cppcheck/man/manual.md

26 KiB

title subtitle author lang documentclass
Cppcheck manual Version 1.90 dev Cppcheck team en report

Introduction

Cppcheck is an analysis tool for C/C++ code. It provides unique code analysis to detect bugs and focuses on detecting undefined behaviour and dangerous coding constructs. The goal is to detect only real errors in the code (i.e. have very few false positives).

Supported code and platforms:

  • You can check non-standard code that contains various compiler extensions, inline assembly code, etc.
  • Cppcheck should be compilable by any C++ compiler that handles the latest C++ standard.
  • Cppcheck should work on any platform that has sufficient CPU and memory.

Please understand that there are limits of Cppcheck. Cppcheck is rarely wrong about reported errors. But there are many bugs that it doesn't detect.

You will find more bugs in your software by testing your software carefully, than by using Cppcheck. You will find more bugs in your software by instrumenting your software, than by using Cppcheck. But Cppcheck can still detect some of the bugs that you miss when testing and instrumenting your software.

Getting started

GUI

It is not required but creating a new project file is a good first step. There are a few options you can tweak to get good results.

In the project settings dialog, the first option you see is "Import project". It is recommended that you use this feature if you can. Cppcheck can import:

  • Visual studio solution / project
  • Compile database (can be generated from cmake/qbs/etc build files)
  • Borland C++ Builder 6

When you have filled out the project settings and click on OK; the Cppcheck analysis will start.

Command line

First test

Here is a simple code

int main()
{
    char a[10];
    a[10] = 0;
    return 0;
}

If you save that into file1.c and execute:

cppcheck file1.c

The output from cppcheck will then be:

Checking file1.c...
[file1.c:4]: (error) Array 'a[10]' index 10 out of bounds

Checking all files in a folder

Normally a program has many source files. And you want to check them all. Cppcheck can check all source files in a directory:

cppcheck path

If "path" is a folder then cppcheck will recursively check all source files in this folder.

Checking path/file1.cpp...
1/2 files checked 50% done
Checking path/file2.cpp...
2/2 files checked 100% done

Check files manually or use project file

With Cppcheck you can check files manually, by specifying files/paths to check and settings. Or you can use a project file (cmake/visual studio/etc).

We don't know which approach (project file or manual configuration) will give you the best results. It is recommended that you try both. It is possible that you will get different results so that to find most bugs you need to use both approaches.

Later chapters will describe this in more detail.

Excluding a file or folder from checking

To exclude a file or folder, there are two options. The first option is to only provide the paths and files you want to check.

cppcheck src/a src/b

All files under src/a and src/b are then checked.

The second option is to use -i, with it you specify files/paths to ignore. With this command no files in src/c are checked:

cppcheck -isrc/c src

This option is only valid when supplying an input directory. To ignore multiple directories supply the -i multiple times. The following command ignores both the src/b and src/c directories.

cppcheck -isrc/b -isrc/c

Severities

The possible severities for messages are:

error

used when bugs are found

warning

suggestions about defensive programming to prevent bugs

style

stylistic issues related to code cleanup (unused functions, redundant code, constness, and such)

performance

Suggestions for making the code faster. These suggestions are only based on common knowledge. It is not certain you'll get any measurable difference in speed by fixing these messages.

portability

portability warnings. 64-bit portability. code might work different on different compilers. etc.

information

Configuration problems. The recommendation is to only enable these during configuration.

Importing project

You can import some project files and build configurations into Cppcheck.

Cppcheck GUI project

You can import and use Cppcheck GUI project files in the command line tool:

cppcheck --project=foobar.cppcheck

The Cppcheck GUI has a few options that are not available in the command line directly. To use these options you can import a GUI project file. We want to keep the command line tool usage simple and limit the options by intention.

To ignore certain folders in the project you can use -i. This will skip analysis of source files in the foo folder.

cppcheck --project=foobar.cppcheck -ifoo

CMake

Generate a compile database:

cmake -DCMAKE_EXPORT_COMPILE_COMMANDS=ON .

