7185 lines
190 KiB
C++
7185 lines
190 KiB
C++
//========================================================================
|
|
//
|
|
// Splash.cc
|
|
//
|
|
// Copyright 2003-2013 Glyph & Cog, LLC
|
|
//
|
|
//========================================================================
|
|
|
|
#include <aconf.h>
|
|
|
|
#ifdef USE_GCC_PRAGMAS
|
|
#pragma implementation
|
|
#endif
|
|
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <limits.h>
|
|
#include <math.h>
|
|
#include "gmem.h"
|
|
#include "gmempp.h"
|
|
#include "SplashErrorCodes.h"
|
|
#include "SplashMath.h"
|
|
#include "SplashBitmap.h"
|
|
#include "SplashState.h"
|
|
#include "SplashPath.h"
|
|
#include "SplashXPath.h"
|
|
#include "SplashXPathScanner.h"
|
|
#include "SplashPattern.h"
|
|
#include "SplashScreen.h"
|
|
#include "SplashFont.h"
|
|
#include "SplashGlyphBitmap.h"
|
|
#include "Splash.h"
|
|
|
|
// the MSVC math.h doesn't define this
|
|
#ifndef M_PI
|
|
#define M_PI 3.14159265358979323846
|
|
#endif
|
|
|
|
//------------------------------------------------------------------------
|
|
|
|
// distance of Bezier control point from center for circle approximation
|
|
// = (4 * (sqrt(2) - 1) / 3) * r
|
|
#define bezierCircle ((SplashCoord)0.55228475)
|
|
#define bezierCircle2 ((SplashCoord)(0.5 * 0.55228475))
|
|
|
|
// Divide a 16-bit value (in [0, 255*255]) by 255, returning an 8-bit result.
|
|
static inline Guchar div255(int x) {
|
|
return (Guchar)((x + (x >> 8) + 0x80) >> 8);
|
|
}
|
|
|
|
// Clip x to lie in [0, 255].
|
|
static inline Guchar clip255(int x) {
|
|
return x < 0 ? 0 : x > 255 ? 255 : (Guchar)x;
|
|
}
|
|
|
|
// Used by drawImage and fillImageMask to divide the target
|
|
// quadrilateral into sections.
|
|
struct ImageSection {
|
|
int y0, y1; // actual y range
|
|
int ia0, ia1; // vertex indices for edge A
|
|
int ib0, ib1; // vertex indices for edge B
|
|
SplashCoord xa0, ya0, xa1, ya1; // edge A
|
|
SplashCoord dxdya; // slope of edge A
|
|
SplashCoord xb0, yb0, xb1, yb1; // edge B
|
|
SplashCoord dxdyb; // slope of edge B
|
|
};
|
|
|
|
//------------------------------------------------------------------------
|
|
// SplashPipe
|
|
//------------------------------------------------------------------------
|
|
|
|
#define splashPipeMaxStages 9
|
|
|
|
struct SplashPipe {
|
|
// source pattern
|
|
SplashPattern *pattern;
|
|
|
|
// source alpha and color
|
|
Guchar aInput;
|
|
SplashColor cSrcVal;
|
|
|
|
// special cases and result color
|
|
GBool noTransparency;
|
|
GBool shapeOnly;
|
|
SplashPipeResultColorCtrl resultColorCtrl;
|
|
|
|
// non-isolated group correction
|
|
// (this is only used when Splash::composite() is called to composite
|
|
// a non-isolated group onto the backdrop)
|
|
GBool nonIsolatedGroup;
|
|
|
|
// the "run" function
|
|
void (Splash::*run)(SplashPipe *pipe, int x0, int x1, int y,
|
|
Guchar *shapePtr, SplashColorPtr cSrcPtr);
|
|
};
|
|
|
|
SplashPipeResultColorCtrl Splash::pipeResultColorNoAlphaBlend[] = {
|
|
splashPipeResultColorNoAlphaBlendMono,
|
|
splashPipeResultColorNoAlphaBlendMono,
|
|
splashPipeResultColorNoAlphaBlendRGB,
|
|
splashPipeResultColorNoAlphaBlendRGB
|
|
#if SPLASH_CMYK
|
|
,
|
|
splashPipeResultColorNoAlphaBlendCMYK
|
|
#endif
|
|
};
|
|
|
|
SplashPipeResultColorCtrl Splash::pipeResultColorAlphaNoBlend[] = {
|
|
splashPipeResultColorAlphaNoBlendMono,
|
|
splashPipeResultColorAlphaNoBlendMono,
|
|
splashPipeResultColorAlphaNoBlendRGB,
|
|
splashPipeResultColorAlphaNoBlendRGB
|
|
#if SPLASH_CMYK
|
|
,
|
|
splashPipeResultColorAlphaNoBlendCMYK
|
|
#endif
|
|
};
|
|
|
|
SplashPipeResultColorCtrl Splash::pipeResultColorAlphaBlend[] = {
|
|
splashPipeResultColorAlphaBlendMono,
|
|
splashPipeResultColorAlphaBlendMono,
|
|
splashPipeResultColorAlphaBlendRGB,
|
|
splashPipeResultColorAlphaBlendRGB
|
|
#if SPLASH_CMYK
|
|
,
|
|
splashPipeResultColorAlphaBlendCMYK
|
|
#endif
|
|
};
|
|
|
|
//------------------------------------------------------------------------
|
|
// modified region
|
|
//------------------------------------------------------------------------
|
|
|
|
void Splash::clearModRegion() {
|
|
modXMin = bitmap->width;
|
|
modYMin = bitmap->height;
|
|
modXMax = -1;
|
|
modYMax = -1;
|
|
}
|
|
|
|
inline void Splash::updateModX(int x) {
|
|
if (x < modXMin) {
|
|
modXMin = x;
|
|
}
|
|
if (x > modXMax) {
|
|
modXMax = x;
|
|
}
|
|
}
|
|
|
|
inline void Splash::updateModY(int y) {
|
|
if (y < modYMin) {
|
|
modYMin = y;
|
|
}
|
|
if (y > modYMax) {
|
|
modYMax = y;
|
|
}
|
|
}
|
|
|
|
//------------------------------------------------------------------------
|
|
// pipeline
|
|
//------------------------------------------------------------------------
|
|
|
|
inline void Splash::pipeInit(SplashPipe *pipe, SplashPattern *pattern,
|
|
Guchar aInput, GBool usesShape,
|
|
GBool nonIsolatedGroup) {
|
|
SplashColorMode mode;
|
|
|
|
mode = bitmap->mode;
|
|
|
|
pipe->pattern = NULL;
|
|
|
|
// source color
|
|
if (pattern && pattern->isStatic()) {
|
|
pattern->getColor(0, 0, pipe->cSrcVal);
|
|
pipe->pattern = NULL;
|
|
} else {
|
|
pipe->pattern = pattern;
|
|
}
|
|
|
|
// source alpha
|
|
pipe->aInput = aInput;
|
|
|
|
// special cases
|
|
pipe->noTransparency = aInput == 255 &&
|
|
!state->softMask &&
|
|
!usesShape &&
|
|
!state->inNonIsolatedGroup &&
|
|
!state->inKnockoutGroup &&
|
|
!nonIsolatedGroup &&
|
|
state->overprintMask == 0xffffffff;
|
|
pipe->shapeOnly = aInput == 255 &&
|
|
!state->softMask &&
|
|
usesShape &&
|
|
!state->inNonIsolatedGroup &&
|
|
!state->inKnockoutGroup &&
|
|
!nonIsolatedGroup &&
|
|
state->overprintMask == 0xffffffff;
|
|
|
|
// result color
|
|
if (pipe->noTransparency) {
|
|
// the !state->blendFunc case is handled separately in pipeRun
|
|
pipe->resultColorCtrl = pipeResultColorNoAlphaBlend[mode];
|
|
} else if (!state->blendFunc) {
|
|
pipe->resultColorCtrl = pipeResultColorAlphaNoBlend[mode];
|
|
} else {
|
|
pipe->resultColorCtrl = pipeResultColorAlphaBlend[mode];
|
|
}
|
|
|
|
// non-isolated group correction
|
|
pipe->nonIsolatedGroup = nonIsolatedGroup;
|
|
|
|
// select the 'run' function
|
|
pipe->run = &Splash::pipeRun;
|
|
if (!pipe->pattern && pipe->noTransparency && !state->blendFunc) {
|
|
if (mode == splashModeMono1 && !bitmap->alpha) {
|
|
pipe->run = &Splash::pipeRunSimpleMono1;
|
|
} else if (mode == splashModeMono8 && bitmap->alpha) {
|
|
pipe->run = &Splash::pipeRunSimpleMono8;
|
|
} else if (mode == splashModeRGB8 && bitmap->alpha) {
|
|
pipe->run = &Splash::pipeRunSimpleRGB8;
|
|
} else if (mode == splashModeBGR8 && bitmap->alpha) {
|
|
pipe->run = &Splash::pipeRunSimpleBGR8;
|
|
#if SPLASH_CMYK
|
|
} else if (mode == splashModeCMYK8 && bitmap->alpha) {
|
|
pipe->run = &Splash::pipeRunSimpleCMYK8;
|
|
#endif
|
|
}
|
|
} else if (!pipe->pattern && pipe->shapeOnly && !state->blendFunc) {
|
|
if (mode == splashModeMono1 && !bitmap->alpha) {
|
|
pipe->run = &Splash::pipeRunShapeMono1;
|
|
} else if (mode == splashModeMono8 && bitmap->alpha) {
|
|
pipe->run = &Splash::pipeRunShapeMono8;
|
|
} else if (mode == splashModeRGB8 && bitmap->alpha) {
|
|
pipe->run = &Splash::pipeRunShapeRGB8;
|
|
} else if (mode == splashModeBGR8 && bitmap->alpha) {
|
|
pipe->run = &Splash::pipeRunShapeBGR8;
|
|
#if SPLASH_CMYK
|
|
} else if (mode == splashModeCMYK8 && bitmap->alpha) {
|
|
pipe->run = &Splash::pipeRunShapeCMYK8;
|
|
#endif
|
|
}
|
|
} else if (!pipe->pattern && !pipe->noTransparency && !state->softMask &&
|
|
usesShape &&
|
|
!(state->inNonIsolatedGroup && groupBackBitmap->alpha) &&
|
|
!state->inKnockoutGroup &&
|
|
!state->blendFunc && !pipe->nonIsolatedGroup) {
|
|
if (mode == splashModeMono1 && !bitmap->alpha) {
|
|
pipe->run = &Splash::pipeRunAAMono1;
|
|
} else if (mode == splashModeMono8 && bitmap->alpha) {
|
|
pipe->run = &Splash::pipeRunAAMono8;
|
|
} else if (mode == splashModeRGB8 && bitmap->alpha) {
|
|
pipe->run = &Splash::pipeRunAARGB8;
|
|
} else if (mode == splashModeBGR8 && bitmap->alpha) {
|
|
pipe->run = &Splash::pipeRunAABGR8;
|
|
#if SPLASH_CMYK
|
|
} else if (mode == splashModeCMYK8 && bitmap->alpha) {
|
|
pipe->run = &Splash::pipeRunAACMYK8;
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
|
|
// general case
|
|
void Splash::pipeRun(SplashPipe *pipe, int x0, int x1, int y,
|
|
Guchar *shapePtr, SplashColorPtr cSrcPtr) {
|
|
Guchar *shapePtr2;
|
|
Guchar shape, aSrc, aDest, alphaI, alphaIm1, alpha0, aResult;
|
|
SplashColor cSrc, cDest, cBlend;
|
|
Guchar shapeVal, cResult0, cResult1, cResult2, cResult3;
|
|
int cSrcStride, shapeStride, x, lastX, t;
|
|
SplashColorPtr destColorPtr;
|
|
Guchar destColorMask;
|
|
Guchar *destAlphaPtr;
|
|
SplashColorPtr color0Ptr;
|
|
Guchar color0Mask;
|
|
Guchar *alpha0Ptr;
|
|
SplashColorPtr softMaskPtr;
|
|
#if SPLASH_CMYK
|
|
SplashColor cSrc2, cDest2;
|
|
#endif
|
|
|
|
if (cSrcPtr && !pipe->pattern) {
|
|
cSrcStride = bitmapComps;
|
|
} else {
|
|
cSrcPtr = pipe->cSrcVal;
|
|
cSrcStride = 0;
|
|
}
|
|
|
|
if (shapePtr) {
|
|
shapePtr2 = shapePtr;
|
|
shapeStride = 1;
|
|
for (; x0 <= x1; ++x0) {
|
|
if (*shapePtr2) {
|
|
break;
|
|
}
|
|
cSrcPtr += cSrcStride;
|
|
++shapePtr2;
|
|
}
|
|
} else {
|
|
shapeVal = 0xff;
|
|
shapePtr2 = &shapeVal;
|
|
shapeStride = 0;
|
|
}
|
|
if (x0 > x1) {
|
|
return;
|
|
}
|
|
updateModX(x0);
|
|
updateModY(y);
|
|
lastX = x0;
|
|
|
|
if (bitmap->mode == splashModeMono1) {
|
|
destColorPtr = &bitmap->data[y * bitmap->rowSize + (x0 >> 3)];
|
|
destColorMask = (Guchar)(0x80 >> (x0 & 7));
|
|
} else {
|
|
destColorPtr = &bitmap->data[y * bitmap->rowSize + x0 * bitmapComps];
|
|
destColorMask = 0; // make gcc happy
|
|
}
|
|
if (bitmap->alpha) {
|
|
destAlphaPtr = &bitmap->alpha[y * bitmap->alphaRowSize + x0];
|
|
} else {
|
|
destAlphaPtr = NULL;
|
|
}
|
|
if (state->softMask) {
|
|
softMaskPtr = &state->softMask->data[y * state->softMask->rowSize + x0];
|
|
} else {
|
|
softMaskPtr = NULL;
|
|
}
|
|
if (state->inKnockoutGroup) {
|
|
if (bitmap->mode == splashModeMono1) {
|
|
color0Ptr =
|
|
&groupBackBitmap->data[(groupBackY + y) * groupBackBitmap->rowSize +
|
|
((groupBackX + x0) >> 3)];
|
|
color0Mask = (Guchar)(0x80 >> ((groupBackX + x0) & 7));
|
|
} else {
|
|
color0Ptr =
|
|
&groupBackBitmap->data[(groupBackY + y) * groupBackBitmap->rowSize +
|
|
(groupBackX + x0) * bitmapComps];
|
|
color0Mask = 0; // make gcc happy
|
|
}
|
|
} else {
|
|
color0Ptr = NULL;
|
|
color0Mask = 0; // make gcc happy
|
|
}
|
|
if (state->inNonIsolatedGroup && groupBackBitmap->alpha) {
|
|
alpha0Ptr =
|
|
&groupBackBitmap->alpha[(groupBackY + y)
|
|
* groupBackBitmap->alphaRowSize +
|
|
(groupBackX + x0)];
|
|
} else {
|
|
alpha0Ptr = NULL;
|
|
}
|
|
|
|
for (x = x0; x <= x1; ++x) {
|
|
|
|
//----- shape
|
|
|
|
shape = *shapePtr2;
|
|
if (!shape) {
|
|
if (bitmap->mode == splashModeMono1) {
|
|
destColorPtr += destColorMask & 1;
|
|
destColorMask = (Guchar)((destColorMask << 7) | (destColorMask >> 1));
|
|
} else {
|
|
destColorPtr += bitmapComps;
|
|
}
|
|
if (destAlphaPtr) {
|
|
++destAlphaPtr;
|
|
}
|
|
if (softMaskPtr) {
|
|
++softMaskPtr;
|
|
}
|
|
if (color0Ptr) {
|
|
if (bitmap->mode == splashModeMono1) {
|
|
color0Ptr += color0Mask & 1;
|
|
color0Mask = (Guchar)((color0Mask << 7) | (color0Mask >> 1));
|
|
} else {
|
|
color0Ptr += bitmapComps;
|
|
}
|
|
}
|
|
if (alpha0Ptr) {
|
|
++alpha0Ptr;
|
|
}
|
|
cSrcPtr += cSrcStride;
|
|
shapePtr2 += shapeStride;
|
|
continue;
|
|
}
|
|
lastX = x;
|
|
|
|
//----- source color
|
|
|
|
// static pattern: handled in pipeInit
|
|
// fixed color: handled in pipeInit
|
|
|
|
// dynamic pattern
|
|
if (pipe->pattern) {
|
|
pipe->pattern->getColor(x, y, pipe->cSrcVal);
|
|
}
|
|
|
|
cResult0 = cResult1 = cResult2 = cResult3 = 0; // make gcc happy
|
|
|
|
if (pipe->noTransparency && !state->blendFunc) {
|
|
|
|
//----- result color
|
|
|
|
switch (bitmap->mode) {
|
|
case splashModeMono1:
|
|
case splashModeMono8:
|
|
cResult0 = state->grayTransfer[cSrcPtr[0]];
|
|
break;
|
|
case splashModeRGB8:
|
|
case splashModeBGR8:
|
|
cResult0 = state->rgbTransferR[cSrcPtr[0]];
|
|
cResult1 = state->rgbTransferG[cSrcPtr[1]];
|
|
cResult2 = state->rgbTransferB[cSrcPtr[2]];
|
|
break;
|
|
#if SPLASH_CMYK
|
|
case splashModeCMYK8:
|
|
cResult0 = state->cmykTransferC[cSrcPtr[0]];
|
|
cResult1 = state->cmykTransferM[cSrcPtr[1]];
|
|
cResult2 = state->cmykTransferY[cSrcPtr[2]];
|
|
cResult3 = state->cmykTransferK[cSrcPtr[3]];
|
|
break;
|
|
#endif
|
|
}
|
|
aResult = 255;
|
|
|
|
} else { // if (noTransparency && !blendFunc)
|
|
|
|
//----- read destination pixel
|
|
// (or backdrop color, for knockout groups)
|
|
|
|
if (color0Ptr) {
|
|
|
|
switch (bitmap->mode) {
|
|
case splashModeMono1:
|
|
cDest[0] = (*color0Ptr & color0Mask) ? 0xff : 0x00;
|
|
color0Ptr += color0Mask & 1;
|
|
color0Mask = (Guchar)((color0Mask << 7) | (color0Mask >> 1));
|
|
break;
|
|
case splashModeMono8:
|
|
cDest[0] = *color0Ptr++;
|
|
break;
|
|
case splashModeRGB8:
|
|
cDest[0] = color0Ptr[0];
|
|
cDest[1] = color0Ptr[1];
|
|
cDest[2] = color0Ptr[2];
|
|
color0Ptr += 3;
|
|
break;
|
|
case splashModeBGR8:
|
|
cDest[2] = color0Ptr[0];
|
|
cDest[1] = color0Ptr[1];
|
|
cDest[0] = color0Ptr[2];
|
|
color0Ptr += 3;
|
|
break;
|
|
#if SPLASH_CMYK
|
|
case splashModeCMYK8:
|
|
cDest[0] = color0Ptr[0];
|
|
cDest[1] = color0Ptr[1];
|
|
cDest[2] = color0Ptr[2];
|
|
cDest[3] = color0Ptr[3];
|
|
color0Ptr += 4;
|
|
break;
|
|
#endif
|
|
}
|
|
|
|
} else {
|
|
|
|
switch (bitmap->mode) {
|
|
case splashModeMono1:
|
|
cDest[0] = (*destColorPtr & destColorMask) ? 0xff : 0x00;
|
|
break;
|
|
case splashModeMono8:
|
|
cDest[0] = *destColorPtr;
|
|
break;
|
|
case splashModeRGB8:
|
|
cDest[0] = destColorPtr[0];
|
|
cDest[1] = destColorPtr[1];
|
|
cDest[2] = destColorPtr[2];
|
|
break;
|
|
case splashModeBGR8:
|
|
cDest[0] = destColorPtr[2];
|
|
cDest[1] = destColorPtr[1];
|
|
cDest[2] = destColorPtr[0];
|
|
break;
|
|
#if SPLASH_CMYK
|
|
case splashModeCMYK8:
|
|
cDest[0] = destColorPtr[0];
|
|
cDest[1] = destColorPtr[1];
|
|
cDest[2] = destColorPtr[2];
|
|
cDest[3] = destColorPtr[3];
|
|
break;
|
|
#endif
|
|
}
|
|
|
|
}
|
|
|
|
if (destAlphaPtr) {
|
|
aDest = *destAlphaPtr;
|
|
} else {
|
|
aDest = 0xff;
|
|
}
|
|
|
|
//----- read source color; handle overprint
|
|
|
|
switch (bitmap->mode) {
|
|
case splashModeMono1:
|
|
case splashModeMono8:
|
|
cSrc[0] = state->grayTransfer[cSrcPtr[0]];
|
|
break;
|
|
case splashModeRGB8:
|
|
case splashModeBGR8:
|
|
cSrc[0] = state->rgbTransferR[cSrcPtr[0]];
|
|
cSrc[1] = state->rgbTransferG[cSrcPtr[1]];
|
|
cSrc[2] = state->rgbTransferB[cSrcPtr[2]];
|
|
break;
|
|
#if SPLASH_CMYK
|
|
case splashModeCMYK8:
|
|
if (state->overprintMask & 0x01) {
|
|
cSrc[0] = state->cmykTransferC[cSrcPtr[0]];
|
|
} else {
|
|
cSrc[0] = div255(aDest * cDest[0]);
|
|
}
|
|
if (state->overprintMask & 0x02) {
|
|
cSrc[1] = state->cmykTransferM[cSrcPtr[1]];
|
|
} else {
|
|
cSrc[1] = div255(aDest * cDest[1]);
|
|
}
|
|
if (state->overprintMask & 0x04) {
|
|
cSrc[2] = state->cmykTransferY[cSrcPtr[2]];
|
|
} else {
|
|
cSrc[2] = div255(aDest * cDest[2]);
|
|
}
|
|
if (state->overprintMask & 0x08) {
|
|
cSrc[3] = state->cmykTransferK[cSrcPtr[3]];
|
|
} else {
|
|
cSrc[3] = div255(aDest * cDest[3]);
|
|
}
|
|
break;
|
|
#endif
|
|
}
|
|
|
|
//----- source alpha
|
|
|
|
if (softMaskPtr) {
|
|
if (shapePtr) {
|
|
aSrc = div255(div255(pipe->aInput * *softMaskPtr++) * shape);
|
|
} else {
|
|
aSrc = div255(pipe->aInput * *softMaskPtr++);
|
|
}
|
|
} else if (shapePtr) {
|
|
aSrc = div255(pipe->aInput * shape);
|
|
} else {
|
|
aSrc = pipe->aInput;
|
|
}
|
|
|
|
//----- non-isolated group correction
|
|
|
|
if (pipe->nonIsolatedGroup) {
|
|
// This path is only used when Splash::composite() is called to
|
|
// composite a non-isolated group onto the backdrop. In this
|
|
// case, shape is the source (group) alpha.
