cppcheck/lib/mathlib.cpp

1450 lines
44 KiB
C++

/*
* Cppcheck - A tool for static C/C++ code analysis
* Copyright (C) 2007-2019 Cppcheck team.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "mathlib.h"
#include "errorlogger.h"
#include "utils.h"
#include <cctype>
#include <cmath>
#include <cstdlib>
#include <limits>
#include <locale>
#if defined(_MSC_VER) && _MSC_VER <= 1700 // VS2012 doesn't have std::isinf and std::isnan
#define ISINF(x) (!_finite(x))
#define ISNAN(x) (_isnan(x))
#elif defined(__INTEL_COMPILER)
#define ISINF(x) (isinf(x))
#define ISNAN(x) (isnan(x))
#else // Use C++11 functions
#define ISINF(x) (std::isinf(x))
#define ISNAN(x) (std::isnan(x))
#endif
const int MathLib::bigint_bits = 64;
MathLib::value::value(const std::string &s) :
mIntValue(0), mDoubleValue(0), mIsUnsigned(false)
{
if (MathLib::isFloat(s)) {
mType = MathLib::value::FLOAT;
mDoubleValue = MathLib::toDoubleNumber(s);
return;
}
if (!MathLib::isInt(s))
throw InternalError(nullptr, "Invalid value: " + s);
mType = MathLib::value::INT;
mIntValue = MathLib::toLongNumber(s);
if (isIntHex(s) && mIntValue < 0)
mIsUnsigned = true;
// read suffix
if (s.size() >= 2U) {
for (std::size_t i = s.size() - 1U; i > 0U; --i) {
const char c = s[i];
if (c == 'u' || c == 'U')
mIsUnsigned = true;
else if (c == 'l' || c == 'L') {
if (mType == MathLib::value::INT)
mType = MathLib::value::LONG;
else if (mType == MathLib::value::LONG)
mType = MathLib::value::LONGLONG;
} else if (i > 2U && c == '4' && s[i-1] == '6' && s[i-2] == 'i')
mType = MathLib::value::LONGLONG;
}
}
}
std::string MathLib::value::str() const
{
std::ostringstream ostr;
if (mType == MathLib::value::FLOAT) {
if (ISNAN(mDoubleValue))
return "nan.0";
if (ISINF(mDoubleValue))
return (mDoubleValue > 0) ? "inf.0" : "-inf.0";
ostr.precision(9);
ostr << std::fixed << mDoubleValue;
// remove trailing zeros
std::string ret(ostr.str());
std::string::size_type pos = ret.size() - 1U;
while (ret[pos] == '0')
pos--;
if (ret[pos] == '.')
++pos;
return ret.substr(0, pos+1);
}
if (mIsUnsigned)
ostr << static_cast<biguint>(mIntValue) << "U";
else
ostr << mIntValue;
if (mType == MathLib::value::LONG)
ostr << "L";
else if (mType == MathLib::value::LONGLONG)
ostr << "LL";
return ostr.str();
}
void MathLib::value::promote(const MathLib::value &v)
{
if (isInt() && v.isInt()) {
if (mType < v.mType) {
mType = v.mType;
mIsUnsigned = v.mIsUnsigned;
} else if (mType == v.mType) {
mIsUnsigned |= v.mIsUnsigned;
}
} else if (!isFloat()) {
mIsUnsigned = false;
mDoubleValue = mIntValue;
mType = MathLib::value::FLOAT;
}
}
MathLib::value MathLib::value::calc(char op, const MathLib::value &v1, const MathLib::value &v2)
{
value temp(v1);
temp.promote(v2);
if (temp.isFloat()) {
switch (op) {
case '+':
temp.mDoubleValue += v2.getDoubleValue();
break;
case '-':
temp.mDoubleValue -= v2.getDoubleValue();
break;
case '*':
temp.mDoubleValue *= v2.getDoubleValue();
break;
case '/':
temp.mDoubleValue /= v2.getDoubleValue();
break;
case '%':
case '&':
case '|':
case '^':
throw InternalError(nullptr, "Invalid calculation");
default:
throw InternalError(nullptr, "Unhandled calculation");
}
} else if (temp.mIsUnsigned) {
switch (op) {
case '+':
temp.mIntValue += (unsigned long long)v2.mIntValue;
break;
case '-':
temp.mIntValue -= (unsigned long long)v2.mIntValue;
break;
case '*':
temp.mIntValue *= (unsigned long long)v2.mIntValue;
break;
case '/':
if (v2.mIntValue == 0)
throw InternalError(nullptr, "Internal Error: Division by zero");
if (v1.mIntValue == std::numeric_limits<bigint>::min() && std::abs(v2.mIntValue)<=1)
throw InternalError(nullptr, "Internal Error: Division overflow");
temp.mIntValue /= (unsigned long long)v2.mIntValue;
break;
case '%':
if (v2.mIntValue == 0)
throw InternalError(nullptr, "Internal Error: Division by zero");
temp.mIntValue %= (unsigned long long)v2.mIntValue;
break;
case '&':
temp.mIntValue &= (unsigned long long)v2.mIntValue;
break;
case '|':
temp.mIntValue |= (unsigned long long)v2.mIntValue;
break;
case '^':
temp.mIntValue ^= (unsigned long long)v2.mIntValue;
break;
default:
throw InternalError(nullptr, "Unhandled calculation");
}
} else {
switch (op) {
case '+':
