*scope) {
(*scope)->functionOf = func->nestedIn;
(*scope)->function = func;
(*scope)->function->functionScope = *scope;
}
return;
}
}
}
}
}
if (scope1->className == tok1->str() && (scope1->type != Scope::eFunction)) {
// do the scopes match (same scope) or do their names match (multiple namespaces)
if ((*scope == scope1->nestedIn) || (*scope &&
(*scope)->className == scope1->nestedIn->className &&
!(*scope)->className.empty() &&
(*scope)->type == scope1->nestedIn->type)) {
// nested scopes => check that they match
{
const Scope *s1 = *scope;
const Scope *s2 = scope1->nestedIn;
while (s1 && s2) {
if (s1->className != s2->className)
break;
s1 = s1->nestedIn;
s2 = s2->nestedIn;
}
// Not matching scopes
if (s1 || s2)
continue;
}
Scope *scope2 = scope1;
while (scope2 && count > 1) {
count--;
if (tok1->strAt(1) == "<")
tok1 = tok1->linkAt(1)->tokAt(2);
else
tok1 = tok1->tokAt(2);
scope2 = scope2->findRecordInNestedList(tok1->str());
}
if (count == 1 && scope2) {
match = true;
scope1 = scope2;
}
}
}
if (match) {
auto range = scope1->functionMap.equal_range((*tok)->str());
for (std::multimap<std::string, const Function*>::const_iterator it = range.first; it != range.second; ++it) {
Function * func = const_cast<Function *>(it->second);
if (!func->hasBody()) {
if (func->argsMatch(scope1, func->argDef, (*tok)->next(), path, path_length)) {
const Token *closeParen = (*tok)->next()->link();
if (closeParen) {
const Token *eq = mTokenizer.isFunctionHead(closeParen, ";");
if (eq && Token::simpleMatch(eq->tokAt(-2), "= default ;")) {
func->isDefault(true);
return;
}
if (func->type == Function::eDestructor && destructor) {
func->hasBody(true);
} else if (func->type != Function::eDestructor && !destructor) {
// normal function?
const bool hasConstKeyword = closeParen->next()->str() == "const";
if ((func->isConst() == hasConstKeyword) &&
(func->hasLvalRefQualifier() == lval) &&
(func->hasRvalRefQualifier() == rval)) {
func->hasBody(true);
}
}
}
if (func->hasBody()) {
func->token = *tok;
func->arg = argStart;
addNewFunction(scope, tok);
if (*scope) {
(*scope)->functionOf = scope1;
(*scope)->function = func;
(*scope)->function->functionScope = *scope;
}
return;
}
}
}
}
}
}
// class function of unknown class
addNewFunction(scope, tok);
}
void SymbolDatabase::addNewFunction(Scope **scope, const Token **tok)
{
const Token *tok1 = *tok;
scopeList.emplace_back(this, tok1, *scope);
Scope *newScope = &scopeList.back();
// find start of function '{'
bool foundInitList = false;
while (tok1 && tok1->str() != "{" && tok1->str() != ";") {
if (tok1->link() && Token::Match(tok1, "(|[|<")) {
tok1 = tok1->link();
} else if (foundInitList && Token::Match(tok1, "%name%|> {") && Token::Match(tok1->linkAt(1), "} ,|{")) {
tok1 = tok1->linkAt(1);
} else {
if (tok1->str() == ":")
foundInitList = true;
tok1 = tok1->next();
}
}
if (tok1 && tok1->str() == "{") {
newScope->setBodyStartEnd(tok1);
// syntax error?
if (!newScope->bodyEnd) {
mTokenizer.unmatchedToken(tok1);
} else {
(*scope)->nestedList.push_back(newScope);
*scope = newScope;
}
} else if (tok1 && Token::Match(tok1->tokAt(-2), "= default|delete ;")) {
scopeList.pop_back();
} else {
throw InternalError(*tok, "Analysis failed (function not recognized). If the code is valid then please report this failure.");
}
*tok = tok1;
}
bool Type::isClassType() const
{
return classScope && classScope->type == Scope::ScopeType::eClass;
}
bool Type::isEnumType() const
{
//We explicitly check for "enum" because a forward declared enum doesn't get its own scope
return (classDef && classDef->str() == "enum") ||
(classScope && classScope->type == Scope::ScopeType::eEnum);
}
bool Type::isStructType() const
{
return classScope && classScope->type == Scope::ScopeType::eStruct;
}
bool Type::isUnionType() const
{
return classScope && classScope->type == Scope::ScopeType::eUnion;
}
const Token *Type::initBaseInfo(const Token *tok, const Token *tok1)
{
// goto initial '{'
const Token *tok2 = tok1;
while (tok2 && tok2->str() != "{") {
// skip unsupported templates
if (tok2->str() == "<")
tok2 = tok2->link();
// check for base classes
else if (Token::Match(tok2, ":|,")) {
tok2 = tok2->next();
// check for invalid code
if (!tok2 || !tok2->next())
return nullptr;
Type::BaseInfo base;
if (tok2->str() == "virtual") {
base.isVirtual = true;
tok2 = tok2->next();
}
if (tok2->str() == "public") {
base.access = AccessControl::Public;
tok2 = tok2->next();
} else if (tok2->str() == "protected") {
base.access = AccessControl::Protected;
tok2 = tok2->next();
} else if (tok2->str() == "private") {
base.access = AccessControl::Private;
tok2 = tok2->next();
} else {
if (tok->str() == "class")
base.access = AccessControl::Private;
else if (tok->str() == "struct")
base.access = AccessControl::Public;
}
if (!tok2)
return nullptr;
if (tok2->str() == "virtual") {
base.isVirtual = true;
tok2 = tok2->next();
}
if (!tok2)
return nullptr;
base.nameTok = tok2;
// handle global namespace
if (tok2->str() == "::") {
tok2 = tok2->next();
}
// handle derived base classes
while (Token::Match(tok2, "%name% ::")) {
tok2 = tok2->tokAt(2);
}
if (!tok2)
return nullptr;
base.name = tok2->str();
tok2 = tok2->next();
// add unhandled templates
if (tok2 && tok2->link() && tok2->str() == "<") {
for (const Token* const end = tok2->link()->next(); tok2 != end; tok2 = tok2->next()) {
base.name += tok2->str();
}
}
const Type * baseType = classScope->check->findType(base.nameTok, enclosingScope);
if (baseType && !baseType->findDependency(this))
base.type = baseType;
// save pattern for base class name
derivedFrom.push_back(std::move(base));
} else
tok2 = tok2->next();
}
return tok2;
}
const std::string& Type::name() const
{
const Token* next = classDef->next();
if (classScope && classScope->enumClass && isEnumType())
return next->strAt(1);
if (next->str() == "class")
return next->strAt(1);
if (next->isName())
return next->str();
return emptyString;
}
void SymbolDatabase::debugMessage(const Token *tok, const std::string &type, const std::string &msg) const
{
if (tok && mSettings.debugwarnings && mErrorLogger) {
const std::list<const Token*> locationList(1, tok);
const ErrorMessage errmsg(locationList, &mTokenizer.list,
Severity::debug,
type,
msg,
Certainty::normal);
mErrorLogger->reportErr(errmsg);
}
}
const Function* Type::getFunction(const std::string& funcName) const
{
if (classScope) {
const std::multimap<std::string, const Function *>::const_iterator it = classScope->functionMap.find(funcName);
if (it != classScope->functionMap.end())
return it->second;
}
for (const Type::BaseInfo & i : derivedFrom) {
if (i.type) {
const Function* const func = i.type->getFunction(funcName);
if (func)
return func;
}
}
return nullptr;
}
bool Type::hasCircularDependencies(std::set<BaseInfo>* ancestors) const
{
std::set<BaseInfo> knownAncestors;
if (!ancestors) {
ancestors=&knownAncestors;
}
for (std::vector<BaseInfo>::const_iterator parent=derivedFrom.cbegin(); parent!=derivedFrom.cend(); ++parent) {
if (!parent->type)
continue;
if (this==parent->type)
return true;
if (ancestors->find(*parent)!=ancestors->end())
return true;
ancestors->insert(*parent);
if (parent->type->hasCircularDependencies(ancestors))
return true;
}
return false;
}
bool Type::findDependency(const Type* ancestor) const
{
return this == ancestor || std::any_of(derivedFrom.cbegin(), derivedFrom.cend(), [&](const BaseInfo& d) {
return d.type && (d.type == this || d.type->findDependency(ancestor));
});
}
bool Type::isDerivedFrom(const std::string & ancestor) const
{
for (std::vector<BaseInfo>::const_iterator parent=derivedFrom.cbegin(); parent!=derivedFrom.cend(); ++parent) {
if (parent->name == ancestor)
return true;
if (parent->type && parent->type->isDerivedFrom(ancestor))
return true;
}
return false;
}
bool Variable::arrayDimensions(const Settings* settings, bool& isContainer)
{
isContainer = false;
const Library::Container* container = settings->library.detectContainer(mTypeStartToken);
if (container && container->arrayLike_indexOp && container->size_templateArgNo > 0) {
const Token* tok = Token::findsimplematch(mTypeStartToken, "<");
if (tok) {
isContainer = true;
Dimension dimension_;
tok = tok->next();
for (int i = 0; i < container->size_templateArgNo && tok; i++) {
tok = tok->nextTemplateArgument();
}
if (Token::Match(tok, "%num% [,>]")) {
dimension_.tok = tok;
dimension_.known = true;
dimension_.num = MathLib::toLongNumber(tok->str());
} else if (tok) {
dimension_.tok = tok;
dimension_.known = false;
}
mDimensions.push_back(dimension_);
return true;
}
}
const Token *dim = mNameToken;
if (!dim) {
// Argument without name
dim = mTypeEndToken;
// back up to start of array dimensions
while (dim && dim->str() == "]")
dim = dim->link()->previous();
}
if (dim)
dim = dim->next();
if (dim && dim->str() == ")")
dim = dim->next();
bool arr = false;
while (dim && dim->next() && dim->str() == "[") {
Dimension dimension_;
dimension_.known = false;
// check for empty array dimension []
if (dim->next()->str() != "]") {
dimension_.tok = dim->astOperand2();
ValueFlow::valueFlowConstantFoldAST(const_cast<Token *>(dimension_.tok), settings);
if (dimension_.tok && dimension_.tok->hasKnownIntValue()) {
dimension_.num = dimension_.tok->getKnownIntValue();
dimension_.known = true;
}
}
mDimensions.push_back(dimension_);
dim = dim->link()->next();
arr = true;
}
return arr;
}
static std::ostream & operator << (std::ostream & s, Scope::ScopeType type)
{
s << (type == Scope::eGlobal ? "Global" :
type == Scope::eClass ? "Class" :
type == Scope::eStruct ? "Struct" :
type == Scope::eUnion ? "Union" :
type == Scope::eNamespace ? "Namespace" :
type == Scope::eFunction ? "Function" :
type == Scope::eIf ? "If" :
type == Scope::eElse ? "Else" :
type == Scope::eFor ? "For" :
type == Scope::eWhile ? "While" :
type == Scope::eDo ? "Do" :
type == Scope::eSwitch ? "Switch" :
type == Scope::eTry ? "Try" :
type == Scope::eCatch ? "Catch" :
type == Scope::eUnconditional ? "Unconditional" :
type == Scope::eLambda ? "Lambda" :
type == Scope::eEnum ? "Enum" :
"Unknown");
return s;
}
static std::string accessControlToString(const AccessControl& access)
{
switch (access) {
case AccessControl::Public:
return "Public";
case AccessControl::Protected:
return "Protected";
case AccessControl::Private:
return "Private";
case AccessControl::Global:
return "Global";
case AccessControl::Namespace:
return "Namespace";
case AccessControl::Argument:
return "Argument";
case AccessControl::Local:
return "Local";
case AccessControl::Throw:
return "Throw";
}
return "Unknown";
}
static std::string tokenToString(const Token* tok, const Tokenizer& tokenizer)
{
std::ostringstream oss;
if (tok) {
oss << tok->str() << " ";
oss << tokenizer.list.fileLine(tok) << " ";
}
oss << tok;
return oss.str();
}
static std::string scopeToString(const Scope* scope, const Tokenizer& tokenizer)
{
std::ostringstream oss;
if (scope) {
oss << scope->type << " ";
if (!scope->className.empty())
oss << scope->className << " ";
if (scope->classDef)
oss << tokenizer.list.fileLine(scope->classDef) << " ";
}
oss << scope;
return oss.str();
}
static std::string tokenType(const Token * tok)
{
std::ostringstream oss;
if (tok) {
if (tok->isUnsigned())
oss << "unsigned ";
else if (tok->isSigned())
oss << "signed ";
if (tok->isComplex())
oss << "_Complex ";
if (tok->isLong())
oss << "long ";
oss << tok->str();
}
return oss.str();
}
void SymbolDatabase::printVariable(const Variable *var, const char *indent) const
{
std::cout << indent << "mNameToken: " << tokenToString(var->nameToken(), mTokenizer) << std::endl;
if (var->nameToken()) {
std::cout << indent << " declarationId: " << var->declarationId() << std::endl;
}
std::cout << indent << "mTypeStartToken: " << tokenToString(var->typeStartToken(), mTokenizer) << std::endl;
std::cout << indent << "mTypeEndToken: " << tokenToString(var->typeEndToken(), mTokenizer) << std::endl;
if (var->typeStartToken()) {
const Token * autoTok = nullptr;
std::cout << indent << " ";
for (const Token * tok = var->typeStartToken(); tok != var->typeEndToken()->next(); tok = tok->next()) {
std::cout << " " << tokenType(tok);
if (tok->str() == "auto")
autoTok = tok;
}
std::cout << std::endl;
if (autoTok) {
const ValueType * valueType = autoTok->valueType();
std::cout << indent << " auto valueType: " << valueType << std::endl;
if (var->typeStartToken()->valueType()) {
std::cout << indent << " " << valueType->str() << std::endl;
}
}
} else if (var->valueType()) {
std::cout << indent << " " << var->valueType()->str() << std::endl;
}
std::cout << indent << "mIndex: " << var->index() << std::endl;
std::cout << indent << "mAccess: " << accessControlToString(var->accessControl()) << std::endl;
std::cout << indent << "mFlags: " << std::endl;
std::cout << indent << " isMutable: " << var->isMutable() << std::endl;
std::cout << indent << " isStatic: " << var->isStatic() << std::endl;
std::cout << indent << " isExtern: " << var->isExtern() << std::endl;
std::cout << indent << " isLocal: " << var->isLocal() << std::endl;
std::cout << indent << " isConst: " << var->isConst() << std::endl;
std::cout << indent << " isClass: " << var->isClass() << std::endl;
std::cout << indent << " isArray: " << var->isArray() << std::endl;
std::cout << indent << " isPointer: " << var->isPointer() << std::endl;
std::cout << indent << " isReference: " << var->isReference() << std::endl;
std::cout << indent << " isRValueRef: " << var->isRValueReference() << std::endl;
std::cout << indent << " hasDefault: " << var->hasDefault() << std::endl;
std::cout << indent << " isStlType: " << var->isStlType() << std::endl;
std::cout << indent << "mType: ";
if (var->type()) {
std::cout << var->type()->type() << " " << var->type()->name();
std::cout << " " << mTokenizer.list.fileLine(var->type()->classDef);
std::cout << " " << var->type() << std::endl;
} else
std::cout << "none" << std::endl;
if (var->nameToken()) {
const ValueType * valueType = var->nameToken()->valueType();
std::cout << indent << "valueType: " << valueType << std::endl;
if (valueType) {
std::cout << indent << " " << valueType->str() << std::endl;
}
}
std::cout << indent << "mScope: " << scopeToString(var->scope(), mTokenizer) << std::endl;
std::cout << indent << "mDimensions:";
for (std::size_t i = 0; i < var->dimensions().size(); i++) {
std::cout << " " << var->dimension(i);
if (!var->dimensions()[i].known)
std::cout << "?";
}
std::cout << std::endl;
}
void SymbolDatabase::printOut(const char *title) const
{
std::cout << std::setiosflags(std::ios::boolalpha);
if (title)
std::cout << "\n### " << title << " ###\n";
for (std::list<Scope>::const_iterator scope = scopeList.cbegin(); scope != scopeList.cend(); ++scope) {
std::cout << "Scope: " << &*scope << " " << scope->type << std::endl;
std::cout << " className: " << scope->className << std::endl;
std::cout << " classDef: " << tokenToString(scope->classDef, mTokenizer) << std::endl;
std::cout << " bodyStart: " << tokenToString(scope->bodyStart, mTokenizer) << std::endl;
std::cout << " bodyEnd: " << tokenToString(scope->bodyEnd, mTokenizer) << std::endl;
// find the function body if not implemented inline
for (auto func = scope->functionList.cbegin(); func != scope->functionList.cend(); ++func) {
std::cout << " Function: " << &*func << std::endl;
std::cout << " name: " << tokenToString(func->tokenDef, mTokenizer) << std::endl;
std::cout << " type: " << (func->type == Function::eConstructor? "Constructor" :
func->type == Function::eCopyConstructor ? "CopyConstructor" :
func->type == Function::eMoveConstructor ? "MoveConstructor" :
func->type == Function::eOperatorEqual ? "OperatorEqual" :
func->type == Function::eDestructor ? "Destructor" :
func->type == Function::eFunction ? "Function" :
func->type == Function::eLambda ? "Lambda" :
"Unknown") << std::endl;
std::cout << " access: " << accessControlToString(func->access) << std::endl;
std::cout << " hasBody: " << func->hasBody() << std::endl;
std::cout << " isInline: " << func->isInline() << std::endl;
std::cout << " isConst: " << func->isConst() << std::endl;
std::cout << " hasVirtualSpecifier: " << func->hasVirtualSpecifier() << std::endl;
std::cout << " isPure: " << func->isPure() << std::endl;
std::cout << " isStatic: " << func->isStatic() << std::endl;
std::cout << " isStaticLocal: " << func->isStaticLocal() << std::endl;
std::cout << " isExtern: " << func->isExtern() << std::endl;
std::cout << " isFriend: " << func->isFriend() << std::endl;
std::cout << " isExplicit: " << func->isExplicit() << std::endl;
std::cout << " isDefault: " << func->isDefault() << std::endl;
std::cout << " isDelete: " << func->isDelete() << std::endl;
std::cout << " hasOverrideSpecifier: " << func->hasOverrideSpecifier() << std::endl;
std::cout << " hasFinalSpecifier: " << func->hasFinalSpecifier() << std::endl;
std::cout << " isNoExcept: " << func->isNoExcept() << std::endl;
std::cout << " isThrow: " << func->isThrow() << std::endl;
std::cout << " isOperator: " << func->isOperator() << std::endl;
std::cout << " hasLvalRefQual: " << func->hasLvalRefQualifier() << std::endl;
std::cout << " hasRvalRefQual: " << func->hasRvalRefQualifier() << std::endl;
std::cout << " isVariadic: " << func->isVariadic() << std::endl;
std::cout << " isVolatile: " << func->isVolatile() << std::endl;
std::cout << " hasTrailingReturnType: " << func->hasTrailingReturnType() << std::endl;
std::cout << " attributes:";
if (func->isAttributeConst())
std::cout << " const ";
if (func->isAttributePure())
std::cout << " pure ";
if (func->isAttributeNoreturn())
std::cout << " noreturn ";
if (func->isAttributeNothrow())
std::cout << " nothrow ";
if (func->isAttributeConstructor())
std::cout << " constructor ";
if (func->isAttributeDestructor())
std::cout << " destructor ";
if (func->isAttributeNodiscard())
std::cout << " nodiscard ";
std::cout << std::endl;
std::cout << " noexceptArg: " << (func->noexceptArg ? func->noexceptArg->str() : "none") << std::endl;
std::cout << " throwArg: " << (func->throwArg ? func->throwArg->str() : "none") << std::endl;
std::cout << " tokenDef: " << tokenToString(func->tokenDef, mTokenizer) << std::endl;
std::cout << " argDef: " << tokenToString(func->argDef, mTokenizer) << std::endl;
if (!func->isConstructor() && !func->isDestructor())
std::cout << " retDef: " << tokenToString(func->retDef, mTokenizer) << std::endl;