|
|
t = (aDest * 255) / shape - aDest;
|
|
switch (bitmap->mode) {
|
|
#if SPLASH_CMYK
|
|
case splashModeCMYK8:
|
|
cSrc[3] = clip255(cSrc[3] + ((cSrc[3] - cDest[3]) * t) / 255);
|
|
#endif
|
|
case splashModeRGB8:
|
|
case splashModeBGR8:
|
|
cSrc[2] = clip255(cSrc[2] + ((cSrc[2] - cDest[2]) * t) / 255);
|
|
cSrc[1] = clip255(cSrc[1] + ((cSrc[1] - cDest[1]) * t) / 255);
|
|
case splashModeMono1:
|
|
case splashModeMono8:
|
|
cSrc[0] = clip255(cSrc[0] + ((cSrc[0] - cDest[0]) * t) / 255);
|
|
break;
|
|
}
|
|
}
|
|
|
|
//----- blend function
|
|
|
|
if (state->blendFunc) {
|
|
#if SPLASH_CMYK
|
|
if (bitmap->mode == splashModeCMYK8) {
|
|
// convert colors to additive
|
|
cSrc2[0] = (Guchar)(0xff - cSrc[0]);
|
|
cSrc2[1] = (Guchar)(0xff - cSrc[1]);
|
|
cSrc2[2] = (Guchar)(0xff - cSrc[2]);
|
|
cSrc2[3] = (Guchar)(0xff - cSrc[3]);
|
|
cDest2[0] = (Guchar)(0xff - cDest[0]);
|
|
cDest2[1] = (Guchar)(0xff - cDest[1]);
|
|
cDest2[2] = (Guchar)(0xff - cDest[2]);
|
|
cDest2[3] = (Guchar)(0xff - cDest[3]);
|
|
(*state->blendFunc)(cSrc2, cDest2, cBlend, bitmap->mode);
|
|
// convert result back to subtractive
|
|
cBlend[0] = (Guchar)(0xff - cBlend[0]);
|
|
cBlend[1] = (Guchar)(0xff - cBlend[1]);
|
|
cBlend[2] = (Guchar)(0xff - cBlend[2]);
|
|
cBlend[3] = (Guchar)(0xff - cBlend[3]);
|
|
} else
|
|
#endif
|
|
(*state->blendFunc)(cSrc, cDest, cBlend, bitmap->mode);
|
|
}
|
|
|
|
//----- result alpha and non-isolated group element correction
|
|
|
|
// alphaI = alpha_i
|
|
// alphaIm1 = alpha_(i-1)
|
|
|
|
if (pipe->noTransparency) {
|
|
alphaI = alphaIm1 = aResult = 255;
|
|
} else if (alpha0Ptr) {
|
|
if (color0Ptr) {
|
|
// non-isolated, knockout
|
|
aResult = aSrc;
|
|
alpha0 = *alpha0Ptr++;
|
|
alphaI = (Guchar)(aSrc + alpha0 - div255(aSrc * alpha0));
|
|
alphaIm1 = alpha0;
|
|
} else {
|
|
// non-isolated, non-knockout
|
|
aResult = (Guchar)(aSrc + aDest - div255(aSrc * aDest));
|
|
alpha0 = *alpha0Ptr++;
|
|
alphaI = (Guchar)(aResult + alpha0 - div255(aResult * alpha0));
|
|
alphaIm1 = (Guchar)(alpha0 + aDest - div255(alpha0 * aDest));
|
|
}
|
|
} else {
|
|
if (color0Ptr) {
|
|
// isolated, knockout
|
|
aResult = aSrc;
|
|
alphaI = aSrc;
|
|
alphaIm1 = 0;
|
|
} else {
|
|
// isolated, non-knockout
|
|
aResult = (Guchar)(aSrc + aDest - div255(aSrc * aDest));
|
|
alphaI = aResult;
|
|
alphaIm1 = aDest;
|
|
}
|
|
}
|
|
|
|
//----- result color
|
|
|
|
switch (pipe->resultColorCtrl) {
|
|
|
|
case splashPipeResultColorNoAlphaBlendMono:
|
|
cResult0 = div255((255 - aDest) * cSrc[0] + aDest * cBlend[0]);
|
|
break;
|
|
case splashPipeResultColorNoAlphaBlendRGB:
|
|
cResult0 = div255((255 - aDest) * cSrc[0] + aDest * cBlend[0]);
|
|
cResult1 = div255((255 - aDest) * cSrc[1] + aDest * cBlend[1]);
|
|
cResult2 = div255((255 - aDest) * cSrc[2] + aDest * cBlend[2]);
|
|
break;
|
|
#if SPLASH_CMYK
|
|
case splashPipeResultColorNoAlphaBlendCMYK:
|
|
cResult0 = div255((255 - aDest) * cSrc[0] + aDest * cBlend[0]);
|
|
cResult1 = div255((255 - aDest) * cSrc[1] + aDest * cBlend[1]);
|
|
cResult2 = div255((255 - aDest) * cSrc[2] + aDest * cBlend[2]);
|
|
cResult3 = div255((255 - aDest) * cSrc[3] + aDest * cBlend[3]);
|
|
break;
|
|
#endif
|
|
|
|
case splashPipeResultColorAlphaNoBlendMono:
|
|
if (alphaI == 0) {
|
|
cResult0 = 0;
|
|
} else {
|
|
cResult0 = (Guchar)(((alphaI - aSrc) * cDest[0] + aSrc * cSrc[0])
|
|
/ alphaI);
|
|
}
|
|
break;
|
|
case splashPipeResultColorAlphaNoBlendRGB:
|
|
if (alphaI == 0) {
|
|
cResult0 = 0;
|
|
cResult1 = 0;
|
|
cResult2 = 0;
|
|
} else {
|
|
cResult0 = (Guchar)(((alphaI - aSrc) * cDest[0] + aSrc * cSrc[0])
|
|
/ alphaI);
|
|
cResult1 = (Guchar)(((alphaI - aSrc) * cDest[1] + aSrc * cSrc[1])
|
|
/ alphaI);
|
|
cResult2 = (Guchar)(((alphaI - aSrc) * cDest[2] + aSrc * cSrc[2])
|
|
/ alphaI);
|
|
}
|
|
break;
|
|
#if SPLASH_CMYK
|
|
case splashPipeResultColorAlphaNoBlendCMYK:
|
|
if (alphaI == 0) {
|
|
cResult0 = 0;
|
|
cResult1 = 0;
|
|
cResult2 = 0;
|
|
cResult3 = 0;
|
|
} else {
|
|
cResult0 = (Guchar)(((alphaI - aSrc) * cDest[0] + aSrc * cSrc[0])
|
|
/ alphaI);
|
|
cResult1 = (Guchar)(((alphaI - aSrc) * cDest[1] + aSrc * cSrc[1])
|
|
/ alphaI);
|
|
cResult2 = (Guchar)(((alphaI - aSrc) * cDest[2] + aSrc * cSrc[2])
|
|
/ alphaI);
|
|
cResult3 = (Guchar)(((alphaI - aSrc) * cDest[3] + aSrc * cSrc[3])
|
|
/ alphaI);
|
|
}
|
|
break;
|
|
#endif
|
|
|
|
case splashPipeResultColorAlphaBlendMono:
|
|
if (alphaI == 0) {
|
|
cResult0 = 0;
|
|
} else {
|
|
cResult0 = (Guchar)(((alphaI - aSrc) * cDest[0] +
|
|
aSrc * ((255 - alphaIm1) * cSrc[0] +
|
|
alphaIm1 * cBlend[0]) / 255)
|
|
/ alphaI);
|
|
}
|
|
break;
|
|
case splashPipeResultColorAlphaBlendRGB:
|
|
if (alphaI == 0) {
|
|
cResult0 = 0;
|
|
cResult1 = 0;
|
|
cResult2 = 0;
|
|
} else {
|
|
cResult0 = (Guchar)(((alphaI - aSrc) * cDest[0] +
|
|
aSrc * ((255 - alphaIm1) * cSrc[0] +
|
|
alphaIm1 * cBlend[0]) / 255)
|
|
/ alphaI);
|
|
cResult1 = (Guchar)(((alphaI - aSrc) * cDest[1] +
|
|
aSrc * ((255 - alphaIm1) * cSrc[1] +
|
|
alphaIm1 * cBlend[1]) / 255)
|
|
/ alphaI);
|
|
cResult2 = (Guchar)(((alphaI - aSrc) * cDest[2] +
|
|
aSrc * ((255 - alphaIm1) * cSrc[2] +
|
|
alphaIm1 * cBlend[2]) / 255)
|
|
/ alphaI);
|
|
}
|
|
break;
|
|
#if SPLASH_CMYK
|
|
case splashPipeResultColorAlphaBlendCMYK:
|
|
if (alphaI == 0) {
|
|
cResult0 = 0;
|
|
cResult1 = 0;
|
|
cResult2 = 0;
|
|
cResult3 = 0;
|
|
} else {
|
|
cResult0 = (Guchar)(((alphaI - aSrc) * cDest[0] +
|
|
aSrc * ((255 - alphaIm1) * cSrc[0] +
|
|
alphaIm1 * cBlend[0]) / 255)
|
|
/ alphaI);
|
|
cResult1 = (Guchar)(((alphaI - aSrc) * cDest[1] +
|
|
aSrc * ((255 - alphaIm1) * cSrc[1] +
|
|
alphaIm1 * cBlend[1]) / 255)
|
|
/ alphaI);
|
|
cResult2 = (Guchar)(((alphaI - aSrc) * cDest[2] +
|
|
aSrc * ((255 - alphaIm1) * cSrc[2] +
|
|
alphaIm1 * cBlend[2]) / 255)
|
|
/ alphaI);
|
|
cResult3 = (Guchar)(((alphaI - aSrc) * cDest[3] +
|
|
aSrc * ((255 - alphaIm1) * cSrc[3] +
|
|
alphaIm1 * cBlend[3]) / 255)
|
|
/ alphaI);
|
|
}
|
|
break;
|
|
#endif
|
|
}
|
|
|
|
} // if (noTransparency && !blendFunc)
|
|
|
|
//----- write destination pixel
|
|
|
|
switch (bitmap->mode) {
|
|
case splashModeMono1:
|
|
if (state->screen->test(x, y, cResult0)) {
|
|
*destColorPtr |= destColorMask;
|
|
} else {
|
|
*destColorPtr &= (Guchar)~destColorMask;
|
|
}
|
|
destColorPtr += destColorMask & 1;
|
|
destColorMask = (Guchar)((destColorMask << 7) | (destColorMask >> 1));
|
|
break;
|
|
case splashModeMono8:
|
|
*destColorPtr++ = cResult0;
|
|
break;
|
|
case splashModeRGB8:
|
|
destColorPtr[0] = cResult0;
|
|
destColorPtr[1] = cResult1;
|
|
destColorPtr[2] = cResult2;
|
|
destColorPtr += 3;
|
|
break;
|
|
case splashModeBGR8:
|
|
destColorPtr[0] = cResult2;
|
|
destColorPtr[1] = cResult1;
|
|
destColorPtr[2] = cResult0;
|
|
destColorPtr += 3;
|
|
break;
|
|
#if SPLASH_CMYK
|
|
case splashModeCMYK8:
|
|
destColorPtr[0] = cResult0;
|
|
destColorPtr[1] = cResult1;
|
|
destColorPtr[2] = cResult2;
|
|
destColorPtr[3] = cResult3;
|
|
destColorPtr += 4;
|
|
break;
|
|
#endif
|
|
}
|
|
if (destAlphaPtr) {
|
|
*destAlphaPtr++ = aResult;
|
|
}
|
|
|
|
cSrcPtr += cSrcStride;
|
|
shapePtr2 += shapeStride;
|
|
} // for (x ...)
|
|
|
|
updateModX(lastX);
|
|
}
|
|
|
|
// special case:
|
|
// !pipe->pattern && pipe->noTransparency && !state->blendFunc &&
|
|
// bitmap->mode == splashModeMono1 && !bitmap->alpha) {
|
|
void Splash::pipeRunSimpleMono1(SplashPipe *pipe, int x0, int x1, int y,
|
|
Guchar *shapePtr, SplashColorPtr cSrcPtr) {
|
|
Guchar cResult0;
|
|
SplashColorPtr destColorPtr;
|
|
Guchar destColorMask;
|
|
SplashScreenCursor screenCursor;
|
|
int cSrcStride, x;
|
|
|
|
if (cSrcPtr) {
|
|
cSrcStride = 1;
|
|
} else {
|
|
cSrcPtr = pipe->cSrcVal;
|
|
cSrcStride = 0;
|
|
}
|
|
if (x0 > x1) {
|
|
return;
|
|
}
|
|
updateModX(x0);
|
|
updateModX(x1);
|
|
updateModY(y);
|
|
|
|
destColorPtr = &bitmap->data[y * bitmap->rowSize + (x0 >> 3)];
|
|
destColorMask = (Guchar)(0x80 >> (x0 & 7));
|
|
|
|
screenCursor = state->screen->getTestCursor(y);
|
|
|
|
for (x = x0; x <= x1; ++x) {
|
|
|
|
//----- write destination pixel
|
|
cResult0 = state->grayTransfer[cSrcPtr[0]];
|
|
if (state->screen->testWithCursor(screenCursor, x, cResult0)) {
|
|
*destColorPtr |= destColorMask;
|
|
} else {
|
|
*destColorPtr &= (Guchar)~destColorMask;
|
|
}
|
|
destColorPtr += destColorMask & 1;
|
|
destColorMask = (Guchar)((destColorMask << 7) | (destColorMask >> 1));
|
|
|
|
cSrcPtr += cSrcStride;
|
|
}
|
|
}
|
|
|
|
// special case:
|
|
// !pipe->pattern && pipe->noTransparency && !state->blendFunc &&
|
|
// bitmap->mode == splashModeMono8 && bitmap->alpha) {
|
|
void Splash::pipeRunSimpleMono8(SplashPipe *pipe, int x0, int x1, int y,
|
|
Guchar *shapePtr, SplashColorPtr cSrcPtr) {
|
|
SplashColorPtr destColorPtr;
|
|
Guchar *destAlphaPtr;
|
|
int cSrcStride, x;
|
|
|
|
if (cSrcPtr) {
|
|
cSrcStride = 1;
|
|
} else {
|
|
cSrcPtr = pipe->cSrcVal;
|
|
cSrcStride = 0;
|
|
}
|
|
if (x0 > x1) {
|
|
return;
|
|
}
|
|
updateModX(x0);
|
|
updateModX(x1);
|
|
updateModY(y);
|
|
|
|
destColorPtr = &bitmap->data[y * bitmap->rowSize + x0];
|
|
destAlphaPtr = &bitmap->alpha[y * bitmap->alphaRowSize + x0];
|
|
|
|
for (x = x0; x <= x1; ++x) {
|
|
|
|
//----- write destination pixel
|
|
*destColorPtr++ = state->grayTransfer[cSrcPtr[0]];
|
|
*destAlphaPtr++ = 255;
|
|
|
|
cSrcPtr += cSrcStride;
|
|
}
|
|
}
|
|
|
|
// special case:
|
|
// !pipe->pattern && pipe->noTransparency && !state->blendFunc &&
|
|
// bitmap->mode == splashModeRGB8 && bitmap->alpha) {
|
|
void Splash::pipeRunSimpleRGB8(SplashPipe *pipe, int x0, int x1, int y,
|
|
Guchar *shapePtr, SplashColorPtr cSrcPtr) {
|
|
SplashColorPtr destColorPtr;
|
|
Guchar *destAlphaPtr;
|
|
int cSrcStride, x;
|
|
|
|
if (cSrcPtr) {
|
|
cSrcStride = 3;
|
|
} else {
|
|
cSrcPtr = pipe->cSrcVal;
|
|
cSrcStride = 0;
|
|
}
|
|
if (x0 > x1) {
|
|
return;
|
|
}
|
|
updateModX(x0);
|
|
updateModX(x1);
|
|
updateModY(y);
|
|
|
|
destColorPtr = &bitmap->data[y * bitmap->rowSize + 3 * x0];
|
|
destAlphaPtr = &bitmap->alpha[y * bitmap->alphaRowSize + x0];
|
|
|
|
for (x = x0; x <= x1; ++x) {
|
|
|
|
//----- write destination pixel
|
|
destColorPtr[0] = state->rgbTransferR[cSrcPtr[0]];
|
|
destColorPtr[1] = state->rgbTransferG[cSrcPtr[1]];
|
|
destColorPtr[2] = state->rgbTransferB[cSrcPtr[2]];
|
|
destColorPtr += 3;
|
|
*destAlphaPtr++ = 255;
|
|
|
|
cSrcPtr += cSrcStride;
|
|
}
|
|
}
|
|
|
|
// special case:
|
|
// !pipe->pattern && pipe->noTransparency && !state->blendFunc &&
|
|
// bitmap->mode == splashModeBGR8 && bitmap->alpha) {
|
|
void Splash::pipeRunSimpleBGR8(SplashPipe *pipe, int x0, int x1, int y,
|
|
Guchar *shapePtr, SplashColorPtr cSrcPtr) {
|
|
SplashColorPtr destColorPtr;
|
|
Guchar *destAlphaPtr;
|
|
int cSrcStride, x;
|
|
|
|
if (cSrcPtr) {
|
|
cSrcStride = 3;
|
|
} else {
|
|
cSrcPtr = pipe->cSrcVal;
|
|
cSrcStride = 0;
|
|
}
|
|
if (x0 > x1) {
|
|
return;
|
|
}
|
|
updateModX(x0);
|
|
updateModX(x1);
|
|
updateModY(y);
|
|
|
|
destColorPtr = &bitmap->data[y * bitmap->rowSize + 3 * x0];
|
|
destAlphaPtr = &bitmap->alpha[y * bitmap->alphaRowSize + x0];
|
|
|
|
for (x = x0; x <= x1; ++x) {
|
|
|
|
//----- write destination pixel
|
|
destColorPtr[0] = state->rgbTransferB[cSrcPtr[2]];
|
|
destColorPtr[1] = state->rgbTransferG[cSrcPtr[1]];
|
|
destColorPtr[2] = state->rgbTransferR[cSrcPtr[0]];
|
|
destColorPtr += 3;
|
|
*destAlphaPtr++ = 255;
|
|
|
|
cSrcPtr += cSrcStride;
|
|
}
|
|
}
|
|
|
|
#if SPLASH_CMYK
|
|
// special case:
|
|
// !pipe->pattern && pipe->noTransparency && !state->blendFunc &&
|
|
// bitmap->mode == splashModeCMYK8 && bitmap->alpha) {
|
|
void Splash::pipeRunSimpleCMYK8(SplashPipe *pipe, int x0, int x1, int y,
|
|
Guchar *shapePtr, SplashColorPtr cSrcPtr) {
|
|
SplashColorPtr destColorPtr;
|
|
Guchar *destAlphaPtr;
|
|
int cSrcStride, x;
|
|
|
|
if (cSrcPtr) {
|
|
cSrcStride = 4;
|
|
} else {
|
|
cSrcPtr = pipe->cSrcVal;
|
|
cSrcStride = 0;
|
|
}
|
|
if (x0 > x1) {
|
|
return;
|
|
}
|
|
updateModX(x0);
|
|
updateModX(x1);
|
|
updateModY(y);
|
|
|
|
destColorPtr = &bitmap->data[y * bitmap->rowSize + 4 * x0];
|
|
destAlphaPtr = &bitmap->alpha[y * bitmap->alphaRowSize + x0];
|
|
|
|
for (x = x0; x <= x1; ++x) {
|
|
|
|
//----- write destination pixel
|
|
destColorPtr[0] = state->cmykTransferC[cSrcPtr[0]];
|
|
destColorPtr[1] = state->cmykTransferM[cSrcPtr[1]];
|
|
destColorPtr[2] = state->cmykTransferY[cSrcPtr[2]];
|
|
destColorPtr[3] = state->cmykTransferK[cSrcPtr[3]];
|
|
destColorPtr += 4;
|
|
*destAlphaPtr++ = 255;
|
|
|
|
cSrcPtr += cSrcStride;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
|
|
// special case:
|
|
// !pipe->pattern && pipe->shapeOnly && !state->blendFunc &&
|
|
// bitmap->mode == splashModeMono1 && !bitmap->alpha
|
|
void Splash::pipeRunShapeMono1(SplashPipe *pipe, int x0, int x1, int y,
|
|
Guchar *shapePtr, SplashColorPtr cSrcPtr) {
|
|
Guchar shape, aSrc, cSrc0, cDest0, cResult0;
|
|
SplashColorPtr destColorPtr;
|
|
Guchar destColorMask;
|
|
SplashScreenCursor screenCursor;
|
|
int cSrcStride, x, lastX;
|
|
|
|
if (cSrcPtr) {
|
|
cSrcStride = 1;
|
|
} else {
|
|
cSrcPtr = pipe->cSrcVal;
|
|
cSrcStride = 0;
|
|
}
|
|
for (; x0 <= x1; ++x0) {
|
|
if (*shapePtr) {
|
|
break;
|
|
}
|
|
cSrcPtr += cSrcStride;
|
|
++shapePtr;
|
|
}
|
|
if (x0 > x1) {
|
|
return;
|
|
}
|
|
updateModX(x0);
|
|
updateModY(y);
|
|
lastX = x0;
|
|
|
|
destColorPtr = &bitmap->data[y * bitmap->rowSize + (x0 >> 3)];
|
|
destColorMask = (Guchar)(0x80 >> (x0 & 7));
|
|
|
|
screenCursor = state->screen->getTestCursor(y);
|
|
|
|
for (x = x0; x <= x1; ++x) {
|
|
|
|
//----- shape
|
|
shape = *shapePtr;
|
|
if (!shape) {
|
|
destColorPtr += destColorMask & 1;
|
|
destColorMask = (Guchar)((destColorMask << 7) | (destColorMask >> 1));
|
|
cSrcPtr += cSrcStride;
|
|
++shapePtr;
|
|
continue;
|
|
}
|
|
lastX = x;
|
|
|
|
//----- source color
|
|
cSrc0 = state->grayTransfer[cSrcPtr[0]];
|
|
|
|
//----- source alpha
|
|
aSrc = shape;
|
|
|
|
//----- special case for aSrc = 255
|
|
if (aSrc == 255) {
|
|
cResult0 = cSrc0;
|
|
} else {
|
|
|
|
//----- read destination pixel
|
|
cDest0 = (*destColorPtr & destColorMask) ? 0xff : 0x00;
|
|
|
|
//----- result color
|
|
// note: aDest = alphaI = aResult = 0xff
|
|
cResult0 = (Guchar)div255((0xff - aSrc) * cDest0 + aSrc * cSrc0);
|
|
}
|
|
|
|
//----- write destination pixel
|
|
if (state->screen->testWithCursor(screenCursor, x, cResult0)) {
|
|
*destColorPtr |= destColorMask;
|
|
} else {
|
|
*destColorPtr &= (Guchar)~destColorMask;
|
|
}
|
|
destColorPtr += destColorMask & 1;
|
|
destColorMask = (Guchar)((destColorMask << 7) | (destColorMask >> 1));
|
|
|
|
cSrcPtr += cSrcStride;
|
|
++shapePtr;
|
|
}
|
|
|
|
updateModX(lastX);
|
|
}
|
|
|
|
// special case:
|
|
// !pipe->pattern && pipe->shapeOnly && !state->blendFunc &&
|
|
// bitmap->mode == splashModeMono8 && bitmap->alpha
|
|
void Splash::pipeRunShapeMono8(SplashPipe *pipe, int x0, int x1, int y,
|
|
Guchar *shapePtr, SplashColorPtr cSrcPtr) {
|
|
Guchar shape, aSrc, aDest, alphaI, aResult, cSrc0, cDest0, cResult0;
|
|
SplashColorPtr destColorPtr;
|
|
Guchar *destAlphaPtr;
|
|
int cSrcStride, x, lastX;
|
|
|
|
if (cSrcPtr) {
|
|
cSrcStride = 1;
|
|
} else {
|
|
cSrcPtr = pipe->cSrcVal;
|
|
cSrcStride = 0;
|
|
}
|
|
for (; x0 <= x1; ++x0) {
|
|
if (*shapePtr) {
|
|
break;
|
|
}
|
|
cSrcPtr += cSrcStride;
|
|
++shapePtr;
|
|
}
|
|
if (x0 > x1) {
|
|
return;
|
|
}
|
|
updateModX(x0);
|
|
updateModY(y);
|
|
lastX = x0;
|
|
|
|
destColorPtr = &bitmap->data[y * bitmap->rowSize + x0];
|
|
destAlphaPtr = &bitmap->alpha[y * bitmap->alphaRowSize + x0];
|
|
|
|
for (x = x0; x <= x1; ++x) {
|
|
|
|
//----- shape
|
|
shape = *shapePtr;
|
|
if (!shape) {
|
|
++destColorPtr;
|
|
++destAlphaPtr;
|
|
cSrcPtr += cSrcStride;
|
|
++shapePtr;
|
|
continue;
|
|
}
|
|
lastX = x;
|
|
|
|
//----- source color
|
|
cSrc0 = state->grayTransfer[cSrcPtr[0]];
|
|
|
|
//----- source alpha
|
|
aSrc = shape;
|
|
|
|
//----- special case for aSrc = 255
|
|
if (aSrc == 255) {
|
|
aResult = 255;
|
|
cResult0 = cSrc0;
|
|
} else {
|
|
|
|
//----- read destination alpha
|
|
aDest = *destAlphaPtr;
|
|
|
|
//----- special case for aDest = 0
|
|
if (aDest == 0) {
|
|
aResult = aSrc;
|
|
cResult0 = cSrc0;
|
|
} else {
|
|
|
|
//----- read destination pixel
|
|
cDest0 = *destColorPtr;
|
|
|
|
//----- result alpha and non-isolated group element correction
|
|
aResult = (Guchar)(aSrc + aDest - div255(aSrc * aDest));
|
|
alphaI = aResult;
|
|
|
|
//----- result color
|
|
cResult0 = (Guchar)(((alphaI - aSrc) * cDest0 + aSrc * cSrc0) / alphaI);
|
|
}
|
|
}
|
|
|
|
//----- write destination pixel
|
|
*destColorPtr++ = cResult0;
|
|
*destAlphaPtr++ = aResult;
|
|
|
|
cSrcPtr += cSrcStride;
|
|
++shapePtr;
|
|
}
|
|
|
|
updateModX(lastX);
|
|
}
|
|
|
|
// special case:
|
|
// !pipe->pattern && pipe->shapeOnly && !state->blendFunc &&
|
|
// bitmap->mode == splashModeRGB8 && bitmap->alpha
|
|
void Splash::pipeRunShapeRGB8(SplashPipe *pipe, int x0, int x1, int y,
|
|
Guchar *shapePtr, SplashColorPtr cSrcPtr) {
|
|
Guchar shape, aSrc, aDest, alphaI, aResult;
|
|
Guchar cSrc0, cSrc1, cSrc2;
|
|
Guchar cDest0, cDest1, cDest2;
|
|
Guchar cResult0, cResult1, cResult2;
|
|
SplashColorPtr destColorPtr;
|
|
Guchar *destAlphaPtr;
|
|
int cSrcStride, x, lastX;
|
|
|
|
if (cSrcPtr) {
|
|
cSrcStride = 3;
|
|
} else {
|
|
cSrcPtr = pipe->cSrcVal;
|
|
cSrcStride = 0;
|
|
}
|
|
for (; x0 <= x1; ++x0) {
|
|
if (*shapePtr) {
|
|
break;
|
|
}
|
|
cSrcPtr += cSrcStride;
|
|
++shapePtr;
|
|
}
|
|
if (x0 > x1) {
|
|
return;
|
|
}
|
|
updateModX(x0);
|
|
updateModY(y);
|
|
lastX = x0;
|
|
|
|
destColorPtr = &bitmap->data[y * bitmap->rowSize + 3 * x0];
|
|
destAlphaPtr = &bitmap->alpha[y * bitmap->alphaRowSize + x0];
|
|
|
|
for (x = x0; x <= x1; ++x) {
|
|
|
|
//----- shape
|
|
shape = *shapePtr;
|
|
if (!shape) {
|
|
destColorPtr += 3;
|
|
++destAlphaPtr;
|
|
cSrcPtr += cSrcStride;
|
|
++shapePtr;
|
|
continue;
|
|
}
|
|
lastX = x;
|
|
|
|
//----- source color
|
|
cSrc0 = state->rgbTransferR[cSrcPtr[0]];
|
|
cSrc1 = state->rgbTransferG[cSrcPtr[1]];
|
|
cSrc2 = state->rgbTransferB[cSrcPtr[2]];
|
|
|
|
//----- source alpha
|
|
aSrc = shape;
|
|
|
|
//----- special case for aSrc = 255
|
|
if (aSrc == 255) {
|
|
aResult = 255;
|
|
cResult0 = cSrc0;
|
|
cResult1 = cSrc1;
|
|
cResult2 = cSrc2;
|
|
} else {
|
|
|
|
//----- read destination alpha
|
|
aDest = *destAlphaPtr;
|
|
|
|
//----- special case for aDest = 0
|
|
if (aDest == 0) {
|
|
aResult = aSrc;
|
|
cResult0 = cSrc0;
|
|
cResult1 = cSrc1;
|
|
cResult2 = cSrc2;
|
|
} else {
|
|
|
|
//----- read destination pixel
|
|
cDest0 = destColorPtr[0];
|
|
cDest1 = destColorPtr[1];
|
|
cDest2 = destColorPtr[2];
|
|
|
|
//----- result alpha and non-isolated group element correction
|
|