temp.mIntValue += v2.mIntValue;
break;
case '-':
temp.mIntValue -= v2.mIntValue;
break;
case '*':
temp.mIntValue *= v2.mIntValue;
break;
case '/':
if (v2.mIntValue == 0)
throw InternalError(nullptr, "Internal Error: Division by zero");
if (v1.mIntValue == std::numeric_limits<bigint>::min() && std::abs(v2.mIntValue)<=1)
throw InternalError(nullptr, "Internal Error: Division overflow");
temp.mIntValue /= v2.mIntValue;
break;
case '%':
if (v2.mIntValue == 0)
throw InternalError(nullptr, "Internal Error: Division by zero");
temp.mIntValue %= v2.mIntValue;
break;
case '&':
temp.mIntValue &= v2.mIntValue;
break;
case '|':
temp.mIntValue |= v2.mIntValue;
break;
case '^':
temp.mIntValue ^= v2.mIntValue;
break;
default:
throw InternalError(nullptr, "Unhandled calculation");
}
}
return temp;
}
int MathLib::value::compare(const MathLib::value &v) const
{
value temp(*this);
temp.promote(v);
if (temp.isFloat()) {
if (temp.mDoubleValue < v.getDoubleValue())
return -1;
if (temp.mDoubleValue > v.getDoubleValue())
return 1;
return 0;
}
if (temp.mIsUnsigned) {
if ((unsigned long long)mIntValue < (unsigned long long)v.mIntValue)
return -1;
if ((unsigned long long)mIntValue > (unsigned long long)v.mIntValue)
return 1;
return 0;
}
if (mIntValue < v.mIntValue)
return -1;
if (mIntValue > v.mIntValue)
return 1;
return 0;
}
MathLib::value MathLib::value::add(int v) const
{
MathLib::value temp(*this);
if (temp.isInt())
temp.mIntValue += v;
else
temp.mDoubleValue += v;
return temp;
}
MathLib::value MathLib::value::shiftLeft(const MathLib::value &v) const
{
if (!isInt() || !v.isInt())
throw InternalError(nullptr, "Shift operand is not integer");
MathLib::value ret(*this);
if (v.mIntValue >= MathLib::bigint_bits) {
return ret;
}
ret.mIntValue <<= v.mIntValue;
return ret;
}
MathLib::value MathLib::value::shiftRight(const MathLib::value &v) const
{
if (!isInt() || !v.isInt())
throw InternalError(nullptr, "Shift operand is not integer");
MathLib::value ret(*this);
if (v.mIntValue >= MathLib::bigint_bits) {
return ret;
}
ret.mIntValue >>= v.mIntValue;
return ret;
}
MathLib::biguint MathLib::toULongNumber(const std::string & str)
{
// hexadecimal numbers:
if (isIntHex(str)) {
if (str[0] == '-') {
biguint ret = 0;
std::istringstream istr(str);
istr >> std::hex >> ret;
return ret;
} else {
unsigned long long ret = 0;
std::istringstream istr(str);
istr >> std::hex >> ret;
return (biguint)ret;
}
}
// octal numbers:
if (isOct(str)) {
biguint ret = 0;
std::istringstream istr(str);
istr >> std::oct >> ret;
return ret;
}
// binary numbers:
if (isBin(str)) {
biguint ret = 0;
for (std::string::size_type i = str[0] == '0'?2:3; i < str.length(); i++) {
if (str[i] != '1' && str[i] != '0')
break;
ret <<= 1;
if (str[i] == '1')
ret |= 1;
}
/* if (str[0] == '-')
ret = -ret; */
return ret;
}
if (isFloat(str)) {
// Things are going to be less precise now: the value can't b represented in the biguint type.
// Use min/max values as an approximation. See #5843
const double doubleval = std::atof(str.c_str());
if (doubleval > (double)std::numeric_limits<biguint>::max())
return std::numeric_limits<biguint>::max();
else
return static_cast<biguint>(doubleval);
}
biguint ret = 0;
std::istringstream istr(str);
istr >> ret;
return ret;
}
static unsigned int encodeMultiChar(const std::string& str)
{
unsigned int retval = 0;
for (char it : str) {
retval = (retval << 8) | it;
}
return retval;
}
static bool isoctal(int c)
{
return c>='0' && c<='7';
}
MathLib::bigint MathLib::characterLiteralToLongNumber(const std::string& str)
{
if (str.empty())
return 0; // <- only possible in unit testing
// '\xF6'
if (str.size() == 4 && str.compare(0,2,"\\x")==0 && std::isxdigit(str[2]) && std::isxdigit(str[3])) {
return std::strtoul(str.substr(2).c_str(), nullptr, 16);
}
// '\123'
if (str.size() == 4 && str[0] == '\\' && isoctal(str[1]) && isoctal(str[2]) && isoctal(str[3])) {
return (char)std::strtoul(str.substr(1).c_str(), nullptr, 8);
}
// C99 6.4.4.4
// The value of an integer character constant containing more than one character (e.g., 'ab'),
// or containing a character or escape sequence that does not map to a single-byte execution character,
// is implementation-defined.