if (func->retDef) {
std::cout << " ";
for (const Token * tok = func->retDef; tok && tok != func->tokenDef && !Token::Match(tok, "{|;|override|final"); tok = tok->next())
std::cout << " " << tokenType(tok);
std::cout << std::endl;
}
std::cout << " retType: " << func->retType << std::endl;
if (func->tokenDef->next()->valueType()) {
const ValueType * valueType = func->tokenDef->next()->valueType();
std::cout << " valueType: " << valueType << std::endl;
if (valueType) {
std::cout << " " << valueType->str() << std::endl;
}
}
if (func->hasBody()) {
std::cout << " token: " << tokenToString(func->token, mTokenizer) << std::endl;
std::cout << " arg: " << tokenToString(func->arg, mTokenizer) << std::endl;
}
std::cout << " nestedIn: " << scopeToString(func->nestedIn, mTokenizer) << std::endl;
std::cout << " functionScope: " << scopeToString(func->functionScope, mTokenizer) << std::endl;
for (auto var = func->argumentList.cbegin(); var != func->argumentList.cend(); ++var) {
std::cout << " Variable: " << &*var << std::endl;
printVariable(&*var, " ");
}
}
for (auto var = scope->varlist.cbegin(); var != scope->varlist.cend(); ++var) {
std::cout << " Variable: " << &*var << std::endl;
printVariable(&*var, " ");
}
if (scope->type == Scope::eEnum) {
std::cout << " enumType: ";
if (scope->enumType) {
std::cout << scope->enumType->stringify(false, true, false);
} else
std::cout << "int";
std::cout << std::endl;
std::cout << " enumClass: " << scope->enumClass << std::endl;
for (const Enumerator &enumerator : scope->enumeratorList) {
std::cout << " Enumerator: " << enumerator.name->str() << " = ";
if (enumerator.value_known)
std::cout << enumerator.value;
if (enumerator.start) {
const Token * tok = enumerator.start;
std::cout << (enumerator.value_known ? " " : "") << "[" << tok->str();
while (tok && tok != enumerator.end) {
if (tok->next())
std::cout << " " << tok->next()->str();
tok = tok->next();
}
std::cout << "]";
}
std::cout << std::endl;
}
}
std::cout << " nestedIn: " << scope->nestedIn;
if (scope->nestedIn) {
std::cout << " " << scope->nestedIn->type << " "
<< scope->nestedIn->className;
}
std::cout << std::endl;
std::cout << " definedType: " << scope->definedType << std::endl;
std::cout << " nestedList[" << scope->nestedList.size() << "] = (";
std::size_t count = scope->nestedList.size();
for (std::vector<Scope*>::const_iterator nsi = scope->nestedList.cbegin(); nsi != scope->nestedList.cend(); ++nsi) {
std::cout << " " << (*nsi) << " " << (*nsi)->type << " " << (*nsi)->className;
if (count-- > 1)
std::cout << ",";
}
std::cout << " )" << std::endl;
for (auto use = scope->usingList.cbegin(); use != scope->usingList.cend(); ++use) {
std::cout << " using: " << use->scope << " " << use->start->strAt(2);
const Token *tok1 = use->start->tokAt(3);
while (tok1 && tok1->str() == "::") {
std::cout << "::" << tok1->strAt(1);
tok1 = tok1->tokAt(2);
}
std::cout << " " << mTokenizer.list.fileLine(use->start) << std::endl;
}
std::cout << " functionOf: " << scopeToString(scope->functionOf, mTokenizer) << std::endl;
std::cout << " function: " << scope->function;
if (scope->function)
std::cout << " " << scope->function->name();
std::cout << std::endl;
}
for (std::list<Type>::const_iterator type = typeList.cbegin(); type != typeList.cend(); ++type) {
std::cout << "Type: " << &(*type) << std::endl;
std::cout << " name: " << type->name() << std::endl;
std::cout << " classDef: " << tokenToString(type->classDef, mTokenizer) << std::endl;
std::cout << " classScope: " << type->classScope << std::endl;
std::cout << " enclosingScope: " << type->enclosingScope;
if (type->enclosingScope) {
std::cout << " " << type->enclosingScope->type << " "
<< type->enclosingScope->className;
}
std::cout << std::endl;
std::cout << " needInitialization: " << (type->needInitialization == Type::NeedInitialization::Unknown ? "Unknown" :
type->needInitialization == Type::NeedInitialization::True ? "True" :
type->needInitialization == Type::NeedInitialization::False ? "False" :
"Invalid") << std::endl;
std::cout << " derivedFrom[" << type->derivedFrom.size() << "] = (";
std::size_t count = type->derivedFrom.size();
for (const Type::BaseInfo & i : type->derivedFrom) {
if (i.isVirtual)
std::cout << "Virtual ";
std::cout << (i.access == AccessControl::Public ? " Public" :
i.access == AccessControl::Protected ? " Protected" :
i.access == AccessControl::Private ? " Private" :
" Unknown");
if (i.type)
std::cout << " " << i.type;
else
std::cout << " Unknown";
std::cout << " " << i.name;
if (count-- > 1)
std::cout << ",";
}
std::cout << " )" << std::endl;
std::cout << " friendList[" << type->friendList.size() << "] = (";
for (size_t i = 0; i < type->friendList.size(); i++) {
if (type->friendList[i].type)
std::cout << type->friendList[i].type;
else
std::cout << " Unknown";
std::cout << ' ';
if (type->friendList[i].nameEnd)
std::cout << type->friendList[i].nameEnd->str();
if (i+1 < type->friendList.size())
std::cout << ',';
}
std::cout << " )" << std::endl;
}
for (std::size_t i = 1; i < mVariableList.size(); i++) {
std::cout << "mVariableList[" << i << "]: " << mVariableList[i];
if (mVariableList[i]) {
std::cout << " " << mVariableList[i]->name() << " "
<< mTokenizer.list.fileLine(mVariableList[i]->nameToken());
}
std::cout << std::endl;
}
std::cout << std::resetiosflags(std::ios::boolalpha);
}
void SymbolDatabase::printXml(std::ostream &out) const
{
out << std::setiosflags(std::ios::boolalpha);
std::set<const Variable *> variables;
// Scopes..
out << " <scopes>" << std::endl;
for (std::list<Scope>::const_iterator scope = scopeList.cbegin(); scope != scopeList.cend(); ++scope) {
out << " <scope";
out << " id=\"" << &*scope << "\"";
out << " type=\"" << scope->type << "\"";
if (!scope->className.empty())
out << " className=\"" << ErrorLogger::toxml(scope->className) << "\"";
if (scope->bodyStart)
out << " bodyStart=\"" << scope->bodyStart << '\"';
if (scope->bodyEnd)
out << " bodyEnd=\"" << scope->bodyEnd << '\"';
if (scope->nestedIn)
out << " nestedIn=\"" << scope->nestedIn << "\"";
if (scope->function)
out << " function=\"" << scope->function << "\"";
if (scope->definedType)
out << " definedType=\"" << scope->definedType << "\"";
if (scope->functionList.empty() && scope->varlist.empty())
out << "/>" << std::endl;
else {
out << '>' << std::endl;
if (!scope->functionList.empty()) {
out << " <functionList>" << std::endl;
for (std::list<Function>::const_iterator function = scope->functionList.cbegin(); function != scope->functionList.cend(); ++function) {
out << " <function id=\"" << &*function
<< "\" token=\"" << function->token
<< "\" tokenDef=\"" << function->tokenDef
<< "\" name=\"" << ErrorLogger::toxml(function->name()) << '\"';
out << " type=\"" << (function->type == Function::eConstructor? "Constructor" :
function->type == Function::eCopyConstructor ? "CopyConstructor" :
function->type == Function::eMoveConstructor ? "MoveConstructor" :
function->type == Function::eOperatorEqual ? "OperatorEqual" :
function->type == Function::eDestructor ? "Destructor" :
function->type == Function::eFunction ? "Function" :
function->type == Function::eLambda ? "Lambda" :
"Unknown") << '\"';
if (function->nestedIn->definedType) {
if (function->hasVirtualSpecifier())
out << " hasVirtualSpecifier=\"true\"";
else if (function->isImplicitlyVirtual())
out << " isImplicitlyVirtual=\"true\"";
}
if (function->access == AccessControl::Public || function->access == AccessControl::Protected || function->access == AccessControl::Private)
out << " access=\"" << accessControlToString(function->access) << "\"";
if (function->isInlineKeyword())
out << " isInlineKeyword=\"true\"";
if (function->isStatic())
out << " isStatic=\"true\"";
if (function->isAttributeNoreturn())
out << " isAttributeNoreturn=\"true\"";
if (const Function* overriddenFunction = function->getOverriddenFunction())
out << " overriddenFunction=\"" << overriddenFunction << "\"";
if (function->argCount() == 0U)
out << "/>" << std::endl;
else {
out << ">" << std::endl;
for (unsigned int argnr = 0; argnr < function->argCount(); ++argnr) {
const Variable *arg = function->getArgumentVar(argnr);
out << " <arg nr=\"" << argnr+1 << "\" variable=\"" << arg << "\"/>" << std::endl;
variables.insert(arg);
}
out << " </function>" << std::endl;
}
}
out << " </functionList>" << std::endl;
}
if (!scope->varlist.empty()) {
out << " <varlist>" << std::endl;
for (std::list<Variable>::const_iterator var = scope->varlist.cbegin(); var != scope->varlist.cend(); ++var)
out << " <var id=\"" << &*var << "\"/>" << std::endl;
out << " </varlist>" << std::endl;
}
out << " </scope>" << std::endl;
}
}
out << " </scopes>" << std::endl;
if (!typeList.empty()) {
out << " <types>\n";
for (const Type& type:typeList) {
out << " <type id=\"" << &type << "\" classScope=\"" << type.classScope << "\"";
if (type.derivedFrom.empty()) {
out << "/>\n";
continue;
}
out << ">\n";
for (const Type::BaseInfo& baseInfo: type.derivedFrom) {
out << " <derivedFrom"
<< " access=\"" << accessControlToString(baseInfo.access) << "\""
<< " type=\"" << baseInfo.type << "\""
<< " isVirtual=\"" << (baseInfo.isVirtual ? "true" : "false") << "\""
<< " nameTok=\"" << baseInfo.nameTok << "\""
<< "/>\n";
}
out << " </type>\n";
}
out << " </types>\n";
}
// Variables..
for (const Variable *var : mVariableList)
variables.insert(var);
out << " <variables>" << std::endl;
for (const Variable *var : variables) {
if (!var)
continue;
out << " <var id=\"" << var << '\"';
out << " nameToken=\"" << var->nameToken() << '\"';
out << " typeStartToken=\"" << var->typeStartToken() << '\"';
out << " typeEndToken=\"" << var->typeEndToken() << '\"';
out << " access=\"" << accessControlToString(var->mAccess) << '\"';
out << " scope=\"" << var->scope() << '\"';
if (var->valueType())
out << " constness=\"" << var->valueType()->constness << '\"';
out << " isArray=\"" << var->isArray() << '\"';
out << " isClass=\"" << var->isClass() << '\"';
out << " isConst=\"" << var->isConst() << '\"';
out << " isExtern=\"" << var->isExtern() << '\"';
out << " isPointer=\"" << var->isPointer() << '\"';
out << " isReference=\"" << var->isReference() << '\"';
out << " isStatic=\"" << var->isStatic() << '\"';
out << " isVolatile=\"" << var->isVolatile() << '\"';
out << "/>" << std::endl;
}
out << " </variables>" << std::endl;
out << std::resetiosflags(std::ios::boolalpha);
}
//---------------------------------------------------------------------------
static const Type* findVariableTypeIncludingUsedNamespaces(const SymbolDatabase* symbolDatabase, const Scope* scope, const Token* typeTok)
{
const Type* argType = symbolDatabase->findVariableType(scope, typeTok);
if (argType)
return argType;
// look for variable type in any using namespace in this scope or above
while (scope) {
for (const Scope::UsingInfo &ui : scope->usingList) {
if (ui.scope) {
argType = symbolDatabase->findVariableType(ui.scope, typeTok);
if (argType)
return argType;
}
}
scope = scope->nestedIn;
}
return nullptr;
}
//---------------------------------------------------------------------------
void Function::addArguments(const SymbolDatabase *symbolDatabase, const Scope *scope)
{
// check for non-empty argument list "( ... )"
const Token * start = arg ? arg : argDef;
if (!Token::simpleMatch(start, "("))
return;
if (!(start && start->link() != start->next() && !Token::simpleMatch(start, "( void )")))
return;
unsigned int count = 0;
for (const Token* tok = start->next(); tok; tok = tok->next()) {
if (Token::Match(tok, ",|)"))
return; // Syntax error
const Token* startTok = tok;
const Token* endTok = nullptr;
const Token* nameTok = nullptr;
do {
if (Token::simpleMatch(tok, "decltype (")) {
tok = tok->linkAt(1)->next();
continue;
}
if (tok != startTok && !nameTok && Token::Match(tok, "( & %var% ) [")) {
nameTok = tok->tokAt(2);
endTok = nameTok->previous();
tok = tok->link();
} else if (tok != startTok && !nameTok && Token::Match(tok, "( * %var% ) (") && Token::Match(tok->link()->linkAt(1), ") [,)]")) {
nameTok = tok->tokAt(2);
endTok = nameTok->previous();
tok = tok->link()->linkAt(1);
} else if (tok != startTok && !nameTok && Token::Match(tok, "( * %var% ) [")) {
nameTok = tok->tokAt(2);
endTok = nameTok->previous();
tok = tok->link();
} else if (tok->varId() != 0) {
nameTok = tok;
endTok = tok->previous();
} else if (tok->str() == "[") {
// skip array dimension(s)
tok = tok->link();
while (tok->next()->str() == "[")
tok = tok->next()->link();
} else if (tok->str() == "<") {
tok = tok->link();
if (!tok) // something is wrong so just bail out
return;
}
tok = tok->next();
if (!tok) // something is wrong so just bail
return;
} while (tok->str() != "," && tok->str() != ")" && tok->str() != "=");
const Token *typeTok = startTok;
// skip over stuff to get to type
while (Token::Match(typeTok, "const|volatile|enum|struct|::"))
typeTok = typeTok->next();
if (Token::Match(typeTok, ",|)")) { // #8333
symbolDatabase->mTokenizer.syntaxError(typeTok);
}
// skip over qualification
while (Token::Match(typeTok, "%type% ::"))
typeTok = typeTok->tokAt(2);
// check for argument with no name or missing varid
if (!endTok) {
if (tok->previous()->isName() && !Token::Match(tok->tokAt(-1), "const|volatile")) {
if (tok->previous() != typeTok) {
nameTok = tok->previous();
endTok = nameTok->previous();
if (hasBody())
symbolDatabase->debugMessage(nameTok, "varid0", "Function::addArguments found argument \'" + nameTok->str() + "\' with varid 0.");
} else
endTok = typeTok;
} else
endTok = tok->previous();
}
const ::Type *argType = nullptr;
if (!typeTok->isStandardType()) {
argType = findVariableTypeIncludingUsedNamespaces(symbolDatabase, scope, typeTok);
// save type
const_cast<Token *>(typeTok)->type(argType);
}
// skip default values
if (tok->str() == "=") {
do {
if (tok->link() && Token::Match(tok, "[{[(<]"))
tok = tok->link();
tok = tok->next();
} while (tok->str() != "," && tok->str() != ")");
}
// skip over stuff before type
while (Token::Match(startTok, "enum|struct|const|volatile"))
startTok = startTok->next();
if (startTok == nameTok)
break;
argumentList.emplace_back(nameTok, startTok, endTok, count++, AccessControl::Argument, argType, functionScope, &symbolDatabase->mSettings);
if (tok->str() == ")") {
// check for a variadic function or a variadic template function
if (Token::simpleMatch(endTok, "..."))
isVariadic(true);
break;
}
}
// count default arguments
for (const Token* tok = argDef->next(); tok && tok != argDef->link(); tok = tok->next()) {
if (tok->str() == "=") {
initArgCount++;
if (tok->strAt(1) == "[") {
const Token* lambdaStart = tok->next();
if (type == eLambda)
tok = findLambdaEndTokenWithoutAST(lambdaStart);
else {
tok = findLambdaEndToken(lambdaStart);
if (!tok)
tok = findLambdaEndTokenWithoutAST(lambdaStart);
}
if (!tok)
throw InternalError(lambdaStart, "Analysis failed (lambda not recognized). If the code is valid then please report this failure.", InternalError::INTERNAL);
}
}
}
}
bool Function::isImplicitlyVirtual(bool defaultVal) const
{
if (hasVirtualSpecifier()) //If it has the virtual specifier it's definitely virtual
return true;
if (hasOverrideSpecifier()) //If it has the override specifier then it's either virtual or not going to compile
return true;
bool foundAllBaseClasses = true;
if (getOverriddenFunction(&foundAllBaseClasses)) //If it overrides a base class's method then it's virtual
return true;
if (foundAllBaseClasses) //If we've seen all the base classes and none of the above were true then it must not be virtual
return false;
return defaultVal; //If we can't see all the bases classes then we can't say conclusively
}
std::vector<const Function*> Function::getOverloadedFunctions() const
{
std::vector<const Function*> result;
const Scope* scope = nestedIn;
while (scope) {
const bool isMemberFunction = scope->isClassOrStruct() && !isStatic();
for (std::multimap<std::string, const Function*>::const_iterator it = scope->functionMap.find(tokenDef->str());
it != scope->functionMap.end() && it->first == tokenDef->str();
++it) {
const Function* func = it->second;
if (isMemberFunction == func->isStatic())
continue;
result.push_back(func);
}
if (isMemberFunction)
break;
scope = scope->nestedIn;
}
return result;
}
const Function *Function::getOverriddenFunction(bool *foundAllBaseClasses) const
{
if (foundAllBaseClasses)
*foundAllBaseClasses = true;
if (!nestedIn->isClassOrStruct())
return nullptr;
return getOverriddenFunctionRecursive(nestedIn->definedType, foundAllBaseClasses);
}
const Function * Function::getOverriddenFunctionRecursive(const ::Type* baseType, bool *foundAllBaseClasses) const
{
// check each base class
for (const ::Type::BaseInfo & i : baseType->derivedFrom) {
const ::Type* derivedFromType = i.type;
// check if base class exists in database
if (!derivedFromType || !derivedFromType->classScope) {
if (foundAllBaseClasses)
*foundAllBaseClasses = false;
continue;
}
const Scope *parent = derivedFromType->classScope;
// check if function defined in base class
auto range = parent->functionMap.equal_range(tokenDef->str());
for (std::multimap<std::string, const Function*>::const_iterator it = range.first; it != range.second; ++it) {
const Function * func = it->second;
if (func->hasVirtualSpecifier()) { // Base is virtual and of same name
const Token *temp1 = func->tokenDef->previous();
const Token *temp2 = tokenDef->previous();
bool match = true;
// check for matching return parameters
while (temp1->str() != "virtual") {
if (temp1->str() != temp2->str() &&
!(temp1->str() == derivedFromType->name() &&
temp2->str() == baseType->name())) {
match = false;
break;
}
temp1 = temp1->previous();
temp2 = temp2->previous();
}
// check for matching function parameters
match = match && argsMatch(baseType->classScope, func->argDef, argDef, emptyString, 0);
// check for matching cv-ref qualifiers
match = match
&& isConst() == func->isConst()
&& isVolatile() == func->isVolatile()
&& hasRvalRefQualifier() == func->hasRvalRefQualifier()
&& hasLvalRefQualifier() == func->hasLvalRefQualifier();
// it's a match
if (match) {
return func;
}
}
}
if (!derivedFromType->derivedFrom.empty() && !derivedFromType->hasCircularDependencies()) {
// avoid endless recursion, see #5289 Crash: Stack overflow in isImplicitlyVirtual_rec when checking SVN and
// #5590 with a loop within the class hierarchy.