aResult = (Guchar)(aSrc + aDest - div255(aSrc * aDest));
|
|
alphaI = aResult;
|
|
|
|
//----- result color
|
|
cResult0 = (Guchar)(((alphaI - aSrc) * cDest0 + aSrc * cSrc0) / alphaI);
|
|
cResult1 = (Guchar)(((alphaI - aSrc) * cDest1 + aSrc * cSrc1) / alphaI);
|
|
cResult2 = (Guchar)(((alphaI - aSrc) * cDest2 + aSrc * cSrc2) / alphaI);
|
|
}
|
|
}
|
|
|
|
//----- write destination pixel
|
|
destColorPtr[0] = cResult0;
|
|
destColorPtr[1] = cResult1;
|
|
destColorPtr[2] = cResult2;
|
|
destColorPtr += 3;
|
|
*destAlphaPtr++ = aResult;
|
|
|
|
cSrcPtr += cSrcStride;
|
|
++shapePtr;
|
|
}
|
|
|
|
updateModX(lastX);
|
|
}
|
|
|
|
// special case:
|
|
// !pipe->pattern && pipe->shapeOnly && !state->blendFunc &&
|
|
// bitmap->mode == splashModeBGR8 && bitmap->alpha
|
|
void Splash::pipeRunShapeBGR8(SplashPipe *pipe, int x0, int x1, int y,
|
|
Guchar *shapePtr, SplashColorPtr cSrcPtr) {
|
|
Guchar shape, aSrc, aDest, alphaI, aResult;
|
|
Guchar cSrc0, cSrc1, cSrc2;
|
|
Guchar cDest0, cDest1, cDest2;
|
|
Guchar cResult0, cResult1, cResult2;
|
|
SplashColorPtr destColorPtr;
|
|
Guchar *destAlphaPtr;
|
|
int cSrcStride, x, lastX;
|
|
|
|
if (cSrcPtr) {
|
|
cSrcStride = 3;
|
|
} else {
|
|
cSrcPtr = pipe->cSrcVal;
|
|
cSrcStride = 0;
|
|
}
|
|
for (; x0 <= x1; ++x0) {
|
|
if (*shapePtr) {
|
|
break;
|
|
}
|
|
cSrcPtr += cSrcStride;
|
|
++shapePtr;
|
|
}
|
|
if (x0 > x1) {
|
|
return;
|
|
}
|
|
updateModX(x0);
|
|
updateModY(y);
|
|
lastX = x0;
|
|
|
|
destColorPtr = &bitmap->data[y * bitmap->rowSize + 3 * x0];
|
|
destAlphaPtr = &bitmap->alpha[y * bitmap->alphaRowSize + x0];
|
|
|
|
for (x = x0; x <= x1; ++x) {
|
|
|
|
//----- shape
|
|
shape = *shapePtr;
|
|
if (!shape) {
|
|
destColorPtr += 3;
|
|
++destAlphaPtr;
|
|
cSrcPtr += cSrcStride;
|
|
++shapePtr;
|
|
continue;
|
|
}
|
|
lastX = x;
|
|
|
|
//----- source color
|
|
cSrc0 = state->rgbTransferR[cSrcPtr[0]];
|
|
cSrc1 = state->rgbTransferG[cSrcPtr[1]];
|
|
cSrc2 = state->rgbTransferB[cSrcPtr[2]];
|
|
|
|
//----- source alpha
|
|
aSrc = shape;
|
|
|
|
//----- special case for aSrc = 255
|
|
if (aSrc == 255) {
|
|
aResult = 255;
|
|
cResult0 = cSrc0;
|
|
cResult1 = cSrc1;
|
|
cResult2 = cSrc2;
|
|
} else {
|
|
|
|
//----- read destination alpha
|
|
aDest = *destAlphaPtr;
|
|
|
|
//----- special case for aDest = 0
|
|
if (aDest == 0) {
|
|
aResult = aSrc;
|
|
cResult0 = cSrc0;
|
|
cResult1 = cSrc1;
|
|
cResult2 = cSrc2;
|
|
} else {
|
|
|
|
//----- read destination pixel
|
|
cDest0 = destColorPtr[2];
|
|
cDest1 = destColorPtr[1];
|
|
cDest2 = destColorPtr[0];
|
|
|
|
//----- result alpha and non-isolated group element correction
|
|
aResult = (Guchar)(aSrc + aDest - div255(aSrc * aDest));
|
|
alphaI = aResult;
|
|
|
|
//----- result color
|
|
cResult0 = (Guchar)(((alphaI - aSrc) * cDest0 + aSrc * cSrc0) / alphaI);
|
|
cResult1 = (Guchar)(((alphaI - aSrc) * cDest1 + aSrc * cSrc1) / alphaI);
|
|
cResult2 = (Guchar)(((alphaI - aSrc) * cDest2 + aSrc * cSrc2) / alphaI);
|
|
}
|
|
}
|
|
|
|
//----- write destination pixel
|
|
destColorPtr[0] = cResult2;
|
|
destColorPtr[1] = cResult1;
|
|
destColorPtr[2] = cResult0;
|
|
destColorPtr += 3;
|
|
*destAlphaPtr++ = aResult;
|
|
|
|
cSrcPtr += cSrcStride;
|
|
++shapePtr;
|
|
}
|
|
|
|
updateModX(lastX);
|
|
}
|
|
|
|
#if SPLASH_CMYK
|
|
// special case:
|
|
// !pipe->pattern && pipe->shapeOnly && !state->blendFunc &&
|
|
// bitmap->mode == splashModeCMYK8 && bitmap->alpha
|
|
void Splash::pipeRunShapeCMYK8(SplashPipe *pipe, int x0, int x1, int y,
|
|
Guchar *shapePtr, SplashColorPtr cSrcPtr) {
|
|
Guchar shape, aSrc, aDest, alphaI, aResult;
|
|
Guchar cSrc0, cSrc1, cSrc2, cSrc3;
|
|
Guchar cDest0, cDest1, cDest2, cDest3;
|
|
Guchar cResult0, cResult1, cResult2, cResult3;
|
|
SplashColorPtr destColorPtr;
|
|
Guchar *destAlphaPtr;
|
|
int cSrcStride, x, lastX;
|
|
|
|
if (cSrcPtr) {
|
|
cSrcStride = 4;
|
|
} else {
|
|
cSrcPtr = pipe->cSrcVal;
|
|
cSrcStride = 0;
|
|
}
|
|
for (; x0 <= x1; ++x0) {
|
|
if (*shapePtr) {
|
|
break;
|
|
}
|
|
cSrcPtr += cSrcStride;
|
|
++shapePtr;
|
|
}
|
|
if (x0 > x1) {
|
|
return;
|
|
}
|
|
updateModX(x0);
|
|
updateModY(y);
|
|
lastX = x0;
|
|
|
|
destColorPtr = &bitmap->data[y * bitmap->rowSize + 4 * x0];
|
|
destAlphaPtr = &bitmap->alpha[y * bitmap->alphaRowSize + x0];
|
|
|
|
for (x = x0; x <= x1; ++x) {
|
|
|
|
//----- shape
|
|
shape = *shapePtr;
|
|
if (!shape) {
|
|
destColorPtr += 4;
|
|
++destAlphaPtr;
|
|
cSrcPtr += cSrcStride;
|
|
++shapePtr;
|
|
continue;
|
|
}
|
|
lastX = x;
|
|
|
|
//----- read destination pixel
|
|
cDest0 = destColorPtr[0];
|
|
cDest1 = destColorPtr[1];
|
|
cDest2 = destColorPtr[2];
|
|
cDest3 = destColorPtr[3];
|
|
aDest = *destAlphaPtr;
|
|
|
|
//----- overprint
|
|
if (state->overprintMask & 1) {
|
|
cSrc0 = state->cmykTransferC[cSrcPtr[0]];
|
|
} else {
|
|
cSrc0 = div255(aDest * cDest0);
|
|
}
|
|
if (state->overprintMask & 2) {
|
|
cSrc1 = state->cmykTransferM[cSrcPtr[1]];
|
|
} else {
|
|
cSrc1 = div255(aDest * cDest1);
|
|
}
|
|
if (state->overprintMask & 4) {
|
|
cSrc2 = state->cmykTransferY[cSrcPtr[2]];
|
|
} else {
|
|
cSrc2 = div255(aDest * cDest2);
|
|
}
|
|
if (state->overprintMask & 8) {
|
|
cSrc3 = state->cmykTransferK[cSrcPtr[3]];
|
|
} else {
|
|
cSrc3 = div255(aDest * cDest3);
|
|
}
|
|
|
|
//----- source alpha
|
|
aSrc = shape;
|
|
|
|
//----- special case for aSrc = 255
|
|
if (aSrc == 255) {
|
|
aResult = 255;
|
|
cResult0 = cSrc0;
|
|
cResult1 = cSrc1;
|
|
cResult2 = cSrc2;
|
|
cResult3 = cSrc3;
|
|
} else {
|
|
|
|
//----- special case for aDest = 0
|
|
if (aDest == 0) {
|
|
aResult = aSrc;
|
|
cResult0 = cSrc0;
|
|
cResult1 = cSrc1;
|
|
cResult2 = cSrc2;
|
|
cResult3 = cSrc3;
|
|
} else {
|
|
|
|
//----- result alpha and non-isolated group element correction
|
|
aResult = (Guchar)(aSrc + aDest - div255(aSrc * aDest));
|
|
alphaI = aResult;
|
|
|
|
//----- result color
|
|
cResult0 = (Guchar)(((alphaI - aSrc) * cDest0 + aSrc * cSrc0) / alphaI);
|
|
cResult1 = (Guchar)(((alphaI - aSrc) * cDest1 + aSrc * cSrc1) / alphaI);
|
|
cResult2 = (Guchar)(((alphaI - aSrc) * cDest2 + aSrc * cSrc2) / alphaI);
|
|
cResult3 = (Guchar)(((alphaI - aSrc) * cDest3 + aSrc * cSrc3) / alphaI);
|
|
}
|
|
}
|
|
|
|
//----- write destination pixel
|
|
destColorPtr[0] = cResult0;
|
|
destColorPtr[1] = cResult1;
|
|
destColorPtr[2] = cResult2;
|
|
destColorPtr[3] = cResult3;
|
|
destColorPtr += 4;
|
|
*destAlphaPtr++ = aResult;
|
|
|
|
cSrcPtr += cSrcStride;
|
|
++shapePtr;
|
|
}
|
|
|
|
updateModX(lastX);
|
|
}
|
|
#endif
|
|
|
|
|
|
// special case:
|
|
// !pipe->pattern && !pipe->noTransparency && !state->softMask &&
|
|
// pipe->usesShape && !pipe->alpha0Ptr && !state->blendFunc &&
|
|
// !pipe->nonIsolatedGroup &&
|
|
// bitmap->mode == splashModeMono1 && !bitmap->alpha
|
|
void Splash::pipeRunAAMono1(SplashPipe *pipe, int x0, int x1, int y,
|
|
Guchar *shapePtr, SplashColorPtr cSrcPtr) {
|
|
Guchar shape, aSrc, cSrc0, cDest0, cResult0;
|
|
SplashColorPtr destColorPtr;
|
|
Guchar destColorMask;
|
|
SplashScreenCursor screenCursor;
|
|
int cSrcStride, x, lastX;
|
|
|
|
if (cSrcPtr) {
|
|
cSrcStride = 1;
|
|
} else {
|
|
cSrcPtr = pipe->cSrcVal;
|
|
cSrcStride = 0;
|
|
}
|
|
for (; x0 <= x1; ++x0) {
|
|
if (*shapePtr) {
|
|
break;
|
|
}
|
|
cSrcPtr += cSrcStride;
|
|
++shapePtr;
|
|
}
|
|
if (x0 > x1) {
|
|
return;
|
|
}
|
|
updateModX(x0);
|
|
updateModY(y);
|
|
lastX = x0;
|
|
|
|
destColorPtr = &bitmap->data[y * bitmap->rowSize + (x0 >> 3)];
|
|
destColorMask = (Guchar)(0x80 >> (x0 & 7));
|
|
|
|
screenCursor = state->screen->getTestCursor(y);
|
|
|
|
for (x = x0; x <= x1; ++x) {
|
|
|
|
//----- shape
|
|
shape = *shapePtr;
|
|
if (!shape) {
|
|
destColorPtr += destColorMask & 1;
|
|
destColorMask = (Guchar)((destColorMask << 7) | (destColorMask >> 1));
|
|
cSrcPtr += cSrcStride;
|
|
++shapePtr;
|
|
continue;
|
|
}
|
|
lastX = x;
|
|
|
|
//----- read destination pixel
|
|
cDest0 = (*destColorPtr & destColorMask) ? 0xff : 0x00;
|
|
|
|
//----- source color
|
|
cSrc0 = state->grayTransfer[cSrcPtr[0]];
|
|
|
|
//----- source alpha
|
|
aSrc = div255(pipe->aInput * shape);
|
|
|
|
//----- result color
|
|
// note: aDest = alphaI = aResult = 0xff
|
|
cResult0 = (Guchar)div255((0xff - aSrc) * cDest0 + aSrc * cSrc0);
|
|
|
|
//----- write destination pixel
|
|
if (state->screen->testWithCursor(screenCursor, x, cResult0)) {
|
|
*destColorPtr |= destColorMask;
|
|
} else {
|
|
*destColorPtr &= (Guchar)~destColorMask;
|
|
}
|
|
destColorPtr += destColorMask & 1;
|
|
destColorMask = (Guchar)((destColorMask << 7) | (destColorMask >> 1));
|
|
|
|
cSrcPtr += cSrcStride;
|
|
++shapePtr;
|
|
}
|
|
|
|
updateModX(lastX);
|
|
}
|
|
|
|
// special case:
|
|
// !pipe->pattern && !pipe->noTransparency && !state->softMask &&
|
|
// pipe->usesShape && !pipe->alpha0Ptr && !state->blendFunc &&
|
|
// !pipe->nonIsolatedGroup &&
|
|
// bitmap->mode == splashModeMono8 && bitmap->alpha
|
|
void Splash::pipeRunAAMono8(SplashPipe *pipe, int x0, int x1, int y,
|
|
Guchar *shapePtr, SplashColorPtr cSrcPtr) {
|
|
Guchar shape, aSrc, aDest, alphaI, aResult, cSrc0, cDest0, cResult0;
|
|
SplashColorPtr destColorPtr;
|
|
Guchar *destAlphaPtr;
|
|
int cSrcStride, x, lastX;
|
|
|
|
if (cSrcPtr) {
|
|
cSrcStride = 1;
|
|
} else {
|
|
cSrcPtr = pipe->cSrcVal;
|
|
cSrcStride = 0;
|
|
}
|
|
for (; x0 <= x1; ++x0) {
|
|
if (*shapePtr) {
|
|
break;
|
|
}
|
|
cSrcPtr += cSrcStride;
|
|
++shapePtr;
|
|
}
|
|
if (x0 > x1) {
|
|
return;
|
|
}
|
|
updateModX(x0);
|
|
updateModY(y);
|
|
lastX = x0;
|
|
|
|
destColorPtr = &bitmap->data[y * bitmap->rowSize + x0];
|
|
destAlphaPtr = &bitmap->alpha[y * bitmap->alphaRowSize + x0];
|
|
|
|
for (x = x0; x <= x1; ++x) {
|
|
|
|
//----- shape
|
|
shape = *shapePtr;
|
|
if (!shape) {
|
|
++destColorPtr;
|
|
++destAlphaPtr;
|
|
cSrcPtr += cSrcStride;
|
|
++shapePtr;
|
|
continue;
|
|
}
|
|
lastX = x;
|
|
|
|
//----- read destination pixel
|
|
cDest0 = *destColorPtr;
|
|
aDest = *destAlphaPtr;
|
|
|
|
//----- source color
|
|
cSrc0 = state->grayTransfer[cSrcPtr[0]];
|
|
|
|
//----- source alpha
|
|
aSrc = div255(pipe->aInput * shape);
|
|
|
|
//----- result alpha and non-isolated group element correction
|
|
aResult = (Guchar)(aSrc + aDest - div255(aSrc * aDest));
|
|
alphaI = aResult;
|
|
|
|
//----- result color
|
|
if (alphaI == 0) {
|
|
cResult0 = 0;
|
|
} else {
|
|
cResult0 = (Guchar)(((alphaI - aSrc) * cDest0 + aSrc * cSrc0) / alphaI);
|
|
}
|
|
|
|
//----- write destination pixel
|
|
*destColorPtr++ = cResult0;
|
|
*destAlphaPtr++ = aResult;
|
|
|
|
cSrcPtr += cSrcStride;
|
|
++shapePtr;
|
|
}
|
|
|
|
updateModX(lastX);
|
|
}
|
|
|
|
// special case:
|
|
// !pipe->pattern && !pipe->noTransparency && !state->softMask &&
|
|
// pipe->usesShape && !pipe->alpha0Ptr && !state->blendFunc &&
|
|
// !pipe->nonIsolatedGroup &&
|
|
// bitmap->mode == splashModeRGB8 && bitmap->alpha
|
|
void Splash::pipeRunAARGB8(SplashPipe *pipe, int x0, int x1, int y,
|
|
Guchar *shapePtr, SplashColorPtr cSrcPtr) {
|
|
Guchar shape, aSrc, aDest, alphaI, aResult;
|
|
Guchar cSrc0, cSrc1, cSrc2;
|
|
Guchar cDest0, cDest1, cDest2;
|
|
Guchar cResult0, cResult1, cResult2;
|
|
SplashColorPtr destColorPtr;
|
|
Guchar *destAlphaPtr;
|
|
int cSrcStride, x, lastX;
|
|
|
|
if (cSrcPtr) {
|
|
cSrcStride = 3;
|
|
} else {
|
|
cSrcPtr = pipe->cSrcVal;
|
|
cSrcStride = 0;
|
|
}
|
|
for (; x0 <= x1; ++x0) {
|
|
if (*shapePtr) {
|
|
break;
|
|
}
|
|
cSrcPtr += cSrcStride;
|
|
++shapePtr;
|
|
}
|
|
if (x0 > x1) {
|
|
return;
|
|
}
|
|
updateModX(x0);
|
|
updateModY(y);
|
|
lastX = x0;
|
|
|
|
destColorPtr = &bitmap->data[y * bitmap->rowSize + 3 * x0];
|
|
destAlphaPtr = &bitmap->alpha[y * bitmap->alphaRowSize + x0];
|
|
|
|
for (x = x0; x <= x1; ++x) {
|
|
|
|
//----- shape
|
|
shape = *shapePtr;
|
|
if (!shape) {
|
|
destColorPtr += 3;
|
|
++destAlphaPtr;
|
|
cSrcPtr += cSrcStride;
|
|
++shapePtr;
|
|
continue;
|
|
}
|
|
lastX = x;
|
|
|
|
//----- read destination pixel
|
|
cDest0 = destColorPtr[0];
|
|
cDest1 = destColorPtr[1];
|
|
cDest2 = destColorPtr[2];
|
|
aDest = *destAlphaPtr;
|
|
|
|
//----- source color
|
|
cSrc0 = state->rgbTransferR[cSrcPtr[0]];
|
|
cSrc1 = state->rgbTransferG[cSrcPtr[1]];
|
|
cSrc2 = state->rgbTransferB[cSrcPtr[2]];
|
|
|
|
//----- source alpha
|
|
aSrc = div255(pipe->aInput * shape);
|
|
|
|
//----- result alpha and non-isolated group element correction
|
|
aResult = (Guchar)(aSrc + aDest - div255(aSrc * aDest));
|
|
alphaI = aResult;
|
|
|
|
//----- result color
|
|
if (alphaI == 0) {
|
|
cResult0 = 0;
|
|
cResult1 = 0;
|
|
cResult2 = 0;
|
|
} else {
|
|
cResult0 = (Guchar)(((alphaI - aSrc) * cDest0 + aSrc * cSrc0) / alphaI);
|
|
cResult1 = (Guchar)(((alphaI - aSrc) * cDest1 + aSrc * cSrc1) / alphaI);
|
|
cResult2 = (Guchar)(((alphaI - aSrc) * cDest2 + aSrc * cSrc2) / alphaI);
|
|
}
|
|
|
|
//----- write destination pixel
|
|
destColorPtr[0] = cResult0;
|
|
destColorPtr[1] = cResult1;
|
|
destColorPtr[2] = cResult2;
|
|
destColorPtr += 3;
|
|
*destAlphaPtr++ = aResult;
|
|
|
|
cSrcPtr += cSrcStride;
|
|
++shapePtr;
|
|
}
|
|
|
|
updateModX(lastX);
|
|
}
|
|
|
|
// special case:
|
|
// !pipe->pattern && !pipe->noTransparency && !state->softMask &&
|
|
// pipe->usesShape && !pipe->alpha0Ptr && !state->blendFunc &&
|
|
// !pipe->nonIsolatedGroup &&
|
|
// bitmap->mode == splashModeBGR8 && bitmap->alpha
|
|
void Splash::pipeRunAABGR8(SplashPipe *pipe, int x0, int x1, int y,
|
|
Guchar *shapePtr, SplashColorPtr cSrcPtr) {
|
|
Guchar shape, aSrc, aDest, alphaI, aResult;
|
|
Guchar cSrc0, cSrc1, cSrc2;
|
|
Guchar cDest0, cDest1, cDest2;
|
|
Guchar cResult0, cResult1, cResult2;
|
|
SplashColorPtr destColorPtr;
|
|
Guchar *destAlphaPtr;
|
|
int cSrcStride, x, lastX;
|
|
|
|
if (cSrcPtr) {
|
|
cSrcStride = 3;
|
|
} else {
|
|
cSrcPtr = pipe->cSrcVal;
|
|
cSrcStride = 0;
|
|
}
|
|
for (; x0 <= x1; ++x0) {
|
|
if (*shapePtr) {
|
|
break;
|
|
}
|
|
cSrcPtr += cSrcStride;
|
|
++shapePtr;
|
|
}
|
|
if (x0 > x1) {
|
|
return;
|
|
}
|
|
updateModX(x0);
|
|
updateModY(y);
|
|
lastX = x0;
|
|
|
|
destColorPtr = &bitmap->data[y * bitmap->rowSize + 3 * x0];
|
|
destAlphaPtr = &bitmap->alpha[y * bitmap->alphaRowSize + x0];
|
|
|
|
for (x = x0; x <= x1; ++x) {
|
|
|
|
//----- shape
|
|
shape = *shapePtr;
|
|
if (!shape) {
|
|
destColorPtr += 3;
|
|
++destAlphaPtr;
|
|
cSrcPtr += cSrcStride;
|
|
++shapePtr;
|
|
continue;
|
|
}
|
|
lastX = x;
|
|
|
|
//----- read destination pixel
|
|
cDest0 = destColorPtr[2];
|
|
cDest1 = destColorPtr[1];
|
|
cDest2 = destColorPtr[0];
|
|
aDest = *destAlphaPtr;
|
|
|
|
//----- source color
|
|
cSrc0 = state->rgbTransferR[cSrcPtr[0]];
|
|
cSrc1 = state->rgbTransferG[cSrcPtr[1]];
|
|
cSrc2 = state->rgbTransferB[cSrcPtr[2]];
|
|
|
|
//----- source alpha
|
|
aSrc = div255(pipe->aInput * shape);
|
|
|
|
//----- result alpha and non-isolated group element correction
|
|
aResult = (Guchar)(aSrc + aDest - div255(aSrc * aDest));
|
|
alphaI = aResult;
|
|
|
|
//----- result color
|
|
if (alphaI == 0) {
|
|
cResult0 = 0;
|
|
cResult1 = 0;
|
|
cResult2 = 0;
|
|
} else {
|
|
cResult0 = (Guchar)(((alphaI - aSrc) * cDest0 + aSrc * cSrc0) / alphaI);
|
|
cResult1 = (Guchar)(((alphaI - aSrc) * cDest1 + aSrc * cSrc1) / alphaI);
|
|
cResult2 = (Guchar)(((alphaI - aSrc) * cDest2 + aSrc * cSrc2) / alphaI);
|
|
}
|
|
|
|
//----- write destination pixel
|
|
destColorPtr[0] = cResult2;
|
|
destColorPtr[1] = cResult1;
|
|
destColorPtr[2] = cResult0;
|
|
destColorPtr += 3;
|
|
*destAlphaPtr++ = aResult;
|
|
|
|
cSrcPtr += cSrcStride;
|
|
++shapePtr;
|
|
}
|
|
|
|
updateModX(lastX);
|
|
}
|
|
|
|
#if SPLASH_CMYK
|
|
// special case:
|
|
// !pipe->pattern && !pipe->noTransparency && !state->softMask &&
|
|
// pipe->usesShape && !pipe->alpha0Ptr && !state->blendFunc &&
|
|
// !pipe->nonIsolatedGroup &&
|
|
// bitmap->mode == splashModeCMYK8 && bitmap->alpha
|
|
void Splash::pipeRunAACMYK8(SplashPipe *pipe, int x0, int x1, int y,
|
|
Guchar *shapePtr, SplashColorPtr cSrcPtr) {
|
|
Guchar shape, aSrc, aDest, alphaI, aResult;
|
|
Guchar cSrc0, cSrc1, cSrc2, cSrc3;
|
|
Guchar cDest0, cDest1, cDest2, cDest3;
|
|
Guchar cResult0, cResult1, cResult2, cResult3;
|
|
SplashColorPtr destColorPtr;
|
|
Guchar *destAlphaPtr;
|
|
int cSrcStride, x, lastX;
|
|
|
|
if (cSrcPtr) {
|
|
cSrcStride = 4;
|
|
} else {
|
|
cSrcPtr = pipe->cSrcVal;
|
|
cSrcStride = 0;
|
|
}
|
|
for (; x0 <= x1; ++x0) {
|
|
if (*shapePtr) {
|
|
break;
|
|
}
|
|
cSrcPtr += cSrcStride;
|
|
++shapePtr;
|
|
}
|
|
if (x0 > x1) {
|
|
return;
|
|
}
|
|
updateModX(x0);
|
|
updateModY(y);
|
|
lastX = x0;
|
|
|
|
destColorPtr = &bitmap->data[y * bitmap->rowSize + 4 * x0];
|
|
destAlphaPtr = &bitmap->alpha[y * bitmap->alphaRowSize + x0];
|
|
|
|
for (x = x0; x <= x1; ++x) {
|
|
|
|
//----- shape
|
|
shape = *shapePtr;
|
|
if (!shape) {
|
|
destColorPtr += 4;
|
|
++destAlphaPtr;
|
|
cSrcPtr += cSrcStride;
|
|
++shapePtr;
|
|
continue;
|
|
}
|
|
lastX = x;
|
|
|
|
//----- read destination pixel
|
|
cDest0 = destColorPtr[0];
|
|
cDest1 = destColorPtr[1];
|
|
cDest2 = destColorPtr[2];
|
|
cDest3 = destColorPtr[3];
|
|
aDest = *destAlphaPtr;
|
|
|
|
//----- overprint
|
|
if (state->overprintMask & 1) {
|
|
cSrc0 = state->cmykTransferC[cSrcPtr[0]];
|
|
} else {
|
|
cSrc0 = div255(aDest * cDest0);
|
|
}
|
|
if (state->overprintMask & 2) {
|
|
cSrc1 = state->cmykTransferM[cSrcPtr[1]];
|
|
} else {
|
|
cSrc1 = div255(aDest * cDest1);
|
|
}
|
|
if (state->overprintMask & 4) {
|
|
cSrc2 = state->cmykTransferY[cSrcPtr[2]];
|
|
} else {
|
|
cSrc2 = div255(aDest * cDest2);
|
|
}
|
|
if (state->overprintMask & 8) {
|
|
cSrc3 = state->cmykTransferK[cSrcPtr[3]];
|
|
} else {
|
|
cSrc3 = div255(aDest * cDest3);
|
|
}
|
|
|
|
//----- source alpha
|
|
aSrc = div255(pipe->aInput * shape);
|
|
|
|
//----- result alpha and non-isolated group element correction
|
|
aResult = (Guchar)(aSrc + aDest - div255(aSrc * aDest));
|
|
alphaI = aResult;
|
|
|
|
//----- result color
|
|
if (alphaI == 0) {
|
|
cResult0 = 0;
|
|
cResult1 = 0;
|
|
cResult2 = 0;
|
|
cResult3 = 0;
|
|
} else {
|
|
cResult0 = (Guchar)(((alphaI - aSrc) * cDest0 + aSrc * cSrc0) / alphaI);
|
|
cResult1 = (Guchar)(((alphaI - aSrc) * cDest1 + aSrc * cSrc1) / alphaI);
|
|
cResult2 = (Guchar)(((alphaI - aSrc) * cDest2 + aSrc * cSrc2) / alphaI);
|
|
cResult3 = (Guchar)(((alphaI - aSrc) * cDest3 + aSrc * cSrc3) / alphaI);
|
|
}
|
|
|
|
//----- write destination pixel
|
|
destColorPtr[0] = cResult0;
|
|
destColorPtr[1] = cResult1;
|
|
destColorPtr[2] = cResult2;
|
|
destColorPtr[3] = cResult3;
|
|
destColorPtr += 4;
|
|
*destAlphaPtr++ = aResult;
|
|
|
|
cSrcPtr += cSrcStride;
|
|
++shapePtr;
|
|
}
|
|
|
|
updateModX(lastX);
|
|
}
|
|
#endif
|
|
|
|
|
|
//------------------------------------------------------------------------
|
|
|
|
// Transform a point from user space to device space.