// clang and gcc seem to use the following encoding: 'AB' as (('A' << 8) | 'B')
const std::string& normStr = normalizeCharacterLiteral(str);
return encodeMultiChar(normStr);
}
std::string MathLib::normalizeCharacterLiteral(const std::string& iLiteral)
{
std::string normalizedLiteral;
const std::string::size_type iLiteralLen = iLiteral.size();
for (std::string::size_type idx = 0; idx < iLiteralLen ; ++idx) {
if (iLiteral[idx] != '\\') {
normalizedLiteral.push_back(iLiteral[idx]);
continue;
}
++idx;
if (idx == iLiteralLen) {
throw InternalError(nullptr, "Internal Error. MathLib::normalizeCharacterLiteral: Unhandled char constant '" + iLiteral + "'.");
}
switch (iLiteral[idx]) {
case 'x':
// Hexa-decimal number: skip \x and interpret the next two characters
{
if (++idx == iLiteralLen)
throw InternalError(nullptr, "Internal Error. MathLib::normalizeCharacterLiteral: Unhandled char constant '" + iLiteral + "'.");
std::string tempBuf;
tempBuf.push_back(iLiteral[idx]);
if (++idx != iLiteralLen)
tempBuf.push_back(iLiteral[idx]);
normalizedLiteral.push_back(static_cast<char>(MathLib::toULongNumber("0x" + tempBuf)));
continue;
}
case 'u':
case 'U':
// Unicode string; just skip the \u or \U
if (idx + 1 == iLiteralLen)
throw InternalError(nullptr, "Internal Error. MathLib::characterLiteralToLongNumber: Unhandled char constant '" + iLiteral + "'.");
continue;
}
// Single digit octal number
if (1 == iLiteralLen - idx) {
switch (iLiteral[idx]) {
case '0':
case '1':
case '2':
case '3':
case '4':
case '5':
case '6':
case '7':
normalizedLiteral.push_back(iLiteral[idx]-'0');
break;
case 'a':
normalizedLiteral.push_back('\a');
break;
case 'b':
normalizedLiteral.push_back('\b');
break;
case 'e':
normalizedLiteral.push_back(0x1B); // clang, gcc, tcc interpnormalizedLiteral this as 0x1B - escape character
break;
case 'f':
normalizedLiteral.push_back('\f');
break;
case 'n':
normalizedLiteral.push_back('\n');
break;
case 'r':
normalizedLiteral.push_back('\r');
break;
case 't':
normalizedLiteral.push_back('\t');
break;
case 'v':
normalizedLiteral.push_back('\v');
break;
case '\\':
case '\?':
case '\'':
case '\"':
normalizedLiteral.push_back(iLiteral[idx]);
break;
default:
throw InternalError(nullptr, "Internal Error. MathLib::normalizeCharacterLiteral: Unhandled char constant '" + iLiteral + "'.");
}
continue;
}
// 2-3 digit octal number
if (!MathLib::isOctalDigit(iLiteral[idx]))
throw InternalError(nullptr, "Internal Error. MathLib::normalizeCharacterLiteral: Unhandled char constant '" + iLiteral + "'.");
std::string tempBuf;
tempBuf.push_back(iLiteral[idx]);
++idx;
if (MathLib::isOctalDigit(iLiteral[idx])) {
tempBuf.push_back(iLiteral[idx]);
++idx;
if (MathLib::isOctalDigit(iLiteral[idx])) {
tempBuf.push_back(iLiteral[idx]);
}
}
normalizedLiteral.push_back(static_cast<char>(MathLib::toLongNumber("0" + tempBuf)));
}
return normalizedLiteral;
}
MathLib::bigint MathLib::toLongNumber(const std::string & str)
{
// hexadecimal numbers:
if (isIntHex(str)) {
if (str[0] == '-') {
bigint ret = 0;
std::istringstream istr(str);
istr >> std::hex >> ret;
return ret;
} else {
unsigned long long ret = 0;
std::istringstream istr(str);
istr >> std::hex >> ret;
return (bigint)ret;
}
}
// octal numbers:
if (isOct(str)) {
bigint ret = 0;
std::istringstream istr(str);
istr >> std::oct >> ret;
return ret;
}
// binary numbers:
if (isBin(str)) {
bigint ret = 0;
for (std::string::size_type i = str[0] == '0'?2:3; i < str.length(); i++) {
if (str[i] != '1' && str[i] != '0')
break;
ret <<= 1;
if (str[i] == '1')
ret |= 1;
}
if (str[0] == '-')
ret = -ret;
return ret;
}
if (isFloat(str)) {
// Things are going to be less precise now: the value can't be represented in the bigint type.