The file compile_commands.json is created in the current folder. Now run Cppcheck like this:

cppcheck --project=compile_commands.json

To ignore certain folders you can use -i. This will skip analysis of source files in the foo folder.

cppcheck --project=compile_commands.json -ifoo

Visual Studio

You can run Cppcheck on individual project files (*.vcxproj) or on a whole solution (*.sln)

Running Cppcheck on an entire Visual Studio solution:

cppcheck --project=foobar.sln

Running Cppcheck on a Visual Studio project:

cppcheck --project=foobar.vcxproj

In the Cppcheck GUI you have the choice to only analyze a single debug configuration. If you want to use this choice on the command line then create a Cppcheck GUI project with this activated and then import the GUI project file on the command line.

To ignore certain folders in the project you can use -i. This will skip analysis of source files in the foo folder.

cppcheck --project=foobar.vcxproj -ifoo

C++ Builder 6

Running Cppcheck on a C++ Builder 6 project:

cppcheck --project=foobar.bpr

To ignore certain folders in the project you can use -i. This will skip analysis of source files in the foo folder.

cppcheck --project=foobar.bpr -ifoo

Other

If you can generate a compile database then it's possible to import that in Cppcheck.

In Linux you can use for instance the bear (build ear) utility to generate a compile database from arbitrary build tools:

bear make

Platform

You should use a platform configuration that match your target.

By default Cppcheck uses native platform configuration that works well if your code is compiled and executed locally.

Cppcheck has builtin configurations for Unix and Windows targets. You can easily use these with the --platform command line flag.

You can also create your own custom platform configuration in a XML file. Here is an example:

<?xml version="1"?>
<platform>
  <char_bit>8</char_bit>
  <default-sign>signed</default-sign>
  <sizeof>
    <short>2</short>
    <int>4</int>
    <long>4</long>
    <long-long>8</long-long>
    <float>4</float>
    <double>8</double>
    <long-double>12</long-double>
    <pointer>4</pointer>
    <size_t>4</size_t>
    <wchar_t>2</wchar_t>
  </sizeof>
</platform>

Preprocessor Settings

If you use --project then Cppcheck will use the preprocessor settings from the imported project. Otherwise you'll probably want to configure the include paths, defines, etc.

Defines

Here is a file that has 2 preprocessor configurations (with A defined and without A defined):

#ifdef A
    x = y;
#else
    x = z;
#endif

By default Cppcheck will check all preprocessor configurations (except those that have #error in them). So the above code will by default be analyzed both with A defined and without A defined.

You can use -D to change this. When you use -D, cppcheck will by default only check the given configuration and nothing else. This is how compilers work. But you can use --force or --max-configs to override the number of configurations.

Check all configurations:

cppcheck file.c

Only check the configuration A:

cppcheck -DA file.c

Check all configurations when macro A is defined

cppcheck -DA --force file.c

Another useful flag might be -U. It tells Cppcheck that a macro is not defined. Example usage:

cppcheck -UX file.c

That will mean that X is not defined. Cppcheck will not check what happens when X is defined.

Include paths

To add an include path, use -I, followed by the path.

Cppcheck's preprocessor basically handles includes like any other preprocessor. However, while other preprocessors stop working when they encounter a missing header, cppcheck will just print an information message and continues parsing the code.

The purpose of this behaviour is that cppcheck is meant to work without necessarily seeing the entire code. Actually, it is recommended to not give all include paths. While it is useful for cppcheck to see the declaration of a class when checking the implementation of its members, passing standard library headers is highly discouraged because it will result in worse results and longer checking time. For such cases, .cfg files (see below) are the better way to provide information about the implementation of functions and types to cppcheck.

Suppressions

If you want to filter out certain errors you can suppress these.

Please note that if you see a false positive then we (the Cppcheck team) want that you report it so we can fix it.

Plain text suppressions

You can suppress certain types of errors. The format for such a suppression is one of:

[error id]:[filename]:[line]
[error id]:[filename2]
[error id]

The error id is the id that you want to suppress. The easiest way to get it is to use the --template=gcc command line flag. The id is shown in brackets.

The filename may include the wildcard characters * or ?, which match any sequence of characters or any single character respectively. It is recommended that you use "/" as path separator on all operating systems. The filename must match the filename in the reported warning exactly. For instance, if the warning contains a relative path then the suppression must match that relative path.