|
|
inline void Splash::transform(SplashCoord *matrix,
|
|
SplashCoord xi, SplashCoord yi,
|
|
SplashCoord *xo, SplashCoord *yo) {
|
|
// [ m[0] m[1] 0 ]
|
|
// [xo yo 1] = [xi yi 1] * [ m[2] m[3] 0 ]
|
|
// [ m[4] m[5] 1 ]
|
|
*xo = xi * matrix[0] + yi * matrix[2] + matrix[4];
|
|
*yo = xi * matrix[1] + yi * matrix[3] + matrix[5];
|
|
}
|
|
|
|
//------------------------------------------------------------------------
|
|
// Splash
|
|
//------------------------------------------------------------------------
|
|
|
|
Splash::Splash(SplashBitmap *bitmapA, GBool vectorAntialiasA,
|
|
SplashScreenParams *screenParams) {
|
|
bitmap = bitmapA;
|
|
bitmapComps = splashColorModeNComps[bitmap->mode];
|
|
vectorAntialias = vectorAntialiasA;
|
|
inShading = gFalse;
|
|
state = new SplashState(bitmap->width, bitmap->height, vectorAntialias,
|
|
screenParams);
|
|
scanBuf = (Guchar *)gmalloc(bitmap->width);
|
|
if (bitmap->mode == splashModeMono1) {
|
|
scanBuf2 = (Guchar *)gmalloc(bitmap->width);
|
|
} else {
|
|
scanBuf2 = NULL;
|
|
}
|
|
groupBackBitmap = NULL;
|
|
minLineWidth = 0;
|
|
clearModRegion();
|
|
debugMode = gFalse;
|
|
}
|
|
|
|
Splash::Splash(SplashBitmap *bitmapA, GBool vectorAntialiasA,
|
|
SplashScreen *screenA) {
|
|
bitmap = bitmapA;
|
|
bitmapComps = splashColorModeNComps[bitmap->mode];
|
|
vectorAntialias = vectorAntialiasA;
|
|
inShading = gFalse;
|
|
state = new SplashState(bitmap->width, bitmap->height, vectorAntialias,
|
|
screenA);
|
|
scanBuf = (Guchar *)gmalloc(bitmap->width);
|
|
if (bitmap->mode == splashModeMono1) {
|
|
scanBuf2 = (Guchar *)gmalloc(bitmap->width);
|
|
} else {
|
|
scanBuf2 = NULL;
|
|
}
|
|
groupBackBitmap = NULL;
|
|
minLineWidth = 0;
|
|
clearModRegion();
|
|
debugMode = gFalse;
|
|
}
|
|
|
|
Splash::~Splash() {
|
|
while (state->next) {
|
|
restoreState();
|
|
}
|
|
delete state;
|
|
gfree(scanBuf);
|
|
gfree(scanBuf2);
|
|
}
|
|
|
|
//------------------------------------------------------------------------
|
|
// state read
|
|
//------------------------------------------------------------------------
|
|
|
|
SplashCoord *Splash::getMatrix() {
|
|
return state->matrix;
|
|
}
|
|
|
|
SplashPattern *Splash::getStrokePattern() {
|
|
return state->strokePattern;
|
|
}
|
|
|
|
SplashPattern *Splash::getFillPattern() {
|
|
return state->fillPattern;
|
|
}
|
|
|
|
SplashScreen *Splash::getScreen() {
|
|
return state->screen;
|
|
}
|
|
|
|
SplashBlendFunc Splash::getBlendFunc() {
|
|
return state->blendFunc;
|
|
}
|
|
|
|
SplashCoord Splash::getStrokeAlpha() {
|
|
return state->strokeAlpha;
|
|
}
|
|
|
|
SplashCoord Splash::getFillAlpha() {
|
|
return state->fillAlpha;
|
|
}
|
|
|
|
SplashCoord Splash::getLineWidth() {
|
|
return state->lineWidth;
|
|
}
|
|
|
|
int Splash::getLineCap() {
|
|
return state->lineCap;
|
|
}
|
|
|
|
int Splash::getLineJoin() {
|
|
return state->lineJoin;
|
|
}
|
|
|
|
SplashCoord Splash::getMiterLimit() {
|
|
return state->miterLimit;
|
|
}
|
|
|
|
SplashCoord Splash::getFlatness() {
|
|
return state->flatness;
|
|
}
|
|
|
|
SplashCoord *Splash::getLineDash() {
|
|
return state->lineDash;
|
|
}
|
|
|
|
int Splash::getLineDashLength() {
|
|
return state->lineDashLength;
|
|
}
|
|
|
|
SplashCoord Splash::getLineDashPhase() {
|
|
return state->lineDashPhase;
|
|
}
|
|
|
|
SplashStrokeAdjustMode Splash::getStrokeAdjust() {
|
|
return state->strokeAdjust;
|
|
}
|
|
|
|
SplashClip *Splash::getClip() {
|
|
return state->clip;
|
|
}
|
|
|
|
SplashBitmap *Splash::getSoftMask() {
|
|
return state->softMask;
|
|
}
|
|
|
|
GBool Splash::getInNonIsolatedGroup() {
|
|
return state->inNonIsolatedGroup;
|
|
}
|
|
|
|
GBool Splash::getInKnockoutGroup() {
|
|
return state->inKnockoutGroup;
|
|
}
|
|
|
|
//------------------------------------------------------------------------
|
|
// state write
|
|
//------------------------------------------------------------------------
|
|
|
|
void Splash::setMatrix(SplashCoord *matrix) {
|
|
memcpy(state->matrix, matrix, 6 * sizeof(SplashCoord));
|
|
}
|
|
|
|
void Splash::setStrokePattern(SplashPattern *strokePattern) {
|
|
state->setStrokePattern(strokePattern);
|
|
}
|
|
|
|
void Splash::setFillPattern(SplashPattern *fillPattern) {
|
|
state->setFillPattern(fillPattern);
|
|
}
|
|
|
|
void Splash::setScreen(SplashScreen *screen) {
|
|
state->setScreen(screen);
|
|
}
|
|
|
|
void Splash::setBlendFunc(SplashBlendFunc func) {
|
|
state->blendFunc = func;
|
|
}
|
|
|
|
void Splash::setStrokeAlpha(SplashCoord alpha) {
|
|
state->strokeAlpha = alpha;
|
|
}
|
|
|
|
void Splash::setFillAlpha(SplashCoord alpha) {
|
|
state->fillAlpha = alpha;
|
|
}
|
|
|
|
void Splash::setLineWidth(SplashCoord lineWidth) {
|
|
state->lineWidth = lineWidth;
|
|
}
|
|
|
|
void Splash::setLineCap(int lineCap) {
|
|
if (lineCap >= 0 && lineCap <= 2) {
|
|
state->lineCap = lineCap;
|
|
} else {
|
|
state->lineCap = 0;
|
|
}
|
|
}
|
|
|
|
void Splash::setLineJoin(int lineJoin) {
|
|
if (lineJoin >= 0 && lineJoin <= 2) {
|
|
state->lineJoin = lineJoin;
|
|
} else {
|
|
state->lineJoin = 0;
|
|
}
|
|
}
|
|
|
|
void Splash::setMiterLimit(SplashCoord miterLimit) {
|
|
state->miterLimit = miterLimit;
|
|
}
|
|
|
|
void Splash::setFlatness(SplashCoord flatness) {
|
|
if (flatness < 1) {
|
|
state->flatness = 1;
|
|
} else {
|
|
state->flatness = flatness;
|
|
}
|
|
}
|
|
|
|
void Splash::setLineDash(SplashCoord *lineDash, int lineDashLength,
|
|
SplashCoord lineDashPhase) {
|
|
state->setLineDash(lineDash, lineDashLength, lineDashPhase);
|
|
}
|
|
|
|
void Splash::setStrokeAdjust(SplashStrokeAdjustMode strokeAdjust) {
|
|
state->strokeAdjust = strokeAdjust;
|
|
}
|
|
|
|
void Splash::clipResetToRect(SplashCoord x0, SplashCoord y0,
|
|
SplashCoord x1, SplashCoord y1) {
|
|
state->clipResetToRect(x0, y0, x1, y1);
|
|
}
|
|
|
|
SplashError Splash::clipToRect(SplashCoord x0, SplashCoord y0,
|
|
SplashCoord x1, SplashCoord y1) {
|
|
return state->clipToRect(x0, y0, x1, y1);
|
|
}
|
|
|
|
SplashError Splash::clipToPath(SplashPath *path, GBool eo) {
|
|
return state->clipToPath(path, eo);
|
|
}
|
|
|
|
void Splash::setSoftMask(SplashBitmap *softMask) {
|
|
state->setSoftMask(softMask);
|
|
}
|
|
|
|
void Splash::setInTransparencyGroup(SplashBitmap *groupBackBitmapA,
|
|
int groupBackXA, int groupBackYA,
|
|
GBool nonIsolated, GBool knockout) {
|
|
groupBackBitmap = groupBackBitmapA;
|
|
groupBackX = groupBackXA;
|
|
groupBackY = groupBackYA;
|
|
state->inNonIsolatedGroup = nonIsolated;
|
|
state->inKnockoutGroup = knockout;
|
|
}
|
|
|
|
void Splash::setTransfer(Guchar *red, Guchar *green, Guchar *blue,
|
|
Guchar *gray) {
|
|
state->setTransfer(red, green, blue, gray);
|
|
}
|
|
|
|
void Splash::setOverprintMask(Guint overprintMask) {
|
|
state->overprintMask = overprintMask;
|
|
}
|
|
|
|
|
|
void Splash::setEnablePathSimplification(GBool en) {
|
|
state->enablePathSimplification = en;
|
|
}
|
|
|
|
//------------------------------------------------------------------------
|
|
// state save/restore
|
|
//------------------------------------------------------------------------
|
|
|
|
void Splash::saveState() {
|
|
SplashState *newState;
|
|
|
|
newState = state->copy();
|
|
newState->next = state;
|
|
state = newState;
|
|
}
|
|
|
|
SplashError Splash::restoreState() {
|
|
SplashState *oldState;
|
|
|
|
if (!state->next) {
|
|
return splashErrNoSave;
|
|
}
|
|
oldState = state;
|
|
state = state->next;
|
|
delete oldState;
|
|
return splashOk;
|
|
}
|
|
|
|
//------------------------------------------------------------------------
|
|
// drawing operations
|
|
//------------------------------------------------------------------------
|
|
|
|
void Splash::clear(SplashColorPtr color, Guchar alpha) {
|
|
SplashColorPtr row, p;
|
|
Guchar mono;
|
|
int x, y;
|
|
|
|
switch (bitmap->mode) {
|
|
case splashModeMono1:
|
|
mono = (color[0] & 0x80) ? 0xff : 0x00;
|
|
if (bitmap->rowSize < 0) {
|
|
memset(bitmap->data + bitmap->rowSize * (bitmap->height - 1),
|
|
mono, -bitmap->rowSize * bitmap->height);
|
|
} else {
|
|
memset(bitmap->data, mono, bitmap->rowSize * bitmap->height);
|
|
}
|
|
break;
|
|
case splashModeMono8:
|
|
if (bitmap->rowSize < 0) {
|
|
memset(bitmap->data + bitmap->rowSize * (bitmap->height - 1),
|
|
color[0], -bitmap->rowSize * bitmap->height);
|
|
} else {
|
|
memset(bitmap->data, color[0], bitmap->rowSize * bitmap->height);
|
|
}
|
|
break;
|
|
case splashModeRGB8:
|
|
if (color[0] == color[1] && color[1] == color[2]) {
|
|
if (bitmap->rowSize < 0) {
|
|
memset(bitmap->data + bitmap->rowSize * (bitmap->height - 1),
|
|
color[0], -bitmap->rowSize * bitmap->height);
|
|
} else {
|
|
memset(bitmap->data, color[0], bitmap->rowSize * bitmap->height);
|
|
}
|
|
} else {
|
|
row = bitmap->data;
|
|
for (y = 0; y < bitmap->height; ++y) {
|
|
p = row;
|
|
for (x = 0; x < bitmap->width; ++x) {
|
|
*p++ = color[0];
|
|
*p++ = color[1];
|
|
*p++ = color[2];
|
|
}
|
|
row += bitmap->rowSize;
|
|
}
|
|
}
|
|
break;
|
|
case splashModeBGR8:
|
|
if (color[0] == color[1] && color[1] == color[2]) {
|
|
if (bitmap->rowSize < 0) {
|
|
memset(bitmap->data + bitmap->rowSize * (bitmap->height - 1),
|
|
color[0], -bitmap->rowSize * bitmap->height);
|
|
} else {
|
|
memset(bitmap->data, color[0], bitmap->rowSize * bitmap->height);
|
|
}
|
|
} else {
|
|
row = bitmap->data;
|
|
for (y = 0; y < bitmap->height; ++y) {
|
|
p = row;
|
|
for (x = 0; x < bitmap->width; ++x) {
|
|
*p++ = color[2];
|
|
*p++ = color[1];
|
|
*p++ = color[0];
|
|
}
|
|
row += bitmap->rowSize;
|
|
}
|
|
}
|
|
break;
|
|
#if SPLASH_CMYK
|
|
case splashModeCMYK8:
|
|
if (color[0] == color[1] && color[1] == color[2] && color[2] == color[3]) {
|
|
if (bitmap->rowSize < 0) {
|
|
memset(bitmap->data + bitmap->rowSize * (bitmap->height - 1),
|
|
color[0], -bitmap->rowSize * bitmap->height);
|
|
} else {
|
|
memset(bitmap->data, color[0], bitmap->rowSize * bitmap->height);
|
|
}
|
|
} else {
|
|
row = bitmap->data;
|
|
for (y = 0; y < bitmap->height; ++y) {
|
|
p = row;
|
|
for (x = 0; x < bitmap->width; ++x) {
|
|
*p++ = color[0];
|
|
*p++ = color[1];
|
|
*p++ = color[2];
|
|
*p++ = color[3];
|
|
}
|
|
row += bitmap->rowSize;
|
|
}
|
|
}
|
|
break;
|
|
#endif
|
|
}
|
|
|
|
if (bitmap->alpha) {
|
|
memset(bitmap->alpha, alpha, bitmap->alphaRowSize * bitmap->height);
|
|
}
|
|
|
|
updateModX(0);
|
|
updateModY(0);
|
|
updateModX(bitmap->width - 1);
|
|
updateModY(bitmap->height - 1);
|
|
}
|
|
|
|
SplashError Splash::stroke(SplashPath *path) {
|
|
SplashPath *path2, *dPath;
|
|
SplashCoord t0, t1, t2, t3, w, w2, lineDashMax, lineDashTotal;
|
|
int lineCap, lineJoin, i;
|
|
|
|
if (debugMode) {
|
|
printf("stroke [dash:%d] [width:%.2f]:\n",
|
|
state->lineDashLength, (double)state->lineWidth);
|
|
dumpPath(path);
|
|
}
|
|
opClipRes = splashClipAllOutside;
|
|
if (path->length == 0) {
|
|
return splashErrEmptyPath;
|
|
}
|
|
path2 = flattenPath(path, state->matrix, state->flatness);
|
|
|
|
// Compute an approximation of the transformed line width.
|
|
// Given a CTM of [m0 m1],
|
|
// [m2 m3]
|
|
// if |m0|*|m3| >= |m1|*|m2| then use min{|m0|,|m3|}, else
|
|
// use min{|m1|,|m2|}.
|
|
// This handles the common cases -- [s 0 ] and [0 s] --
|
|
// [0 +/-s] [+/-s 0]
|
|
// well, and still does something reasonable for the uncommon
|
|
// case transforms.