// Use min/max values as an approximation. See #5843
const double doubleval = toDoubleNumber(str);
if (doubleval > (double)std::numeric_limits<bigint>::max())
return std::numeric_limits<bigint>::max();
else if (doubleval < (double)std::numeric_limits<bigint>::min())
return std::numeric_limits<bigint>::min();
else
return static_cast<bigint>(doubleval);
}
if (isCharLiteral(str)) {
return characterLiteralToLongNumber(getCharLiteral(str));
}
if (str[0] == '-') {
bigint ret = 0;
std::istringstream istr(str);
istr >> ret;
return ret;
}
biguint ret = 0;
std::istringstream istr(str);
istr >> ret;
return ret;
}
// in-place conversion of (sub)string to double. Requires no heap.
static double myStod(const std::string& str, std::string::const_iterator from, std::string::const_iterator to, int base)
{
double result = 0.;
bool positivesign = true;
std::string::const_iterator it;
if ('+' == *from) {
it = from + 1;
} else if ('-' == *from) {
it = from + 1;
positivesign = false;
} else
it = from;
const std::size_t decimalsep = str.find('.', it-str.begin());
int distance;
if (std::string::npos == decimalsep) {
distance = to - it;
} else if (decimalsep > (to - str.begin()))
return 0.; // error handling??
else
distance = int(decimalsep)-(from - str.begin());
auto digitval = [&](char c) {
if ((10 < base) && (c > '9'))
return 10 + std::tolower(c) - 'a';
else
return c - '0';
};
for (; it!=to; ++it) {
if ('.' == *it)
continue;
else
--distance;
result += digitval(*it)* std::pow(base, distance);
}
return (positivesign)?result:-result;
}
// Assuming a limited support of built-in hexadecimal floats (see C99, C++17) that is a fall-back implementation.
// Performance has been optimized WRT to heap activity, however the calculation part is not optimized.
static double floatHexToDoubleNumber(const std::string& str)
{
const std::size_t p = str.find_first_of("pP",3);
const double factor1 = myStod(str, str.begin() + 2, str.begin()+p, 16);
const bool suffix = (str.back() == 'f') || (str.back() == 'F') || (str.back() == 'l') || (str.back() == 'L');
const double exponent = myStod(str, str.begin() + p + 1, (suffix)?str.end()-1:str.end(), 10);
const double factor2 = std::pow(2, exponent);
return factor1 * factor2;
}
double MathLib::toDoubleNumber(const std::string &str)
{
if (isCharLiteral(str))
return characterLiteralToLongNumber(getCharLiteral(str));
if (isIntHex(str))
return static_cast<double>(toLongNumber(str));
// nullcheck
if (isNullValue(str))
return 0.0;
#ifdef __clang__
if (isFloat(str)) // Workaround libc++ bug at http://llvm.org/bugs/show_bug.cgi?id=17782
// TODO : handle locale
return std::strtod(str.c_str(), nullptr);
#endif
if (isFloatHex(str))
return floatHexToDoubleNumber(str);
// otherwise, convert to double
std::istringstream istr(str);
istr.imbue(std::locale::classic());
double ret;
istr >> ret;
return ret;
}
template<> std::string MathLib::toString(double value)
{
std::ostringstream result;
result.precision(12);
result << value;
if (result.str() == "-0")
return "0.0";
if (result.str().find('.') == std::string::npos)
return result.str() + ".0";
return result.str();
}
bool MathLib::isFloat(const std::string &str)
{
return isDecimalFloat(str) || isFloatHex(str);
}
bool MathLib::isDecimalFloat(const std::string &str)
{
if (str.empty())
return false;
enum class State {
START, BASE_DIGITS1, LEADING_DECIMAL, TRAILING_DECIMAL, BASE_DIGITS2, E, MANTISSA_PLUSMINUS, MANTISSA_DIGITS, SUFFIX_F, SUFFIX_L
} state = State::START;
std::string::const_iterator it = str.begin();
if ('+' == *it || '-' == *it)
++it;
for (; it != str.end(); ++it) {
switch (state) {
case State::START:
if (*it=='.')
state = State::LEADING_DECIMAL;
else if (std::isdigit(static_cast<unsigned char>(*it)))
state = State::BASE_DIGITS1;
else
return false;
break;
case State::LEADING_DECIMAL:
if (std::isdigit(static_cast<unsigned char>(*it)))
state = State::BASE_DIGITS2;
else
return false;
break;
case State::BASE_DIGITS1:
if (*it=='e' || *it=='E')
state = State::E;
else if (*it=='.')