const Function *func = getOverriddenFunctionRecursive(derivedFromType, foundAllBaseClasses);
if (func) {
return func;
}
}
}
return nullptr;
}
const Variable* Function::getArgumentVar(nonneg int num) const
{
if (num < argumentList.size())
return &argumentList[num];
return nullptr;
}
//---------------------------------------------------------------------------
Scope::Scope(const SymbolDatabase *check_, const Token *classDef_, const Scope *nestedIn_, ScopeType type_, const Token *start_) :
check(check_),
classDef(classDef_),
nestedIn(nestedIn_),
numConstructors(0),
numCopyOrMoveConstructors(0),
type(type_),
definedType(nullptr),
functionOf(nullptr),
function(nullptr),
enumType(nullptr),
enumClass(false)
{
setBodyStartEnd(start_);
}
Scope::Scope(const SymbolDatabase *check_, const Token *classDef_, const Scope *nestedIn_) :
check(check_),
classDef(classDef_),
bodyStart(nullptr),
bodyEnd(nullptr),
nestedIn(nestedIn_),
numConstructors(0),
numCopyOrMoveConstructors(0),
definedType(nullptr),
functionOf(nullptr),
function(nullptr),
enumType(nullptr),
enumClass(false)
{
const Token *nameTok = classDef;
if (!classDef) {
type = Scope::eGlobal;
} else if (classDef->str() == "class" && check && check->isCPP()) {
type = Scope::eClass;
nameTok = nameTok->next();
} else if (classDef->str() == "struct") {
type = Scope::eStruct;
nameTok = nameTok->next();
} else if (classDef->str() == "union") {
type = Scope::eUnion;
nameTok = nameTok->next();
} else if (classDef->str() == "namespace") {
type = Scope::eNamespace;
nameTok = nameTok->next();
} else if (classDef->str() == "enum") {
type = Scope::eEnum;
nameTok = nameTok->next();
if (nameTok->str() == "class") {
enumClass = true;
nameTok = nameTok->next();
}
} else if (classDef->str() == "[") {
type = Scope::eLambda;
} else {
type = Scope::eFunction;
}
// skip over qualification if present
nameTok = skipScopeIdentifiers(nameTok);
if (nameTok && ((type == Scope::eEnum && Token::Match(nameTok, ":|{")) || nameTok->str() != "{")) // anonymous and unnamed structs/unions don't have a name
className = nameTok->str();
}
AccessControl Scope::defaultAccess() const
{
switch (type) {
case eGlobal:
return AccessControl::Global;
case eClass:
return AccessControl::Private;
case eStruct:
return AccessControl::Public;
case eUnion:
return AccessControl::Public;
case eNamespace:
return AccessControl::Namespace;
default:
return AccessControl::Local;
}
}
void Scope::addVariable(const Token *token_, const Token *start_, const Token *end_,
AccessControl access_, const Type *type_, const Scope *scope_, const Settings* settings)
{
// keep possible size_t -> int truncation outside emplace_back() to have a single line
// C4267 VC++ warning instead of several dozens lines
const int varIndex = varlist.size();
varlist.emplace_back(token_, start_, end_, varIndex, access_, type_, scope_, settings);
}
// Get variable list..
void Scope::getVariableList(const Settings* settings)
{
if (!bodyStartList.empty()) {
for (const Token *bs: bodyStartList)
getVariableList(settings, bs->next(), bs->link());
}
// global scope
else if (type == Scope::eGlobal)
getVariableList(settings, check->mTokenizer.tokens(), nullptr);
// forward declaration
else
return;
}
void Scope::getVariableList(const Settings* settings, const Token* start, const Token* end)
{
// Variable declared in condition: if (auto x = bar())
if (Token::Match(classDef, "if|while ( %type%") && Token::simpleMatch(classDef->next()->astOperand2(), "=")) {
checkVariable(classDef->tokAt(2), defaultAccess(), settings);
}
AccessControl varaccess = defaultAccess();
for (const Token *tok = start; tok && tok != end; tok = tok->next()) {
// syntax error?
if (tok->next() == nullptr)
break;
// Is it a function?
if (tok->str() == "{") {
tok = tok->link();
continue;
}
// Is it a nested class or structure?
if (tok->isKeyword() && Token::Match(tok, "class|struct|union|namespace %type% :|{")) {
tok = tok->tokAt(2);
while (tok && tok->str() != "{")
tok = tok->next();
if (tok) {
// skip implementation
tok = tok->link();
continue;
}
break;
}
if (tok->isKeyword() && Token::Match(tok, "struct|union {")) {
if (Token::Match(tok->next()->link(), "} %name% ;|[")) {
tok = tok->next()->link()->tokAt(2);
continue;
}
if (Token::simpleMatch(tok->next()->link(), "} ;")) {
tok = tok->next();
continue;
}
}
// Borland C++: Skip all variables in the __published section.
// These are automatically initialized.
else if (tok->str() == "__published:") {
for (; tok; tok = tok->next()) {
if (tok->str() == "{")
tok = tok->link();
if (Token::Match(tok->next(), "private:|protected:|public:"))
break;
}
if (tok)
continue;
break;
}
// "private:" "public:" "protected:" etc
else if (tok->str() == "public:") {
varaccess = AccessControl::Public;
continue;
} else if (tok->str() == "protected:") {
varaccess = AccessControl::Protected;
continue;
} else if (tok->str() == "private:") {
varaccess = AccessControl::Private;
continue;
}
// Is it a forward declaration?
else if (tok->isKeyword() && Token::Match(tok, "class|struct|union %name% ;")) {
tok = tok->tokAt(2);
continue;
}
// Borland C++: Ignore properties..
else if (tok->str() == "__property")
continue;
// skip return, goto and delete
else if (tok->isKeyword() && Token::Match(tok, "return|delete|goto")) {
while (tok->next() &&
tok->next()->str() != ";" &&
tok->next()->str() != "}" /* ticket #4994 */) {
tok = tok->next();
}
continue;
}
// skip case/default
if (tok->isKeyword() && Token::Match(tok, "case|default")) {
while (tok->next() && !Token::Match(tok->next(), "[:;{}]"))
tok = tok->next();
continue;
}
// Search for start of statement..
if (tok->previous() && !Token::Match(tok->previous(), ";|{|}|public:|protected:|private:"))
continue;
if (tok->str() == ";")
continue;
tok = checkVariable(tok, varaccess, settings);
if (!tok)
break;
}
}
const Token *Scope::checkVariable(const Token *tok, AccessControl varaccess, const Settings* settings)
{
// Is it a throw..?
if (tok->isKeyword() && Token::Match(tok, "throw %any% (") &&
Token::simpleMatch(tok->linkAt(2), ") ;")) {
return tok->linkAt(2);
}
if (tok->isKeyword() && Token::Match(tok, "throw %any% :: %any% (") &&
Token::simpleMatch(tok->linkAt(4), ") ;")) {
return tok->linkAt(4);
}
// friend?
if (tok->isKeyword() && Token::Match(tok, "friend %type%") && tok->next()->varId() == 0) {
const Token *next = Token::findmatch(tok->tokAt(2), ";|{");
if (next && next->str() == "{")
next = next->link();
return next;
}
// skip const|volatile|static|mutable|extern
while (tok && tok->isKeyword() && Token::Match(tok, "const|constexpr|volatile|static|mutable|extern")) {
tok = tok->next();
}
// the start of the type tokens does not include the above modifiers
const Token *typestart = tok;
// C++17 structured bindings
if (settings->standards.cpp >= Standards::CPP17 && Token::Match(tok, "auto &|&&| [")) {
const Token *typeend = Token::findsimplematch(typestart, "[")->previous();
for (tok = typeend->tokAt(2); Token::Match(tok, "%name%|,"); tok = tok->next()) {
if (tok->varId())
addVariable(tok, typestart, typeend, varaccess, nullptr, this, settings);
}
return typeend->linkAt(1);
}
while (tok && tok->isKeyword() && Token::Match(tok, "class|struct|union|enum")) {
tok = tok->next();
}
// This is the start of a statement
const Token *vartok = nullptr;
const Token *typetok = nullptr;
if (tok && isVariableDeclaration(tok, vartok, typetok)) {
// If the vartok was set in the if-blocks above, create a entry for this variable..
tok = vartok->next();
while (Token::Match(tok, "[|{"))
tok = tok->link()->next();
if (vartok->varId() == 0) {
if (!vartok->isBoolean())
check->debugMessage(vartok, "varid0", "Scope::checkVariable found variable \'" + vartok->str() + "\' with varid 0.");
return tok;
}
const Type *vType = nullptr;
if (typetok) {
vType = findVariableTypeIncludingUsedNamespaces(check, this, typetok);
const_cast<Token *>(typetok)->type(vType);
}
// skip "enum" or "struct"
if (Token::Match(typestart, "enum|struct"))
typestart = typestart->next();
addVariable(vartok, typestart, vartok->previous(), varaccess, vType, this, settings);
}
return tok;
}
const Variable *Scope::getVariable(const std::string &varname) const
{
auto it = std::find_if(varlist.begin(), varlist.end(), [&varname](const Variable& var) {
return var.name() == varname;
});
if (it != varlist.end())
return &*it;
if (definedType) {
for (const Type::BaseInfo& baseInfo: definedType->derivedFrom) {
if (baseInfo.type && baseInfo.type->classScope) {
if (const Variable* var = baseInfo.type->classScope->getVariable(varname))
return var;
}
}
}
return nullptr;
}
static const Token* skipPointers(const Token* tok)
{
while (Token::Match(tok, "*|&|&&") || (Token::Match(tok, "( [*&]") && Token::Match(tok->link()->next(), "(|["))) {
tok = tok->next();
if (tok->strAt(-1) == "(" && Token::Match(tok, "%type% ::"))
tok = tok->tokAt(2);
}
if (Token::simpleMatch(tok, "( *") && Token::simpleMatch(tok->link()->previous(), "] ) ;")) {
const Token *tok2 = skipPointers(tok->next());
if (Token::Match(tok2, "%name% [") && Token::simpleMatch(tok2->linkAt(1), "] ) ;"))
return tok2;
}
return tok;
}
static const Token* skipPointersAndQualifiers(const Token* tok)
{
tok = skipPointers(tok);
while (Token::Match(tok, "const|static|volatile")) {
tok = tok->next();
tok = skipPointers(tok);
}
return tok;
}
bool Scope::isVariableDeclaration(const Token* const tok, const Token*& vartok, const Token*& typetok) const
{
if (!tok)
return false;
const bool isCPP = check && check->mTokenizer.isCPP();
if (isCPP && Token::Match(tok, "throw|new"))
return false;
const bool isCPP11 = isCPP && check->mSettings.standards.cpp >= Standards::CPP11;
if (isCPP11 && tok->str() == "using")
return false;
const Token* localTypeTok = skipScopeIdentifiers(tok);
const Token* localVarTok = nullptr;
while (Token::simpleMatch(localTypeTok, "alignas (") && Token::Match(localTypeTok->linkAt(1), ") %name%"))
localTypeTok = localTypeTok->linkAt(1)->next();
if (Token::Match(localTypeTok, "%type% <")) {
if (Token::Match(tok, "const_cast|dynamic_cast|reinterpret_cast|static_cast <"))
return false;
const Token* closeTok = localTypeTok->next()->link();
if (closeTok) {
localVarTok = skipPointers(closeTok->next());
if (Token::Match(localVarTok, ":: %type% %name% [;=({]")) {
if (localVarTok->strAt(3) != "(" ||
Token::Match(localVarTok->linkAt(3), "[)}] ;")) {
localTypeTok = localVarTok->next();
localVarTok = localVarTok->tokAt(2);
}
}
}
} else if (Token::Match(localTypeTok, "%type%")) {
if (isCPP11 && Token::simpleMatch(localTypeTok, "decltype (") && Token::Match(localTypeTok->linkAt(1), ") %name%|*|&|&&"))
localVarTok = skipPointersAndQualifiers(localTypeTok->linkAt(1)->next());
else {
localVarTok = skipPointersAndQualifiers(localTypeTok->next());
if (isCPP11 && Token::simpleMatch(localVarTok, "decltype (") && Token::Match(localVarTok->linkAt(1), ") %name%|*|&|&&"))
localVarTok = skipPointersAndQualifiers(localVarTok->linkAt(1)->next());
}
}
if (!localVarTok)
return false;
while (Token::Match(localVarTok, "const|*|&"))
localVarTok = localVarTok->next();
if (Token::Match(localVarTok, "%name% ;|=") || (localVarTok && localVarTok->varId() && localVarTok->strAt(1) == ":")) {
vartok = localVarTok;
typetok = localTypeTok;
} else if (Token::Match(localVarTok, "%name% )|[") && localVarTok->str() != "operator") {
vartok = localVarTok;
typetok = localTypeTok;
} else if (localVarTok && localVarTok->varId() && Token::Match(localVarTok, "%name% (|{") &&
Token::Match(localVarTok->next()->link(), ")|} ;")) {
vartok = localVarTok;
typetok = localTypeTok;
} else if (type == eCatch &&
Token::Match(localVarTok, "%name% )")) {
vartok = localVarTok;
typetok = localTypeTok;
}
return nullptr != vartok;
}
const Token * Scope::addEnum(const Token * tok, bool isCpp)
{
const Token * tok2 = tok->next();
// skip over class if present
if (isCpp && tok2->str() == "class")
tok2 = tok2->next();
// skip over name
tok2 = tok2->next();
// save type if present
if (tok2->str() == ":") {
tok2 = tok2->next();
enumType = tok2;
tok2 = tok2->next();
}
// add enumerators
if (tok2->str() == "{") {
const Token * end = tok2->link();
tok2 = tok2->next();
while (Token::Match(tok2, "%name% =|,|}") ||
(Token::Match(tok2, "%name% (") && Token::Match(tok2->linkAt(1), ") ,|}"))) {
Enumerator enumerator(this);
// save enumerator name
enumerator.name = tok2;
// skip over name
tok2 = tok2->next();
if (tok2->str() == "=") {
// skip over "="
tok2 = tok2->next();
if (tok2->str() == "}")
return nullptr;
enumerator.start = tok2;
while (!Token::Match(tok2, ",|}")) {
if (tok2->link())
tok2 = tok2->link();
enumerator.end = tok2;
tok2 = tok2->next();
}
} else if (tok2->str() == "(") {
// skip over unknown macro
tok2 = tok2->link()->next();
}
if (tok2->str() == ",") {
enumeratorList.push_back(enumerator);
tok2 = tok2->next();
} else if (tok2->str() == "}") {
enumeratorList.push_back(enumerator);
break;
}
}
if (tok2 == end) {
tok2 = tok2->next();
if (tok2 && tok2->str() != ";" && (isCpp || tok2->str() != ")"))
tok2 = nullptr;
} else
tok2 = nullptr;
} else
tok2 = nullptr;
return tok2;
}
const Enumerator * SymbolDatabase::findEnumerator(const Token * tok, std::set<std::string>& tokensThatAreNotEnumeratorValues) const
{
if (tok->isKeyword())
return nullptr;
const std::string& tokStr = tok->str();
if (tokensThatAreNotEnumeratorValues.find(tokStr) != tokensThatAreNotEnumeratorValues.end())
return nullptr;
const Scope* scope = tok->scope();
// check for qualified name
if (tok->strAt(-1) == "::") {
// find first scope
const Token *tok1 = tok;
while (Token::Match(tok1->tokAt(-2), "%name% ::"))
tok1 = tok1->tokAt(-2);
if (tok1->strAt(-1) == "::")
scope = &scopeList.front();
else {
// FIXME search base class here
// find first scope
while (scope && scope->nestedIn) {
const Scope * temp = scope->nestedIn->findRecordInNestedList(tok1->str());
if (temp) {
scope = temp;
break;
}
scope = scope->nestedIn;
}
}
if (scope) {
tok1 = tok1->tokAt(2);
while (scope && Token::Match(tok1, "%name% ::")) {
scope = scope->findRecordInNestedList(tok1->str());
tok1 = tok1->tokAt(2);
}
if (scope) {
const Enumerator * enumerator = scope->findEnumerator(tokStr);
if (enumerator) // enum class
return enumerator;
// enum
for (std::vector<Scope *>::const_iterator it = scope->nestedList.cbegin(), end = scope->nestedList.cend(); it != end; ++it) {
enumerator = (*it)->findEnumerator(tokStr);
if (enumerator && !(enumerator->scope && enumerator->scope->enumClass))
return enumerator;
}
}
}
} else { // unqualified name
const Enumerator * enumerator = scope->findEnumerator(tokStr);
if (enumerator && !(enumerator->scope && enumerator->scope->enumClass))
return enumerator;
if (Token::simpleMatch(tok->astParent(), ".")) {
const Token* varTok = tok->astParent()->astOperand1();
if (varTok && varTok->variable() && varTok->variable()->type() && varTok->variable()->type()->classScope)
scope = varTok->variable()->type()->classScope;
}
else if (Token::simpleMatch(tok->astParent(), "[")) {
const Token* varTok = tok->astParent()->previous();
if (varTok && varTok->variable() && varTok->variable()->scope() && Token::simpleMatch(tok->astParent()->astOperand1(), "::"))
scope = varTok->variable()->scope();
}
for (std::vector<Scope *>::const_iterator s = scope->nestedList.cbegin(); s != scope->nestedList.cend(); ++s) {
enumerator = (*s)->findEnumerator(tokStr);
if (enumerator && !(enumerator->scope && enumerator->scope->enumClass))
return enumerator;
}
if (scope->definedType) {
const std::vector<Type::BaseInfo> & derivedFrom = scope->definedType->derivedFrom;
for (const Type::BaseInfo & i : derivedFrom) {
const Type *derivedFromType = i.type;
if (derivedFromType && derivedFromType->classScope) {
enumerator = derivedFromType->classScope->findEnumerator(tokStr);
if (enumerator && !(enumerator->scope && enumerator->scope->enumClass))
return enumerator;
}
}
}
while (scope->nestedIn) {
if (scope->type == Scope::eFunction && scope->functionOf)
scope = scope->functionOf;
else
scope = scope->nestedIn;
enumerator = scope->findEnumerator(tokStr);
if (enumerator && !(enumerator->scope && enumerator->scope->enumClass))
return enumerator;
for (std::vector<Scope*>::const_iterator s = scope->nestedList.cbegin(); s != scope->nestedList.cend(); ++s) {
enumerator = (*s)->findEnumerator(tokStr);
if (enumerator && !(enumerator->scope && enumerator->scope->enumClass))
return enumerator;
}
}
}
tokensThatAreNotEnumeratorValues.insert(tokStr);
return nullptr;
}
//---------------------------------------------------------------------------
const Type* SymbolDatabase::findVariableTypeInBase(const Scope* scope, const Token* typeTok)
{
if (scope && scope->definedType && !scope->definedType->derivedFrom.empty()) {
const std::vector<Type::BaseInfo> &derivedFrom = scope->definedType->derivedFrom;
for (const Type::BaseInfo & i : derivedFrom) {
const Type *base = i.type;
if (base && base->classScope) {
if (base->classScope == scope)
return nullptr;
const Type * type = base->classScope->findType(typeTok->str());
if (type)
return type;
type = findVariableTypeInBase(base->classScope, typeTok);
if (type)
return type;
}
}
}
return nullptr;
}
//---------------------------------------------------------------------------
const Type* SymbolDatabase::findVariableType(const Scope *start, const Token *typeTok) const
{
const Scope *scope = start;
// check if type does not have a namespace
if (typeTok->strAt(-1) != "::" && typeTok->strAt(1) != "::") {
// check if type same as scope
if (start->isClassOrStruct() && typeTok->str() == start->className)
return start->definedType;
while (scope) {
// look for type in this scope
const Type * type = scope->findType(typeTok->str());
if (type)
return type;
// look for type in base classes if possible
if (scope->isClassOrStruct()) {
type = findVariableTypeInBase(scope, typeTok);
if (type)
return type;
}
// check if in member function class to see if it's present in class
if (scope->type == Scope::eFunction && scope->functionOf) {
const Scope *scope1 = scope->functionOf;
type = scope1->findType(typeTok->str());
if (type)
return type;
type = findVariableTypeInBase(scope1, typeTok);
if (type)
return type;
}
scope = scope->nestedIn;
}
}
// check for a qualified name and use it when given
else if (typeTok->strAt(-1) == "::") {
// check if type is not part of qualification
if (typeTok->strAt(1) == "::")
return nullptr;
// find start of qualified function name
const Token *tok1 = typeTok;
while ((Token::Match(tok1->tokAt(-2), "%type% ::") && !tok1->tokAt(-2)->isKeyword()) ||
(Token::simpleMatch(tok1->tokAt(-2), "> ::") && tok1->linkAt(-2) && Token::Match(tok1->linkAt(-2)->tokAt(-1), "%type%"))) {