Command line suppression

The --suppress= command line option is used to specify suppressions on the command line. Example:

cppcheck --suppress=memleak:src/file1.cpp src/

Suppressions in a file

You can create a suppressions file. Example:

// suppress memleak and exceptNew errors in the file src/file1.cpp
memleak:src/file1.cpp
exceptNew:src/file1.cpp

// suppress all uninitvar errors in all files
uninitvar

Note that you may add empty lines and comments in the suppressions file.

You can use the suppressions file like this:

cppcheck --suppressions-list=suppressions.txt src/

XML suppressions

You can specify suppressions in a XML file. Example file:

<?xml version="1.0"?>
<suppressions>
  <suppress>
    <id>uninitvar</id>
    <fileName>src/file1.c</fileName>
    <lineNumber>10</lineNumber>
    <symbolName>var</symbolName>
  </suppress>
</suppressions>

The XML format is extensible and may be extended with further attributes in the future.

You can use the suppressions file like this:

cppcheck --suppress-xml=suppressions.xml src/

Inline suppressions

Suppressions can also be added directly in the code by adding comments that contain special keywords. Before adding such comments, consider that the code readability is sacrificed a little.

This code will normally generate an error message:

void f() {
    char arr[5];
    arr[10] = 0;
}

The output is:

cppcheck test.c
[test.c:3]: (error) Array 'arr[5]' index 10 out of bounds

To suppress the error message, a comment can be added:

void f() {
    char arr[5];

    // cppcheck-suppress arrayIndexOutOfBounds
    arr[10] = 0;
}

Now the --inline-suppr flag can be used to suppress the warning. No error is reported when invoking cppcheck this way:

cppcheck --inline-suppr test.c

You can specify that the inline suppression only applies to a specific symbol:

// cppcheck-suppress arrayIndexOutOfBounds symbolName=arr

You can write comments for the suppress, however is recommended to use ; or // to specify where they start:

// cppcheck-suppress arrayIndexOutOfBounds ; some comment
// cppcheck-suppress arrayIndexOutOfBounds // some comment

XML output

Cppcheck can generate output in XML format. Use --xml to enable this format.

A sample command to check a file and output errors in the XML format:

cppcheck --xml file1.cpp

Here is a sample report:

<?xml version="1.0" encoding="UTF-8"?>
<results version="2">
  <cppcheck version="1.66"/>
  <errors>
    <error id="someError" severity="error" msg="short error text"
       verbose="long error text" inconclusive="true" cwe="312">
      <location file0="file.c" file="file.h" line="1"/>
   </error>
  </errors>
</results>

The <error> element

Each error is reported in a <error> element. Attributes:

id

id of error. These are always valid symbolnames.

severity

error/warning/style/performance/portability/information

msg

the error message in short format

verbose

the error message in long format

inconclusive

this attribute is only used when the error message is inconclusive

cwe

CWE ID for the problem. This attribute is only used when the CWE ID for the message is known.

The <location> element

All locations related to an error are listed with <location> elements. The primary location is listed first.

Attributes:

file

filename. both relative and absolute paths are possible.

file0

name of the source file (optional)

line

line number

info

short information for each location (optional)

Reformatting the text output

If you want to reformat the output so it looks different you can use templates.

Predefined output formats

To get Visual Studio compatible output you can use --template=vs:

cppcheck --template=vs samples/arrayIndexOutOfBounds/bad.c

This output will look like this:

Checking samples/arrayIndexOutOfBounds/bad.c ...
samples/arrayIndexOutOfBounds/bad.c(6): error: Array 'a[2]' accessed at index 2, which is out of bounds.

To get gcc compatible output you can use --template=gcc:

cppcheck --template=gcc samples/arrayIndexOutOfBounds/bad.c

The output will look like this:

Checking samples/arrayIndexOutOfBounds/bad.c ...
samples/arrayIndexOutOfBounds/bad.c:6:6: warning: Array 'a[2]' accessed at index 2, which is out of bounds. [arrayIndexOutOfBounds]
a[2] = 0;
  ^

User defined output format (single line)

You can write your own pattern. For instance, to get warning messages that are formatted like old gcc such format can be used:

cppcheck --template="{file}:{line}: {severity}: {message}" samples/arrayIndexOutOfBounds/bad.c

The output will look like this:

Checking samples/arrayIndexOutOfBounds/bad.c ...
samples/arrayIndexOutOfBounds/bad.c:6: error: Array 'a[2]' accessed at index 2, which is out of bounds.