state = State::TRAILING_DECIMAL;
else if (!std::isdigit(static_cast<unsigned char>(*it)))
return false;
break;
case State::TRAILING_DECIMAL:
if (*it=='e' || *it=='E')
state = State::E;
else if (*it=='f' || *it=='F')
state = State::SUFFIX_F;
else if (*it=='l' || *it=='L')
state = State::SUFFIX_L;
else if (std::isdigit(static_cast<unsigned char>(*it)))
state = State::BASE_DIGITS2;
else
return false;
break;
case State::BASE_DIGITS2:
if (*it=='e' || *it=='E')
state = State::E;
else if (*it=='f' || *it=='F')
state = State::SUFFIX_F;
else if (*it=='l' || *it=='L')
state = State::SUFFIX_L;
else if (!std::isdigit(static_cast<unsigned char>(*it)))
return false;
break;
case State::E:
if (*it=='+' || *it=='-')
state = State::MANTISSA_PLUSMINUS;
else if (std::isdigit(static_cast<unsigned char>(*it)))
state = State::MANTISSA_DIGITS;
else
return false;
break;
case State::MANTISSA_PLUSMINUS:
if (!std::isdigit(static_cast<unsigned char>(*it)))
return false;
else
state = State::MANTISSA_DIGITS;
break;
case State::MANTISSA_DIGITS:
if (*it=='f' || *it=='F')
state = State::SUFFIX_F;
else if (*it=='l' || *it=='L')
state = State::SUFFIX_L;
else if (!std::isdigit(static_cast<unsigned char>(*it)))
return false;
break;
case State::SUFFIX_F:
return false;
case State::SUFFIX_L:
return false;
}
}
return (state==State::BASE_DIGITS2 || state==State::MANTISSA_DIGITS || state==State::TRAILING_DECIMAL || state==State::SUFFIX_F || state==State::SUFFIX_L);
}
bool MathLib::isNegative(const std::string &str)
{
if (str.empty())
return false;
return (str[0] == '-');
}
bool MathLib::isPositive(const std::string &str)
{
if (str.empty())
return false;
return !MathLib::isNegative(str);
}
static bool isValidIntegerSuffixIt(std::string::const_iterator it, std::string::const_iterator end, bool supportMicrosoftExtensions=true)
{
enum { START, SUFFIX_U, SUFFIX_UL, SUFFIX_ULL, SUFFIX_L, SUFFIX_LU, SUFFIX_LL, SUFFIX_LLU, SUFFIX_I, SUFFIX_I6, SUFFIX_I64, SUFFIX_UI, SUFFIX_UI6, SUFFIX_UI64 } state = START;
for (; it != end; ++it) {
switch (state) {
case START:
if (*it == 'u' || *it == 'U')
state = SUFFIX_U;
else if (*it == 'l' || *it == 'L')
state = SUFFIX_L;
else if (supportMicrosoftExtensions && (*it == 'i' || *it == 'I'))
state = SUFFIX_I;
else
return false;
break;
case SUFFIX_U:
if (*it == 'l' || *it == 'L')
state = SUFFIX_UL; // UL
else if (supportMicrosoftExtensions && (*it == 'i' || *it == 'I'))
state = SUFFIX_UI;
else
return false;
break;
case SUFFIX_UL:
if (*it == 'l' || *it == 'L')
state = SUFFIX_ULL; // ULL
else
return false;
break;
case SUFFIX_L:
if (*it == 'u' || *it == 'U')
state = SUFFIX_LU; // LU
else if (*it == 'l' || *it == 'L')
state = SUFFIX_LL; // LL
else
return false;
break;
case SUFFIX_LU:
return false;
case SUFFIX_LL:
if (*it == 'u' || *it == 'U')
state = SUFFIX_LLU; // LLU
else
return false;
break;
case SUFFIX_I:
if (*it == '6')
state = SUFFIX_I6;
else
return false;
break;
case SUFFIX_I6:
if (*it == '4')
state = SUFFIX_I64;
else
return false;
break;
case SUFFIX_UI:
if (*it == '6')
state = SUFFIX_UI6;
else
return false;
break;
case SUFFIX_UI6:
if (*it == '4')
state = SUFFIX_UI64;
else
return false;
break;
default:
return false;
}
}
return ((state == SUFFIX_U) ||
(state == SUFFIX_L) ||
(state == SUFFIX_UL) ||
(state == SUFFIX_LU) ||
(state == SUFFIX_LL) ||
(state == SUFFIX_ULL) ||
(state == SUFFIX_LLU) ||
(state == SUFFIX_I64) ||
(state == SUFFIX_UI64));
}
bool MathLib::isValidIntegerSuffix(const std::string& str, bool supportMicrosoftExtensions)
{
return isValidIntegerSuffixIt(str.begin(), str.end(), supportMicrosoftExtensions);
}
/*! \brief Does the string represent an octal number?
* In case leading or trailing white space is provided, the function
* returns false.
* Additional information can be found here:
* http://gcc.gnu.org/onlinedocs/gcc/Binary-constants.html
*
* \param str The string to check. In case the string is empty, the function returns false.
* \return Return true in case a octal number is provided and false otherwise.