|
|
t0 = splashAbs(state->matrix[0]);
|
|
t1 = splashAbs(state->matrix[1]);
|
|
t2 = splashAbs(state->matrix[2]);
|
|
t3 = splashAbs(state->matrix[3]);
|
|
if (t0 * t3 >= t1 * t2) {
|
|
w = (t0 < t3) ? t0 : t3;
|
|
} else {
|
|
w = (t1 < t2) ? t1 : t2;
|
|
}
|
|
w2 = w * state->lineWidth;
|
|
|
|
// construct the dashed path
|
|
if (state->lineDashLength > 0) {
|
|
|
|
// check the maximum transformed dash element length (using the
|
|
// same approximation as for line width) -- if it's less than 0.1
|
|
// pixel, don't apply the dash pattern; this avoids a huge
|
|
// performance/memory hit with PDF files that use absurd dash
|
|
// patterns like [0.0007 0.0003]
|
|
lineDashTotal = 0;
|
|
lineDashMax = 0;
|
|
for (i = 0; i < state->lineDashLength; ++i) {
|
|
lineDashTotal += state->lineDash[i];
|
|
if (state->lineDash[i] > lineDashMax) {
|
|
lineDashMax = state->lineDash[i];
|
|
}
|
|
}
|
|
// Acrobat simply draws nothing if the dash array is [0]
|
|
if (lineDashTotal == 0) {
|
|
delete path2;
|
|
return splashOk;
|
|
}
|
|
if (w * lineDashMax > 0.1) {
|
|
|
|
dPath = makeDashedPath(path2);
|
|
delete path2;
|
|
path2 = dPath;
|
|
if (path2->length == 0) {
|
|
delete path2;
|
|
return splashErrEmptyPath;
|
|
}
|
|
}
|
|
}
|
|
|
|
// round caps on narrow lines look bad, and can't be
|
|
// stroke-adjusted, so use projecting caps instead (but we can't do
|
|
// this if there are zero-length dashes or segments, because those
|
|
// turn into round dots)
|
|
lineCap = state->lineCap;
|
|
lineJoin = state->lineJoin;
|
|
if (state->strokeAdjust == splashStrokeAdjustCAD &&
|
|
w2 < 3.5) {
|
|
if (lineCap == splashLineCapRound &&
|
|
!state->lineDashContainsZeroLengthDashes() &&
|
|
!path->containsZeroLengthSubpaths()) {
|
|
lineCap = splashLineCapProjecting;
|
|
}
|
|
if (lineJoin == splashLineJoinRound) {
|
|
lineJoin = splashLineJoinBevel;
|
|
}
|
|
}
|
|
|
|
// if there is a min line width set, and the transformed line width
|
|
// is smaller, use the min line width
|
|
if (w > 0 && w2 < minLineWidth) {
|
|
strokeWide(path2, minLineWidth / w, splashLineCapButt, splashLineJoinBevel);
|
|
} else if (bitmap->mode == splashModeMono1 || !vectorAntialias) {
|
|
// in monochrome mode or if antialiasing is disabled, use 0-width
|
|
// lines for any transformed line width <= 1 -- lines less than 1
|
|
// pixel wide look too fat without antialiasing
|
|
if (w2 < 1.001) {
|
|
strokeNarrow(path2);
|
|
} else {
|
|
strokeWide(path2, state->lineWidth, lineCap, lineJoin);
|
|
}
|
|
} else {
|
|
// in gray and color modes, only use 0-width lines if the line
|
|
// width is explicitly set to 0
|
|
if (state->lineWidth == 0) {
|
|
strokeNarrow(path2);
|
|
} else {
|
|
strokeWide(path2, state->lineWidth, lineCap, lineJoin);
|
|
}
|
|
}
|
|
|
|
delete path2;
|
|
return splashOk;
|
|
}
|
|
|
|
void Splash::strokeNarrow(SplashPath *path) {
|
|
SplashPipe pipe;
|
|
SplashXPath *xPath;
|
|
SplashXPathSeg *seg;
|
|
int x0, x1, y0, y1, xa, xb, y;
|
|
SplashCoord dxdy;
|
|
SplashClipResult clipRes;
|
|
int nClipRes[3];
|
|
int i;
|
|
|
|
nClipRes[0] = nClipRes[1] = nClipRes[2] = 0;
|
|
|
|
xPath = new SplashXPath(path, state->matrix, state->flatness, gFalse,
|
|
state->enablePathSimplification,
|
|
state->strokeAdjust);
|
|
|
|
pipeInit(&pipe, state->strokePattern,
|
|
(Guchar)splashRound(state->strokeAlpha * 255),
|
|
gTrue, gFalse);
|
|
|
|
for (i = 0, seg = xPath->segs; i < xPath->length; ++i, ++seg) {
|
|
if (seg->y0 <= seg->y1) {
|
|
y0 = splashFloor(seg->y0);
|
|
y1 = splashFloor(seg->y1);
|
|
x0 = splashFloor(seg->x0);
|
|
x1 = splashFloor(seg->x1);
|
|
} else {
|
|
y0 = splashFloor(seg->y1);
|
|
y1 = splashFloor(seg->y0);
|
|
x0 = splashFloor(seg->x1);
|
|
x1 = splashFloor(seg->x0);
|
|
}
|
|
if ((clipRes = state->clip->testRect(x0 <= x1 ? x0 : x1, y0,
|
|
x0 <= x1 ? x1 : x0, y1,
|
|
state->strokeAdjust))
|
|
!= splashClipAllOutside) {
|
|
if (y0 == y1) {
|
|
if (x0 <= x1) {
|
|
drawStrokeSpan(&pipe, x0, x1, y0, clipRes == splashClipAllInside);
|
|
} else {
|
|
drawStrokeSpan(&pipe, x1, x0, y0, clipRes == splashClipAllInside);
|
|
}
|
|
} else {
|
|
dxdy = seg->dxdy;
|
|
y = state->clip->getYMinI(state->strokeAdjust);
|
|
if (y0 < y) {
|
|
y0 = y;
|
|
x0 = splashFloor(seg->x0 + ((SplashCoord)y0 - seg->y0) * dxdy);
|
|
}
|
|
y = state->clip->getYMaxI(state->strokeAdjust);
|
|
if (y1 > y) {
|
|
y1 = y;
|
|
x1 = splashFloor(seg->x0 + ((SplashCoord)y1 - seg->y0) * dxdy);
|
|
}
|
|
if (x0 <= x1) {
|
|
xa = x0;
|
|
for (y = y0; y <= y1; ++y) {
|
|
if (y < y1) {
|
|
xb = splashFloor(seg->x0 +
|
|
((SplashCoord)y + 1 - seg->y0) * dxdy);
|
|
} else {
|
|
xb = x1 + 1;
|
|
}
|
|
if (xa == xb) {
|
|
drawStrokeSpan(&pipe, xa, xa, y, clipRes == splashClipAllInside);
|
|
} else {
|
|
drawStrokeSpan(&pipe, xa, xb - 1, y,
|
|
clipRes == splashClipAllInside);
|
|
}
|
|
xa = xb;
|
|
}
|
|
} else {
|
|
xa = x0;
|
|
for (y = y0; y <= y1; ++y) {
|
|
if (y < y1) {
|
|
xb = splashFloor(seg->x0 +
|
|
((SplashCoord)y + 1 - seg->y0) * dxdy);
|
|
} else {
|
|
xb = x1 - 1;
|
|
}
|
|
if (xa == xb) {
|
|
drawStrokeSpan(&pipe, xa, xa, y, clipRes == splashClipAllInside);
|
|
} else {
|
|
drawStrokeSpan(&pipe, xb + 1, xa, y,
|
|
clipRes == splashClipAllInside);
|
|
}
|
|
xa = xb;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
++nClipRes[clipRes];
|
|
}
|
|
if (nClipRes[splashClipPartial] ||
|
|
(nClipRes[splashClipAllInside] && nClipRes[splashClipAllOutside])) {
|
|
opClipRes = splashClipPartial;
|
|
} else if (nClipRes[splashClipAllInside]) {
|
|
opClipRes = splashClipAllInside;
|
|
} else {
|
|
opClipRes = splashClipAllOutside;
|
|
}
|
|
|
|
delete xPath;
|
|
}
|
|
|
|
void Splash::drawStrokeSpan(SplashPipe *pipe, int x0, int x1, int y,
|
|
GBool noClip) {
|
|
int x;
|
|
|
|
x = state->clip->getXMinI(state->strokeAdjust);
|
|
if (x > x0) {
|
|
x0 = x;
|
|
}
|
|
x = state->clip->getXMaxI(state->strokeAdjust);
|
|
if (x < x1) {
|
|
x1 = x;
|
|
}
|
|
if (x0 > x1) {
|
|
return;
|
|
}
|
|
for (x = x0; x <= x1; ++x) {
|
|
scanBuf[x] = 0xff;
|
|
}
|
|
if (!noClip) {
|
|
if (!state->clip->clipSpanBinary(scanBuf, y, x0, x1, state->strokeAdjust)) {
|
|
return;
|
|
}
|
|
}
|
|
(this->*pipe->run)(pipe, x0, x1, y, scanBuf + x0, NULL);
|
|
}
|
|
|
|
void Splash::strokeWide(SplashPath *path, SplashCoord w,
|
|
int lineCap, int lineJoin) {
|
|
SplashPath *path2;
|
|
|
|
path2 = makeStrokePath(path, w, lineCap, lineJoin, gFalse);
|
|
fillWithPattern(path2, gFalse, state->strokePattern, state->strokeAlpha);
|
|
delete path2;
|
|
}
|
|
|
|
SplashPath *Splash::flattenPath(SplashPath *path, SplashCoord *matrix,
|
|
SplashCoord flatness) {
|
|
SplashPath *fPath;
|
|
SplashCoord flatness2;
|
|
Guchar flag;
|
|
int i;
|
|
|
|
fPath = new SplashPath();
|
|
#if USE_FIXEDPOINT
|
|
flatness2 = flatness;
|
|
#else
|
|
flatness2 = flatness * flatness;
|
|
#endif
|
|
i = 0;
|
|
while (i < path->length) {
|
|
flag = path->flags[i];
|
|
if (flag & splashPathFirst) {
|
|
fPath->moveTo(path->pts[i].x, path->pts[i].y);
|
|
++i;
|
|
} else {
|
|
if (flag & splashPathCurve) {
|
|
flattenCurve(path->pts[i-1].x, path->pts[i-1].y,
|
|
path->pts[i ].x, path->pts[i ].y,
|
|
path->pts[i+1].x, path->pts[i+1].y,
|
|
path->pts[i+2].x, path->pts[i+2].y,
|
|
matrix, flatness2, fPath);
|
|
i += 3;
|
|
} else {
|
|
fPath->lineTo(path->pts[i].x, path->pts[i].y);
|
|
++i;
|
|
}
|
|
if (path->flags[i-1] & splashPathClosed) {
|
|
fPath->close();
|
|
}
|
|
}
|
|
}
|
|
return fPath;
|
|
}
|
|
|
|
void Splash::flattenCurve(SplashCoord x0, SplashCoord y0,
|
|
SplashCoord x1, SplashCoord y1,
|
|
SplashCoord x2, SplashCoord y2,
|
|
SplashCoord x3, SplashCoord y3,
|
|
SplashCoord *matrix, SplashCoord flatness2,
|
|
SplashPath *fPath) {
|
|
SplashCoord cx[splashMaxCurveSplits + 1][3];
|
|
SplashCoord cy[splashMaxCurveSplits + 1][3];
|
|
int cNext[splashMaxCurveSplits + 1];
|
|
SplashCoord xl0, xl1, xl2, xr0, xr1, xr2, xr3, xx1, xx2, xh;
|
|
SplashCoord yl0, yl1, yl2, yr0, yr1, yr2, yr3, yy1, yy2, yh;
|
|
SplashCoord dx, dy, mx, my, tx, ty, d1, d2;
|
|
int p1, p2, p3;
|
|
|
|
// initial segment
|
|
p1 = 0;
|
|
p2 = splashMaxCurveSplits;
|
|
cx[p1][0] = x0; cy[p1][0] = y0;
|
|
cx[p1][1] = x1; cy[p1][1] = y1;
|
|
cx[p1][2] = x2; cy[p1][2] = y2;
|
|
cx[p2][0] = x3; cy[p2][0] = y3;
|
|
cNext[p1] = p2;
|
|
|
|
while (p1 < splashMaxCurveSplits) {
|
|
|
|
// get the next segment
|
|
xl0 = cx[p1][0]; yl0 = cy[p1][0];
|
|
xx1 = cx[p1][1]; yy1 = cy[p1][1];
|
|
xx2 = cx[p1][2]; yy2 = cy[p1][2];
|
|
p2 = cNext[p1];
|
|
xr3 = cx[p2][0]; yr3 = cy[p2][0];
|
|
|
|
// compute the distances (in device space) from the control points
|
|
// to the midpoint of the straight line (this is a bit of a hack,
|
|
// but it's much faster than computing the actual distances to the
|
|
// line)
|
|
transform(matrix, (xl0 + xr3) * 0.5, (yl0 + yr3) * 0.5, &mx, &my);
|
|
transform(matrix, xx1, yy1, &tx, &ty);
|
|
#if USE_FIXEDPOINT
|
|
d1 = splashDist(tx, ty, mx, my);
|
|
#else
|
|
dx = tx - mx;
|
|
dy = ty - my;
|
|
d1 = dx*dx + dy*dy;
|
|
#endif
|
|
transform(matrix, xx2, yy2, &tx, &ty);
|
|
#if USE_FIXEDPOINT
|
|
d2 = splashDist(tx, ty, mx, my);
|
|
#else
|
|
dx = tx - mx;
|
|
dy = ty - my;
|
|
d2 = dx*dx + dy*dy;
|
|
#endif
|
|
|
|
// if the curve is flat enough, or no more subdivisions are
|
|
// allowed, add the straight line segment
|
|
if (p2 - p1 == 1 || (d1 <= flatness2 && d2 <= flatness2)) {
|
|
fPath->lineTo(xr3, yr3);
|
|
p1 = p2;
|
|
|
|
// otherwise, subdivide the curve
|
|
} else {
|
|
xl1 = splashAvg(xl0, xx1);
|
|
yl1 = splashAvg(yl0, yy1);
|
|
xh = splashAvg(xx1, xx2);
|
|
yh = splashAvg(yy1, yy2);
|
|
xl2 = splashAvg(xl1, xh);
|
|
yl2 = splashAvg(yl1, yh);
|
|
xr2 = splashAvg(xx2, xr3);
|
|
yr2 = splashAvg(yy2, yr3);
|
|
xr1 = splashAvg(xh, xr2);
|
|
yr1 = splashAvg(yh, yr2);
|
|
xr0 = splashAvg(xl2, xr1);
|
|
yr0 = splashAvg(yl2, yr1);
|
|
// add the new subdivision points
|
|
p3 = (p1 + p2) / 2;
|
|
cx[p1][1] = xl1; cy[p1][1] = yl1;
|
|
cx[p1][2] = xl2; cy[p1][2] = yl2;
|
|
cNext[p1] = p3;
|
|
cx[p3][0] = xr0; cy[p3][0] = yr0;
|
|
cx[p3][1] = xr1; cy[p3][1] = yr1;
|
|
cx[p3][2] = xr2; cy[p3][2] = yr2;
|
|
cNext[p3] = p2;
|
|
}
|
|
}
|
|
}
|
|
|
|
SplashPath *Splash::makeDashedPath(SplashPath *path) {
|
|
SplashPath *dPath;
|
|
SplashCoord lineDashTotal;
|
|
SplashCoord lineDashStartPhase, lineDashDist, segLen;
|
|
SplashCoord x0, y0, x1, y1, xa, ya;
|
|
GBool lineDashStartOn, lineDashEndOn, lineDashOn, newPath;
|
|
int lineDashStartIdx, lineDashIdx, subpathStart, nDashes;
|
|
int i, j, k;
|
|
|
|
lineDashTotal = 0;
|
|
for (i = 0; i < state->lineDashLength; ++i) {
|
|
lineDashTotal += state->lineDash[i];
|
|
}
|
|
// Acrobat simply draws nothing if the dash array is [0]
|
|
if (lineDashTotal == 0) {
|
|
return new SplashPath();
|
|
}
|
|
lineDashStartPhase = state->lineDashPhase;
|
|
if (lineDashStartPhase > lineDashTotal * 2) {
|
|
i = splashFloor(lineDashStartPhase / (lineDashTotal * 2));
|
|
lineDashStartPhase -= lineDashTotal * i * 2;
|
|
} else if (lineDashStartPhase < 0) {
|
|
i = splashCeil(-lineDashStartPhase / (lineDashTotal * 2));
|
|
lineDashStartPhase += lineDashTotal * i * 2;
|
|
}
|
|
i = splashFloor(lineDashStartPhase / lineDashTotal);
|
|
lineDashStartPhase -= (SplashCoord)i * lineDashTotal;
|
|
lineDashStartOn = gTrue;
|
|
lineDashStartIdx = 0;
|
|
if (lineDashStartPhase > 0) {
|
|
while (lineDashStartPhase >= state->lineDash[lineDashStartIdx]) {
|
|
lineDashStartOn = !lineDashStartOn;
|
|
lineDashStartPhase -= state->lineDash[lineDashStartIdx];
|
|
if (++lineDashStartIdx == state->lineDashLength) {
|
|
lineDashStartIdx = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
dPath = new SplashPath();
|
|
|
|
// process each subpath
|
|
i = 0;
|
|
while (i < path->length) {
|
|
|
|
// find the end of the subpath
|
|
for (j = i;
|
|
j < path->length - 1 && !(path->flags[j] & splashPathLast);
|
|
++j) ;
|
|
|
|
// initialize the dash parameters
|
|
lineDashOn = lineDashStartOn;
|
|
lineDashEndOn = lineDashStartOn;
|
|
lineDashIdx = lineDashStartIdx;
|
|
lineDashDist = state->lineDash[lineDashIdx] - lineDashStartPhase;
|
|
subpathStart = dPath->length;
|
|
nDashes = 0;
|
|
|
|
// process each segment of the subpath
|
|
newPath = gTrue;
|
|
for (k = i; k < j; ++k) {
|
|
|
|
// grab the segment
|
|
x0 = path->pts[k].x;
|
|
y0 = path->pts[k].y;
|
|
x1 = path->pts[k+1].x;
|
|
y1 = path->pts[k+1].y;
|
|
segLen = splashDist(x0, y0, x1, y1);
|
|
|
|
// process the segment
|
|
while (segLen > 0) {
|
|
|
|
// Special case for zero-length dash segments: draw a very
|
|
// short -- but not zero-length -- segment. This ensures that
|
|
// we get the correct behavior with butt and projecting line
|
|
// caps. The PS/PDF specs imply that zero-length segments are
|
|
// not drawn unless the line cap is round, but Acrobat and
|
|
// Ghostscript both draw very short segments (for butt caps)
|
|
// and squares (for projecting caps).
|
|
if (lineDashDist == 0) {
|
|
if (lineDashOn) {
|
|
if (newPath) {
|
|
dPath->moveTo(x0, y0);
|
|
newPath = gFalse;
|
|
++nDashes;
|
|
}
|
|
xa = x0 + ((SplashCoord)0.001 / segLen) * (x1 - x0);
|
|
ya = y0 + ((SplashCoord)0.001 / segLen) * (y1 - y0);
|
|
dPath->lineTo(xa, ya);
|
|
}
|
|
|
|
} else if (lineDashDist >= segLen) {
|
|
if (lineDashOn) {
|
|
if (newPath) {
|
|
dPath->moveTo(x0, y0);
|
|
newPath = gFalse;
|
|
++nDashes;
|
|
}
|
|
dPath->lineTo(x1, y1);
|
|
}
|
|
lineDashDist -= segLen;
|
|
segLen = 0;
|
|
|
|
} else {
|
|
xa = x0 + (lineDashDist / segLen) * (x1 - x0);
|
|
ya = y0 + (lineDashDist / segLen) * (y1 - y0);
|
|
if (lineDashOn) {
|
|
if (newPath) {
|
|
dPath->moveTo(x0, y0);
|
|
newPath = gFalse;
|
|
++nDashes;
|
|
}
|
|
dPath->lineTo(xa, ya);
|
|
}
|
|
x0 = xa;
|
|
y0 = ya;
|
|
segLen -= lineDashDist;
|
|
lineDashDist = 0;
|
|
}
|
|
|
|
lineDashEndOn = lineDashOn;
|
|
|
|
// get the next entry in the dash array
|
|
if (lineDashDist <= 0) {
|
|
lineDashOn = !lineDashOn;
|
|
if (++lineDashIdx == state->lineDashLength) {
|
|
lineDashIdx = 0;
|
|
}
|
|
lineDashDist = state->lineDash[lineDashIdx];
|
|
newPath = gTrue;
|
|
}
|
|
}
|
|
}
|
|
|
|
// in a closed subpath, where the dash pattern is "on" at both the
|
|
// start and end of the subpath, we need to merge the start and
|
|
// end to get a proper line join
|
|
if ((path->flags[j] & splashPathClosed) &&
|
|
lineDashStartOn &&
|
|
lineDashEndOn) {
|
|
if (nDashes == 1) {
|
|
dPath->close();
|
|
} else if (nDashes > 1) {
|
|
k = subpathStart;
|
|
do {
|
|
++k;
|
|
dPath->lineTo(dPath->pts[k].x, dPath->pts[k].y);
|
|
} while (!(dPath->flags[k] & splashPathLast));
|
|
++k;
|
|
memmove(&dPath->pts[subpathStart], &dPath->pts[k],
|
|
(dPath->length - k) * sizeof(SplashPathPoint));
|
|
memmove(&dPath->flags[subpathStart], &dPath->flags[k],
|
|
(dPath->length - k) * sizeof(Guchar));
|
|
dPath->length -= k - subpathStart;
|
|
dPath->curSubpath -= k - subpathStart;
|
|
}
|
|
}
|
|
|
|
i = j + 1;
|
|
}
|
|
|
|
return dPath;
|
|
}
|
|
|
|
SplashError Splash::fill(SplashPath *path, GBool eo) {
|
|
if (debugMode) {
|
|
printf("fill [eo:%d]:\n", eo);
|
|
dumpPath(path);
|
|
}
|
|
return fillWithPattern(path, eo, state->fillPattern, state->fillAlpha);
|
|
}
|
|
|
|
SplashError Splash::fillWithPattern(SplashPath *path, GBool eo,
|
|
SplashPattern *pattern,
|
|
SplashCoord alpha) {
|
|
SplashPipe pipe;
|
|
SplashPath *path2;
|
|
SplashXPath *xPath;
|
|
SplashXPathScanner *scanner;
|
|
int xMin, yMin, xMax, xMin2, xMax2, yMax, y, t;
|
|
SplashClipResult clipRes;
|
|
|
|
if (path->length == 0) {
|
|
return splashErrEmptyPath;
|
|
}
|
|
if (pathAllOutside(path)) {
|
|
opClipRes = splashClipAllOutside;
|
|
return splashOk;
|
|
}
|
|
|
|
path2 = tweakFillPath(path);
|
|
|
|
xPath = new SplashXPath(path2, state->matrix, state->flatness, gTrue,
|
|
state->enablePathSimplification,
|
|
state->strokeAdjust);
|
|
if (path2 != path) {
|
|
delete path2;
|
|
}
|
|
xMin = xPath->getXMin();
|
|
yMin = xPath->getYMin();
|
|
xMax = xPath->getXMax();
|
|
yMax = xPath->getYMax();
|
|
if (xMin > xMax || yMin > yMax) {
|
|
delete xPath;
|
|
return splashOk;
|
|
}
|
|
scanner = new SplashXPathScanner(xPath, eo, yMin, yMax);
|
|
|
|
// check clipping
|
|
if ((clipRes = state->clip->testRect(xMin, yMin, xMax, yMax,
|
|
state->strokeAdjust))
|
|
!= splashClipAllOutside) {
|
|
|
|
if ((t = state->clip->getXMinI(state->strokeAdjust)) > xMin) {
|
|
xMin = t;
|
|
}
|
|
if ((t = state->clip->getXMaxI(state->strokeAdjust)) < xMax) {
|
|
xMax = t;
|
|
}
|
|
if ((t = state->clip->getYMinI(state->strokeAdjust)) > yMin) {
|
|
yMin = t;
|
|
}
|
|
if ((t = state->clip->getYMaxI(state->strokeAdjust)) < yMax) {
|
|
yMax = t;
|
|
}
|
|
if (xMin > xMax || yMin > yMax) {
|
|
delete scanner;
|
|
delete xPath;
|
|
return splashOk;
|
|
}
|
|
|
|
pipeInit(&pipe, pattern, (Guchar)splashRound(alpha * 255),
|
|
gTrue, gFalse);
|
|
|
|
// draw the spans
|
|
if (vectorAntialias && !inShading) {
|
|
for (y = yMin; y <= yMax; ++y) {
|
|
scanner->getSpan(scanBuf, y, xMin, xMax, &xMin2, &xMax2);
|
|
if (xMin2 <= xMax2) {
|
|
if (clipRes != splashClipAllInside) {
|
|
state->clip->clipSpan(scanBuf, y, xMin2, xMax2,
|
|
state->strokeAdjust);
|
|
}
|
|
(this->*pipe.run)(&pipe, xMin2, xMax2, y, scanBuf + xMin2, NULL);
|
|
}
|
|
}
|
|
} else {
|
|
for (y = yMin; y <= yMax; ++y) {
|
|
scanner->getSpanBinary(scanBuf, y, xMin, xMax, &xMin2, &xMax2);
|
|
if (xMin2 <= xMax2) {
|
|
if (clipRes != splashClipAllInside) {
|
|
state->clip->clipSpanBinary(scanBuf, y, xMin2, xMax2,
|
|
state->strokeAdjust);
|
|
}
|
|
(this->*pipe.run)(&pipe, xMin2, xMax2, y, scanBuf + xMin2, NULL);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
opClipRes = clipRes;
|
|
|
|
delete scanner;
|
|
delete xPath;
|
|
return splashOk;
|
|
}
|
|
|
|
// Applies various tweaks to a fill path:
|
|
// (1) add stroke adjust hints to a filled rectangle
|
|
// (2) applies a minimum width to a zero-width filled rectangle (so
|
|
// stroke adjustment works correctly
|
|
// (3) convert a degenerate fill ('moveto lineto fill' and 'moveto
|
|
// lineto closepath fill') to a minimum-width filled rectangle
|
|
//
|
|
// These tweaks only apply to paths with a single subpath.
|
|
//
|
|
// Returns either the unchanged input path or a new path (in which
|
|
// case the returned path must be deleted by the caller).
|
|
SplashPath *Splash::tweakFillPath(SplashPath *path) {
|
|
SplashPath *path2;
|
|
SplashCoord xx0, yy0, xx1, yy1, dx, dy, d, wx, wy, w;
|
|
int n;
|
|
|
|
if (state->strokeAdjust == splashStrokeAdjustOff || path->hints) {
|
|
return path;
|
|
}
|
|
|
|
n = path->getLength();
|
|
if (!((n == 2) ||
|
|
(n == 3 &&
|
|
path->flags[1] == 0) ||
|
|
(n == 4 &&
|
|
path->flags[1] == 0 &&
|
|
path->flags[2] == 0) ||
|
|
(n == 5 &&
|
|
path->flags[1] == 0 &&
|
|
path->flags[2] == 0 &&
|
|
path->flags[3] == 0))) {
|
|
return path;
|
|
}
|
|
|
|
path2 = path;
|
|
|
|
// degenerate fill (2 or 3 points) or rectangle of (nearly) zero
|
|
// width --> replace with a min-width rectangle and hint
|
|
if (n == 2 ||
|
|
(n == 3 && (path->flags[0] & splashPathClosed)) ||
|
|
(n == 3 && (splashAbs(path->pts[0].x - path->pts[2].x) < 0.001 &&
|
|
splashAbs(path->pts[0].y - path->pts[2].y) < 0.001)) ||
|
|
((n == 4 ||
|
|
(n == 5 && (path->flags[0] & splashPathClosed))) &&
|
|
((splashAbs(path->pts[0].x - path->pts[1].x) < 0.001 &&
|
|
splashAbs(path->pts[0].y - path->pts[1].y) < 0.001 &&
|
|
splashAbs(path->pts[2].x - path->pts[3].x) < 0.001 &&
|
|
splashAbs(path->pts[2].y - path->pts[3].y) < 0.001) ||
|
|
(splashAbs(path->pts[0].x - path->pts[3].x) < 0.001 &&
|
|
splashAbs(path->pts[0].y - path->pts[3].y) < 0.001 &&
|
|
splashAbs(path->pts[1].x - path->pts[2].x) < 0.001 &&
|
|
splashAbs(path->pts[1].y - path->pts[2].y) < 0.001)))) {
|
|
wx = state->matrix[0] + state->matrix[2];
|
|
wy = state->matrix[1] + state->matrix[3];
|
|
w = splashSqrt(wx*wx + wy*wy);
|
|
if (w < 0.001) {
|
|
w = 0;
|
|
} else {
|
|
// min width is 0.1 -- this constant is minWidth * sqrt(2)
|
|
w = (SplashCoord)0.1414 / w;
|
|
}
|
|
xx0 = path->pts[0].x;
|
|
yy0 = path->pts[0].y;
|
|
if (n <= 3) {
|
|
xx1 = path->pts[1].x;
|
|
yy1 = path->pts[1].y;
|
|
} else {
|
|
xx1 = path->pts[2].x;
|
|
yy1 = path->pts[2].y;
|
|
}
|
|
dx = xx1 - xx0;
|
|
dy = yy1 - yy0;
|
|
d = splashSqrt(dx * dx + dy * dy);
|
|
if (d < 0.001) {
|
|
d = 0;
|
|
} else {
|
|
d = w / d;
|
|
}
|
|
dx *= d;
|
|
dy *= d;
|
|
path2 = new SplashPath();
|
|
path2->moveTo(xx0 + dy, yy0 - dx);
|
|
path2->lineTo(xx1 + dy, yy1 - dx);
|
|
path2->lineTo(xx1 - dy, yy1 + dx);
|
|
path2->lineTo(xx0 - dy, yy0 + dx);
|
|
path2->close(gTrue);
|
|
path2->addStrokeAdjustHint(0, 2, 0, 4);
|
|
path2->addStrokeAdjustHint(1, 3, 0, 4);
|
|
|
|
// unclosed rectangle --> close and hint
|
|
} else if (n == 4 && !(path->flags[0] & splashPathClosed)) {
|
|
path2->close(gTrue);
|
|
path2->addStrokeAdjustHint(0, 2, 0, 4);
|
|
path2->addStrokeAdjustHint(1, 3, 0, 4);
|
|
|
|
// closed rectangle --> hint
|
|
} else if (n == 5 && (path->flags[0] & splashPathClosed)) {
|
|
path2->addStrokeAdjustHint(0, 2, 0, 4);
|
|
path2->addStrokeAdjustHint(1, 3, 0, 4);
|
|
}
|
|
|
|
return path2;
|
|
}
|
|
|
|
GBool Splash::pathAllOutside(SplashPath *path) {
|
|
SplashCoord xMin1, yMin1, xMax1, yMax1;
|
|
SplashCoord xMin2, yMin2, xMax2, yMax2;
|
|
SplashCoord x, y;
|
|
int xMinI, yMinI, xMaxI, yMaxI;
|
|
int i;
|
|
|
|
xMin1 = xMax1 = path->pts[0].x;
|
|
yMin1 = yMax1 = path->pts[0].y;
|
|
for (i = 1; i < path->length; ++i) {
|
|
if (path->pts[i].x < xMin1) {
|
|
xMin1 = path->pts[i].x;
|
|
} else if (path->pts[i].x > xMax1) {
|
|
xMax1 = path->pts[i].x;
|
|
}
|
|
if (path->pts[i].y < yMin1) {
|
|
yMin1 = path->pts[i].y;
|
|
} else if (path->pts[i].y > yMax1) {
|
|
yMax1 = path->pts[i].y;
|
|
}
|
|
}
|
|
|
|
transform(state->matrix, xMin1, yMin1, &x, &y);
|
|
xMin2 = xMax2 = x;
|
|
yMin2 = yMax2 = y;
|
|
transform(state->matrix, xMin1, yMax1, &x, &y);
|
|
if (x < xMin2) {
|
|
xMin2 = x;
|
|
} else if (x > xMax2) {
|
|
xMax2 = x;
|
|
}
|
|
if (y < yMin2) {
|
|
yMin2 = y;
|
|
} else if (y > yMax2) {
|
|
yMax2 = y;
|
|
}
|
|
transform(state->matrix, xMax1, yMin1, &x, &y);
|
|
if (x < xMin2) {
|
|
xMin2 = x;
|
|
} else if (x > xMax2) {
|
|
xMax2 = x;
|
|
}
|
|
if (y < yMin2) {
|
|
yMin2 = y;
|
|
} else if (y > yMax2) {
|
|
yMax2 = y;
|
|
}
|
|
transform(state->matrix, xMax1, yMax1, &x, &y);
|
|
if (x < xMin2) {
|
|
xMin2 = x;
|
|
} else if (x > xMax2) {
|
|
xMax2 = x;
|
|
}
|
|
if (y < yMin2) {
|
|
yMin2 = y;
|
|
} else if (y > yMax2) {
|
|
yMax2 = y;
|
|
}
|
|
// sanity-check the coordinates - xMinI/yMinI/xMaxI/yMaxI are
|
|
// 32-bit integers, so coords need to be < 2^31
|
|
SplashXPath::clampCoords(&xMin2, &yMin2);
|
|
SplashXPath::clampCoords(&xMax2, &yMax2);
|
|
xMinI = splashFloor(xMin2);
|
|
yMinI = splashFloor(yMin2);
|
|
xMaxI = splashFloor(xMax2);
|
|
yMaxI = splashFloor(yMax2);
|
|
|
|
return state->clip->testRect(xMinI, yMinI, xMaxI, yMaxI,
|
|
state->strokeAdjust) ==
|
|
splashClipAllOutside;
|
|
}
|
|
|
|
SplashError Splash::fillChar(SplashCoord x, SplashCoord y,
|
|
int c, SplashFont *font) {
|
|
SplashGlyphBitmap glyph;
|
|
SplashCoord xt, yt;
|
|
int x0, y0, xFrac, yFrac;
|
|
SplashError err;
|
|
|
|
if (debugMode) {
|
|
printf("fillChar: x=%.2f y=%.2f c=%3d=0x%02x='%c'\n",
|
|
(double)x, (double)y, c, c, c);
|
|
}
|
|
transform(state->matrix, x, y, &xt, &yt);
|
|
x0 = splashFloor(xt);
|
|
xFrac = splashFloor((xt - x0) * splashFontFraction);
|
|
y0 = splashFloor(yt);
|
|
yFrac = splashFloor((yt - y0) * splashFontFraction);
|
|
if (!font->getGlyph(c, xFrac, yFrac, &glyph)) {
|
|
return splashErrNoGlyph;
|
|
}
|
|
err = fillGlyph2(x0, y0, &glyph);
|
|
if (glyph.freeData) {
|
|
gfree(glyph.data);
|
|
}
|
|
return err;
|
|
}
|
|
|
|
SplashError Splash::fillGlyph(SplashCoord x, SplashCoord y,
|
|
SplashGlyphBitmap *glyph) {
|
|
SplashCoord xt, yt;
|
|
int x0, y0;
|
|
|
|
transform(state->matrix, x, y, &xt, &yt);
|
|
x0 = splashFloor(xt);
|
|
y0 = splashFloor(yt);
|
|
return fillGlyph2(x0, y0, glyph);
|
|
}
|
|
|
|
SplashError Splash::fillGlyph2(int x0, int y0, SplashGlyphBitmap *glyph) {
|
|
SplashPipe pipe;
|
|
SplashClipResult clipRes;
|
|
Guchar alpha;
|
|
Guchar *p;
|
|
int xMin, yMin, xMax, yMax;
|
|
int x, y, xg, yg, xx, t;
|
|
|
|
xg = x0 - glyph->x;
|
|
yg = y0 - glyph->y;
|
|
xMin = xg;
|
|
xMax = xg + glyph->w - 1;
|
|
yMin = yg;
|
|
yMax = yg + glyph->h - 1;
|
|
if ((clipRes = state->clip->testRect(xMin, yMin, xMax, yMax,
|
|
state->strokeAdjust))
|
|
!= splashClipAllOutside) {
|
|
pipeInit(&pipe, state->fillPattern,
|
|
(Guchar)splashRound(state->fillAlpha * 255),
|
|
gTrue, gFalse);
|
|
if (clipRes == splashClipAllInside) {
|
|
if (glyph->aa) {
|
|
p = glyph->data;
|
|
for (y = yMin; y <= yMax; ++y) {
|
|
(this->*pipe.run)(&pipe, xMin, xMax, y,
|
|
glyph->data + (y - yMin) * glyph->w, NULL);
|
|
}
|
|
} else {
|
|
p = glyph->data;
|
|
for (y = yMin; y <= yMax; ++y) {
|
|
for (x = xMin; x <= xMax; x += 8) {
|
|
alpha = *p++;
|
|
for (xx = 0; xx < 8 && x + xx <= xMax; ++xx) {
|
|
scanBuf[x + xx] = (alpha & 0x80) ? 0xff : 0x00;
|
|
alpha = (Guchar)(alpha << 1);
|
|
}
|
|
}
|
|
(this->*pipe.run)(&pipe, xMin, xMax, y, scanBuf + xMin, NULL);
|
|
}
|
|
}
|
|
} else {
|
|
if ((t = state->clip->getXMinI(state->strokeAdjust)) > xMin) {
|
|
xMin = t;
|
|
}
|
|
if ((t = state->clip->getXMaxI(state->strokeAdjust)) < xMax) {
|
|
xMax = t;
|
|
}
|
|
if ((t = state->clip->getYMinI(state->strokeAdjust)) > yMin) {
|
|
yMin = t;
|
|
}
|
|
if ((t = state->clip->getYMaxI(state->strokeAdjust)) < yMax) {
|
|
yMax = t;
|
|
}
|
|
if (xMin <= xMax && yMin <= yMax) {
|
|
if (glyph->aa) {
|
|
for (y = yMin; y <= yMax; ++y) {
|
|
p = glyph->data + (y - yg) * glyph->w + (xMin - xg);
|
|
memcpy(scanBuf + xMin, p, xMax - xMin + 1);
|
|
state->clip->clipSpan(scanBuf, y, xMin, xMax,
|
|
state->strokeAdjust);
|
|
(this->*pipe.run)(&pipe, xMin, xMax, y, scanBuf + xMin, NULL);
|
|
}
|
|
} else {
|
|
for (y = yMin; y <= yMax; ++y) {
|
|
p = glyph->data + (y - yg) * ((glyph->w + 7) >> 3)
|
|
+ ((xMin - xg) >> 3);
|
|
alpha = *p++;
|
|
xx = (xMin - xg) & 7;
|
|
alpha = (Guchar)(alpha << xx);
|
|
for (x = xMin; xx < 8 && x <= xMax; ++x, ++xx) {
|
|
scanBuf[x] = (alpha & 0x80) ? 255 : 0;
|
|
alpha = (Guchar)(alpha << 1);
|
|
}
|
|
for (; x <= xMax; x += 8) {
|
|
alpha = *p++;
|
|
for (xx = 0; xx < 8 && x + xx <= xMax; ++xx) {
|
|
scanBuf[x + xx] = (alpha & 0x80) ? 255 : 0;
|
|
alpha = (Guchar)(alpha << 1);
|
|
}
|
|
}
|
|
state->clip->clipSpanBinary(scanBuf, y, xMin, xMax,
|
|
state->strokeAdjust);
|
|
(this->*pipe.run)(&pipe, xMin, xMax, y, scanBuf + xMin, NULL);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
opClipRes = clipRes;
|
|
|
|
return splashOk;
|
|
}
|
|
|
|
void Splash::getImageBounds(SplashCoord xyMin, SplashCoord xyMax,
|
|
int *xyMinI, int *xyMaxI) {
|
|
if (state->strokeAdjust == splashStrokeAdjustOff) {
|
|
*xyMinI = splashFloor(xyMin);
|
|
*xyMaxI = splashFloor(xyMax);
|
|
if (*xyMaxI <= *xyMinI) {
|
|
*xyMaxI = *xyMinI + 1;
|
|
}
|
|
} else {
|
|
splashStrokeAdjust(xyMin, xyMax, xyMinI, xyMaxI, state->strokeAdjust);
|
|
}
|
|
}
|
|
|
|
// The glyphMode flag is not currently used, but may be useful if the
|
|
// stroke adjustment behavior is changed.