if (tok1->strAt(-1) == "::")
tok1 = tok1->tokAt(-2);
else
tok1 = tok1->linkAt(-2)->tokAt(-1);
}
// check for global scope
if (tok1->strAt(-1) == "::") {
scope = &scopeList.front();
scope = scope->findRecordInNestedList(tok1->str());
}
// find start of qualification
else {
while (scope) {
if (scope->className == tok1->str())
break;
const Scope *scope1 = scope->findRecordInNestedList(tok1->str());
if (scope1) {
scope = scope1;
break;
}
if (scope->type == Scope::eFunction && scope->functionOf)
scope = scope->functionOf;
else
scope = scope->nestedIn;
}
}
if (scope) {
// follow qualification
while (scope && (Token::Match(tok1, "%type% ::") ||
(Token::Match(tok1, "%type% <") && Token::simpleMatch(tok1->linkAt(1), "> ::")))) {
if (tok1->strAt(1) == "::")
tok1 = tok1->tokAt(2);
else
tok1 = tok1->linkAt(1)->tokAt(2);
const Scope * temp = scope->findRecordInNestedList(tok1->str());
if (!temp) {
// look in base classes
const Type * type = findVariableTypeInBase(scope, tok1);
if (type)
return type;
}
scope = temp;
}
if (scope && scope->definedType)
return scope->definedType;
}
}
return nullptr;
}
static bool hasEmptyCaptureList(const Token* tok) {
if (!Token::simpleMatch(tok, "{"))
return false;
const Token* listTok = tok->astParent();
if (Token::simpleMatch(listTok, "("))
listTok = listTok->astParent();
return Token::simpleMatch(listTok, "[ ]");
}
bool Scope::hasInlineOrLambdaFunction() const
{
return std::any_of(nestedList.begin(), nestedList.end(), [&](const Scope* s) {
// Inline function
if (s->type == Scope::eUnconditional && Token::simpleMatch(s->bodyStart->previous(), ") {"))
return true;
// Lambda function
if (s->type == Scope::eLambda && !hasEmptyCaptureList(s->bodyStart))
return true;
if (s->hasInlineOrLambdaFunction())
return true;
return false;
});
}
void Scope::findFunctionInBase(const std::string & name, nonneg int args, std::vector<const Function *> & matches) const
{
if (isClassOrStruct() && definedType && !definedType->derivedFrom.empty()) {
const std::vector<Type::BaseInfo> &derivedFrom = definedType->derivedFrom;
for (const Type::BaseInfo & i : derivedFrom) {
const Type *base = i.type;
if (base && base->classScope) {
if (base->classScope == this) // Ticket #5120, #5125: Recursive class; tok should have been found already
continue;
auto range = base->classScope->functionMap.equal_range(name);
for (std::multimap<std::string, const Function*>::const_iterator it = range.first; it != range.second; ++it) {
const Function *func = it->second;
if ((func->isVariadic() && args >= (func->argCount() - 1)) ||
(args == func->argCount() || (args < func->argCount() && args >= func->minArgCount()))) {
matches.push_back(func);
}
}
base->classScope->findFunctionInBase(name, args, matches);
}
}
}
}
const Scope *Scope::findRecordInBase(const std::string & name) const
{
if (isClassOrStruct() && definedType && !definedType->derivedFrom.empty()) {
const std::vector<Type::BaseInfo> &derivedFrom = definedType->derivedFrom;
for (const Type::BaseInfo & i : derivedFrom) {
const Type *base = i.type;
if (base && base->classScope) {
if (base->classScope == this) // Recursive class; tok should have been found already
continue;
if (base->name() == name) {
return base->classScope;
}
const ::Type * t = base->classScope->findType(name);
if (t)
return t->classScope;
}
}
}
return nullptr;
}
std::vector<const Scope*> Scope::findAssociatedScopes() const
{
std::vector<const Scope*> result = {this};
if (isClassOrStruct() && definedType && !definedType->derivedFrom.empty()) {
const std::vector<Type::BaseInfo>& derivedFrom = definedType->derivedFrom;
for (const Type::BaseInfo& i : derivedFrom) {
const Type* base = i.type;
if (base && base->classScope) {
if (contains(result, base->classScope))
continue;
std::vector<const Scope*> baseScopes = base->classScope->findAssociatedScopes();
result.insert(result.end(), baseScopes.cbegin(), baseScopes.cend());
}
}
}
return result;
}
//---------------------------------------------------------------------------
static void checkVariableCallMatch(const Variable* callarg, const Variable* funcarg, size_t& same, size_t& fallback1, size_t& fallback2)
{
if (callarg) {
const ValueType::MatchResult res = ValueType::matchParameter(callarg->valueType(), callarg, funcarg);
if (res == ValueType::MatchResult::SAME) {
same++;
return;
}
if (res == ValueType::MatchResult::FALLBACK1) {
fallback1++;
return;
}
if (res == ValueType::MatchResult::FALLBACK2) {
fallback2++;
return;
}
if (res == ValueType::MatchResult::NOMATCH)
return;
const bool ptrequals = callarg->isArrayOrPointer() == funcarg->isArrayOrPointer();
const bool constEquals = !callarg->isArrayOrPointer() || ((callarg->typeStartToken()->strAt(-1) == "const") == (funcarg->typeStartToken()->strAt(-1) == "const"));
if (ptrequals && constEquals &&
callarg->typeStartToken()->str() == funcarg->typeStartToken()->str() &&
callarg->typeStartToken()->isUnsigned() == funcarg->typeStartToken()->isUnsigned() &&
callarg->typeStartToken()->isLong() == funcarg->typeStartToken()->isLong()) {
same++;
} else if (callarg->isArrayOrPointer()) {
if (ptrequals && constEquals && funcarg->typeStartToken()->str() == "void")
fallback1++;
else if (constEquals && funcarg->isStlStringType() && Token::Match(callarg->typeStartToken(), "char|wchar_t"))
fallback2++;
} else if (ptrequals) {
const bool takesInt = Token::Match(funcarg->typeStartToken(), "char|short|int|long");
const bool takesFloat = Token::Match(funcarg->typeStartToken(), "float|double");
const bool passesInt = Token::Match(callarg->typeStartToken(), "char|short|int|long");
const bool passesFloat = Token::Match(callarg->typeStartToken(), "float|double");
if ((takesInt && passesInt) || (takesFloat && passesFloat))
fallback1++;
else if ((takesInt && passesFloat) || (takesFloat && passesInt))
fallback2++;
}
}
}
static std::string getTypeString(const Token *typeToken)
{
if (!typeToken)
return "";
while (Token::Match(typeToken, "%name%|*|&|::")) {
if (typeToken->str() == "::") {
std::string ret;
while (Token::Match(typeToken, ":: %name%")) {
ret += "::" + typeToken->strAt(1);
typeToken = typeToken->tokAt(2);
if (typeToken->str() == "<") {
for (const Token *tok = typeToken; tok != typeToken->link(); tok = tok->next())
ret += tok->str();
ret += ">";
typeToken = typeToken->link()->next();
}
}
return ret;
}
if (Token::Match(typeToken, "%name% const| %var%|*|&")) {
return typeToken->str();
}
typeToken = typeToken->next();
}
return "";
}
const Function* Scope::findFunction(const Token *tok, bool requireConst) const
{
const bool isCall = Token::Match(tok->next(), "(|{");
const std::vector<const Token *> arguments = getArguments(tok);
std::vector<const Function *> matches;
// find all the possible functions that could match
const std::size_t args = arguments.size();
auto addMatchingFunctions = [&](const Scope *scope) {
auto range = scope->functionMap.equal_range(tok->str());
for (std::multimap<std::string, const Function *>::const_iterator it = range.first; it != range.second; ++it) {
const Function *func = it->second;
if (!isCall || args == func->argCount() ||
(func->isVariadic() && args >= (func->minArgCount() - 1)) ||
(args < func->argCount() && args >= func->minArgCount())) {
matches.push_back(func);
}
}
};
addMatchingFunctions(this);
// check in anonumous namespaces
for (const Scope *nestedScope : nestedList) {
if (nestedScope->type == eNamespace && nestedScope->className.empty())
addMatchingFunctions(nestedScope);
}
// check in base classes
findFunctionInBase(tok->str(), args, matches);
// Non-call => Do not match parameters
if (!isCall) {
return matches.empty() ? nullptr : matches[0];
}
std::vector<const Function*> fallback1Func, fallback2Func;
// check each function against the arguments in the function call for a match
for (std::size_t i = 0; i < matches.size();) {
bool constFallback = false;
const Function * func = matches[i];
size_t same = 0;
if (requireConst && !func->isConst()) {
i++;
continue;
}
if (!requireConst || !func->isConst()) {
// get the function this call is in
const Scope * scope = tok->scope();
// check if this function is a member function
if (scope && scope->functionOf && scope->functionOf->isClassOrStruct() && scope->function &&
func->nestedIn == scope->functionOf) {
// check if isConst mismatches
if (scope->function->isConst() != func->isConst()) {
if (scope->function->isConst()) {
++i;
continue;
}
constFallback = true;
}
}
}
size_t fallback1 = 0;
size_t fallback2 = 0;
bool erased = false;
for (std::size_t j = 0; j < args; ++j) {
// don't check variadic arguments
if (func->isVariadic() && j > (func->argCount() - 1)) {
break;
}
const Variable *funcarg = func->getArgumentVar(j);
if (!arguments[j]->valueType()) {
const Token *vartok = arguments[j];
int pointer = 0;
while (vartok && (vartok->isUnaryOp("&") || vartok->isUnaryOp("*"))) {
pointer += vartok->isUnaryOp("&") ? 1 : -1;
vartok = vartok->astOperand1();
}
if (vartok && vartok->variable()) {
const Token *callArgTypeToken = vartok->variable()->typeStartToken();
const Token *funcArgTypeToken = funcarg->typeStartToken();
auto parseDecl = [](const Token *typeToken) -> ValueType {
ValueType ret;
while (Token::Match(typeToken->previous(), "%name%"))
typeToken = typeToken->previous();
while (Token::Match(typeToken, "%name%|*|&|::|<"))
{
if (typeToken->str() == "const")
ret.constness |= (1 << ret.pointer);
else if (typeToken->str() == "*")
ret.pointer++;
else if (typeToken->str() == "<") {
if (!typeToken->link())
break;
typeToken = typeToken->link();
}
typeToken = typeToken->next();
}
return ret;
};
const std::string type1 = getTypeString(callArgTypeToken);
const std::string type2 = getTypeString(funcArgTypeToken);
if (!type1.empty() && type1 == type2) {
ValueType callArgType = parseDecl(callArgTypeToken);
callArgType.pointer += pointer;
ValueType funcArgType = parseDecl(funcArgTypeToken);
callArgType.sign = funcArgType.sign = ValueType::Sign::SIGNED;
callArgType.type = funcArgType.type = ValueType::Type::INT;
const ValueType::MatchResult res = ValueType::matchParameter(&callArgType, &funcArgType);
if (res == ValueType::MatchResult::SAME)
++same;
else if (res == ValueType::MatchResult::FALLBACK1)
++fallback1;
else if (res == ValueType::MatchResult::FALLBACK2)
++fallback2;
continue;
}
}
}
// check for a match with a variable
if (Token::Match(arguments[j], "%var% ,|)")) {
const Variable * callarg = arguments[j]->variable();
checkVariableCallMatch(callarg, funcarg, same, fallback1, fallback2);
}
else if (funcarg->isStlStringType() && arguments[j]->valueType() && arguments[j]->valueType()->pointer == 1 && arguments[j]->valueType()->type == ValueType::Type::CHAR)
fallback2++;
// check for a match with nullptr
else if (funcarg->isPointer() && Token::Match(arguments[j], "nullptr|NULL ,|)"))
same++;
else if (funcarg->isPointer() && MathLib::isNullValue(arguments[j]->str()))
fallback1++;
// Try to evaluate the apparently more complex expression
else if (check->isCPP()) {
const Token *vartok = arguments[j];
if (vartok->str() == ".") {
const Token* rml = nextAfterAstRightmostLeaf(vartok);
if (rml)
vartok = rml->previous();
}
while (vartok->isUnaryOp("&") || vartok->isUnaryOp("*"))
vartok = vartok->astOperand1();
const Variable* var = vartok->variable();
// smart pointer deref?
bool unknownDeref = false;
if (var && vartok->astParent() && vartok->astParent()->str() == "*") {
if (var->isSmartPointer() && var->valueType() && var->valueType()->smartPointerTypeToken)
var = var->valueType()->smartPointerTypeToken->variable();
else
unknownDeref = true;
}
const Token* valuetok = arguments[j];
if (valuetok->str() == "::") {
const Token* rml = nextAfterAstRightmostLeaf(vartok);
if (rml)
valuetok = rml->previous();
}
if (vartok->isEnumerator())
valuetok = vartok;
const ValueType::MatchResult res = ValueType::matchParameter(valuetok->valueType(), var, funcarg);
if (res == ValueType::MatchResult::SAME)
++same;
else if (res == ValueType::MatchResult::FALLBACK1)
++fallback1;
else if (res == ValueType::MatchResult::FALLBACK2)
++fallback2;
else if (res == ValueType::MatchResult::NOMATCH) {
if (unknownDeref)
continue;
// can't match so remove this function from possible matches
matches.erase(matches.begin() + i);
erased = true;
break;
}
}
else
// C code: if number of arguments match then do not match types
fallback1++;
}
const size_t hasToBe = func->isVariadic() ? (func->argCount() - 1) : args;
// check if all arguments matched
if (same == hasToBe) {
if (constFallback || (!requireConst && func->isConst()))
fallback1Func.emplace_back(func);
else
return func;
}
else {
if (same + fallback1 == hasToBe)
fallback1Func.emplace_back(func);
else if (same + fallback2 + fallback1 == hasToBe)
fallback2Func.emplace_back(func);
}
if (!erased)
++i;
}
// Fallback cases
for (const auto& fb : { fallback1Func, fallback2Func }) {
if (fb.size() == 1)
return fb.front();
if (fb.size() == 2) {
if (fb[0]->isConst() && !fb[1]->isConst())
return fb[1];
if (fb[1]->isConst() && !fb[0]->isConst())
return fb[0];
}
}
// remove pure virtual function if there is an overrider
auto itPure = std::find_if(matches.begin(), matches.end(), [](const Function* m) {
return m->isPure();
});
if (itPure != matches.end() && std::any_of(matches.begin(), matches.end(), [&](const Function* m) {
return m->isImplicitlyVirtual() && m != *itPure;
}))
matches.erase(itPure);
// Only one candidate left
if (matches.size() == 1)
return matches[0];
return nullptr;
}
//---------------------------------------------------------------------------
const Function* SymbolDatabase::findFunction(const Token* const tok) const
{
// find the scope this function is in
const Scope *currScope = tok->scope();
while (currScope && currScope->isExecutable()) {
if (currScope->functionOf)
currScope = currScope->functionOf;
else
currScope = currScope->nestedIn;
}
// check for a qualified name and use it when given
if (tok->strAt(-1) == "::") {
// find start of qualified function name
const Token *tok1 = tok;
while (Token::Match(tok1->tokAt(-2), ">|%type% ::")) {
if (tok1->strAt(-2) == ">") {
if (tok1->linkAt(-2))
tok1 = tok1->linkAt(-2)->tokAt(-1);
else
break;
} else
tok1 = tok1->tokAt(-2);
}
// check for global scope
if (tok1->strAt(-1) == "::") {
currScope = &scopeList.front();
if (const Function* f = currScope->findFunction(tok))
return f;
currScope = currScope->findRecordInNestedList(tok1->str());
}
// find start of qualification
else {
while (currScope) {
if (currScope->className == tok1->str())
break;
const Scope *scope = currScope->findRecordInNestedList(tok1->str());
if (scope) {
currScope = scope;
break;
}
currScope = currScope->nestedIn;
}
}
if (currScope) {
while (currScope && tok1 && !(Token::Match(tok1, "%type% :: %name% [(),>]") ||
(Token::Match(tok1, "%type% <") && Token::Match(tok1->linkAt(1), "> :: %name% (")))) {
if (tok1->strAt(1) == "::")
tok1 = tok1->tokAt(2);
else if (tok1->strAt(1) == "<")
tok1 = tok1->linkAt(1)->tokAt(2);
else
tok1 = nullptr;
if (tok1) {
const Function* func = currScope->findFunction(tok1);
if (func)
return func;
currScope = currScope->findRecordInNestedList(tok1->str());
}
}
if (tok1)
tok1 = tok1->tokAt(2);
if (currScope && tok1)
return currScope->findFunction(tok1);
}
}
// check for member function
else if (Token::Match(tok->tokAt(-2), "!!this .")) {
const Token* tok1 = tok->previous()->astOperand1();
if (tok1 && tok1->valueType() && tok1->valueType()->typeScope)
return tok1->valueType()->typeScope->findFunction(tok, tok1->valueType()->constness == 1);
if (tok1 && Token::Match(tok1->previous(), "%name% (") && tok1->previous()->function() &&
tok1->previous()->function()->retDef) {
ValueType vt = ValueType::parseDecl(tok1->previous()->function()->retDef, mSettings, mIsCpp);
if (vt.typeScope)
return vt.typeScope->findFunction(tok, vt.constness == 1);
} else if (Token::Match(tok1, "%var% .")) {
const Variable *var = getVariableFromVarId(tok1->varId());
if (var && var->typeScope())
return var->typeScope()->findFunction(tok, var->valueType()->constness == 1);
if (var && var->smartPointerType() && var->smartPointerType()->classScope && tok1->next()->originalName() == "->")
return var->smartPointerType()->classScope->findFunction(tok, var->valueType()->constness == 1);
if (var && var->iteratorType() && var->iteratorType()->classScope && tok1->next()->originalName() == "->")
return var->iteratorType()->classScope->findFunction(tok, var->valueType()->constness == 1);
} else if (Token::simpleMatch(tok->previous()->astOperand1(), "(")) {
const Token *castTok = tok->previous()->astOperand1();
if (castTok->isCast()) {
ValueType vt = ValueType::parseDecl(castTok->next(),mSettings, mIsCpp);
if (vt.typeScope)
return vt.typeScope->findFunction(tok, vt.constness == 1);
}
}
}
// check in enclosing scopes
else {
while (currScope) {
const Function *func = currScope->findFunction(tok);
if (func)
return func;
currScope = currScope->nestedIn;
}
// check using namespace
currScope = tok->scope();
while (currScope) {
for (const auto& ul : currScope->usingList) {
if (ul.scope) {
const Function* func = ul.scope->findFunction(tok);
if (func)
return func;
}
}
currScope = currScope->nestedIn;
}
}
// Check for constructor
if (Token::Match(tok, "%name% (|{")) {
ValueType vt = ValueType::parseDecl(tok, mSettings, mIsCpp);
if (vt.typeScope)
return vt.typeScope->findFunction(tok, false);
}
return nullptr;
}
//---------------------------------------------------------------------------
const Scope *SymbolDatabase::findScopeByName(const std::string& name) const
{
auto it = std::find_if(scopeList.cbegin(), scopeList.cend(), [&](const Scope& s) {
return s.className == name;
});
return it == scopeList.end() ? nullptr : &*it;
}
//---------------------------------------------------------------------------
const Scope *Scope::findRecordInNestedList(const std::string & name, bool isC) const
{
for (const Scope* scope: nestedList) {
if (scope->className == name && scope->type != eFunction)
return scope;
if (isC) {
const Scope* nestedScope = scope->findRecordInNestedList(name, isC);
if (nestedScope)
return nestedScope;
}
}
const Type * nested_type = findType(name);
if (nested_type) {
if (nested_type->isTypeAlias()) {
if (nested_type->typeStart == nested_type->typeEnd)
return findRecordInNestedList(nested_type->typeStart->str());
} else
return nested_type->classScope;
}
return nullptr;
}
//---------------------------------------------------------------------------
const Type* Scope::findType(const std::string & name) const
{
auto it = definedTypesMap.find(name);
// Type was found
if (definedTypesMap.end() != it)
return (*it).second;
// is type defined in anonymous namespace..