**/
bool MathLib::isOct(const std::string& str)
{
enum class Status {
START, OCTAL_PREFIX, DIGITS
} state = Status::START;
if (str.empty())
return false;
std::string::const_iterator it = str.begin();
if ('+' == *it || '-' == *it)
++it;
for (; it != str.end(); ++it) {
switch (state) {
case Status::START:
if (*it == '0')
state = Status::OCTAL_PREFIX;
else
return false;
break;
case Status::OCTAL_PREFIX:
if (isOctalDigit(static_cast<unsigned char>(*it)))
state = Status::DIGITS;
else
return false;
break;
case Status::DIGITS:
if (isOctalDigit(static_cast<unsigned char>(*it)))
state = Status::DIGITS;
else
return isValidIntegerSuffixIt(it,str.end());
break;
}
}
return state == Status::DIGITS;
}
bool MathLib::isIntHex(const std::string& str)
{
enum Status {
START, HEX_0, HEX_X, DIGIT
} state = START;
if (str.empty())
return false;
std::string::const_iterator it = str.begin();
if ('+' == *it || '-' == *it)
++it;
for (; it != str.end(); ++it) {
switch (state) {
case START:
if (*it == '0')
state = HEX_0;
else
return false;
break;
case HEX_0:
if (*it == 'x' || *it == 'X')
state = HEX_X;
else
return false;
break;
case HEX_X:
if (isxdigit(static_cast<unsigned char>(*it)))
state = DIGIT;
else
return false;
break;
case DIGIT:
if (isxdigit(static_cast<unsigned char>(*it)))
; // state = DIGIT;
else
return isValidIntegerSuffixIt(it,str.end());
break;
}
}
return DIGIT==state;
}
bool MathLib::isFloatHex(const std::string& str)
{
enum Status {
START, HEX_0, HEX_X, WHOLE_NUMBER_DIGIT, POINT, FRACTION, EXPONENT_P, EXPONENT_SIGN, EXPONENT_DIGITS, EXPONENT_SUFFIX
} state = START;
if (str.empty())
return false;
std::string::const_iterator it = str.begin();
if ('+' == *it || '-' == *it)
++it;
for (; it != str.end(); ++it) {
switch (state) {
case START:
if (*it == '0')
state = HEX_0;
else
return false;
break;
case HEX_0:
if (*it == 'x' || *it == 'X')
state = HEX_X;
else
return false;
break;
case HEX_X:
if (isxdigit(static_cast<unsigned char>(*it)))
state = WHOLE_NUMBER_DIGIT;
else if (*it == '.')
state = POINT;
else
return false;
break;
case WHOLE_NUMBER_DIGIT:
if (isxdigit(static_cast<unsigned char>(*it)))
; // state = WHOLE_NUMBER_DIGITS;
else if (*it=='.')
state = FRACTION;
else if (*it=='p' || *it=='P')
state = EXPONENT_P;
else
return false;
break;
case POINT:
case FRACTION:
if (isxdigit(static_cast<unsigned char>(*it)))
state=FRACTION;
else if (*it == 'p' || *it == 'P')
state = EXPONENT_P;
else
return false;
break;
case EXPONENT_P:
if (isdigit(static_cast<unsigned char>(*it)))
state = EXPONENT_DIGITS;
else if (*it == '+' || *it == '-')
state = EXPONENT_SIGN;
else
return false;
break;
case EXPONENT_SIGN:
if (isdigit(static_cast<unsigned char>(*it)))
state = EXPONENT_DIGITS;
else
return false;
break;
case EXPONENT_DIGITS:
if (isdigit(static_cast<unsigned char>(*it)))
; // state = EXPONENT_DIGITS;
else if (*it == 'f' || *it == 'F' || *it == 'l' || *it == 'L')
state = EXPONENT_SUFFIX;
else
return false;
break;
case EXPONENT_SUFFIX:
return false;
}
}
return (EXPONENT_DIGITS==state) || (EXPONENT_SUFFIX == state);
}
/*! \brief Does the string represent a binary number?
* In case leading or trailing white space is provided, the function
* returns false.
* Additional information can be found here:
* http://gcc.gnu.org/onlinedocs/gcc/Binary-constants.html
*
* \param str The string to check. In case the string is empty, the function returns false.
* \return Return true in case a binary number is provided and false otherwise.
**/
bool MathLib::isBin(const std::string& str)
{
enum Status {
START, GNU_BIN_PREFIX_0, GNU_BIN_PREFIX_B, DIGIT
} state = START;
if (str.empty())
return false;
std::string::const_iterator it = str.begin();
if ('+' == *it || '-' == *it)
++it;
for (; it != str.end(); ++it) {
switch (state) {
case START:
if (*it == '0')
state = GNU_BIN_PREFIX_0;
else
return false;
break;
case GNU_BIN_PREFIX_0:
if (*it == 'b' || *it == 'B')
state = GNU_BIN_PREFIX_B;
else
return false;
break;
case GNU_BIN_PREFIX_B:
if (*it == '0' || *it == '1')
state = DIGIT;
else
return false;
break;
case DIGIT:
if (*it == '0' || *it == '1')
; // state = DIGIT;
else
return isValidIntegerSuffixIt(it,str.end());
break;
}
}
return state == DIGIT;
}
bool MathLib::isDec(const std::string & str)
{
enum Status {
START, DIGIT
} state = START;
if (str.empty())
return false;
std::string::const_iterator it = str.begin();
if ('+' == *it || '-' == *it)
++it;
for (; it != str.end(); ++it) {
switch (state) {
case START:
if (isdigit(static_cast<unsigned char>(*it)))
state = DIGIT;
else
return false;
break;
case DIGIT:
if (isdigit(static_cast<unsigned char>(*it)))
state = DIGIT;
else
return isValidIntegerSuffixIt(it,str.end());
break;
}
}
return state == DIGIT;
}
bool MathLib::isInt(const std::string & str)
{
return isDec(str) || isIntHex(str) || isOct(str) || isBin(str);