|
|
SplashError Splash::fillImageMask(SplashImageMaskSource src, void *srcData,
|
|
int w, int h, SplashCoord *mat,
|
|
GBool glyphMode, GBool interpolate) {
|
|
SplashBitmap *scaledMask;
|
|
SplashClipResult clipRes;
|
|
GBool minorAxisZero;
|
|
SplashCoord wSize, hSize, t0, t1;
|
|
int x0, y0, x1, y1, scaledWidth, scaledHeight;
|
|
|
|
if (debugMode) {
|
|
printf("fillImageMask: w=%d h=%d mat=[%.2f %.2f %.2f %.2f %.2f %.2f]\n",
|
|
w, h, (double)mat[0], (double)mat[1], (double)mat[2],
|
|
(double)mat[3], (double)mat[4], (double)mat[5]);
|
|
}
|
|
|
|
// check for singular matrix
|
|
if (!splashCheckDet(mat[0], mat[1], mat[2], mat[3], 0.000001)) {
|
|
return splashErrSingularMatrix;
|
|
}
|
|
|
|
minorAxisZero = splashAbs(mat[1]) <= 0.0001 && splashAbs(mat[2]) <= 0.0001;
|
|
|
|
// rough estimate of size of scaled mask
|
|
t0 = splashAbs(mat[0]);
|
|
t1 = splashAbs(mat[1]);
|
|
wSize = t0 > t1 ? t0 : t1;
|
|
t0 = splashAbs(mat[2]);
|
|
t1 = splashAbs(mat[3]);
|
|
hSize = t0 > t1 ? t0 : t1;
|
|
|
|
// stream-mode upscaling -- this is slower, so we only use it if the
|
|
// upscaled mask is large (in which case clipping should remove many
|
|
// pixels)
|
|
#if USE_FIXEDPOINT
|
|
if ((wSize > 2 * w && hSize > 2 * h && (int)wSize > 1000000 / (int)hSize) ||
|
|
(wSize > w && hSize > h && (int)wSize > 10000000 / (int)hSize) ||
|
|
((wSize > w || hSize > h) && (int)wSize > 25000000 / (int)hSize)) {
|
|
#else
|
|
if ((wSize > 2 * w && hSize > 2 * h && wSize * hSize > 1000000) ||
|
|
(wSize > w && hSize > h && wSize * hSize > 10000000) ||
|
|
((wSize > w || hSize > h) && wSize * hSize > 25000000)) {
|
|
upscaleMask(src, srcData, w, h, mat, glyphMode, interpolate);
|
|
#endif
|
|
|
|
// scaling only
|
|
} else if (mat[0] > 0 && minorAxisZero && mat[3] > 0) {
|
|
getImageBounds(mat[4], mat[0] + mat[4], &x0, &x1);
|
|
getImageBounds(mat[5], mat[3] + mat[5], &y0, &y1);
|
|
clipRes = state->clip->testRect(x0, y0, x1 - 1, y1 - 1,
|
|
state->strokeAdjust);
|
|
opClipRes = clipRes;
|
|
if (clipRes != splashClipAllOutside) {
|
|
scaledWidth = x1 - x0;
|
|
scaledHeight = y1 - y0;
|
|
scaledMask = scaleMask(src, srcData, w, h, scaledWidth, scaledHeight,
|
|
interpolate);
|
|
blitMask(scaledMask, x0, y0, clipRes);
|
|
delete scaledMask;
|
|
}
|
|
|
|
// scaling plus vertical flip
|
|
} else if (mat[0] > 0 && minorAxisZero && mat[3] < 0) {
|
|
getImageBounds(mat[4], mat[0] + mat[4], &x0, &x1);
|
|
getImageBounds(mat[3] + mat[5], mat[5], &y0, &y1);
|
|
clipRes = state->clip->testRect(x0, y0, x1 - 1, y1 - 1,
|
|
state->strokeAdjust);
|
|
opClipRes = clipRes;
|
|
if (clipRes != splashClipAllOutside) {
|
|
scaledWidth = x1 - x0;
|
|
scaledHeight = y1 - y0;
|
|
scaledMask = scaleMask(src, srcData, w, h, scaledWidth, scaledHeight,
|
|
interpolate);
|
|
vertFlipImage(scaledMask, scaledWidth, scaledHeight, 1);
|
|
blitMask(scaledMask, x0, y0, clipRes);
|
|
delete scaledMask;
|
|
}
|
|
|
|
// scaling plus horizontal flip
|
|
} else if (mat[0] < 0 && minorAxisZero && mat[3] > 0) {
|
|
getImageBounds(mat[0] + mat[4], mat[4], &x0, &x1);
|
|
getImageBounds(mat[5], mat[3] + mat[5], &y0, &y1);
|
|
clipRes = state->clip->testRect(x0, y0, x1 - 1, y1 - 1,
|
|
state->strokeAdjust);
|
|
opClipRes = clipRes;
|
|
if (clipRes != splashClipAllOutside) {
|
|
scaledWidth = x1 - x0;
|
|
scaledHeight = y1 - y0;
|
|
scaledMask = scaleMask(src, srcData, w, h, scaledWidth, scaledHeight,
|
|
interpolate);
|
|
horizFlipImage(scaledMask, scaledWidth, scaledHeight, 1);
|
|
blitMask(scaledMask, x0, y0, clipRes);
|
|
delete scaledMask;
|
|
}
|
|
|
|
// scaling plus horizontal and vertical flips
|
|
} else if (mat[0] < 0 && minorAxisZero && mat[3] < 0) {
|
|
getImageBounds(mat[0] + mat[4], mat[4], &x0, &x1);
|
|
getImageBounds(mat[3] + mat[5], mat[5], &y0, &y1);
|
|
clipRes = state->clip->testRect(x0, y0, x1 - 1, y1 - 1,
|
|
state->strokeAdjust);
|
|
opClipRes = clipRes;
|
|
if (clipRes != splashClipAllOutside) {
|
|
scaledWidth = x1 - x0;
|
|
scaledHeight = y1 - y0;
|
|
scaledMask = scaleMask(src, srcData, w, h, scaledWidth, scaledHeight,
|
|
interpolate);
|
|
vertFlipImage(scaledMask, scaledWidth, scaledHeight, 1);
|
|
horizFlipImage(scaledMask, scaledWidth, scaledHeight, 1);
|
|
blitMask(scaledMask, x0, y0, clipRes);
|
|
delete scaledMask;
|
|
}
|
|
|
|
// all other cases
|
|
} else {
|
|
arbitraryTransformMask(src, srcData, w, h, mat, glyphMode, interpolate);
|
|
}
|
|
|
|
return splashOk;
|
|
}
|
|
|
|
// The glyphMode flag is not currently used, but may be useful if the
|
|
// stroke adjustment behavior is changed.
|
|
void Splash::upscaleMask(SplashImageMaskSource src, void *srcData,
|
|
int srcWidth, int srcHeight,
|
|
SplashCoord *mat, GBool glyphMode,
|
|
GBool interpolate) {
|
|
SplashClipResult clipRes;
|
|
SplashPipe pipe;
|
|
Guchar *unscaledImage, *p;
|
|
SplashCoord xMin, yMin, xMax, yMax, t;
|
|
SplashCoord mi0, mi1, mi2, mi3, mi4, mi5, det;
|
|
SplashCoord ix, iy, sx, sy, pix0, pix1;
|
|
int xMinI, yMinI, xMaxI, yMaxI, x, y, x0, y0, x1, y1, tt;
|
|
|
|
// compute the bbox of the target quadrilateral
|
|
xMin = xMax = mat[4];
|
|
t = mat[2] + mat[4];
|
|
if (t < xMin) {
|
|
xMin = t;
|
|
} else if (t > xMax) {
|
|
xMax = t;
|
|
}
|
|
t = mat[0] + mat[2] + mat[4];
|
|
if (t < xMin) {
|
|
xMin = t;
|
|
} else if (t > xMax) {
|
|
xMax = t;
|
|
}
|
|
t = mat[0] + mat[4];
|
|
if (t < xMin) {
|
|
xMin = t;
|
|
} else if (t > xMax) {
|
|
xMax = t;
|
|
}
|
|
getImageBounds(xMin, xMax, &xMinI, &xMaxI);
|
|
yMin = yMax = mat[5];
|
|
t = mat[3] + mat[5];
|
|
if (t < yMin) {
|
|
yMin = t;
|
|
} else if (t > yMax) {
|
|
yMax = t;
|
|
}
|
|
t = mat[1] + mat[3] + mat[5];
|
|
if (t < yMin) {
|
|
yMin = t;
|
|
} else if (t > yMax) {
|
|
yMax = t;
|
|
}
|
|
t = mat[1] + mat[5];
|
|
if (t < yMin) {
|
|
yMin = t;
|
|
} else if (t > yMax) {
|
|
yMax = t;
|
|
}
|
|
getImageBounds(yMin, yMax, &yMinI, &yMaxI);
|
|
|
|
// clipping
|
|
clipRes = state->clip->testRect(xMinI, yMinI, xMaxI - 1, yMaxI - 1,
|
|
state->strokeAdjust);
|
|
opClipRes = clipRes;
|
|
if (clipRes == splashClipAllOutside) {
|
|
return;
|
|
}
|
|
if (clipRes != splashClipAllInside) {
|
|
if ((tt = state->clip->getXMinI(state->strokeAdjust)) > xMinI) {
|
|
xMinI = tt;
|
|
}
|
|
if ((tt = state->clip->getXMaxI(state->strokeAdjust) + 1) < xMaxI) {
|
|
xMaxI = tt;
|
|
}
|
|
if ((tt = state->clip->getYMinI(state->strokeAdjust)) > yMinI) {
|
|
yMinI = tt;
|
|
}
|
|
if ((tt = state->clip->getYMaxI(state->strokeAdjust) + 1) < yMaxI) {
|
|
yMaxI = tt;
|
|
}
|
|
}
|
|
|
|
// invert the matrix
|
|
det = mat[0] * mat[3] - mat[1] * mat[2];
|
|
if (splashAbs(det) < 1e-6) {
|
|
// this should be caught by the singular matrix check in fillImageMask
|
|
return;
|
|
}
|
|
det = (SplashCoord)1 / det;
|
|
mi0 = det * mat[3] * srcWidth;
|
|
mi1 = -det * mat[1] * srcHeight;
|
|
mi2 = -det * mat[2] * srcWidth;
|
|
mi3 = det * mat[0] * srcHeight;
|
|
mi4 = det * (mat[2] * mat[5] - mat[3] * mat[4]) * srcWidth;
|
|
mi5 = -det * (mat[0] * mat[5] - mat[1] * mat[4]) * srcHeight;
|
|
|
|
// grab the image
|
|
unscaledImage = (Guchar *)gmallocn(srcWidth, srcHeight);
|
|
for (y = 0, p = unscaledImage; y < srcHeight; ++y, p += srcWidth) {
|
|
(*src)(srcData, p);
|
|
for (x = 0; x < srcWidth; ++x) {
|
|
p[x] = (Guchar)(p[x] * 255);
|
|
}
|
|
}
|
|
|
|
// draw it
|
|
pipeInit(&pipe, state->fillPattern,
|
|
(Guchar)splashRound(state->fillAlpha * 255),
|
|
gTrue, gFalse);
|
|
for (y = yMinI; y < yMaxI; ++y) {
|
|
for (x = xMinI; x < xMaxI; ++x) {
|
|
ix = ((SplashCoord)x + 0.5) * mi0 + ((SplashCoord)y + 0.5) * mi2 + mi4;
|
|
iy = ((SplashCoord)x + 0.5) * mi1 + ((SplashCoord)y + 0.5) * mi3 + mi5;
|
|
if (interpolate) {
|
|
if (ix >= 0 && ix < srcWidth && iy >= 0 && iy < srcHeight) {
|
|
x0 = splashFloor(ix - 0.5);
|
|
x1 = x0 + 1;
|
|
sx = (ix - 0.5) - x0;
|
|
y0 = splashFloor(iy - 0.5);
|
|
y1 = y0 + 1;
|
|
sy = (iy - 0.5) - y0;
|
|
if (x0 < 0) {
|
|
x0 = 0;
|
|
}
|
|
if (x1 >= srcWidth) {
|
|
x1 = srcWidth - 1;
|
|
}
|
|
if (y0 < 0) {
|
|
y0 = 0;
|
|
}
|
|
if (y1 >= srcHeight) {
|
|
y1 = srcHeight - 1;
|
|
}
|
|
pix0 = ((SplashCoord)1 - sx)
|
|
* (SplashCoord)unscaledImage[y0 * srcWidth + x0]
|
|
+ sx * (SplashCoord)unscaledImage[y0 * srcWidth + x1];
|
|
pix1 = ((SplashCoord)1 - sx)
|
|
* (SplashCoord)unscaledImage[y1 * srcWidth + x0]
|
|
+ sx * (SplashCoord)unscaledImage[y1 * srcWidth + x1];
|
|
scanBuf[x] = (Guchar)splashRound(((SplashCoord)1 - sy) * pix0
|
|
+ sy * pix1);
|
|
} else {
|
|
scanBuf[x] = 0;
|
|
}
|
|
} else {
|
|
x0 = splashFloor(ix);
|
|
y0 = splashFloor(iy);
|
|
if (x0 >= 0 && x0 < srcWidth && y0 >= 0 && y0 < srcHeight) {
|
|
scanBuf[x] = unscaledImage[y0 * srcWidth + x0];
|
|
} else {
|
|
scanBuf[x] = 0;
|
|
}
|
|
}
|
|
}
|
|
if (clipRes != splashClipAllInside) {
|
|
if (vectorAntialias) {
|
|
state->clip->clipSpan(scanBuf, y, xMinI, xMaxI - 1,
|
|
state->strokeAdjust);
|
|
} else {
|
|
state->clip->clipSpanBinary(scanBuf, y, xMinI, xMaxI - 1,
|
|
state->strokeAdjust);
|
|
}
|
|
}
|
|
(this->*pipe.run)(&pipe, xMinI, xMaxI - 1, y, scanBuf + xMinI, NULL);
|
|
}
|
|
|
|
gfree(unscaledImage);
|
|
}
|
|
|
|
// The glyphMode flag is not currently used, but may be useful if the
|
|
// stroke adjustment behavior is changed.