it = definedTypesMap.find(emptyString);
if (it != definedTypesMap.end()) {
for (const Scope *scope : nestedList) {
if (scope->className.empty() && (scope->type == eNamespace || scope->isClassOrStructOrUnion())) {
const Type *t = scope->findType(name);
if (t)
return t;
}
}
}
// Type was not found
return nullptr;
}
//---------------------------------------------------------------------------
Scope *Scope::findInNestedListRecursive(const std::string & name)
{
auto it = std::find_if(nestedList.cbegin(), nestedList.cend(), [&](const Scope* s) {
return s->className == name;
});
if (it != nestedList.end())
return *it;
for (Scope* scope: nestedList) {
Scope *child = scope->findInNestedListRecursive(name);
if (child)
return child;
}
return nullptr;
}
//---------------------------------------------------------------------------
const Function *Scope::getDestructor() const
{
auto it = std::find_if(functionList.cbegin(), functionList.cend(), [](const Function& f) {
return f.type == Function::eDestructor;
});
return it == functionList.end() ? nullptr : &*it;
}
//---------------------------------------------------------------------------
bool SymbolDatabase::isCPP() const
{
return mTokenizer.isCPP();
}
//---------------------------------------------------------------------------
const Scope *SymbolDatabase::findScope(const Token *tok, const Scope *startScope) const
{
const Scope *scope = nullptr;
// absolute path
if (tok->str() == "::") {
tok = tok->next();
scope = &scopeList.front();
}
// relative path
else if (tok->isName()) {
scope = startScope;
}
while (scope && tok && tok->isName()) {
if (tok->strAt(1) == "::") {
scope = scope->findRecordInNestedList(tok->str());
tok = tok->tokAt(2);
} else if (tok->strAt(1) == "<" && Token::simpleMatch(tok->linkAt(1), "> ::")) {
scope = scope->findRecordInNestedList(tok->str());
tok = tok->linkAt(1)->tokAt(2);
} else
return scope->findRecordInNestedList(tok->str());
}
// not a valid path
return nullptr;
}
//---------------------------------------------------------------------------
const Type* SymbolDatabase::findType(const Token *startTok, const Scope *startScope, bool lookOutside) const
{
// skip over struct or union
if (Token::Match(startTok, "struct|union"))
startTok = startTok->next();
// type same as scope
if (startTok->str() == startScope->className && startScope->isClassOrStruct() && startTok->strAt(1) != "::")
return startScope->definedType;
if (mTokenizer.isC()) {
const Scope* scope = startScope;
while (scope) {
if (startTok->str() == scope->className && scope->isClassOrStruct())
return scope->definedType;
const Scope* typeScope = scope->findRecordInNestedList(startTok->str(), /*isC*/ true);
if (typeScope) {
if (startTok->str() == typeScope->className && typeScope->isClassOrStruct()) {
if (const Type* type = typeScope->definedType)
return type;
}
}
scope = scope->nestedIn;
}
return nullptr;
}
const Scope* start_scope = startScope;
// absolute path - directly start in global scope
if (startTok->str() == "::") {
startTok = startTok->next();
start_scope = &scopeList.front();
}
const Token* tok = startTok;
const Scope* scope = start_scope;
while (scope && tok && tok->isName()) {
if (tok->strAt(1) == "::" || (tok->strAt(1) == "<" && Token::simpleMatch(tok->linkAt(1), "> ::"))) {
scope = scope->findRecordInNestedList(tok->str());
if (scope) {
if (tok->strAt(1) == "::")
tok = tok->tokAt(2);
else
tok = tok->linkAt(1)->tokAt(2);
} else {
start_scope = start_scope->nestedIn;
if (!start_scope)
break;
scope = start_scope;
tok = startTok;
}
} else {
const Scope* scope1{};
const Type* type = scope->findType(tok->str());
if (type)
return type;
if (lookOutside && (scope1 = scope->findRecordInBase(tok->str()))) {
type = scope1->definedType;
if (type)
return type;
} else if (lookOutside && scope->type == Scope::ScopeType::eNamespace) {
scope = scope->nestedIn;
continue;
} else
break;
}
}
// check using namespaces
while (startScope) {
for (std::vector<Scope::UsingInfo>::const_iterator it = startScope->usingList.cbegin();
it != startScope->usingList.cend(); ++it) {
tok = startTok;
scope = it->scope;
start_scope = startScope;
while (scope && tok && tok->isName()) {
if (tok->strAt(1) == "::" || (tok->strAt(1) == "<" && Token::simpleMatch(tok->linkAt(1), "> ::"))) {
scope = scope->findRecordInNestedList(tok->str());
if (scope) {
if (tok->strAt(1) == "::")
tok = tok->tokAt(2);
else
tok = tok->linkAt(1)->tokAt(2);
} else {
start_scope = start_scope->nestedIn;
if (!start_scope)
break;
scope = start_scope;
tok = startTok;
}
} else {
const Type * type = scope->findType(tok->str());
if (type)
return type;
if (const Scope *scope1 = scope->findRecordInBase(tok->str())) {
type = scope1->definedType;
if (type)
return type;
} else
break;
}
}
}
startScope = startScope->nestedIn;
}
// not a valid path
return nullptr;
}
//---------------------------------------------------------------------------
const Type* SymbolDatabase::findTypeInNested(const Token *startTok, const Scope *startScope) const
{
// skip over struct or union
if (Token::Match(startTok, "struct|union|enum"))
startTok = startTok->next();
// type same as scope
if (startTok->str() == startScope->className && startScope->isClassOrStruct())
return startScope->definedType;
bool hasPath = false;
// absolute path - directly start in global scope
if (startTok->str() == "::") {
hasPath = true;
startTok = startTok->next();
startScope = &scopeList.front();
}
const Token* tok = startTok;
const Scope* scope = startScope;
while (scope && tok && tok->isName()) {
if (tok->strAt(1) == "::" || (tok->strAt(1) == "<" && Token::simpleMatch(tok->linkAt(1), "> ::"))) {
hasPath = true;
scope = scope->findRecordInNestedList(tok->str());
if (scope) {
if (tok->strAt(1) == "::")
tok = tok->tokAt(2);
else
tok = tok->linkAt(1)->tokAt(2);
} else {
startScope = startScope->nestedIn;
if (!startScope)
break;
scope = startScope;
tok = startTok;
}
} else {
const Type * type = scope->findType(tok->str());
if (hasPath || type)
return type;
scope = scope->nestedIn;
if (!scope)
break;
}
}
// not a valid path
return nullptr;
}
//---------------------------------------------------------------------------
const Scope * SymbolDatabase::findNamespace(const Token * tok, const Scope * scope) const
{
const Scope * s = findScope(tok, scope);
if (s)
return s;
if (scope->nestedIn)
return findNamespace(tok, scope->nestedIn);
return nullptr;
}
//---------------------------------------------------------------------------
Function * SymbolDatabase::findFunctionInScope(const Token *func, const Scope *ns, const std::string & path, nonneg int path_length)
{
const Function * function = nullptr;
const bool destructor = func->strAt(-1) == "~";
auto range = ns->functionMap.equal_range(func->str());
for (std::multimap<std::string, const Function*>::const_iterator it = range.first; it != range.second; ++it) {
if (it->second->argsMatch(ns, it->second->argDef, func->next(), path, path_length) &&
it->second->isDestructor() == destructor) {
function = it->second;
break;
}
}
if (!function) {
const Scope * scope = ns->findRecordInNestedList(func->str());
if (scope && Token::Match(func->tokAt(1), "::|<")) {
if (func->strAt(1) == "::")
func = func->tokAt(2);
else if (func->linkAt(1))
func = func->linkAt(1)->tokAt(2);
else
return nullptr;
if (func->str() == "~")
func = func->next();
function = findFunctionInScope(func, scope, path, path_length);
}
}
return const_cast<Function *>(function);
}
//---------------------------------------------------------------------------
bool SymbolDatabase::isReservedName(const std::string& iName) const
{
if (isCPP()) {
static const auto& cpp_keywords = Keywords::getAll(Standards::cppstd_t::CPPLatest);
return cpp_keywords.find(iName) != cpp_keywords.cend();
}
static const auto& c_keywords = Keywords::getAll(Standards::cstd_t::CLatest);
return c_keywords.find(iName) != c_keywords.cend();
}
nonneg int SymbolDatabase::sizeOfType(const Token *type) const
{
int size = mTokenizer.sizeOfType(type);
if (size == 0 && type->type() && type->type()->isEnumType() && type->type()->classScope) {
size = mSettings.platform.sizeof_int;
const Token * enum_type = type->type()->classScope->enumType;
if (enum_type)
size = mTokenizer.sizeOfType(enum_type);
}
return size;
}
static const Token* parsedecl(const Token* type,
ValueType* const valuetype,
ValueType::Sign defaultSignedness,
const Settings& settings,
bool isCpp,
SourceLocation loc = SourceLocation::current());
void SymbolDatabase::setValueType(Token* tok, const Variable& var, SourceLocation loc)
{
ValueType valuetype;
if (mSettings.debugnormal || mSettings.debugwarnings)
valuetype.setDebugPath(tok, loc);
if (var.nameToken())
valuetype.bits = var.nameToken()->bits();
valuetype.pointer = var.dimensions().size();
// HACK: don't set pointer for plain std::array
if (var.valueType() && var.valueType()->container && Token::simpleMatch(var.typeStartToken(), "std :: array") && !Token::simpleMatch(var.nameToken()->next(), "["))
valuetype.pointer = 0;
valuetype.typeScope = var.typeScope();
if (var.valueType()) {
valuetype.container = var.valueType()->container;
valuetype.containerTypeToken = var.valueType()->containerTypeToken;
}
valuetype.smartPointerType = var.smartPointerType();
if (parsedecl(var.typeStartToken(), &valuetype, mDefaultSignedness, mSettings, mIsCpp)) {
if (tok->str() == "." && tok->astOperand1()) {
const ValueType * const vt = tok->astOperand1()->valueType();
if (vt && (vt->constness & 1) != 0)
valuetype.constness |= 1;
}
setValueType(tok, valuetype);
}
}
void SymbolDatabase::setValueType(Token* tok, const Enumerator& enumerator, SourceLocation loc)
{
ValueType valuetype;
if (mSettings.debugnormal || mSettings.debugwarnings)
valuetype.setDebugPath(tok, loc);
valuetype.typeScope = enumerator.scope;
const Token * type = enumerator.scope->enumType;
if (type) {
valuetype.type = ValueType::typeFromString(type->str(), type->isLong());
if (valuetype.type == ValueType::Type::UNKNOWN_TYPE && type->isStandardType())
valuetype.fromLibraryType(type->str(), mSettings);
if (valuetype.isIntegral()) {
if (type->isSigned())
valuetype.sign = ValueType::Sign::SIGNED;
else if (type->isUnsigned())
valuetype.sign = ValueType::Sign::UNSIGNED;
else if (valuetype.type == ValueType::Type::CHAR)
valuetype.sign = mDefaultSignedness;
else
valuetype.sign = ValueType::Sign::SIGNED;
}
setValueType(tok, valuetype);
} else {
valuetype.sign = ValueType::SIGNED;
valuetype.type = ValueType::INT;
setValueType(tok, valuetype);
}
}
static void setAutoTokenProperties(Token * const autoTok)
{
const ValueType *valuetype = autoTok->valueType();
if (valuetype->isIntegral() || valuetype->isFloat())
autoTok->isStandardType(true);
}
bool isContainerYieldElement(Library::Container::Yield yield)
{
return yield == Library::Container::Yield::ITEM || yield == Library::Container::Yield::AT_INDEX ||
yield == Library::Container::Yield::BUFFER || yield == Library::Container::Yield::BUFFER_NT;
}
static bool isContainerYieldPointer(Library::Container::Yield yield)
{
return yield == Library::Container::Yield::BUFFER || yield == Library::Container::Yield::BUFFER_NT;
}
void SymbolDatabase::setValueType(Token* tok, const ValueType& valuetype, SourceLocation loc)
{
ValueType* valuetypePtr = new ValueType(valuetype);
if (mSettings.debugnormal || mSettings.debugwarnings)
valuetypePtr->setDebugPath(tok, loc);
tok->setValueType(valuetypePtr);
Token *parent = tok->astParent();
if (!parent || parent->valueType())
return;
if (!parent->astOperand1())
return;
const ValueType *vt1 = parent->astOperand1()->valueType();
const ValueType *vt2 = parent->astOperand2() ? parent->astOperand2()->valueType() : nullptr;
if (vt1 && Token::Match(parent, "<<|>>")) {
if (!mIsCpp || (vt2 && vt2->isIntegral())) {
if (vt1->type < ValueType::Type::BOOL || vt1->type >= ValueType::Type::INT) {
ValueType vt(*vt1);
vt.reference = Reference::None;
setValueType(parent, vt);
} else {
ValueType vt(*vt1);
vt.type = ValueType::Type::INT; // Integer promotion
vt.sign = ValueType::Sign::SIGNED;
vt.reference = Reference::None;
setValueType(parent, vt);
}
}
return;
}
if (vt1 && vt1->container && vt1->containerTypeToken && Token::Match(parent, ". %name% (") &&
isContainerYieldElement(vt1->container->getYield(parent->next()->str()))) {
ValueType item;
if (parsedecl(vt1->containerTypeToken, &item, mDefaultSignedness, mSettings, mIsCpp)) {
if (item.constness == 0)
item.constness = vt1->constness;
if (isContainerYieldPointer(vt1->container->getYield(parent->next()->str())))
item.pointer += 1;
else
item.reference = Reference::LValue;
setValueType(parent->tokAt(2), item);
}
}
if (vt1 && vt1->smartPointerType && Token::Match(parent, ". %name% (") && parent->originalName() == "->" && !parent->next()->function()) {
const Scope *scope = vt1->smartPointerType->classScope;
const Function *f = scope ? scope->findFunction(parent->next(), false) : nullptr;
if (f)
parent->next()->function(f);
}
if (parent->isAssignmentOp()) {
if (vt1) {
auto vt = *vt1;
vt.reference = Reference::None;
setValueType(parent, vt);
} else if (mIsCpp && ((Token::Match(parent->tokAt(-3), "%var% ; %var% =") && parent->strAt(-3) == parent->strAt(-1)) ||
Token::Match(parent->tokAt(-1), "%var% ="))) {
Token *var1Tok = parent->strAt(-2) == ";" ? parent->tokAt(-3) : parent->tokAt(-1);
Token *autoTok = nullptr;
if (Token::simpleMatch(var1Tok->tokAt(-1), "auto"))
autoTok = var1Tok->previous();
else if (Token::Match(var1Tok->tokAt(-2), "auto *|&|&&"))
autoTok = var1Tok->tokAt(-2);
else if (Token::simpleMatch(var1Tok->tokAt(-3), "auto * const"))
autoTok = var1Tok->tokAt(-3);
if (autoTok) {
ValueType vt(*vt2);
if (vt.constness & (1 << vt.pointer))
vt.constness &= ~(1 << vt.pointer);
if (autoTok->strAt(1) == "*" && vt.pointer)
vt.pointer--;
if (Token::Match(autoTok->tokAt(-1), "const|constexpr"))
vt.constness |= (1 << vt.pointer);
setValueType(autoTok, vt);
setAutoTokenProperties(autoTok);
if (vt2->pointer > vt.pointer)
vt.pointer++;
setValueType(var1Tok, vt);
if (var1Tok != parent->previous())
setValueType(parent->previous(), vt);
Variable *var = const_cast<Variable *>(parent->previous()->variable());
if (var) {
ValueType vt2_(*vt2);
if (vt2_.pointer == 0 && autoTok->strAt(1) == "*")
vt2_.pointer = 1;
if ((vt.constness & (1 << vt2->pointer)) != 0)
vt2_.constness |= (1 << vt2->pointer);
if (!Token::Match(autoTok->tokAt(1), "*|&"))
vt2_.constness = vt.constness;
if (Token::simpleMatch(autoTok->tokAt(1), "* const"))
vt2_.constness |= (1 << vt2->pointer);
var->setValueType(vt2_);
if (vt2->typeScope && vt2->typeScope->definedType) {
var->type(vt2->typeScope->definedType);
if (autoTok->valueType()->pointer == 0)
autoTok->type(vt2->typeScope->definedType);
}
}
}
}
return;
}
if (parent->str() == "[" && (!mIsCpp || parent->astOperand1() == tok) && valuetype.pointer > 0U && !Token::Match(parent->previous(), "[{,]")) {
const Token *op1 = parent->astOperand1();
while (op1 && op1->str() == "[")
op1 = op1->astOperand1();
ValueType vt(valuetype);
// the "[" is a dereference unless this is a variable declaration
if (!(op1 && op1->variable() && op1->variable()->nameToken() == op1))
vt.pointer -= 1U;
setValueType(parent, vt);
return;
}
if (Token::Match(parent->previous(), "%name% (") && parent->astOperand1() == tok && valuetype.pointer > 0U) {
ValueType vt(valuetype);
vt.pointer -= 1U;
setValueType(parent, vt);
return;
}
// std::move
if (vt2 && parent->str() == "(" && Token::simpleMatch(parent->tokAt(-3), "std :: move (")) {
ValueType vt = valuetype;
vt.reference = Reference::RValue;
setValueType(parent, vt);
return;
}
if (parent->str() == "*" && !parent->astOperand2() && valuetype.pointer > 0U) {
ValueType vt(valuetype);
vt.pointer -= 1U;
setValueType(parent, vt);
return;
}
// Dereference iterator
if (parent->str() == "*" && !parent->astOperand2() && valuetype.type == ValueType::Type::ITERATOR &&
valuetype.containerTypeToken) {
ValueType vt;
if (parsedecl(valuetype.containerTypeToken, &vt, mDefaultSignedness, mSettings, mIsCpp)) {
if (vt.constness == 0)
vt.constness = valuetype.constness;
vt.reference = Reference::LValue;
setValueType(parent, vt);
return;
}
}
// Dereference smart pointer
if (parent->str() == "*" && !parent->astOperand2() && valuetype.type == ValueType::Type::SMART_POINTER &&
valuetype.smartPointerTypeToken) {
ValueType vt;
if (parsedecl(valuetype.smartPointerTypeToken, &vt, mDefaultSignedness, mSettings, mIsCpp)) {
if (vt.constness == 0)
vt.constness = valuetype.constness;
setValueType(parent, vt);
return;
}
}
if (parent->str() == "*" && Token::simpleMatch(parent->astOperand2(), "[") && valuetype.pointer > 0U) {
const Token *op1 = parent->astOperand2()->astOperand1();
while (op1 && op1->str() == "[")
op1 = op1->astOperand1();
const ValueType& vt(valuetype);
if (op1 && op1->variable() && op1->variable()->nameToken() == op1) {
setValueType(parent, vt);
return;