}
std::string MathLib::getSuffix(const std::string& value)
{
if (value.size() > 3 && value[value.size() - 3] == 'i' && value[value.size() - 2] == '6' && value[value.size() - 1] == '4') {
if (value[value.size() - 4] == 'u')
return "ULL";
return "LL";
}
bool isUnsigned = false;
unsigned int longState = 0;
for (std::size_t i = 1U; i < value.size(); ++i) {
const char c = value[value.size() - i];
if (c == 'u' || c == 'U')
isUnsigned = true;
else if (c == 'L' || c == 'l')
longState++;
else break;
}
if (longState == 0)
return isUnsigned ? "U" : "";
if (longState == 1)
return isUnsigned ? "UL" : "L";
if (longState == 2)
return isUnsigned ? "ULL" : "LL";
else return "";
}
static std::string intsuffix(const std::string & first, const std::string & second)
{
const std::string suffix1 = MathLib::getSuffix(first);
const std::string suffix2 = MathLib::getSuffix(second);
if (suffix1 == "ULL" || suffix2 == "ULL")
return "ULL";
if (suffix1 == "LL" || suffix2 == "LL")
return "LL";
if (suffix1 == "UL" || suffix2 == "UL")
return "UL";
if (suffix1 == "L" || suffix2 == "L")
return "L";
if (suffix1 == "U" || suffix2 == "U")
return "U";
return suffix1.empty() ? suffix2 : suffix1;
}
std::string MathLib::add(const std::string & first, const std::string & second)
{
#ifdef TEST_MATHLIB_VALUE
return (value(first) + value(second)).str();
#else
if (MathLib::isInt(first) && MathLib::isInt(second)) {
return toString(toLongNumber(first) + toLongNumber(second)) + intsuffix(first, second);
}
double d1 = toDoubleNumber(first);
double d2 = toDoubleNumber(second);
int count = 0;
while (d1 > 100000.0 * d2 && toString(d1+d2)==first && ++count<5)
d2 *= 10.0;
while (d2 > 100000.0 * d1 && toString(d1+d2)==second && ++count<5)
d1 *= 10.0;
return toString(d1 + d2);
#endif
}
std::string MathLib::subtract(const std::string &first, const std::string &second)
{
#ifdef TEST_MATHLIB_VALUE
return (value(first) - value(second)).str();
#else
if (MathLib::isInt(first) && MathLib::isInt(second)) {
return toString(toLongNumber(first) - toLongNumber(second)) + intsuffix(first, second);
}
if (first == second)
return "0.0" ;
double d1 = toDoubleNumber(first);
double d2 = toDoubleNumber(second);
int count = 0;
while (d1 > 100000.0 * d2 && toString(d1-d2)==first && ++count<5)
d2 *= 10.0;
while (d2 > 100000.0 * d1 && toString(d1-d2)==second && ++count<5)
d1 *= 10.0;
return toString(d1 - d2);
#endif
}
std::string MathLib::incdec(const std::string & var, const std::string & op)
{
#ifdef TEST_MATHLIB_VALUE
if (op == "++")
return value(var).add(1).str();
else if (op == "--")
return value(var).add(-1).str();
#else
if (op == "++")
return MathLib::add(var, "1");
else if (op == "--")
return MathLib::subtract(var, "1");
#endif
throw InternalError(nullptr, std::string("Unexpected operation '") + op + "' in MathLib::incdec(). Please report this to Cppcheck developers.");
}
std::string MathLib::divide(const std::string &first, const std::string &second)
{
#ifdef TEST_MATHLIB_VALUE
return (value(first) / value(second)).str();
#else
if (MathLib::isInt(first) && MathLib::isInt(second)) {
const bigint a = toLongNumber(first);
const bigint b = toLongNumber(second);
if (b == 0)
throw InternalError(nullptr, "Internal Error: Division by zero");
if (a == std::numeric_limits<bigint>::min() && std::abs(b)<=1)
throw InternalError(nullptr, "Internal Error: Division overflow");
return toString(toLongNumber(first) / b) + intsuffix(first, second);
} else if (isNullValue(second)) {
if (isNullValue(first))
return "nan.0";
return isPositive(first) ? "inf.0" : "-inf.0";
}
return toString(toDoubleNumber(first) / toDoubleNumber(second));
#endif
}
std::string MathLib::multiply(const std::string &first, const std::string &second)
{
#ifdef TEST_MATHLIB_VALUE
return (value(first) * value(second)).str();
#else
if (MathLib::isInt(first) && MathLib::isInt(second)) {
return toString(toLongNumber(first) * toLongNumber(second)) + intsuffix(first, second);
}
return toString(toDoubleNumber(first) * toDoubleNumber(second));
#endif
}
std::string MathLib::mod(const std::string &first, const std::string &second)
{
#ifdef TEST_MATHLIB_VALUE
return (value(first) % value(second)).str();
#else
if (MathLib::isInt(first) && MathLib::isInt(second)) {
const bigint b = toLongNumber(second);
if (b == 0)
throw InternalError(nullptr, "Internal Error: Division by zero");
return toString(toLongNumber(first) % b) + intsuffix(first, second);
}
return toString(std::fmod(toDoubleNumber(first),toDoubleNumber(second)));
#endif
}
std::string MathLib::calculate(const std::string &first, const std::string &second, char action)
{
switch (action) {
case '+':
return MathLib::add(first, second);
case '-':
return MathLib::subtract(first, second);
case '*':
return MathLib::multiply(first, second);
case '/':
return MathLib::divide(first, second);