A comma separated format:

cppcheck --template="{file},{line},{severity},{id},{message}" samples/arrayIndexOutOfBounds/bad.c

The output will look like this:

Checking samples/arrayIndexOutOfBounds/bad.c ...
samples/arrayIndexOutOfBounds/bad.c,6,error,arrayIndexOutOfBounds,Array 'a[2]' accessed at index 2, which is out of bounds.

User defined output format (multi line)

Many warnings have multiple locations. Example code:

void f(int *p)
{
    *p = 3;       // line 3
}

int main()
{
    int *p = 0;   // line 8
    f(p);         // line 9
    return 0;
}

There is a possible null pointer dereference at line 3. Cppcheck can show how it came to that conclusion by showing extra location information. You need to use both --template and --template-location at the command line.

Example command:

cppcheck --template="{file}:{line}: {severity}: {message}\n{code}" --template-location="{file}:{line}: note: {info}\n{code}" multiline.c

The output from Cppcheck is:

Checking multiline.c ...
multiline.c:3: warning: Possible null pointer dereference: p
    *p = 3;
     ^
multiline.c:8: note: Assignment 'p=0', assigned value is 0
    int *p = 0;
             ^
multiline.c:9: note: Calling function 'f', 1st argument 'p' value is 0
    f(p);
      ^
multiline.c:3: note: Null pointer dereference
    *p = 3;
     ^

The first line in the warning is formatted by the --template format.

The other lines in the warning are formatted by the --template-location format.

Format specifiers for --template

The available specifiers for --template are:

{file}

File name

{line}

Line number

{column}

Column number

{callstack}

Write all locations. Each location is written in [{file}:{line}] format and the locations are separated by ->. For instance it might look like: [multiline.c:8] -> [multiline.c:9] -> [multiline.c:3]

{inconclusive:text}

If warning is inconclusive then the given text is written. The given text can be any arbitrary text that does not contain }. Example: {inconclusive:inconclusive,}

{severity}

error/warning/style/performance/portability/information

{message}

The warning message

{id}

Warning id

{code}

The real code.

\t

Tab

\n

Newline

\r

Carriage return

Format specifiers for --template-location

The available specifiers for --template-location are:

{file}

File name

{line}

Line number

{column}

Column number

{info}

Information message about current location

{code}

The real code.

\t

Tab

\n

Newline

\r

Carriage return

Addons

Addons are scripts that analyses Cppcheck dump files to check compatibility with secure coding standards and to locate various issues.

Cppcheck is distributed with a few addons which are listed below.

Supported addons

cert.py

cert.py checks for compliance with the safe programming standard SEI CERT.

misra.py

misra.py is used to verify compliance with MISRA C 2012 - a proprietary set of guidelines to avoid such questionable code, developed for embedded systems.

Since this standard is proprietary, cppcheck does not display error text by specifying only the number of violated rules (for example, [c2012-21.3]). If you want to display full texts for violated rules, you will need to create a text file containing MISRA rules, which you will have to pass when calling the script with --rule-texts key. Some examples of rule texts files available in tests directory.

You can also suppress some unwanted rules using --suppress-rules option. Suppressed rules should be set as comma-separated listed, for example: --suppress-rules 21.1,18.7. The full list of supported rules is available on Cppcheck home page.

y2038.py

y2038.py checks Linux system for year 2038 problem safety. This required modified environment. See complete description here.

threadsafety.py

threadsafety.py analyse Cppcheck dump files to locate thread safety issues like static local objects used by multiple threads.

Running Addons

Addons could be run through Cppcheck command line utility as follows:

cppcheck --addon=misra.py somefile.c

This will launch all Cppcheck checks and additionally calls specific checks provided by selected addon.

Some addons need extra arguments. You can configure how you want to execute an addon in a json file. For example put this in misra.json:

{
    "script": "misra.py",
    "args": [
        "--rule-texts=misra.txt",
        "--suppress-rules 17.3,21.12"
    ]
}

And then the configuration can be executed on the cppcheck command line:

cppcheck --addon=misra.json somefile.c

By default Cppcheck would search addon at standard path which was specified in installation process. You also can set this path directly, for example:

cppcheck --addon=/opt/cppcheck/configurations/my_misra.json somefile.c

This allows you create and manage multiple configuration files for different projects.