|
|
void Splash::arbitraryTransformMask(SplashImageMaskSource src, void *srcData,
|
|
int srcWidth, int srcHeight,
|
|
SplashCoord *mat, GBool glyphMode,
|
|
GBool interpolate) {
|
|
SplashBitmap *scaledMask;
|
|
SplashClipResult clipRes;
|
|
SplashPipe pipe;
|
|
int scaledWidth, scaledHeight, t0, t1;
|
|
SplashCoord r00, r01, r10, r11, det, ir00, ir01, ir10, ir11;
|
|
SplashCoord vx[4], vy[4];
|
|
int xMin, yMin, xMax, yMax;
|
|
ImageSection section[3];
|
|
int nSections;
|
|
int bw, y, xa, xb, x, i, xx, yy;
|
|
|
|
// compute the four vertices of the target quadrilateral
|
|
vx[0] = mat[4]; vy[0] = mat[5];
|
|
vx[1] = mat[2] + mat[4]; vy[1] = mat[3] + mat[5];
|
|
vx[2] = mat[0] + mat[2] + mat[4]; vy[2] = mat[1] + mat[3] + mat[5];
|
|
vx[3] = mat[0] + mat[4]; vy[3] = mat[1] + mat[5];
|
|
|
|
// clipping
|
|
xMin = splashRound(vx[0]);
|
|
xMax = splashRound(vx[0]);
|
|
yMin = splashRound(vy[0]);
|
|
yMax = splashRound(vy[0]);
|
|
for (i = 1; i < 4; ++i) {
|
|
t0 = splashRound(vx[i]);
|
|
if (t0 < xMin) {
|
|
xMin = t0;
|
|
} else if (t0 > xMax) {
|
|
xMax = t0;
|
|
}
|
|
t1 = splashRound(vy[i]);
|
|
if (t1 < yMin) {
|
|
yMin = t1;
|
|
} else if (t1 > yMax) {
|
|
yMax = t1;
|
|
}
|
|
}
|
|
clipRes = state->clip->testRect(xMin, yMin, xMax - 1, yMax - 1,
|
|
state->strokeAdjust);
|
|
opClipRes = clipRes;
|
|
if (clipRes == splashClipAllOutside) {
|
|
return;
|
|
}
|
|
|
|
// compute the scale factors
|
|
if (mat[0] >= 0) {
|
|
t0 = splashRound(mat[0] + mat[4]) - splashRound(mat[4]);
|
|
} else {
|
|
t0 = splashRound(mat[4]) - splashRound(mat[0] + mat[4]);
|
|
}
|
|
if (mat[1] >= 0) {
|
|
t1 = splashRound(mat[1] + mat[5]) - splashRound(mat[5]);
|
|
} else {
|
|
t1 = splashRound(mat[5]) - splashRound(mat[1] + mat[5]);
|
|
}
|
|
scaledWidth = t0 > t1 ? t0 : t1;
|
|
if (mat[2] >= 0) {
|
|
t0 = splashRound(mat[2] + mat[4]) - splashRound(mat[4]);
|
|
} else {
|
|
t0 = splashRound(mat[4]) - splashRound(mat[2] + mat[4]);
|
|
}
|
|
if (mat[3] >= 0) {
|
|
t1 = splashRound(mat[3] + mat[5]) - splashRound(mat[5]);
|
|
} else {
|
|
t1 = splashRound(mat[5]) - splashRound(mat[3] + mat[5]);
|
|
}
|
|
scaledHeight = t0 > t1 ? t0 : t1;
|
|
if (scaledWidth == 0) {
|
|
scaledWidth = 1;
|
|
}
|
|
if (scaledHeight == 0) {
|
|
scaledHeight = 1;
|
|
}
|
|
|
|
// compute the inverse transform (after scaling) matrix
|
|
r00 = mat[0] / scaledWidth;
|
|
r01 = mat[1] / scaledWidth;
|
|
r10 = mat[2] / scaledHeight;
|
|
r11 = mat[3] / scaledHeight;
|
|
det = r00 * r11 - r01 * r10;
|
|
if (splashAbs(det) < 1e-6) {
|
|
// this should be caught by the singular matrix check in fillImageMask
|
|
return;
|
|
}
|
|
ir00 = r11 / det;
|
|
ir01 = -r01 / det;
|
|
ir10 = -r10 / det;
|
|
ir11 = r00 / det;
|
|
|
|
// scale the input image
|
|
scaledMask = scaleMask(src, srcData, srcWidth, srcHeight,
|
|
scaledWidth, scaledHeight, interpolate);
|
|
|
|
// construct the three sections
|
|
i = 0;
|
|
if (vy[1] < vy[i]) {
|
|
i = 1;
|
|
}
|
|
if (vy[2] < vy[i]) {
|
|
i = 2;
|
|
}
|
|
if (vy[3] < vy[i]) {
|
|
i = 3;
|
|
}
|
|
// NB: if using fixed point, 0.000001 will be truncated to zero,
|
|
// so these two comparisons must be <=, not <
|
|
if (splashAbs(vy[i] - vy[(i-1) & 3]) <= 0.000001 &&
|
|
vy[(i-1) & 3] < vy[(i+1) & 3]) {
|
|
i = (i-1) & 3;
|
|
}
|
|
if (splashAbs(vy[i] - vy[(i+1) & 3]) <= 0.000001) {
|
|
section[0].y0 = splashRound(vy[i]);
|
|
section[0].y1 = splashRound(vy[(i+2) & 3]) - 1;
|
|
if (vx[i] < vx[(i+1) & 3]) {
|
|
section[0].ia0 = i;
|
|
section[0].ia1 = (i+3) & 3;
|
|
section[0].ib0 = (i+1) & 3;
|
|
section[0].ib1 = (i+2) & 3;
|
|
} else {
|
|
section[0].ia0 = (i+1) & 3;
|
|
section[0].ia1 = (i+2) & 3;
|
|
section[0].ib0 = i;
|
|
section[0].ib1 = (i+3) & 3;
|
|
}
|
|
nSections = 1;
|
|
} else {
|
|
section[0].y0 = splashRound(vy[i]);
|
|
section[2].y1 = splashRound(vy[(i+2) & 3]) - 1;
|
|
section[0].ia0 = section[0].ib0 = i;
|
|
section[2].ia1 = section[2].ib1 = (i+2) & 3;
|
|
if (vx[(i+1) & 3] < vx[(i+3) & 3]) {
|
|
section[0].ia1 = section[2].ia0 = (i+1) & 3;
|
|
section[0].ib1 = section[2].ib0 = (i+3) & 3;
|
|
} else {
|
|
section[0].ia1 = section[2].ia0 = (i+3) & 3;
|
|
section[0].ib1 = section[2].ib0 = (i+1) & 3;
|
|
}
|
|
if (vy[(i+1) & 3] < vy[(i+3) & 3]) {
|
|
section[1].y0 = splashRound(vy[(i+1) & 3]);
|
|
section[2].y0 = splashRound(vy[(i+3) & 3]);
|
|
if (vx[(i+1) & 3] < vx[(i+3) & 3]) {
|
|
section[1].ia0 = (i+1) & 3;
|
|
section[1].ia1 = (i+2) & 3;
|
|
section[1].ib0 = i;
|
|
section[1].ib1 = (i+3) & 3;
|
|
} else {
|
|
section[1].ia0 = i;
|
|
section[1].ia1 = (i+3) & 3;
|
|
section[1].ib0 = (i+1) & 3;
|
|
section[1].ib1 = (i+2) & 3;
|
|
}
|
|
} else {
|
|
section[1].y0 = splashRound(vy[(i+3) & 3]);
|
|
section[2].y0 = splashRound(vy[(i+1) & 3]);
|
|
if (vx[(i+1) & 3] < vx[(i+3) & 3]) {
|
|
section[1].ia0 = i;
|
|
section[1].ia1 = (i+1) & 3;
|
|
section[1].ib0 = (i+3) & 3;
|
|
section[1].ib1 = (i+2) & 3;
|
|
} else {
|
|
section[1].ia0 = (i+3) & 3;
|
|
section[1].ia1 = (i+2) & 3;
|
|
section[1].ib0 = i;
|
|
section[1].ib1 = (i+1) & 3;
|
|
}
|
|
}
|
|
section[0].y1 = section[1].y0 - 1;
|
|
section[1].y1 = section[2].y0 - 1;
|
|
nSections = 3;
|
|
}
|
|
for (i = 0; i < nSections; ++i) {
|
|
section[i].xa0 = vx[section[i].ia0];
|
|
section[i].ya0 = vy[section[i].ia0];
|
|
section[i].xa1 = vx[section[i].ia1];
|
|
section[i].ya1 = vy[section[i].ia1];
|
|
section[i].xb0 = vx[section[i].ib0];
|
|
section[i].yb0 = vy[section[i].ib0];
|
|
section[i].xb1 = vx[section[i].ib1];
|
|
section[i].yb1 = vy[section[i].ib1];
|
|
section[i].dxdya = (section[i].xa1 - section[i].xa0) /
|
|
(section[i].ya1 - section[i].ya0);
|
|
section[i].dxdyb = (section[i].xb1 - section[i].xb0) /
|
|
(section[i].yb1 - section[i].yb0);
|
|
}
|
|
|
|
// initialize the pixel pipe
|
|
pipeInit(&pipe, state->fillPattern,
|
|
(Guchar)splashRound(state->fillAlpha * 255),
|
|
gTrue, gFalse);
|
|
|
|
// make sure narrow images cover at least one pixel
|
|
if (nSections == 1) {
|
|
if (section[0].y0 == section[0].y1) {
|
|
++section[0].y1;
|
|
clipRes = opClipRes = splashClipPartial;
|
|
}
|
|
} else {
|
|
if (section[0].y0 == section[2].y1) {
|
|
++section[1].y1;
|
|
clipRes = opClipRes = splashClipPartial;
|
|
}
|
|
}
|
|
|
|
// scan all pixels inside the target region
|
|
bw = bitmap->width;
|
|
for (i = 0; i < nSections; ++i) {
|
|
for (y = section[i].y0; y <= section[i].y1; ++y) {
|
|
xa = splashRound(section[i].xa0 +
|
|
((SplashCoord)y + 0.5 - section[i].ya0) *
|
|
section[i].dxdya);
|
|
xb = splashRound(section[i].xb0 +
|
|
((SplashCoord)y + 0.5 - section[i].yb0) *
|
|
section[i].dxdyb);
|
|
if (xa > xb) {
|
|
continue;
|
|
}
|
|
// make sure narrow images cover at least one pixel
|
|
if (xa == xb) {
|
|
++xb;
|
|
}
|
|
// check the scanBuf bounds
|
|
if (xa >= bw || xb < 0) {
|
|
continue;
|
|
}
|
|
if (xa < 0) {
|
|
xa = 0;
|
|
}
|
|
if (xb > bw) {
|
|
xb = bw;
|
|
}
|
|
// get the scan line
|
|
for (x = xa; x < xb; ++x) {
|
|
// map (x+0.5, y+0.5) back to the scaled image
|
|
xx = splashFloor(((SplashCoord)x + 0.5 - mat[4]) * ir00 +
|
|
((SplashCoord)y + 0.5 - mat[5]) * ir10);
|
|
yy = splashFloor(((SplashCoord)x + 0.5 - mat[4]) * ir01 +
|
|
((SplashCoord)y + 0.5 - mat[5]) * ir11);
|
|
// xx should always be within bounds, but floating point
|
|
// inaccuracy can cause problems
|
|
if (xx < 0) {
|
|
xx = 0;
|
|
} else if (xx >= scaledWidth) {
|
|
xx = scaledWidth - 1;
|
|
}
|
|
if (yy < 0) {
|
|
yy = 0;
|
|
} else if (yy >= scaledHeight) {
|
|
yy = scaledHeight - 1;
|
|
}
|
|
scanBuf[x] = scaledMask->data[yy * scaledWidth + xx];
|
|
}
|
|
// clip the scan line
|
|
if (clipRes != splashClipAllInside) {
|
|
if (vectorAntialias) {
|
|
state->clip->clipSpan(scanBuf, y, xa, xb - 1, state->strokeAdjust);
|
|
} else {
|
|
state->clip->clipSpanBinary(scanBuf, y, xa, xb - 1,
|
|
state->strokeAdjust);
|
|
}
|
|
}
|
|
// draw the scan line
|
|
(this->*pipe.run)(&pipe, xa, xb - 1, y, scanBuf + xa, NULL);
|
|
}
|
|
}
|
|
|
|
delete scaledMask;
|
|
}
|
|
|
|
// Scale an image mask into a SplashBitmap.
|
|
SplashBitmap *Splash::scaleMask(SplashImageMaskSource src, void *srcData,
|
|
int srcWidth, int srcHeight,
|
|
int scaledWidth, int scaledHeight,
|
|
GBool interpolate) {
|
|
SplashBitmap *dest;
|
|
|
|
dest = new SplashBitmap(scaledWidth, scaledHeight, 1, splashModeMono8,
|
|
gFalse);
|
|
if (scaledHeight < srcHeight) {
|
|
if (scaledWidth < srcWidth) {
|
|
scaleMaskYdXd(src, srcData, srcWidth, srcHeight,
|
|
scaledWidth, scaledHeight, dest);
|
|
} else {
|
|
scaleMaskYdXu(src, srcData, srcWidth, srcHeight,
|
|
scaledWidth, scaledHeight, dest);
|
|
}
|
|
} else {
|
|
if (scaledWidth < srcWidth) {
|
|
scaleMaskYuXd(src, srcData, srcWidth, srcHeight,
|
|
scaledWidth, scaledHeight, dest);
|
|
} else {
|
|
if (interpolate) {
|
|
scaleMaskYuXuI(src, srcData, srcWidth, srcHeight,
|
|
scaledWidth, scaledHeight, dest);
|
|
} else {
|
|
scaleMaskYuXu(src, srcData, srcWidth, srcHeight,
|
|
scaledWidth, scaledHeight, dest);
|
|
}
|
|
}
|
|
}
|
|
return dest;
|
|
}
|
|
|
|
void Splash::scaleMaskYdXd(SplashImageMaskSource src, void *srcData,
|
|
int srcWidth, int srcHeight,
|
|
int scaledWidth, int scaledHeight,
|
|
SplashBitmap *dest) {
|
|
Guchar *lineBuf;
|
|
Guint *pixBuf;
|
|
Guint pix;
|
|
Guchar *destPtr;
|
|
int yp, yq, xp, xq, yt, y, yStep, xt, x, xStep, xx, d, d0, d1;
|
|
int i, j;
|
|
|
|
// Bresenham parameters for y scale
|
|
yp = srcHeight / scaledHeight;
|
|
yq = srcHeight % scaledHeight;
|
|
|
|
// Bresenham parameters for x scale
|
|
xp = srcWidth / scaledWidth;
|
|
xq = srcWidth % scaledWidth;
|
|
|
|
// allocate buffers
|
|
lineBuf = (Guchar *)gmalloc(srcWidth);
|
|
pixBuf = (Guint *)gmallocn(srcWidth, sizeof(int));
|
|
|
|
// init y scale Bresenham
|
|
yt = 0;
|
|
|
|
destPtr = dest->data;
|
|
for (y = 0; y < scaledHeight; ++y) {
|
|
|
|
// y scale Bresenham
|
|
if ((yt += yq) >= scaledHeight) {
|
|
yt -= scaledHeight;
|
|
yStep = yp + 1;
|
|
} else {
|
|
yStep = yp;
|
|
}
|
|
|
|
// read rows from image
|
|
memset(pixBuf, 0, srcWidth * sizeof(int));
|
|
for (i = 0; i < yStep; ++i) {
|
|
(*src)(srcData, lineBuf);
|
|
for (j = 0; j < srcWidth; ++j) {
|
|
pixBuf[j] += lineBuf[j];
|
|
}
|
|
}
|
|
|
|
// init x scale Bresenham
|
|
xt = 0;
|
|
d0 = (255 << 23) / (yStep * xp);
|
|
d1 = (255 << 23) / (yStep * (xp + 1));
|
|
|
|
xx = 0;
|
|
for (x = 0; x < scaledWidth; ++x) {
|
|
|
|
// x scale Bresenham
|
|
if ((xt += xq) >= scaledWidth) {
|
|
xt -= scaledWidth;
|
|
xStep = xp + 1;
|
|
d = d1;
|
|
} else {
|
|
xStep = xp;
|
|
d = d0;
|
|
}
|
|
|
|
// compute the final pixel
|
|
pix = 0;
|
|
for (i = 0; i < xStep; ++i) {
|
|
pix += pixBuf[xx++];
|
|
}
|
|
// (255 * pix) / xStep * yStep
|
|
pix = (pix * d) >> 23;
|
|
|
|
// store the pixel
|
|
*destPtr++ = (Guchar)pix;
|
|
}
|
|
}
|
|
|
|
gfree(pixBuf);
|
|
gfree(lineBuf);
|
|
}
|
|
|
|
void Splash::scaleMaskYdXu(SplashImageMaskSource src, void *srcData,
|
|
int srcWidth, int srcHeight,
|
|
int scaledWidth, int scaledHeight,
|
|
SplashBitmap *dest) {
|
|
Guchar *lineBuf;
|
|
Guint *pixBuf;
|
|
Guint pix;
|
|
Guchar *destPtr;
|
|
int yp, yq, xp, xq, yt, y, yStep, xt, x, xStep, d;
|
|
int i, j;
|
|
|
|
// Bresenham parameters for y scale
|
|
yp = srcHeight / scaledHeight;
|
|
yq = srcHeight % scaledHeight;
|
|
|
|
// Bresenham parameters for x scale
|
|
xp = scaledWidth / srcWidth;
|
|
xq = scaledWidth % srcWidth;
|
|
|
|
// allocate buffers
|
|
lineBuf = (Guchar *)gmalloc(srcWidth);
|
|
pixBuf = (Guint *)gmallocn(srcWidth, sizeof(int));
|
|
|
|
// init y scale Bresenham
|
|
yt = 0;
|
|
|
|
destPtr = dest->data;
|
|
for (y = 0; y < scaledHeight; ++y) {
|
|
|
|
// y scale Bresenham
|
|
if ((yt += yq) >= scaledHeight) {
|
|
yt -= scaledHeight;
|
|
yStep = yp + 1;
|
|
} else {
|
|
yStep = yp;
|
|
}
|
|
|
|
// read rows from image
|
|
memset(pixBuf, 0, srcWidth * sizeof(int));
|
|
for (i = 0; i < yStep; ++i) {
|
|
(*src)(srcData, lineBuf);
|
|
for (j = 0; j < srcWidth; ++j) {
|
|
pixBuf[j] += lineBuf[j];
|
|
}
|
|
}
|
|
|
|
// init x scale Bresenham
|
|
xt = 0;
|
|
d = (255 << 23) / yStep;
|
|
|
|
for (x = 0; x < srcWidth; ++x) {
|
|
|
|
// x scale Bresenham
|
|
if ((xt += xq) >= srcWidth) {
|
|
xt -= srcWidth;
|
|
xStep = xp + 1;
|
|
} else {
|
|
xStep = xp;
|
|
}
|
|
|
|
// compute the final pixel
|
|
pix = pixBuf[x];
|
|
// (255 * pix) / yStep
|
|
pix = (pix * d) >> 23;
|
|
|
|
// store the pixel
|
|
for (i = 0; i < xStep; ++i) {
|
|
*destPtr++ = (Guchar)pix;
|
|
}
|
|
}
|
|
}
|
|
|
|
gfree(pixBuf);
|
|
gfree(lineBuf);
|
|
}
|
|
|
|
void Splash::scaleMaskYuXd(SplashImageMaskSource src, void *srcData,
|
|
int srcWidth, int srcHeight,
|
|
int scaledWidth, int scaledHeight,
|
|
SplashBitmap *dest) {
|
|
Guchar *lineBuf;
|
|
Guint pix;
|
|
Guchar *destPtr0, *destPtr;
|
|
int yp, yq, xp, xq, yt, y, yStep, xt, x, xStep, xx, d, d0, d1;
|
|
int i;
|
|
|
|
// Bresenham parameters for y scale
|
|
yp = scaledHeight / srcHeight;
|
|
yq = scaledHeight % srcHeight;
|
|
|
|
// Bresenham parameters for x scale
|
|
xp = srcWidth / scaledWidth;
|
|
xq = srcWidth % scaledWidth;
|
|
|
|
// allocate buffers
|
|
lineBuf = (Guchar *)gmalloc(srcWidth);
|
|
|
|
// init y scale Bresenham
|
|
yt = 0;
|
|
|
|
destPtr0 = dest->data;
|
|
for (y = 0; y < srcHeight; ++y) {
|
|
|
|
// y scale Bresenham
|
|
if ((yt += yq) >= srcHeight) {
|
|
yt -= srcHeight;
|
|
yStep = yp + 1;
|
|
} else {
|
|
yStep = yp;
|
|
}
|
|
|
|
// read row from image
|
|
(*src)(srcData, lineBuf);
|
|
|
|
// init x scale Bresenham
|
|
xt = 0;
|
|
d0 = (255 << 23) / xp;
|
|
d1 = (255 << 23) / (xp + 1);
|
|
|
|
xx = 0;
|
|
for (x = 0; x < scaledWidth; ++x) {
|
|
|
|
// x scale Bresenham
|
|
if ((xt += xq) >= scaledWidth) {
|
|
xt -= scaledWidth;
|
|
xStep = xp + 1;
|
|
d = d1;
|
|
} else {
|
|
xStep = xp;
|
|
d = d0;
|
|
}
|
|
|
|
// compute the final pixel
|
|
pix = 0;
|
|
for (i = 0; i < xStep; ++i) {
|
|
pix += lineBuf[xx++];
|
|
}
|
|
// (255 * pix) / xStep
|
|
pix = (pix * d) >> 23;
|
|
|
|
// store the pixel
|
|
for (i = 0; i < yStep; ++i) {
|
|
destPtr = destPtr0 + i * scaledWidth + x;
|
|
*destPtr = (Guchar)pix;
|
|
}
|
|
}
|
|
|
|
destPtr0 += yStep * scaledWidth;
|
|
}
|
|
|
|
gfree(lineBuf);
|
|
}
|
|
|
|
void Splash::scaleMaskYuXu(SplashImageMaskSource src, void *srcData,
|
|
int srcWidth, int srcHeight,
|
|
int scaledWidth, int scaledHeight,
|
|
SplashBitmap *dest) {
|
|
Guchar *lineBuf;
|
|
Guchar pix;
|
|
Guchar *srcPtr, *destPtr;
|
|
int yp, yq, xp, xq, yt, y, yStep, xt, x, xStep;
|
|
int i;
|
|
|
|
// Bresenham parameters for y scale
|
|
yp = scaledHeight / srcHeight;
|
|
yq = scaledHeight % srcHeight;
|
|
|
|
// Bresenham parameters for x scale
|
|
xp = scaledWidth / srcWidth;
|
|
xq = scaledWidth % srcWidth;
|
|
|
|
// allocate buffers
|
|
lineBuf = (Guchar *)gmalloc(srcWidth);
|
|
|
|
// init y scale Bresenham
|
|
yt = 0;
|
|
|
|
destPtr = dest->data;
|
|
for (y = 0; y < srcHeight; ++y) {
|
|
|
|
// y scale Bresenham
|
|
if ((yt += yq) >= srcHeight) {
|
|
yt -= srcHeight;
|
|
yStep = yp + 1;
|
|
} else {
|
|
yStep = yp;
|
|
}
|
|
|
|
// read row from image
|
|
(*src)(srcData, lineBuf);
|
|
|
|
// init x scale Bresenham
|
|
xt = 0;
|
|
|
|
// generate one row
|
|
srcPtr = lineBuf;
|
|
for (x = 0; x < srcWidth; ++x) {
|
|
|
|
// x scale Bresenham
|
|
if ((xt += xq) >= srcWidth) {
|
|
xt -= srcWidth;
|
|
xStep = xp + 1;
|
|
} else {
|
|
xStep = xp;
|
|
}
|
|
|
|
// compute the final pixel
|
|
pix = *srcPtr ? 255 : 0;
|
|
++srcPtr;
|
|
|
|
// duplicate the pixel horizontally
|
|
for (i = 0; i < xStep; ++i) {
|
|
*destPtr++ = pix;
|
|
}
|
|
}
|
|
|
|
// duplicate the row vertically
|
|
for (i = 1 ; i < yStep; ++i) {
|
|
memcpy(destPtr, destPtr - scaledWidth, scaledWidth);
|
|
destPtr += scaledWidth;
|
|
}
|
|
}
|
|
|
|
gfree(lineBuf);
|
|
}
|
|
|
|
void Splash::scaleMaskYuXuI(SplashImageMaskSource src, void *srcData,
|
|
int srcWidth, int srcHeight,
|
|
int scaledWidth, int scaledHeight,
|
|
SplashBitmap *dest) {
|
|
Guchar *lineBuf0, *lineBuf1, *tBuf;
|
|
Guchar pix;
|
|
SplashCoord yr, xr, ys, xs, ySrc, xSrc;
|
|
int ySrc0, ySrc1, yBuf, xSrc0, xSrc1, y, x;
|
|
Guchar *destPtr;
|
|
|
|
// ratios
|
|
yr = (SplashCoord)srcHeight / (SplashCoord)scaledHeight;
|
|
xr = (SplashCoord)srcWidth / (SplashCoord)scaledWidth;
|
|
|
|
// allocate buffers
|
|
lineBuf0 = (Guchar *)gmalloc(scaledWidth);
|
|
lineBuf1 = (Guchar *)gmalloc(scaledWidth);
|
|
|
|
// read first two rows
|
|
(*src)(srcData, lineBuf0);
|
|
if (srcHeight > 1) {
|
|
(*src)(srcData, lineBuf1);
|
|
yBuf = 1;
|
|
} else {
|
|
memcpy(lineBuf1, lineBuf0, srcWidth);
|
|
yBuf = 0;
|
|
}
|
|
|
|
// interpolate first two rows
|
|
for (x = scaledWidth - 1; x >= 0; --x) {
|
|
xSrc = xr * x;
|
|
xSrc0 = splashFloor(xSrc + xr * 0.5 - 0.5);
|
|
xSrc1 = xSrc0 + 1;
|
|
xs = ((SplashCoord)xSrc1 + 0.5) - (xSrc + xr * 0.5);
|
|
if (xSrc0 < 0) {
|
|
xSrc0 = 0;
|
|
}
|
|
if (xSrc1 >= srcWidth) {
|
|
xSrc1 = srcWidth - 1;
|
|
}
|
|
lineBuf0[x] = (Guchar)(int)
|
|
((xs * (int)lineBuf0[xSrc0] +
|
|
((SplashCoord)1 - xs) * (int)lineBuf0[xSrc1]) * 255);
|
|
lineBuf1[x] = (Guchar)(int)
|
|
((xs * (int)lineBuf1[xSrc0] +
|
|
((SplashCoord)1 - xs) * (int)lineBuf1[xSrc1]) * 255);
|
|
}
|
|
|
|
destPtr = dest->data;
|
|
for (y = 0; y < scaledHeight; ++y) {
|
|
|
|
// compute vertical interpolation parameters
|
|
ySrc = yr * y;
|
|
ySrc0 = splashFloor(ySrc + yr * 0.5 - 0.5);
|
|
ySrc1 = ySrc0 + 1;
|
|
ys = ((SplashCoord)ySrc1 + 0.5) - (ySrc + yr * 0.5);
|
|
if (ySrc0 < 0) {
|
|
ySrc0 = 0;
|
|
ys = 1;
|
|
}
|
|
if (ySrc1 >= srcHeight) {
|
|
ySrc1 = srcHeight - 1;
|
|
ys = 0;
|
|
}
|
|
|
|
// read another row (if necessary)
|
|
if (ySrc1 > yBuf) {
|
|
tBuf = lineBuf0;
|
|
lineBuf0 = lineBuf1;
|
|
lineBuf1 = tBuf;
|
|
(*src)(srcData, lineBuf1);
|
|
|
|
// interpolate the row
|
|
for (x = scaledWidth - 1; x >= 0; --x) {
|
|
xSrc = xr * x;
|
|
xSrc0 = splashFloor(xSrc + xr * 0.5 - 0.5);
|
|
xSrc1 = xSrc0 + 1;
|
|
xs = ((SplashCoord)xSrc1 + 0.5) - (xSrc + xr * 0.5);
|
|
if (xSrc0 < 0) {
|
|
xSrc0 = 0;
|
|
}
|
|
if (xSrc1 >= srcWidth) {
|
|
xSrc1 = srcWidth - 1;
|
|
}
|
|
lineBuf1[x] = (Guchar)(int)
|
|
((xs * (int)lineBuf1[xSrc0] +
|
|
((SplashCoord)1 - xs) * (int)lineBuf1[xSrc1]) * 255);
|
|
}
|
|
|
|
++yBuf;
|
|
}
|
|
|
|
// do the vertical interpolation
|
|
for (x = 0; x < scaledWidth; ++x) {