case '%':
return MathLib::mod(first, second);
case '&':
return MathLib::toString(MathLib::toLongNumber(first) & MathLib::toLongNumber(second)) + intsuffix(first,second);
case '|':
return MathLib::toString(MathLib::toLongNumber(first) | MathLib::toLongNumber(second)) + intsuffix(first,second);
case '^':
return MathLib::toString(MathLib::toLongNumber(first) ^ MathLib::toLongNumber(second)) + intsuffix(first,second);
default:
throw InternalError(nullptr, std::string("Unexpected action '") + action + "' in MathLib::calculate(). Please report this to Cppcheck developers.");
}
}
std::string MathLib::sin(const std::string &tok)
{
return toString(std::sin(toDoubleNumber(tok)));
}
std::string MathLib::cos(const std::string &tok)
{
return toString(std::cos(toDoubleNumber(tok)));
}
std::string MathLib::tan(const std::string &tok)
{
return toString(std::tan(toDoubleNumber(tok)));
}
std::string MathLib::abs(const std::string &tok)
{
return toString(std::abs(toDoubleNumber(tok)));
}
bool MathLib::isEqual(const std::string &first, const std::string &second)
{
// this conversion is needed for formatting
// e.g. if first=0.1 and second=1.0E-1, the direct comparison of the strings would fail
return toString(toDoubleNumber(first)) == toString(toDoubleNumber(second));
}
bool MathLib::isNotEqual(const std::string &first, const std::string &second)
{
return !isEqual(first, second);
}
bool MathLib::isGreater(const std::string &first, const std::string &second)
{
return toDoubleNumber(first) > toDoubleNumber(second);
}
bool MathLib::isGreaterEqual(const std::string &first, const std::string &second)
{
return toDoubleNumber(first) >= toDoubleNumber(second);
}
bool MathLib::isLess(const std::string &first, const std::string &second)
{
return toDoubleNumber(first) < toDoubleNumber(second);
}
bool MathLib::isLessEqual(const std::string &first, const std::string &second)
{
return toDoubleNumber(first) <= toDoubleNumber(second);
}
/*! \brief Does the string represent the numerical value of 0?
* In case leading or trailing white space is provided, the function
* returns false.
* Requirement for this function:
* - This code is allowed to be slow because of simplicity of the code.
*
* \param[in] str The string to check. In case the string is empty, the function returns false.
* \return Return true in case the string represents a numerical null value.
**/
bool MathLib::isNullValue(const std::string &str)
{
if (str.empty() || (!std::isdigit(static_cast<unsigned char>(str[0])) && (str[0] != '.' && str[0] != '-' && str[0] != '+')))
return false; // Has to be a number
bool isHex = isIntHex(str) || isFloatHex(str);
for (char i : str) {
if (std::isdigit(static_cast<unsigned char>(i)) && i != '0') // May not contain digits other than 0
return false;
if (i == 'p' || i == 'P' || (!isHex && (i == 'E' || i == 'e')))
return true;
if (isHex && isxdigit(i) && i != '0')
return false;
}
return true;
}
bool MathLib::isOctalDigit(char c)
{
return (c >= '0' && c <= '7');
}
bool MathLib::isDigitSeparator(const std::string& iCode, std::string::size_type iPos)
{
if (iPos == 0 || iPos >= iCode.size() || iCode[iPos] != '\'')
return false;
std::string::size_type i = iPos - 1;
while (std::isxdigit(iCode[i])) {
if (i == 0)
return true; // Only xdigits before '
--i;
}
if (i == iPos - 1) { // No xdigit before '
return false;
} else {
switch (iCode[i]) {
case ' ':
case '.':
case ',':
case 'x':
case '(':
case '{':
case '+':
case '-':
case '*':
case '%':
case '/':
case '&':
case '|':
case '^':
case '~':
case '=':
return true;
case '\'':
return isDigitSeparator(iCode, i);
default:
return false;
}
}
}
MathLib::value operator+(const MathLib::value &v1, const MathLib::value &v2)
{
return MathLib::value::calc('+',v1,v2);
}
MathLib::value operator-(const MathLib::value &v1, const MathLib::value &v2)
{
return MathLib::value::calc('-',v1,v2);
}
MathLib::value operator*(const MathLib::value &v1, const MathLib::value &v2)
{
return MathLib::value::calc('*',v1,v2);
}
MathLib::value operator/(const MathLib::value &v1, const MathLib::value &v2)
{
return MathLib::value::calc('/',v1,v2);
}
MathLib::value operator%(const MathLib::value &v1, const MathLib::value &v2)
{
return MathLib::value::calc('%',v1,v2);
}
MathLib::value operator&(const MathLib::value &v1, const MathLib::value &v2)
{
return MathLib::value::calc('&',v1,v2);
}
MathLib::value operator|(const MathLib::value &v1, const MathLib::value &v2)
{
return MathLib::value::calc('|',v1,v2);
}
MathLib::value operator^(const MathLib::value &v1, const MathLib::value &v2)
{
return MathLib::value::calc('^',v1,v2);
}
MathLib::value operator<<(const MathLib::value &v1, const MathLib::value &v2)
{
return v1.shiftLeft(v2);
}
MathLib::value operator>>(const MathLib::value &v1, const MathLib::value &v2)
{
return v1.shiftRight(v2);
}