}
}
if (parent->str() == "&" && !parent->astOperand2()) {
ValueType vt(valuetype);
vt.reference = Reference::None; //Given int& x; the type of &x is int* not int&*
bool isArrayToPointerDecay = false;
for (const Token* child = parent->astOperand1(); child;) {
if (Token::Match(child, ".|::"))
child = child->astOperand2();
else {
isArrayToPointerDecay = child->variable() && child->variable()->isArray();
break;
}
}
if (!isArrayToPointerDecay)
vt.pointer += 1U;
setValueType(parent, vt);
return;
}
if ((parent->str() == "." || parent->str() == "::") &&
parent->astOperand2() && parent->astOperand2()->isName()) {
const Variable* var = parent->astOperand2()->variable();
if (!var && valuetype.typeScope && vt1) {
const std::string &name = parent->astOperand2()->str();
const Scope *typeScope = vt1->typeScope;
if (!typeScope)
return;
auto it = std::find_if(typeScope->varlist.begin(), typeScope->varlist.end(), [&name](const Variable& v) {
return v.nameToken()->str() == name;
});
if (it != typeScope->varlist.end())
var = &*it;
}
if (var)
setValueType(parent, *var);
return;
}
// range for loop, auto
if (vt2 &&
parent->str() == ":" &&
Token::Match(parent->astParent(), "( const| auto *|&|&&| %var% :") && // TODO: east-const, multiple const, ref to ptr
!parent->previous()->valueType() &&
Token::simpleMatch(parent->astParent()->astOperand1(), "for")) {
const bool isconst = Token::simpleMatch(parent->astParent()->next(), "const");
Token * const autoToken = parent->astParent()->tokAt(isconst ? 2 : 1);
if (vt2->pointer) {
ValueType autovt(*vt2);
autovt.pointer--;
autovt.constness = 0;
setValueType(autoToken, autovt);
setAutoTokenProperties(autoToken);
ValueType varvt(*vt2);
varvt.pointer--;
if (Token::simpleMatch(autoToken->next(), "&"))
varvt.reference = Reference::LValue;
if (isconst) {
if (varvt.pointer && varvt.reference != Reference::None)
varvt.constness |= (1 << varvt.pointer);
else
varvt.constness |= 1;
}
setValueType(parent->previous(), varvt);
Variable *var = const_cast<Variable *>(parent->previous()->variable());
if (var) {
var->setValueType(varvt);
if (vt2->typeScope && vt2->typeScope->definedType) {
var->type(vt2->typeScope->definedType);
autoToken->type(vt2->typeScope->definedType);
}
}
} else if (vt2->container) {
// TODO: Determine exact type of RHS
const Token *typeStart = parent->astOperand2();
while (typeStart) {
if (typeStart->variable())
typeStart = typeStart->variable()->typeStartToken();
else if (typeStart->str() == "(" && typeStart->previous() && typeStart->previous()->function())
typeStart = typeStart->previous()->function()->retDef;
else
break;
}
// Try to determine type of "auto" token.
// TODO: Get type better
bool setType = false;
ValueType autovt;
const Type *templateArgType = nullptr; // container element type / smart pointer type
if (!vt2->container->rangeItemRecordType.empty()) {
setType = true;
autovt.type = ValueType::Type::RECORD;
} else if (vt2->containerTypeToken) {
if (mSettings.library.isSmartPointer(vt2->containerTypeToken)) {
const Token *smartPointerTypeTok = vt2->containerTypeToken;
while (Token::Match(smartPointerTypeTok, "%name%|::"))
smartPointerTypeTok = smartPointerTypeTok->next();
if (Token::simpleMatch(smartPointerTypeTok, "<")) {
if ((templateArgType = findTypeInNested(smartPointerTypeTok->next(), tok->scope()))) {
setType = true;
autovt.smartPointerType = templateArgType;
autovt.type = ValueType::Type::NONSTD;
}
}
} else if (parsedecl(vt2->containerTypeToken, &autovt, mDefaultSignedness, mSettings, mIsCpp)) {
setType = true;
templateArgType = vt2->containerTypeToken->type();
if (Token::simpleMatch(autoToken->next(), "&"))
autovt.reference = Reference::LValue;
else if (Token::simpleMatch(autoToken->next(), "&&"))
autovt.reference = Reference::RValue;
if (autoToken->previous()->str() == "const") {
if (autovt.pointer && autovt.reference != Reference::None)
autovt.constness |= 2;
else
autovt.constness |= 1;
}
}
}
if (setType) {
// Type of "auto" has been determined.. set type information for "auto" and variable tokens
setValueType(autoToken, autovt);
setAutoTokenProperties(autoToken);
ValueType varvt(autovt);
if (autoToken->strAt(1) == "*" && autovt.pointer)
autovt.pointer--;
if (isconst)
varvt.constness |= (1 << autovt.pointer);
setValueType(parent->previous(), varvt);
Variable * var = const_cast<Variable *>(parent->previous()->variable());
if (var) {
var->setValueType(varvt);
if (templateArgType && templateArgType->classScope && templateArgType->classScope->definedType) {
autoToken->type(templateArgType->classScope->definedType);
var->type(templateArgType->classScope->definedType);
}
}
}
}
}
if (vt1 && vt1->containerTypeToken && parent->str() == "[") {
ValueType vtParent;
if (parsedecl(vt1->containerTypeToken, &vtParent, mDefaultSignedness, mSettings, mIsCpp)) {
setValueType(parent, vtParent);
return;
}
}
if (mIsCpp && vt2 && Token::simpleMatch(parent->previous(), "decltype (")) {
setValueType(parent, *vt2);
return;
}
// c++17 auto type deduction of braced init list
if (mIsCpp && mSettings.standards.cpp >= Standards::CPP17 && vt2 && Token::Match(parent->tokAt(-2), "auto %var% {")) {
Token *autoTok = parent->tokAt(-2);
setValueType(autoTok, *vt2);
setAutoTokenProperties(autoTok);
if (parent->previous()->variable())
const_cast<Variable*>(parent->previous()->variable())->setValueType(*vt2);
else
debugMessage(parent->previous(), "debug", "Missing variable class for variable with varid");
return;
}
if (!vt1)
return;
if (parent->astOperand2() && !vt2)
return;
const bool ternary = parent->str() == ":" && parent->astParent() && parent->astParent()->str() == "?";
if (ternary) {
if (vt2 && vt1->pointer == vt2->pointer && vt1->type == vt2->type && vt1->sign == vt2->sign)
setValueType(parent, *vt2);
parent = parent->astParent();
}
if (ternary || parent->isArithmeticalOp() || parent->tokType() == Token::eIncDecOp) {
// CONTAINER + x => CONTAINER
if (parent->str() == "+" && vt1->type == ValueType::Type::CONTAINER && vt2 && vt2->isIntegral()) {
setValueType(parent, *vt1);
return;
}
// x + CONTAINER => CONTAINER
if (parent->str() == "+" && vt1->isIntegral() && vt2 && vt2->type == ValueType::Type::CONTAINER) {
setValueType(parent, *vt2);
return;
}
if (parent->isArithmeticalOp()) {
if (vt1->pointer != 0U && vt2 && vt2->pointer == 0U) {
setValueType(parent, *vt1);
return;
}
if (vt1->pointer == 0U && vt2 && vt2->pointer != 0U) {
setValueType(parent, *vt2);
return;
}
} else if (ternary) {
if (vt1->pointer != 0U && vt2 && vt2->pointer == 0U) {
if (vt2->isPrimitive())
setValueType(parent, *vt1);
else
setValueType(parent, *vt2);
return;
}
if (vt1->pointer == 0U && vt2 && vt2->pointer != 0U) {
if (vt1->isPrimitive())
setValueType(parent, *vt2);
else
setValueType(parent, *vt1);
return;
}
}
if (vt1->pointer != 0U) {
if (ternary || parent->tokType() == Token::eIncDecOp) // result is pointer
setValueType(parent, *vt1);
else // result is pointer diff
setValueType(parent, ValueType(ValueType::Sign::SIGNED, ValueType::Type::INT, 0U, 0U, "ptrdiff_t"));
return;
}
if (vt1->type == ValueType::Type::LONGDOUBLE || (vt2 && vt2->type == ValueType::Type::LONGDOUBLE)) {
setValueType(parent, ValueType(ValueType::Sign::UNKNOWN_SIGN, ValueType::Type::LONGDOUBLE, 0U));
return;
}
if (vt1->type == ValueType::Type::DOUBLE || (vt2 && vt2->type == ValueType::Type::DOUBLE)) {
setValueType(parent, ValueType(ValueType::Sign::UNKNOWN_SIGN, ValueType::Type::DOUBLE, 0U));
return;
}
if (vt1->type == ValueType::Type::FLOAT || (vt2 && vt2->type == ValueType::Type::FLOAT)) {
setValueType(parent, ValueType(ValueType::Sign::UNKNOWN_SIGN, ValueType::Type::FLOAT, 0U));
return;
}
// iterator +/- integral = iterator
if (vt1->type == ValueType::Type::ITERATOR && vt2 && vt2->isIntegral() &&
(parent->str() == "+" || parent->str() == "-")) {
setValueType(parent, *vt1);
return;
}
if (parent->str() == "+" && vt1->type == ValueType::Type::CONTAINER && vt2 && vt2->type == ValueType::Type::CONTAINER && vt1->container == vt2->container) {
setValueType(parent, *vt1);
return;
}
}
if (vt1->isIntegral() && vt1->pointer == 0U &&
(!vt2 || (vt2->isIntegral() && vt2->pointer == 0U)) &&
(ternary || parent->isArithmeticalOp() || parent->tokType() == Token::eBitOp || parent->tokType() == Token::eIncDecOp || parent->isAssignmentOp())) {
ValueType vt;
if (!vt2 || vt1->type > vt2->type) {
vt.type = vt1->type;
vt.sign = vt1->sign;
vt.originalTypeName = vt1->originalTypeName;
} else if (vt1->type == vt2->type) {
vt.type = vt1->type;
if (vt1->sign == ValueType::Sign::UNSIGNED || vt2->sign == ValueType::Sign::UNSIGNED)
vt.sign = ValueType::Sign::UNSIGNED;
else if (vt1->sign == ValueType::Sign::UNKNOWN_SIGN || vt2->sign == ValueType::Sign::UNKNOWN_SIGN)
vt.sign = ValueType::Sign::UNKNOWN_SIGN;
else
vt.sign = ValueType::Sign::SIGNED;
vt.originalTypeName = (vt1->originalTypeName.empty() ? vt2 : vt1)->originalTypeName;
} else {
vt.type = vt2->type;
vt.sign = vt2->sign;
vt.originalTypeName = vt2->originalTypeName;
}
if (vt.type < ValueType::Type::INT && !(ternary && vt.type==ValueType::Type::BOOL)) {
vt.type = ValueType::Type::INT;
vt.sign = ValueType::Sign::SIGNED;
vt.originalTypeName.clear();
}
setValueType(parent, vt);
return;
}
}
static const Token* parsedecl(const Token* type,
ValueType* const valuetype,
ValueType::Sign defaultSignedness,
const Settings& settings,
bool isCpp,
SourceLocation loc)
{
if (settings.debugnormal || settings.debugwarnings)
valuetype->setDebugPath(type, loc);
const Token * const previousType = type;
const unsigned int pointer0 = valuetype->pointer;
while (Token::Match(type->previous(), "%name%") && !endsWith(type->previous()->str(), ':'))
type = type->previous();
valuetype->sign = ValueType::Sign::UNKNOWN_SIGN;
if (!valuetype->typeScope && !valuetype->smartPointerType)
valuetype->type = ValueType::Type::UNKNOWN_TYPE;
else if (valuetype->smartPointerType)
valuetype->type = ValueType::Type::SMART_POINTER;
else if (valuetype->typeScope->type == Scope::eEnum) {
const Token * enum_type = valuetype->typeScope->enumType;
if (enum_type) {
if (enum_type->isSigned())
valuetype->sign = ValueType::Sign::SIGNED;
else if (enum_type->isUnsigned())
valuetype->sign = ValueType::Sign::UNSIGNED;
else
valuetype->sign = defaultSignedness;
const ValueType::Type t = ValueType::typeFromString(enum_type->str(), enum_type->isLong());
if (t != ValueType::Type::UNKNOWN_TYPE)
valuetype->type = t;
else if (enum_type->isStandardType())
valuetype->fromLibraryType(enum_type->str(), settings);
} else
valuetype->type = ValueType::Type::INT;
} else
valuetype->type = ValueType::Type::RECORD;
bool par = false;
while (Token::Match(type, "%name%|*|&|&&|::|(") && !Token::Match(type, "typename|template") && type->varId() == 0 &&
!type->variable() && !type->function()) {
bool isIterator = false;
if (type->str() == "(") {
if (Token::Match(type->link(), ") const| {"))
break;
if (par)
break;
par = true;
}
if (Token::simpleMatch(type, "decltype (") && type->next()->valueType()) {
const ValueType *vt2 = type->next()->valueType();
if (valuetype->sign == ValueType::Sign::UNKNOWN_SIGN)
valuetype->sign = vt2->sign;
if (valuetype->type == ValueType::Type::UNKNOWN_TYPE)
valuetype->type = vt2->type;
valuetype->constness += vt2->constness;
valuetype->pointer += vt2->pointer;
valuetype->reference = vt2->reference;
type = type->linkAt(1)->next();
continue;
}
if (type->isSigned())
valuetype->sign = ValueType::Sign::SIGNED;
else if (type->isUnsigned())
valuetype->sign = ValueType::Sign::UNSIGNED;
if (valuetype->type == ValueType::Type::UNKNOWN_TYPE &&
type->type() && type->type()->isTypeAlias() && type->type()->typeStart &&
type->type()->typeStart->str() != type->str() && type->type()->typeStart != previousType)
parsedecl(type->type()->typeStart, valuetype, defaultSignedness, settings, isCpp);
else if (Token::Match(type, "const|constexpr"))
valuetype->constness |= (1 << (valuetype->pointer - pointer0));
else if (settings.clang && type->str().size() > 2 && type->str().find("::") < type->str().find('<')) {
TokenList typeTokens(&settings);
std::string::size_type pos1 = 0;
do {
const std::string::size_type pos2 = type->str().find("::", pos1);
if (pos2 == std::string::npos) {
typeTokens.addtoken(type->str().substr(pos1), 0, 0, 0, false);
break;
}
typeTokens.addtoken(type->str().substr(pos1, pos2 - pos1), 0, 0, 0, false);
typeTokens.addtoken("::", 0, 0, 0, false);
pos1 = pos2 + 2;
} while (pos1 < type->str().size());
const Library::Container* container =
settings.library.detectContainerOrIterator(typeTokens.front(), &isIterator);
if (container) {
if (isIterator)
valuetype->type = ValueType::Type::ITERATOR;
else
valuetype->type = ValueType::Type::CONTAINER;
valuetype->container = container;
} else {
const Scope *scope = type->scope();
valuetype->typeScope = scope->check->findScope(typeTokens.front(), scope);
if (valuetype->typeScope)
valuetype->type = (scope->type == Scope::ScopeType::eClass) ? ValueType::Type::RECORD : ValueType::Type::NONSTD;
}
} else if (const Library::Container* container = (isCpp ? settings.library.detectContainerOrIterator(type, &isIterator) : nullptr)) {
if (isIterator)
valuetype->type = ValueType::Type::ITERATOR;
else
valuetype->type = ValueType::Type::CONTAINER;
valuetype->container = container;
while (Token::Match(type, "%type%|::|<") && type->str() != "const") {
if (type->str() == "<" && type->link()) {
if (container->type_templateArgNo >= 0) {
const Token *templateType = type->next();
for (int j = 0; templateType && j < container->type_templateArgNo; j++)
templateType = templateType->nextTemplateArgument();
valuetype->containerTypeToken = templateType;
}
type = type->link();
}
type = type->next();
}
if (type && type->str() == "(" && type->previous()->function())
// we are past the end of the type
type = type->previous();
continue;
} else if (const Library::SmartPointer* smartPointer = (isCpp ? settings.library.detectSmartPointer(type) : nullptr)) {
const Token* argTok = Token::findsimplematch(type, "<");
if (!argTok)
break;
valuetype->smartPointer = smartPointer;
valuetype->smartPointerTypeToken = argTok->next();
valuetype->smartPointerType = argTok->next()->type();
valuetype->type = ValueType::Type::SMART_POINTER;
type = argTok->link();
if (type)
type = type->next();
continue;
} else if (Token::Match(type, "%name% :: %name%")) {
std::string typestr;
const Token *end = type;
while (Token::Match(end, "%name% :: %name%")) {
typestr += end->str() + "::";
end = end->tokAt(2);
}
typestr += end->str();
if (valuetype->fromLibraryType(typestr, settings))
type = end;
} else if (ValueType::Type::UNKNOWN_TYPE != ValueType::typeFromString(type->str(), type->isLong())) {
const ValueType::Type t0 = valuetype->type;
valuetype->type = ValueType::typeFromString(type->str(), type->isLong());
if (t0 == ValueType::Type::LONG) {
if (valuetype->type == ValueType::Type::LONG)
valuetype->type = ValueType::Type::LONGLONG;
else if (valuetype->type == ValueType::Type::DOUBLE)
valuetype->type = ValueType::Type::LONGDOUBLE;
}
} else if (type->str() == "auto") {
const ValueType *vt = type->valueType();
if (!vt)
return nullptr;
valuetype->type = vt->type;
valuetype->pointer = vt->pointer;
valuetype->reference = vt->reference;
if (vt->sign != ValueType::Sign::UNKNOWN_SIGN)
valuetype->sign = vt->sign;
valuetype->constness = vt->constness;
valuetype->originalTypeName = vt->originalTypeName;
const bool hasConst = Token::simpleMatch(type->previous(), "const");
while (Token::Match(type, "%name%|*|&|::") && !type->variable()) {
if (type->str() == "*") {
valuetype->pointer = 1;
if (hasConst)
valuetype->constness = 1;
}
if (type->str() == "const")
valuetype->constness |= (1 << valuetype->pointer);
type = type->next();
}
break;
} else if (!valuetype->typeScope && (type->str() == "struct" || type->str() == "enum"))
valuetype->type = type->str() == "struct" ? ValueType::Type::RECORD : ValueType::Type::NONSTD;
else if (!valuetype->typeScope && type->type() && type->type()->classScope) {
if (type->type()->classScope->type == Scope::ScopeType::eEnum) {
valuetype->type = ValueType::Type::INT;
valuetype->sign = ValueType::Sign::SIGNED;
} else {
valuetype->type = ValueType::Type::RECORD;
}
valuetype->typeScope = type->type()->classScope;
} else if (type->isName() && valuetype->sign != ValueType::Sign::UNKNOWN_SIGN && valuetype->pointer == 0U)
return nullptr;
else if (type->str() == "*")
valuetype->pointer++;
else if (type->str() == "&")
valuetype->reference = Reference::LValue;
else if (type->str() == "&&")
valuetype->reference = Reference::RValue;
else if (type->isStandardType())
valuetype->fromLibraryType(type->str(), settings);
else if (Token::Match(type->previous(), "!!:: %name% !!::"))
valuetype->fromLibraryType(type->str(), settings);
if (!type->originalName().empty())
valuetype->originalTypeName = type->originalName();
type = type->next();
}
// Set signedness for integral types..