Library configuration

When external libraries are used, such as WinAPI, POSIX, gtk, Qt, etc, Cppcheck doesn't know how the external functions behave. Cppcheck then fails to detect various problems such as leaks, buffer overflows, possible null pointer dereferences, etc. But this can be fixed with configuration files.

Cppcheck already contains configurations for several libraries. They can be loaded as described below. Note that the configuration for the standard libraries of C and C++, std.cfg, is always loaded by cppcheck. If you create or update a configuration file for a popular library, we would appreciate if you upload it to us.

Using your own custom .cfg file

You can create and use your own .cfg files for your projects. Use --check-library and --enable=information to get hints about what you should configure.

You can use the Library Editor in the Cppcheck GUI to edit configuration files. It is available in the View menu.

The .cfg file format is documented in the Reference: Cppcheck .cfg format (http://cppcheck.sf.net/reference-cfg-format.pdf) document.

HTML Report

You can convert the XML output from cppcheck into a HTML report. You'll need Python and the pygments module (http://pygments.org/) for this to work. In the Cppcheck source tree there is a folder htmlreport that contains a script that transforms a Cppcheck XML file into HTML output.

This command generates the help screen:

htmlreport/cppcheck-htmlreport -h

The output screen says:

Usage: cppcheck-htmlreport [options]

Options:
   -h, --help      show this help message and exit
   --file=FILE     The cppcheck xml output file to read defects from.
                   Default is reading from stdin.
   --report-dir=REPORT_DIR
                   The directory where the html report content is written.
   --source-dir=SOURCE_DIR
                   Base directory where source code files can be found.

An example usage:

./cppcheck gui/test.cpp --xml 2> err.xml
htmlreport/cppcheck-htmlreport --file=err.xml --report-dir=test1 --source-dir=.

Verification

Cppcheck will tell you if it can't determine that your code is safe.

All bugs you find with dynamic analysis and fuzzing will be revealed. And then more bugs.

This analysis is noisy. Because of the noise, it will probably not be practical to use this for instance in continuous integration. Some possible use cases where more noise could be tolerated;

  • you are writing new code and want to ensure it is safe.
  • you are reviewing code and want to get hints about possible UB.
  • you need extra help troubleshooting a weird bug.
  • you tagged a release candidate and want to check if the code is safe.

Philosopphy

It is very important that we do warn about all unsafe code. We want that users can feel fully confident about the code we say is "safe".

However, a sloppy analysis that will report too much noise will not be useful. We need to have strong heuristics to avoid false positives.

At the moment there is no whole program analysis but that will be added later to avoid definite false positives.

The focus will be to detect "hidden" bugs. Good candidates are undefined behavior that does not cause a crash immediately but will just cause strange behavior.

  • Buffer overflows
  • Uninitialized variables
  • Usage of dead pointers

Compiling

make USE_Z3=yes

Verification for work-in-progress

It is possible to instantly verify your code changes directly in your editor.

You can for instance configure a save action like this:

cd repo ; git diff > temp.diff ; cppcheck --verify-diff=temp.diff

Ensure that the warnings are sent to your editor and displayed.

From now on, only use 'git commit' when you think all the verification warnings you get looks safe.

With this method, Cppcheck will verify all functions that you are modifying.

Verification during review

... well I am hoping it will be possible to integrate cppcheck verification in github, gerrit, etc.

Annotations

To silence Cppcheck verification warnings it is possible to use annotations.

Example code:

void foo(int x) {
    return 10000 / x;
}

Cppcheck verification will say that there is division and it can't determine that it's not division by zero.

Example code with SAL annotation:

void foo(int _In_range_(1,1000) x) {
    return 10000 / x;
}

Example code with Cppcheck annotation:

void foo(int __cppcheck_low__(1) x) {
    return 10000 / x;
}

Function calls

For a reliable verification it will be very important that --check-library is used, you need to ensure that critical library functions are configured.

Uninitialized variables

When const is used for pointer arguments that will be seen as a annotation.

This function:

void foo(char *p);

Cppcheck will assume that p points at uninitialized memory. When foo is checked it will be ensured that it initializes the memory.

This function:

void foo(const char *p);

Cppcheck will assume that p points at initialized memory. If you call foo and pass a pointer to uninitialized memory we will warn.

TODO: Further annotations to specify how a function initializes memory will be required.