if (valuetype->isIntegral() && valuetype->sign == ValueType::Sign::UNKNOWN_SIGN) {
if (valuetype->type == ValueType::Type::CHAR)
valuetype->sign = defaultSignedness;
else if (valuetype->type >= ValueType::Type::SHORT)
valuetype->sign = ValueType::Sign::SIGNED;
}
return (type && (valuetype->type != ValueType::Type::UNKNOWN_TYPE || valuetype->pointer > 0 || valuetype->reference != Reference::None)) ? type : nullptr;
}
static const Scope *getClassScope(const Token *tok)
{
return tok && tok->valueType() && tok->valueType()->typeScope && tok->valueType()->typeScope->isClassOrStruct() ?
tok->valueType()->typeScope :
nullptr;
}
static const Function *getOperatorFunction(const Token * const tok)
{
const std::string functionName("operator" + tok->str());
std::multimap<std::string, const Function *>::const_iterator it;
const Scope *classScope = getClassScope(tok->astOperand1());
if (classScope) {
it = classScope->functionMap.find(functionName);
if (it != classScope->functionMap.end())
return it->second;
}
classScope = getClassScope(tok->astOperand2());
if (classScope) {
it = classScope->functionMap.find(functionName);
if (it != classScope->functionMap.end())
return it->second;
}
return nullptr;
}
void SymbolDatabase::setValueTypeInTokenList(bool reportDebugWarnings, Token *tokens)
{
if (!tokens)
tokens = const_cast<Tokenizer &>(mTokenizer).list.front();
for (Token *tok = tokens; tok; tok = tok->next())
tok->setValueType(nullptr);
for (Token *tok = tokens; tok; tok = tok->next()) {
if (tok->isNumber()) {
if (MathLib::isFloat(tok->str())) {
ValueType::Type type = ValueType::Type::DOUBLE;
const char suffix = tok->str()[tok->str().size() - 1];
if (suffix == 'f' || suffix == 'F')
type = ValueType::Type::FLOAT;
else if (suffix == 'L' || suffix == 'l')
type = ValueType::Type::LONGDOUBLE;
setValueType(tok, ValueType(ValueType::Sign::UNKNOWN_SIGN, type, 0U));
} else if (MathLib::isInt(tok->str())) {
const std::string tokStr = MathLib::abs(tok->str());
const bool unsignedSuffix = (tokStr.find_last_of("uU") != std::string::npos);
ValueType::Sign sign = unsignedSuffix ? ValueType::Sign::UNSIGNED : ValueType::Sign::SIGNED;
ValueType::Type type = ValueType::Type::INT;
const MathLib::biguint value = MathLib::toULongNumber(tokStr);
for (std::size_t pos = tokStr.size() - 1U; pos > 0U; --pos) {
const char suffix = tokStr[pos];
if (suffix == 'u' || suffix == 'U')
sign = ValueType::Sign::UNSIGNED;
else if (suffix == 'l' || suffix == 'L')
type = (type == ValueType::Type::INT) ? ValueType::Type::LONG : ValueType::Type::LONGLONG;
else if (pos > 2U && suffix == '4' && tokStr[pos - 1] == '6' && tokStr[pos - 2] == 'i') {
type = ValueType::Type::LONGLONG;
pos -= 2;
} else break;
}
if (mSettings.platform.type != cppcheck::Platform::Type::Unspecified) {
if (type <= ValueType::Type::INT && mSettings.platform.isIntValue(unsignedSuffix ? (value >> 1) : value))
type = ValueType::Type::INT;
else if (type <= ValueType::Type::INT && !MathLib::isDec(tokStr) && mSettings.platform.isIntValue(value >> 2)) {
type = ValueType::Type::INT;
sign = ValueType::Sign::UNSIGNED;
} else if (type <= ValueType::Type::LONG && mSettings.platform.isLongValue(unsignedSuffix ? (value >> 1) : value))
type = ValueType::Type::LONG;
else if (type <= ValueType::Type::LONG && !MathLib::isDec(tokStr) && mSettings.platform.isLongValue(value >> 2)) {
type = ValueType::Type::LONG;
sign = ValueType::Sign::UNSIGNED;
} else if (mSettings.platform.isLongLongValue(unsignedSuffix ? (value >> 1) : value))
type = ValueType::Type::LONGLONG;
else {
type = ValueType::Type::LONGLONG;
sign = ValueType::Sign::UNSIGNED;
}
}
setValueType(tok, ValueType(sign, type, 0U));
}
} else if (tok->isComparisonOp() || tok->tokType() == Token::eLogicalOp) {
if (mIsCpp && tok->isComparisonOp() && (getClassScope(tok->astOperand1()) || getClassScope(tok->astOperand2()))) {
const Function *function = getOperatorFunction(tok);
if (function) {
ValueType vt;
parsedecl(function->retDef, &vt, mDefaultSignedness, mSettings, mIsCpp);
setValueType(tok, vt);
continue;
}
}
setValueType(tok, ValueType(ValueType::Sign::UNKNOWN_SIGN, ValueType::Type::BOOL, 0U));
} else if (tok->isBoolean()) {
setValueType(tok, ValueType(ValueType::Sign::UNKNOWN_SIGN, ValueType::Type::BOOL, 0U));
} else if (tok->tokType() == Token::eChar || tok->tokType() == Token::eString) {
nonneg int const pointer = tok->tokType() == Token::eChar ? 0U : 1U;
nonneg int const constness = tok->tokType() == Token::eChar ? 0U : 1U;
ValueType valuetype(ValueType::Sign::UNKNOWN_SIGN, ValueType::Type::CHAR, pointer, constness);
if (mIsCpp && mSettings.standards.cpp >= Standards::CPP20 && tok->isUtf8()) {
valuetype.originalTypeName = "char8_t";
valuetype.fromLibraryType(valuetype.originalTypeName, mSettings);
} else if (tok->isUtf16()) {
valuetype.originalTypeName = "char16_t";
valuetype.fromLibraryType(valuetype.originalTypeName, mSettings);
} else if (tok->isUtf32()) {
valuetype.originalTypeName = "char32_t";
valuetype.fromLibraryType(valuetype.originalTypeName, mSettings);
} else if (tok->isLong()) {
valuetype.originalTypeName = "wchar_t";
valuetype.type = ValueType::Type::WCHAR_T;
} else if ((tok->tokType() == Token::eChar) && ((tok->isCChar() && !mIsCpp) || (tok->isCMultiChar()))) {
valuetype.type = ValueType::Type::INT;
valuetype.sign = ValueType::Sign::SIGNED;
}
setValueType(tok, valuetype);
} else if (tok->link() && Token::Match(tok, "(|{")) {
const Token* start = tok->astOperand1() ? tok->astOperand1()->findExpressionStartEndTokens().first : nullptr;
// cast
if (tok->isCast() && !tok->astOperand2() && Token::Match(tok, "( %name%")) {
ValueType valuetype;
if (Token::simpleMatch(parsedecl(tok->next(), &valuetype, mDefaultSignedness, mSettings, mIsCpp), ")"))
setValueType(tok, valuetype);
}
// C++ cast
else if (tok->astOperand2() && Token::Match(tok->astOperand1(), "static_cast|const_cast|dynamic_cast|reinterpret_cast < %name%") && tok->astOperand1()->linkAt(1)) {
ValueType valuetype;
if (Token::simpleMatch(parsedecl(tok->astOperand1()->tokAt(2), &valuetype, mDefaultSignedness, mSettings, mIsCpp), ">"))
setValueType(tok, valuetype);
}
// Construct smart pointer
else if (mSettings.library.isSmartPointer(start)) {
ValueType valuetype;
if (parsedecl(start, &valuetype, mDefaultSignedness, mSettings, mIsCpp)) {
setValueType(tok, valuetype);
setValueType(tok->astOperand1(), valuetype);
}
}
// function
else if (tok->previous() && tok->previous()->function() && tok->previous()->function()->retDef) {
ValueType valuetype;
if (parsedecl(tok->previous()->function()->retDef, &valuetype, mDefaultSignedness, mSettings, mIsCpp))
setValueType(tok, valuetype);
}
else if (Token::simpleMatch(tok->previous(), "sizeof (")) {
ValueType valuetype(ValueType::Sign::UNSIGNED, ValueType::Type::LONG, 0U);
if (mSettings.platform.type == cppcheck::Platform::Type::Win64)
valuetype.type = ValueType::Type::LONGLONG;
valuetype.originalTypeName = "size_t";
setValueType(tok, valuetype);
if (Token::Match(tok, "( %type% %type%| *| *| )")) {
ValueType vt;
if (parsedecl(tok->next(), &vt, mDefaultSignedness, mSettings, mIsCpp)) {
setValueType(tok->next(), vt);
}
}
}
// function style cast
else if (tok->previous() && tok->previous()->isStandardType()) {
ValueType valuetype;
if (tok->astOperand1() && valuetype.fromLibraryType(tok->astOperand1()->expressionString(), mSettings)) {
setValueType(tok, valuetype);
continue;
}
valuetype.type = ValueType::typeFromString(tok->previous()->str(), tok->previous()->isLong());
if (tok->previous()->isUnsigned())
valuetype.sign = ValueType::Sign::UNSIGNED;
else if (tok->previous()->isSigned())
valuetype.sign = ValueType::Sign::SIGNED;
else if (valuetype.isIntegral() && valuetype.type != ValueType::UNKNOWN_INT)
valuetype.sign = mDefaultSignedness;
setValueType(tok, valuetype);
}
// constructor call
else if (tok->previous() && tok->previous()->function() && tok->previous()->function()->isConstructor()) {
ValueType valuetype;
valuetype.type = ValueType::RECORD;
valuetype.typeScope = tok->previous()->function()->token->scope();
setValueType(tok, valuetype);
}
else if (Token::simpleMatch(tok->previous(), "= {") && tok->tokAt(-2) && tok->tokAt(-2)->valueType()) {
ValueType vt = *tok->tokAt(-2)->valueType();
setValueType(tok, vt);
}
// library type/function
else if (tok->previous()) {
// Aggregate constructor
if (Token::Match(tok->previous(), "%name%")) {
ValueType valuetype;
if (parsedecl(tok->previous(), &valuetype, mDefaultSignedness, mSettings, mIsCpp)) {
if (valuetype.typeScope) {
setValueType(tok, valuetype);
continue;
}
}
}
if (tok->astParent() && Token::Match(tok->astOperand1(), "%name%|::")) {
const Token *typeStartToken = tok->astOperand1();
while (typeStartToken && typeStartToken->str() == "::")
typeStartToken = typeStartToken->astOperand1();
if (mSettings.library.detectContainerOrIterator(typeStartToken) ||
mSettings.library.detectSmartPointer(typeStartToken)) {
ValueType vt;
if (parsedecl(typeStartToken, &vt, mDefaultSignedness, mSettings, mIsCpp)) {
setValueType(tok, vt);
continue;
}
}
const std::string e = tok->astOperand1()->expressionString();
if ((e == "std::make_shared" || e == "std::make_unique") && Token::Match(tok->astOperand1(), ":: %name% < %name%")) {
ValueType vt;
parsedecl(tok->astOperand1()->tokAt(3), &vt, mDefaultSignedness, mSettings, mIsCpp);
if (vt.typeScope) {
vt.smartPointerType = vt.typeScope->definedType;
vt.typeScope = nullptr;
}
if (e == "std::make_shared" && mSettings.library.smartPointers.count("std::shared_ptr") > 0)
vt.smartPointer = &mSettings.library.smartPointers.at("std::shared_ptr");
if (e == "std::make_unique" && mSettings.library.smartPointers.count("std::unique_ptr") > 0)
vt.smartPointer = &mSettings.library.smartPointers.at("std::unique_ptr");
vt.type = ValueType::Type::SMART_POINTER;
vt.smartPointerTypeToken = tok->astOperand1()->tokAt(3);
setValueType(tok, vt);
continue;
}
ValueType podtype;
if (podtype.fromLibraryType(e, mSettings)) {
setValueType(tok, podtype);
continue;
}
}
const std::string& typestr(mSettings.library.returnValueType(tok->previous()));
if (!typestr.empty()) {
ValueType valuetype;
TokenList tokenList(&mSettings);
std::istringstream istr(typestr+";");
tokenList.createTokens(istr);
tokenList.simplifyStdType();
if (parsedecl(tokenList.front(), &valuetype, mDefaultSignedness, mSettings, mIsCpp)) {
valuetype.originalTypeName = typestr;
setValueType(tok, valuetype);
}
}
//Is iterator fetching function invoked on container?
const bool isReturnIter = typestr == "iterator";
if (typestr.empty() || isReturnIter) {
if (Token::simpleMatch(tok->astOperand1(), ".") &&
tok->astOperand1()->astOperand1() &&
tok->astOperand1()->astOperand2() &&
tok->astOperand1()->astOperand1()->valueType() &&
tok->astOperand1()->astOperand1()->valueType()->container) {
const Library::Container *cont = tok->astOperand1()->astOperand1()->valueType()->container;
const auto it = cont->functions.find(tok->astOperand1()->astOperand2()->str());
if (it != cont->functions.end()) {
if (it->second.yield == Library::Container::Yield::START_ITERATOR ||
it->second.yield == Library::Container::Yield::END_ITERATOR ||
it->second.yield == Library::Container::Yield::ITERATOR) {
ValueType vt;
vt.type = ValueType::Type::ITERATOR;
vt.container = cont;
vt.containerTypeToken =
tok->astOperand1()->astOperand1()->valueType()->containerTypeToken;
setValueType(tok, vt);
continue;
}
}
//Is iterator fetching function called?
} else if (Token::simpleMatch(tok->astOperand1(), "::") &&
tok->astOperand2() &&
tok->astOperand2()->isVariable()) {
const auto* const paramVariable = tok->astOperand2()->variable();
if (!paramVariable ||
!paramVariable->valueType() ||
!paramVariable->valueType()->container) {
continue;
}
const auto yield = astFunctionYield(tok->previous(), &mSettings);
if (yield == Library::Container::Yield::START_ITERATOR ||
yield == Library::Container::Yield::END_ITERATOR ||
yield == Library::Container::Yield::ITERATOR) {
ValueType vt;
vt.type = ValueType::Type::ITERATOR;
vt.container = paramVariable->valueType()->container;
vt.containerTypeToken = paramVariable->valueType()->containerTypeToken;
setValueType(tok, vt);
}
}
if (isReturnIter) {
const std::vector<const Token*> args = getArguments(tok);
if (!args.empty()) {
const Library::ArgumentChecks::IteratorInfo* info = mSettings.library.getArgIteratorInfo(tok->previous(), 1);
if (info && info->it) {
const Token* contTok = args[0];
if (Token::simpleMatch(args[0]->astOperand1(), ".") && args[0]->astOperand1()->astOperand1()) // .begin()
contTok = args[0]->astOperand1()->astOperand1();
else if (Token::simpleMatch(args[0], "(") && args[0]->astOperand2()) // std::begin()
contTok = args[0]->astOperand2();
while (Token::simpleMatch(contTok, "[")) // move to container token
contTok = contTok->astOperand1();
if (Token::simpleMatch(contTok, "."))
contTok = contTok->astOperand2();
if (contTok && contTok->variable() && contTok->variable()->valueType() && contTok->variable()->valueType()->container) {
ValueType vt;
vt.type = ValueType::Type::ITERATOR;
vt.container = contTok->variable()->valueType()->container;
vt.containerTypeToken = contTok->variable()->valueType()->containerTypeToken;
setValueType(tok, vt);
} else if (Token::simpleMatch(contTok, "(") && contTok->astOperand1() && contTok->astOperand1()->function()) {
const Function* func = contTok->astOperand1()->function();
if (const ValueType* funcVt = func->tokenDef->next()->valueType()) {
ValueType vt;
vt.type = ValueType::Type::ITERATOR;
vt.container = funcVt->container;
vt.containerTypeToken = funcVt->containerTypeToken;
setValueType(tok, vt);
}
}
}
}
}
continue;
}
TokenList tokenList(&mSettings);
std::istringstream istr(typestr+";");
if (tokenList.createTokens(istr)) {
ValueType vt;
tokenList.simplifyPlatformTypes();
tokenList.simplifyStdType();
if (parsedecl(tokenList.front(), &vt, mDefaultSignedness, mSettings, mIsCpp)) {
vt.originalTypeName = typestr;
setValueType(tok, vt);
}
}
}
} else if (tok->str() == "return") {
const Scope *functionScope = tok->scope();
while (functionScope && functionScope->isExecutable() && functionScope->type != Scope::eLambda && functionScope->type != Scope::eFunction)
functionScope = functionScope->nestedIn;
if (functionScope && functionScope->type == Scope::eFunction && functionScope->function &&
functionScope->function->retDef) {
ValueType vt = ValueType::parseDecl(functionScope->function->retDef, mSettings, mIsCpp);
setValueType(tok, vt);
if (Token::simpleMatch(tok, "return {"))
setValueType(tok->next(), vt);
}
} else if (tok->variable()) {
setValueType(tok, *tok->variable());
if (!tok->variable()->valueType() && tok->valueType())
const_cast<Variable*>(tok->variable())->setValueType(*tok->valueType());
} else if (tok->enumerator()) {
setValueType(tok, *tok->enumerator());
} else if (tok->isKeyword() && tok->str() == "new") {
const Token *typeTok = tok->next();
if (Token::Match(typeTok, "( std| ::| nothrow )"))
typeTok = typeTok->link()->next();
bool isIterator = false;
if (const Library::Container* c = mSettings.library.detectContainerOrIterator(typeTok, &isIterator)) {
ValueType vt;
vt.pointer = 1;
vt.container = c;
vt.type = isIterator ? ValueType::Type::ITERATOR : ValueType::Type::CONTAINER;
setValueType(tok, vt);
continue;
}
std::string typestr;
while (Token::Match(typeTok, "%name% :: %name%")) {
typestr += typeTok->str() + "::";
typeTok = typeTok->tokAt(2);
}
if (!Token::Match(typeTok, "%type% ;|[|("))
continue;
typestr += typeTok->str();
ValueType vt;
vt.pointer = 1;
if (typeTok->type() && typeTok->type()->classScope) {
vt.type = ValueType::Type::RECORD;
vt.typeScope = typeTok->type()->classScope;
} else {
vt.type = ValueType::typeFromString(typestr, typeTok->isLong());
if (vt.type == ValueType::Type::UNKNOWN_TYPE)
vt.fromLibraryType(typestr, mSettings);
if (vt.type == ValueType::Type::UNKNOWN_TYPE)
continue;
if (typeTok->isUnsigned())
vt.sign = ValueType::Sign::UNSIGNED;
else if (typeTok->isSigned())
vt.sign = ValueType::Sign::SIGNED;
if (vt.sign == ValueType::Sign::UNKNOWN_SIGN && vt.isIntegral())
vt.sign = (vt.type == ValueType::Type::CHAR) ? mDefaultSignedness : ValueType::Sign::SIGNED;
}
setValueType(tok, vt);
if (Token::simpleMatch(tok->astOperand1(), "(")) {
vt.pointer--;
setValueType(tok->astOperand1(), vt);
}
} else if (tok->isKeyword() && tok->str() == "return" && tok->scope()) {
const Scope* fscope = tok->scope();
while (fscope && !fscope->function)
fscope = fscope->nestedIn;
if (fscope && fscope->function && fscope->function->retDef) {
ValueType vt;
parsedecl(fscope->function->retDef, &vt, mDefaultSignedness, mSettings, mIsCpp);
setValueType(tok, vt);
}
} else if (tok->isKeyword() && tok->str() == "this" && tok->scope()->isExecutable()) {
const Scope* fscope = tok->scope();
while (fscope && !fscope->function)
fscope = fscope->nestedIn;
const Scope* defScope = fscope && fscope->function->tokenDef ? fscope->function->tokenDef->scope() : nullptr;
if (defScope && defScope->isClassOrStruct()) {
ValueType vt(ValueType::Sign::UNKNOWN_SIGN, ValueType::Type::RECORD, 1);
vt.typeScope = defScope;
if (fscope->function->isConst())
vt.constness = 1;
setValueType(tok, vt);
}
}
}
if (reportDebugWarnings && mSettings.debugwarnings) {
for (Token *tok = tokens; tok; tok = tok->next()) {
if (tok->str() == "auto" && !tok->valueType()) {
if (Token::Match(tok->next(), "%name% ; %name% = [") && isLambdaCaptureList(tok->tokAt(5)))
continue;
if (Token::Match(tok->next(), "%name% {|= [") && isLambdaCaptureList(tok->tokAt(3)))
continue;
debugMessage(tok, "autoNoType", "auto token with no type.");
}
}
}
// Update functions with new type information.
createSymbolDatabaseSetFunctionPointers(false);
// Update auto variables with new type information.
createSymbolDatabaseSetVariablePointers();
}
ValueType ValueType::parseDecl(const Token *type, const Settings &settings, bool isCpp)
{
ValueType vt;
parsedecl(type, &vt, settings.platform.defaultSign == 'u' ? Sign::UNSIGNED : Sign::SIGNED, settings, isCpp);
return vt;
}
ValueType::Type ValueType::typeFromString(const std::string &typestr, bool longType)
{
if (typestr == "void")
return ValueType::Type::VOID;
if (typestr == "bool" || typestr == "_Bool")
return ValueType::Type::BOOL;
if (typestr== "char")
return ValueType::Type::CHAR;
if (typestr == "short")
return ValueType::Type::SHORT;
if (typestr == "wchar_t")
return ValueType::Type::WCHAR_T;
if (typestr == "int")
return ValueType::Type::INT;
if (typestr == "long")
return longType ? ValueType::Type::LONGLONG : ValueType::Type::LONG;
if (typestr == "float")
return ValueType::Type::FLOAT;
if (typestr == "double")
return longType ? ValueType::Type::LONGDOUBLE : ValueType::Type::DOUBLE;
return ValueType::Type::UNKNOWN_TYPE;
}
bool ValueType::fromLibraryType(const std::string &typestr, const Settings &settings)
{
const Library::PodType* podtype = settings.library.podtype(typestr);
if (podtype && (podtype->sign == 's' || podtype->sign == 'u')) {
if (podtype->size == 1)
type = ValueType::Type::CHAR;
else if (podtype->size == settings.platform.sizeof_int)
type = ValueType::Type::INT;
else if (podtype->size == settings.platform.sizeof_short)
type = ValueType::Type::SHORT;
else if (podtype->size == settings.platform.sizeof_long)
type = ValueType::Type::LONG;
else if (podtype->size == settings.platform.sizeof_long_long)
type = ValueType::Type::LONGLONG;
else if (podtype->stdtype == Library::PodType::Type::BOOL)
type = ValueType::Type::BOOL;
else if (podtype->stdtype == Library::PodType::Type::CHAR)
type = ValueType::Type::CHAR;
else if (podtype->stdtype == Library::PodType::Type::SHORT)
type = ValueType::Type::SHORT;
else if (podtype->stdtype == Library::PodType::Type::INT)
type = ValueType::Type::INT;
else if (podtype->stdtype == Library::PodType::Type::LONG)
type = ValueType::Type::LONG;
else if (podtype->stdtype == Library::PodType::Type::LONGLONG)
type = ValueType::Type::LONGLONG;
else
type = ValueType::Type::UNKNOWN_INT;
sign = (podtype->sign == 'u') ? ValueType::UNSIGNED : ValueType::SIGNED;
return true;
}
if (podtype && podtype->stdtype == Library::PodType::Type::NO) {
type = ValueType::Type::POD;
sign = ValueType::UNKNOWN_SIGN;
return true;
}
const Library::PlatformType *platformType = settings.library.platform_type(typestr, settings.platform.toString());
if (platformType) {
if (platformType->mType == "char")
type = ValueType::Type::CHAR;
else if (platformType->mType == "short")
type = ValueType::Type::SHORT;
else if (platformType->mType == "wchar_t")
type = ValueType::Type::WCHAR_T;
else if (platformType->mType == "int")
type = platformType->mLong ? ValueType::Type::LONG : ValueType::Type::INT;
else if (platformType->mType == "long")
type = platformType->mLong ? ValueType::Type::LONGLONG : ValueType::Type::LONG;
if (platformType->mSigned)
sign = ValueType::SIGNED;
else if (platformType->mUnsigned)
sign = ValueType::UNSIGNED;
if (platformType->mPointer)
pointer = 1;
if (platformType->mPtrPtr)
pointer = 2;
if (platformType->mConstPtr)
constness = 1;
return true;
}
if (!podtype && (typestr == "size_t" || typestr == "std::size_t")) {
originalTypeName = "size_t";
sign = ValueType::UNSIGNED;
if (settings.platform.sizeof_size_t == settings.platform.sizeof_long)
type = ValueType::Type::LONG;
else if (settings.platform.sizeof_size_t == settings.platform.sizeof_long_long)
type = ValueType::Type::LONGLONG;
else if (settings.platform.sizeof_size_t == settings.platform.sizeof_int)
type = ValueType::Type::INT;
else
type = ValueType::Type::UNKNOWN_INT;
return true;
}
return false;
}
std::string ValueType::dump() const
{
std::ostringstream ret;
switch (type) {
case UNKNOWN_TYPE:
return "";
case NONSTD:
ret << "valueType-type=\"nonstd\"";
break;
case POD:
ret << "valueType-type=\"pod\"";
break;
case RECORD:
ret << "valueType-type=\"record\"";
break;
case SMART_POINTER:
ret << "valueType-type=\"smart-pointer\"";
break;
case CONTAINER:
ret << "valueType-type=\"container\"";
ret << " valueType-containerId=\"" << container << "\"";
break;
case ITERATOR:
ret << "valueType-type=\"iterator\"";
break;
case VOID:
ret << "valueType-type=\"void\"";
break;
case BOOL:
ret << "valueType-type=\"bool\"";
break;
case CHAR:
ret << "valueType-type=\"char\"";
break;
case SHORT:
ret << "valueType-type=\"short\"";
break;
case WCHAR_T:
ret << "valueType-type=\"wchar_t\"";
break;
case INT:
ret << "valueType-type=\"int\"";
break;
case LONG:
ret << "valueType-type=\"long\"";
break;
case LONGLONG:
ret << "valueType-type=\"long long\"";
break;
case UNKNOWN_INT:
ret << "valueType-type=\"unknown int\"";
break;
case FLOAT:
ret << "valueType-type=\"float\"";
break;
case DOUBLE:
ret << "valueType-type=\"double\"";
break;
case LONGDOUBLE:
ret << "valueType-type=\"long double\"";
break;
}
switch (sign) {
case Sign::UNKNOWN_SIGN:
break;
case Sign::SIGNED:
ret << " valueType-sign=\"signed\"";
break;
case Sign::UNSIGNED:
ret << " valueType-sign=\"unsigned\"";
break;
}
if (bits > 0)
ret << " valueType-bits=\"" << bits << '\"';
if (pointer > 0)
ret << " valueType-pointer=\"" << pointer << '\"';
if (constness > 0)
ret << " valueType-constness=\"" << constness << '\"';
if (reference == Reference::None)
ret << " valueType-reference=\"None\"";
else if (reference == Reference::LValue)
ret << " valueType-reference=\"LValue\"";
else if (reference == Reference::RValue)
ret << " valueType-reference=\"RValue\"";
if (typeScope)
ret << " valueType-typeScope=\"" << typeScope << '\"';
if (!originalTypeName.empty())
ret << " valueType-originalTypeName=\"" << ErrorLogger::toxml(originalTypeName) << '\"';
return ret.str();
}
bool ValueType::isConst(nonneg int indirect) const
{
if (indirect > pointer)
return false;
return constness & (1 << (pointer - indirect));
}
MathLib::bigint ValueType::typeSize(const cppcheck::Platform &platform, bool p) const
{
if (p && pointer)
return platform.sizeof_pointer;
if (typeScope && typeScope->definedType && typeScope->definedType->sizeOf)
return typeScope->definedType->sizeOf;
switch (type) {
case ValueType::Type::BOOL:
return platform.sizeof_bool;
case ValueType::Type::CHAR:
return 1;
case ValueType::Type::SHORT:
return platform.sizeof_short;
case ValueType::Type::WCHAR_T:
return platform.sizeof_wchar_t;
case ValueType::Type::INT:
return platform.sizeof_int;
case ValueType::Type::LONG:
return platform.sizeof_long;
case ValueType::Type::LONGLONG:
return platform.sizeof_long_long;
case ValueType::Type::FLOAT:
return platform.sizeof_float;
case ValueType::Type::DOUBLE:
return platform.sizeof_double;
case ValueType::Type::LONGDOUBLE:
return platform.sizeof_long_double;
default:
break;
}
// Unknown invalid size
return 0;
}
bool ValueType::isTypeEqual(const ValueType* that) const
{
if (!that)
return false;
auto tie = [](const ValueType* vt) {
return std::tie(vt->type, vt->container, vt->pointer, vt->typeScope, vt->smartPointer);
};
return tie(this) == tie(that);
}
std::string ValueType::str() const
{
std::string ret;
if (constness & 1)
ret = " const";
if (type == VOID)
ret += " void";
else if (isIntegral()) {
if (sign == SIGNED)
ret += " signed";
else if (sign == UNSIGNED)
ret += " unsigned";
if (type == BOOL)
ret += " bool";
else if (type == CHAR)
ret += " char";
else if (type == SHORT)
ret += " short";
else if (type == WCHAR_T)
ret += " wchar_t";
else if (type == INT)
ret += " int";
else if (type == LONG)
ret += " long";
else if (type == LONGLONG)
ret += " long long";
else if (type == UNKNOWN_INT)
ret += " unknown_int";
} else if (type == FLOAT)
ret += " float";
else if (type == DOUBLE)
ret += " double";
else if (type == LONGDOUBLE)
ret += " long double";
else if ((type == ValueType::Type::NONSTD || type == ValueType::Type::RECORD) && typeScope) {
std::string className(typeScope->className);
const Scope *scope = typeScope->definedType ? typeScope->definedType->enclosingScope : typeScope->nestedIn;
while (scope && scope->type != Scope::eGlobal) {
if (scope->type == Scope::eClass || scope->type == Scope::eStruct || scope->type == Scope::eNamespace)
className = scope->className + "::" + className;
scope = (scope->definedType && scope->definedType->enclosingScope) ? scope->definedType->enclosingScope : scope->nestedIn;
}
ret += ' ' + className;
} else if (type == ValueType::Type::CONTAINER && container) {
ret += " container(" + container->startPattern + ')';
} else if (type == ValueType::Type::ITERATOR && container) {
ret += " iterator(" + container->startPattern + ')';
} else if (type == ValueType::Type::SMART_POINTER && smartPointer) {
ret += " smart-pointer(" + smartPointer->name + ")";
}
for (unsigned int p = 0; p < pointer; p++) {
ret += " *";
if (constness & (2 << p))
ret += " const";
}
if (reference == Reference::LValue)
ret += " &";
else if (reference == Reference::RValue)
ret += " &&";
return ret.empty() ? ret : ret.substr(1);
}
void ValueType::setDebugPath(const Token* tok, SourceLocation ctx, SourceLocation local)
{
std::string file = ctx.file_name();
if (file.empty())
return;
std::string s = Path::stripDirectoryPart(file) + ":" + MathLib::toString(ctx.line()) + ": " + ctx.function_name() +
" => " + local.function_name();
debugPath.emplace_back(tok, std::move(s));
}
ValueType::MatchResult ValueType::matchParameter(const ValueType *call, const ValueType *func)
{
if (!call || !func)
return ValueType::MatchResult::UNKNOWN;
if (call->pointer != func->pointer) {
if (call->pointer > 1 && func->pointer == 1 && func->type == ValueType::Type::VOID)
return ValueType::MatchResult::FALLBACK1;
if (call->pointer == 1 && func->pointer == 0 && func->isIntegral() && func->sign != ValueType::Sign::SIGNED)
return ValueType::MatchResult::FALLBACK1;
if (call->pointer == 1 && call->type == ValueType::Type::CHAR && func->pointer == 0 && func->container && func->container->stdStringLike)
return ValueType::MatchResult::FALLBACK2;
return ValueType::MatchResult::NOMATCH; // TODO
}
if (call->pointer > 0) {
if ((call->constness | func->constness) != func->constness)
return ValueType::MatchResult::NOMATCH;
if (call->constness == 0 && func->constness != 0 && func->reference != Reference::None)
return ValueType::MatchResult::NOMATCH;
}
if (call->type != func->type || (call->isEnum() && !func->isEnum())) {
if (call->type == ValueType::Type::VOID || func->type == ValueType::Type::VOID)
return ValueType::MatchResult::FALLBACK1;
if (call->pointer > 0)
return func->type == ValueType::UNKNOWN_TYPE ? ValueType::MatchResult::UNKNOWN : ValueType::MatchResult::NOMATCH;
if (call->isIntegral() && func->isIntegral())
return call->type < func->type ?
ValueType::MatchResult::FALLBACK1 :
ValueType::MatchResult::FALLBACK2;
if (call->isFloat() && func->isFloat())
return ValueType::MatchResult::FALLBACK1;
if (call->isIntegral() && func->isFloat())
return ValueType::MatchResult::FALLBACK2;
if (call->isFloat() && func->isIntegral())
return ValueType::MatchResult::FALLBACK2;
return ValueType::MatchResult::UNKNOWN; // TODO
}
if (call->typeScope != nullptr || func->typeScope != nullptr) {
if (call->typeScope != func->typeScope)
return ValueType::MatchResult::NOMATCH;
}
if (call->container != nullptr || func->container != nullptr) {
if (call->container != func->container)
return ValueType::MatchResult::NOMATCH;
}
if (func->typeScope != nullptr && func->container != nullptr) {
if (func->type < ValueType::Type::VOID || func->type == ValueType::Type::UNKNOWN_INT)
return ValueType::MatchResult::UNKNOWN;
}
if (call->isIntegral() && func->isIntegral() && call->sign != ValueType::Sign::UNKNOWN_SIGN && func->sign != ValueType::Sign::UNKNOWN_SIGN && call->sign != func->sign)
return ValueType::MatchResult::FALLBACK1;
if (func->reference != Reference::None && func->constness > call->constness)
return ValueType::MatchResult::FALLBACK1;
return ValueType::MatchResult::SAME;
}
ValueType::MatchResult ValueType::matchParameter(const ValueType *call, const Variable *callVar, const Variable *funcVar)
{
ValueType vt;
const ValueType* pvt = funcVar->valueType();
if (pvt && funcVar->isArray() && !(funcVar->isStlType() && Token::simpleMatch(funcVar->typeStartToken(), "std :: array"))) { // std::array doesn't decay to a pointer
vt = *pvt;
if (vt.pointer == 0) // don't bump array of pointers
++vt.pointer;
pvt = &vt;
}
const ValueType::MatchResult res = ValueType::matchParameter(call, pvt);
if (callVar && ((res == ValueType::MatchResult::SAME && call->container) || res == ValueType::MatchResult::UNKNOWN)) {
const std::string type1 = getTypeString(callVar->typeStartToken());
const std::string type2 = getTypeString(funcVar->typeStartToken());
const bool templateVar =
funcVar->scope() && funcVar->scope()->function && funcVar->scope()->function->templateDef;
if (type1 == type2)
return ValueType::MatchResult::SAME;
if (!templateVar && type1.find("auto") == std::string::npos && type2.find("auto") == std::string::npos)
return ValueType::MatchResult::NOMATCH;
}
return res;
}