|
|
|
|
pix = (Guchar)(int)(ys * (int)lineBuf0[x] +
|
|
((SplashCoord)1 - ys) * (int)lineBuf1[x]);
|
|
|
|
// store the pixel
|
|
*destPtr++ = pix;
|
|
}
|
|
}
|
|
|
|
gfree(lineBuf1);
|
|
gfree(lineBuf0);
|
|
}
|
|
|
|
void Splash::blitMask(SplashBitmap *src, int xDest, int yDest,
|
|
SplashClipResult clipRes) {
|
|
SplashPipe pipe;
|
|
int w, h, x0, x1, y0, y1, y, t;
|
|
|
|
w = src->width;
|
|
h = src->height;
|
|
pipeInit(&pipe, state->fillPattern,
|
|
(Guchar)splashRound(state->fillAlpha * 255),
|
|
gTrue, gFalse);
|
|
if (clipRes == splashClipAllInside) {
|
|
for (y = 0; y < h; ++y) {
|
|
(this->*pipe.run)(&pipe, xDest, xDest + w - 1, yDest + y,
|
|
src->data + y * (size_t)w, NULL);
|
|
}
|
|
} else {
|
|
x0 = xDest;
|
|
if ((t = state->clip->getXMinI(state->strokeAdjust)) > x0) {
|
|
x0 = t;
|
|
}
|
|
x1 = xDest + w;
|
|
if ((t = state->clip->getXMaxI(state->strokeAdjust) + 1) < x1) {
|
|
x1 = t;
|
|
}
|
|
y0 = yDest;
|
|
if ((t = state->clip->getYMinI(state->strokeAdjust)) > y0) {
|
|
y0 = t;
|
|
}
|
|
y1 = yDest + h;
|
|
if ((t = state->clip->getYMaxI(state->strokeAdjust) + 1) < y1) {
|
|
y1 = t;
|
|
}
|
|
if (x0 < x1 && y0 < y1) {
|
|
for (y = y0; y < y1; ++y) {
|
|
memcpy(scanBuf + x0,
|
|
src->data + (y - yDest) * (size_t)w + (x0 - xDest),
|
|
x1 - x0);
|
|
if (vectorAntialias) {
|
|
state->clip->clipSpan(scanBuf, y, x0, x1 - 1,
|
|
state->strokeAdjust);
|
|
} else {
|
|
state->clip->clipSpanBinary(scanBuf, y, x0, x1 - 1,
|
|
state->strokeAdjust);
|
|
}
|
|
(this->*pipe.run)(&pipe, x0, x1 - 1, y, scanBuf + x0, NULL);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
SplashError Splash::drawImage(SplashImageSource src, void *srcData,
|
|
SplashColorMode srcMode, GBool srcAlpha,
|
|
int w, int h, SplashCoord *mat,
|
|
GBool interpolate) {
|
|
GBool ok;
|
|
SplashBitmap *scaledImg;
|
|
SplashClipResult clipRes;
|
|
GBool minorAxisZero;
|
|
SplashCoord wSize, hSize, t0, t1;
|
|
int x0, y0, x1, y1, scaledWidth, scaledHeight;
|
|
int nComps;
|
|
|
|
if (debugMode) {
|
|
printf("drawImage: srcMode=%d srcAlpha=%d w=%d h=%d mat=[%.2f %.2f %.2f %.2f %.2f %.2f]\n",
|
|
srcMode, srcAlpha, w, h, (double)mat[0], (double)mat[1], (double)mat[2],
|
|
(double)mat[3], (double)mat[4], (double)mat[5]);
|
|
}
|
|
|
|
// check color modes
|
|
ok = gFalse; // make gcc happy
|
|
nComps = 0; // make gcc happy
|
|
switch (bitmap->mode) {
|
|
case splashModeMono1:
|
|
case splashModeMono8:
|
|
ok = srcMode == splashModeMono8;
|
|
nComps = 1;
|
|
break;
|
|
case splashModeRGB8:
|
|
case splashModeBGR8:
|
|
ok = srcMode == splashModeRGB8;
|
|
nComps = 3;
|
|
break;
|
|
#if SPLASH_CMYK
|
|
case splashModeCMYK8:
|
|
ok = srcMode == splashModeCMYK8;
|
|
nComps = 4;
|
|
break;
|
|
#endif
|
|
default:
|
|
ok = gFalse;
|
|
break;
|
|
}
|
|
if (!ok) {
|
|
return splashErrModeMismatch;
|
|
}
|
|
|
|
// check for singular matrix
|
|
if (!splashCheckDet(mat[0], mat[1], mat[2], mat[3], 0.000001)) {
|
|
return splashErrSingularMatrix;
|
|
}
|
|
|
|
minorAxisZero = splashAbs(mat[1]) <= 0.0001 && splashAbs(mat[2]) <= 0.0001;
|
|
|
|
// rough estimate of size of scaled image
|
|
t0 = splashAbs(mat[0]);
|
|
t1 = splashAbs(mat[1]);
|
|
wSize = t0 > t1 ? t0 : t1;
|
|
t0 = splashAbs(mat[2]);
|
|
t1 = splashAbs(mat[3]);
|
|
hSize = t0 > t1 ? t0 : t1;
|
|
|
|
// stream-mode upscaling -- this is slower, so we only use it if the
|
|
// upscaled image is large (in which case clipping should remove
|
|
// many pixels)
|
|
#if USE_FIXEDPOINT
|
|
if ((wSize > 2 * w && hSize > 2 * h && (int)wSize > 1000000 / (int)hSize) ||
|
|
(wSize > w && hSize > h && (int)wSize > 10000000 / (int)hSize) ||
|
|
((wSize > w || hSize > h) && (int)wSize > 25000000 / (int)hSize)) {
|
|
#else
|
|
if ((wSize > 2 * w && hSize > 2 * h && wSize * hSize > 1000000) ||
|
|
(wSize > w && hSize > h && wSize * hSize > 10000000) ||
|
|
((wSize > w || hSize > h) && wSize * hSize > 25000000)) {
|
|
#endif
|
|
upscaleImage(src, srcData, srcMode, nComps, srcAlpha,
|
|
w, h, mat, interpolate);
|
|
|
|
// scaling only
|
|
} else if (mat[0] > 0 && minorAxisZero && mat[3] > 0) {
|
|
getImageBounds(mat[4], mat[0] + mat[4], &x0, &x1);
|
|
getImageBounds(mat[5], mat[3] + mat[5], &y0, &y1);
|
|
clipRes = state->clip->testRect(x0, y0, x1 - 1, y1 - 1,
|
|
state->strokeAdjust);
|
|
opClipRes = clipRes;
|
|
if (clipRes != splashClipAllOutside) {
|
|
scaledWidth = x1 - x0;
|
|
scaledHeight = y1 - y0;
|
|
scaledImg = scaleImage(src, srcData, srcMode, nComps, srcAlpha, w, h,
|
|
scaledWidth, scaledHeight, interpolate);
|
|
blitImage(scaledImg, srcAlpha, x0, y0, clipRes);
|
|
delete scaledImg;
|
|
}
|
|
|
|
// scaling plus vertical flip
|
|
} else if (mat[0] > 0 && minorAxisZero && mat[3] < 0) {
|
|
getImageBounds(mat[4], mat[0] + mat[4], &x0, &x1);
|
|
getImageBounds(mat[3] + mat[5], mat[5], &y0, &y1);
|
|
clipRes = state->clip->testRect(x0, y0, x1 - 1, y1 - 1,
|
|
state->strokeAdjust);
|
|
opClipRes = clipRes;
|
|
if (clipRes != splashClipAllOutside) {
|
|
scaledWidth = x1 - x0;
|
|
scaledHeight = y1 - y0;
|
|
scaledImg = scaleImage(src, srcData, srcMode, nComps, srcAlpha, w, h,
|
|
scaledWidth, scaledHeight, interpolate);
|
|
vertFlipImage(scaledImg, scaledWidth, scaledHeight, nComps);
|
|
blitImage(scaledImg, srcAlpha, x0, y0, clipRes);
|
|
delete scaledImg;
|
|
}
|
|
|
|
// scaling plus horizontal flip
|
|
} else if (mat[0] < 0 && minorAxisZero && mat[3] > 0) {
|
|
getImageBounds(mat[0] + mat[4], mat[4], &x0, &x1);
|
|
getImageBounds(mat[5], mat[3] + mat[5], &y0, &y1);
|
|
clipRes = state->clip->testRect(x0, y0, x1 - 1, y1 - 1,
|
|
state->strokeAdjust);
|
|
opClipRes = clipRes;
|
|
if (clipRes != splashClipAllOutside) {
|
|
scaledWidth = x1 - x0;
|
|
scaledHeight = y1 - y0;
|
|
scaledImg = scaleImage(src, srcData, srcMode, nComps, srcAlpha, w, h,
|
|
scaledWidth, scaledHeight, interpolate);
|
|
horizFlipImage(scaledImg, scaledWidth, scaledHeight, nComps);
|
|
blitImage(scaledImg, srcAlpha, x0, y0, clipRes);
|
|
delete scaledImg;
|
|
}
|
|
|
|
// scaling plus horizontal and vertical flips
|
|
} else if (mat[0] < 0 && minorAxisZero && mat[3] < 0) {
|
|
getImageBounds(mat[0] + mat[4], mat[4], &x0, &x1);
|
|
getImageBounds(mat[3] + mat[5], mat[5], &y0, &y1);
|
|
clipRes = state->clip->testRect(x0, y0, x1 - 1, y1 - 1,
|
|
state->strokeAdjust);
|
|
opClipRes = clipRes;
|
|
if (clipRes != splashClipAllOutside) {
|
|
scaledWidth = x1 - x0;
|
|
scaledHeight = y1 - y0;
|
|
scaledImg = scaleImage(src, srcData, srcMode, nComps, srcAlpha, w, h,
|
|
scaledWidth, scaledHeight, interpolate);
|
|
vertFlipImage(scaledImg, scaledWidth, scaledHeight, nComps);
|
|
horizFlipImage(scaledImg, scaledWidth, scaledHeight, nComps);
|
|
blitImage(scaledImg, srcAlpha, x0, y0, clipRes);
|
|
delete scaledImg;
|
|
}
|
|
|
|
// all other cases
|
|
} else {
|
|
arbitraryTransformImage(src, srcData, srcMode, nComps, srcAlpha,
|
|
w, h, mat, interpolate);
|
|
}
|
|
|
|
return splashOk;
|
|
}
|
|
|
|
void Splash::upscaleImage(SplashImageSource src, void *srcData,
|
|
SplashColorMode srcMode, int nComps,
|
|
GBool srcAlpha, int srcWidth, int srcHeight,
|
|
SplashCoord *mat, GBool interpolate) {
|
|
SplashClipResult clipRes;
|
|
SplashPipe pipe;
|
|
SplashColorPtr unscaledImage, pixelBuf, p, q, q00, q01, q10, q11;
|
|
Guchar *unscaledAlpha, *alphaPtr;
|
|
SplashCoord xMin, yMin, xMax, yMax, t;
|
|
SplashCoord mi0, mi1, mi2, mi3, mi4, mi5, det;
|
|
SplashCoord ix, iy, sx, sy, pix0, pix1;
|
|
SplashBitmapRowSize rowSize;
|
|
int xMinI, yMinI, xMaxI, yMaxI, x, y, x0, y0, x1, y1, tt, i;
|
|
|
|
// compute the bbox of the target quadrilateral
|
|
xMin = xMax = mat[4];
|
|
t = mat[2] + mat[4];
|
|
if (t < xMin) {
|
|
xMin = t;
|
|
} else if (t > xMax) {
|
|
xMax = t;
|
|
}
|
|
t = mat[0] + mat[2] + mat[4];
|
|
if (t < xMin) {
|
|
xMin = t;
|
|
} else if (t > xMax) {
|
|
xMax = t;
|
|
}
|
|
t = mat[0] + mat[4];
|
|
if (t < xMin) {
|
|
xMin = t;
|
|
} else if (t > xMax) {
|
|
xMax = t;
|
|
}
|
|
getImageBounds(xMin, xMax, &xMinI, &xMaxI);
|
|
yMin = yMax = mat[5];
|
|
t = mat[3] + mat[5];
|
|
if (t < yMin) {
|
|
yMin = t;
|
|
} else if (t > yMax) {
|
|
yMax = t;
|
|
}
|
|
t = mat[1] + mat[3] + mat[5];
|
|
if (t < yMin) {
|
|
yMin = t;
|
|
} else if (t > yMax) {
|
|
yMax = t;
|
|
}
|
|
t = mat[1] + mat[5];
|
|
if (t < yMin) {
|
|
yMin = t;
|
|
} else if (t > yMax) {
|
|
yMax = t;
|
|
}
|
|
getImageBounds(yMin, yMax, &yMinI, &yMaxI);
|
|
|
|
// clipping
|
|
clipRes = state->clip->testRect(xMinI, yMinI, xMaxI - 1, yMaxI - 1,
|
|
state->strokeAdjust);
|
|
opClipRes = clipRes;
|
|
if (clipRes == splashClipAllOutside) {
|
|
return;
|
|
}
|
|
if (clipRes != splashClipAllInside) {
|
|
if ((tt = state->clip->getXMinI(state->strokeAdjust)) > xMinI) {
|
|
xMinI = tt;
|
|
}
|
|
if ((tt = state->clip->getXMaxI(state->strokeAdjust) + 1) < xMaxI) {
|
|
xMaxI = tt;
|
|
}
|
|
if ((tt = state->clip->getYMinI(state->strokeAdjust)) > yMinI) {
|
|
yMinI = tt;
|
|
}
|
|
if ((tt = state->clip->getYMaxI(state->strokeAdjust) + 1) < yMaxI) {
|
|
yMaxI = tt;
|
|
}
|
|
}
|
|
|
|
// invert the matrix
|
|
det = mat[0] * mat[3] - mat[1] * mat[2];
|
|
if (splashAbs(det) < 1e-6) {
|
|
// this should be caught by the singular matrix check in fillImageMask
|
|
return;
|
|
}
|
|
det = (SplashCoord)1 / det;
|
|
mi0 = det * mat[3] * srcWidth;
|
|
mi1 = -det * mat[1] * srcHeight;
|
|
mi2 = -det * mat[2] * srcWidth;
|
|
mi3 = det * mat[0] * srcHeight;
|
|
mi4 = det * (mat[2] * mat[5] - mat[3] * mat[4]) * srcWidth;
|
|
mi5 = -det * (mat[0] * mat[5] - mat[1] * mat[4]) * srcHeight;
|
|
|
|
// grab the image
|
|
if (srcWidth > INT_MAX / nComps) {
|
|
rowSize = -1;
|
|
} else {
|
|
rowSize = srcWidth * nComps;
|
|
}
|
|
unscaledImage = (SplashColorPtr)gmallocn64(srcHeight, rowSize);
|
|
if (srcAlpha) {
|
|
unscaledAlpha = (Guchar *)gmallocn(srcHeight, srcWidth);
|
|
for (y = 0, p = unscaledImage, alphaPtr = unscaledAlpha;
|
|
y < srcHeight;
|
|
++y, p += rowSize, alphaPtr += srcWidth) {
|
|
(*src)(srcData, p, alphaPtr);
|
|
}
|
|
} else {
|
|
unscaledAlpha = NULL;
|
|
for (y = 0, p = unscaledImage; y < srcHeight; ++y, p += rowSize) {
|
|
(*src)(srcData, p, NULL);
|
|
}
|
|
}
|
|
|
|
// draw it
|
|
pixelBuf = (SplashColorPtr)gmallocn(xMaxI - xMinI, nComps);
|
|
pipeInit(&pipe, NULL,
|
|
(Guchar)splashRound(state->fillAlpha * 255),
|
|
gTrue, gFalse);
|
|
for (y = yMinI; y < yMaxI; ++y) {
|
|
p = pixelBuf;
|
|
for (x = xMinI; x < xMaxI; ++x) {
|
|
ix = ((SplashCoord)x + 0.5) * mi0 + ((SplashCoord)y + 0.5) * mi2 + mi4;
|
|
iy = ((SplashCoord)x + 0.5) * mi1 + ((SplashCoord)y + 0.5) * mi3 + mi5;
|
|
if (interpolate) {
|
|
if (ix >= 0 && ix < srcWidth && iy >= 0 && iy < srcHeight) {
|
|
x0 = splashFloor(ix - 0.5);
|
|
x1 = x0 + 1;
|
|
sx = (ix - 0.5) - x0;
|
|
y0 = splashFloor(iy - 0.5);
|
|
y1 = y0 + 1;
|
|
sy = (iy - 0.5) - y0;
|
|
if (x0 < 0) {
|
|
x0 = 0;
|
|
}
|
|
if (x1 >= srcWidth) {
|
|
x1 = srcWidth - 1;
|
|
}
|
|
if (y0 < 0) {
|
|
y0 = 0;
|
|
}
|
|
if (y1 >= srcHeight) {
|
|
y1 = srcHeight - 1;
|
|
}
|
|
q00 = &unscaledImage[y0 * rowSize + (SplashBitmapRowSize)x0 * nComps];
|
|
q01 = &unscaledImage[y0 * rowSize + (SplashBitmapRowSize)x1 * nComps];
|
|
q10 = &unscaledImage[y1 * rowSize + (SplashBitmapRowSize)x0 * nComps];
|
|
q11 = &unscaledImage[y1 * rowSize + (SplashBitmapRowSize)x1 * nComps];
|
|
for (i = 0; i < nComps; ++i) {
|
|
pix0 = ((SplashCoord)1 - sx) * (int)*q00++ + sx * (int)*q01++;
|
|
pix1 = ((SplashCoord)1 - sx) * (int)*q10++ + sx * (int)*q11++;
|
|
*p++ = (Guchar)splashRound(((SplashCoord)1 - sy) * pix0
|
|
+ sy * pix1);
|
|
}
|
|
if (srcAlpha) {
|
|
pix0 = ((SplashCoord)1 - sx)
|
|
* (SplashCoord)unscaledAlpha[y0 * srcWidth + x0]
|
|
+ sx * (SplashCoord)unscaledAlpha[y0 * srcWidth + x1];
|
|
pix1 = ((SplashCoord)1 - sx)
|
|
* (SplashCoord)unscaledAlpha[y1 * srcWidth + x0]
|
|
+ sx * (SplashCoord)unscaledAlpha[y1 * srcWidth + x1];
|
|
scanBuf[x] = (Guchar)splashRound(((SplashCoord)1 - sy) * pix0
|
|
+ sy * pix1);
|
|
} else {
|
|
scanBuf[x] = 0xff;
|
|
}
|
|
} else {
|
|
for (i = 0; i < nComps; ++i) {
|
|
*p++ = 0;
|
|
}
|
|
scanBuf[x] = 0;
|
|
}
|
|
} else {
|
|
x0 = splashFloor(ix);
|
|
y0 = splashFloor(iy);
|
|
if (x0 >= 0 && x0 < srcWidth && y0 >= 0 && y0 < srcHeight) {
|
|
q = &unscaledImage[y0 * rowSize + (SplashBitmapRowSize)x0 * nComps];
|
|
for (i = 0; i < nComps; ++i) {
|
|
*p++ = *q++;
|
|
}
|
|
if (srcAlpha) {
|
|
scanBuf[x] = unscaledAlpha[y0 * srcWidth + x0];
|
|
} else {
|
|
scanBuf[x] = 0xff;
|
|
}
|
|
} else {
|
|
for (i = 0; i < nComps; ++i) {
|
|
*p++ = 0;
|
|
}
|
|
scanBuf[x] = 0;
|
|
}
|
|
}
|
|
}
|
|
if (clipRes != splashClipAllInside) {
|
|
if (vectorAntialias) {
|
|
state->clip->clipSpan(scanBuf, y, xMinI, xMaxI - 1,
|
|
state->strokeAdjust);
|
|
} else {
|
|
state->clip->clipSpanBinary(scanBuf, y, xMinI, xMaxI - 1,
|
|
state->strokeAdjust);
|
|
}
|
|
}
|
|
(this->*pipe.run)(&pipe, xMinI, xMaxI - 1, y, scanBuf + xMinI, pixelBuf);
|
|
}
|
|
|
|
gfree(pixelBuf);
|
|
gfree(unscaledImage);
|
|
gfree(unscaledAlpha);
|
|
}
|
|
|
|
void Splash::arbitraryTransformImage(SplashImageSource src, void *srcData,
|
|
SplashColorMode srcMode, int nComps,
|
|
GBool srcAlpha,
|
|
int srcWidth, int srcHeight,
|
|
SplashCoord *mat, GBool interpolate) {
|
|
SplashBitmap *scaledImg;
|
|
SplashClipResult clipRes;
|
|
SplashPipe pipe;
|
|
SplashColorPtr pixelBuf;
|
|
int scaledWidth, scaledHeight, t0, t1;
|
|
SplashCoord r00, r01, r10, r11, det, ir00, ir01, ir10, ir11;
|
|
SplashCoord vx[4], vy[4];
|
|
int xMin, yMin, xMax, yMax;
|
|
ImageSection section[3];
|
|
int nSections;
|
|
int y, xa, xb, x, i, xx, yy;
|
|
|
|
// compute the four vertices of the target quadrilateral
|
|
vx[0] = mat[4]; vy[0] = mat[5];
|
|
vx[1] = mat[2] + mat[4]; vy[1] = mat[3] + mat[5];
|
|
vx[2] = mat[0] + mat[2] + mat[4]; vy[2] = mat[1] + mat[3] + mat[5];
|
|
vx[3] = mat[0] + mat[4]; vy[3] = mat[1] + mat[5];
|
|
|
|
// clipping
|
|
xMin = splashRound(vx[0]);
|
|
xMax = splashRound(vx[0]);
|
|
yMin = splashRound(vy[0]);
|
|
yMax = splashRound(vy[0]);
|
|
for (i = 1; i < 4; ++i) {
|
|
t0 = splashRound(vx[i]);
|
|
if (t0 < xMin) {
|
|
xMin = t0;
|
|
} else if (t0 > xMax) {
|
|
xMax = t0;
|
|
}
|
|
t1 = splashRound(vy[i]);
|
|
if (t1 < yMin) {
|
|
yMin = t1;
|
|
} else if (t1 > yMax) {
|
|
yMax = t1;
|
|
}
|
|
}
|
|
clipRes = state->clip->testRect(xMin, yMin, xMax - 1, yMax - 1,
|
|
state->strokeAdjust);
|
|
opClipRes = clipRes;
|
|
if (clipRes == splashClipAllOutside) {
|
|
return;
|
|
}
|
|
|
|
// compute the scale factors
|
|
if (mat[0] >= 0) {
|
|
t0 = splashRound(mat[0] + mat[4]) - splashRound(mat[4]);
|
|
} else {
|
|
t0 = splashRound(mat[4]) - splashRound(mat[0] + mat[4]);
|
|
}
|
|
if (mat[1] >= 0) {
|
|
t1 = splashRound(mat[1] + mat[5]) - splashRound(mat[5]);
|
|
} else {
|
|
t1 = splashRound(mat[5]) - splashRound(mat[1] + mat[5]);
|
|
}
|
|
scaledWidth = t0 > t1 ? t0 : t1;
|
|
if (mat[2] >= 0) {
|
|
t0 = splashRound(mat[2] + mat[4]) - splashRound(mat[4]);
|
|
} else {
|
|
t0 = splashRound(mat[4]) - splashRound(mat[2] + mat[4]);
|
|
}
|
|
if (mat[3] >= 0) {
|
|
t1 = splashRound(mat[3] + mat[5]) - splashRound(mat[5]);
|
|
} else {
|
|
t1 = splashRound(mat[5]) - splashRound(mat[3] + mat[5]);
|
|
}
|
|
scaledHeight = t0 > t1 ? t0 : t1;
|
|
if (scaledWidth == 0) {
|
|
scaledWidth = 1;
|
|
}
|
|
if (scaledHeight == 0) {
|
|
scaledHeight = 1;
|
|
}
|
|
|
|
// compute the inverse transform (after scaling) matrix
|
|
r00 = mat[0] / scaledWidth;
|
|
r01 = mat[1] / scaledWidth;
|
|
r10 = mat[2] / scaledHeight;
|
|
r11 = mat[3] / scaledHeight;
|
|
det = r00 * r11 - r01 * r10;
|
|
if (splashAbs(det) < 1e-6) {
|
|
// this should be caught by the singular matrix check in drawImage
|
|
return;
|
|
}
|
|
ir00 = r11 / det;
|
|
ir01 = -r01 / det;
|
|
ir10 = -r10 / det;
|
|
ir11 = r00 / det;
|
|
|
|
// scale the input image
|
|
scaledImg = scaleImage(src, srcData, srcMode, nComps, srcAlpha,
|
|
srcWidth, srcHeight, scaledWidth, scaledHeight,
|
|
interpolate);
|
|
|
|
// construct the three sections
|
|
i = 0;
|
|
if (vy[1] < vy[i]) {
|
|
i = 1;
|
|
}
|
|
if (vy[2] < vy[i]) {
|
|
i = 2;
|
|
}
|
|
if (vy[3] < vy[i]) {
|
|
i = 3;
|
|
}
|
|
// NB: if using fixed point, 0.000001 will be truncated to zero,
|
|
// so these two comparisons must be <=, not <
|
|
if (splashAbs(vy[i] - vy[(i-1) & 3]) <= 0.000001 &&
|
|
vy[(i-1) & 3] < vy[(i+1) & 3]) {
|
|
i = (i-1) & 3;
|
|
}
|
|
if (splashAbs(vy[i] - vy[(i+1) & 3]) <= 0.000001) {
|
|
section[0].y0 = splashRound(vy[i]);
|
|
section[0].y1 = splashRound(vy[(i+2) & 3]) - 1;
|
|
if (vx[i] < vx[(i+1) & 3]) {
|
|
section[0].ia0 = i;
|
|
section[0].ia1 = (i+3) & 3;
|
|
section[0].ib0 = (i+1) & 3;
|
|
section[0].ib1 = (i+2) & 3;
|
|
} else {
|
|
section[0].ia0 = (i+1) & 3;
|
|
section[0].ia1 = (i+2) & 3;
|
|
section[0].ib0 = i;
|
|
section[0].ib1 = (i+3) & 3;
|
|
}
|
|
nSections = 1;
|
|
} else {
|
|
section[0].y0 = splashRound(vy[i]);
|
|
section[2].y1 = splashRound(vy[(i+2) & 3]) - 1;
|
|
section[0].ia0 = section[0].ib0 = i;
|
|
section[2].ia1 = section[2].ib1 = (i+2) & 3;
|
|
if (vx[(i+1) & 3] < vx[(i+3) & 3]) {
|
|
section[0].ia1 = section[2].ia0 = (i+1) & 3;
|
|
section[0].ib1 = section[2].ib0 = (i+3) & 3;
|
|
} else {
|
|
section[0].ia1 = section[2].ia0 = (i+3) & 3;
|
|
section[0].ib1 = section[2].ib0 = (i+1) & 3;
|
|
}
|
|
if (vy[(i+1) & 3] < vy[(i+3) & 3]) {
|
|
section[1].y0 = splashRound(vy[(i+1) & 3]);
|
|
section[2].y0 = splashRound(vy[(i+3) & 3]);
|
|
if (vx[(i+1) & 3] < vx[(i+3) & 3]) {
|
|
section[1].ia0 = (i+1) & 3;
|
|
section[1].ia1 = (i+2) & 3;
|
|
section[1].ib0 = i;
|
|
section[1].ib1 = (i+3) & 3;
|
|
} else {
|
|
section[1].ia0 = i;
|
|
section[1].ia1 = (i+3) & 3;
|
|
section[1].ib0 = (i+1) & 3;
|
|
section[1].ib1 = (i+2) & 3;
|
|
}
|
|
} else {
|
|
section[1].y0 = splashRound(vy[(i+3) & 3]);
|
|
section[2].y0 = splashRound(vy[(i+1) & 3]);
|
|
if (vx[(i+1) & 3] < vx[(i+3) & 3]) {
|
|
section[1].ia0 = i;
|
|
section[1].ia1 = (i+1) & 3;
|
|
section[1].ib0 = (i+3) & 3;
|
|
section[1].ib1 = (i+2) & 3;
|
|
} else {
|
|
section[1].ia0 = (i+3) & 3;
|
|
section[1].ia1 = (i+2) & 3;
|
|
section[1].ib0 = i;
|
|
section[1].ib1 = (i+1) & 3;
|
|
}
|
|
}
|
|
section[0].y1 = section[1].y0 - 1;
|
|
section[1].y1 = section[2].y0 - 1;
|
|
nSections = 3;
|
|
}
|
|
for (i = 0; i < nSections; ++i) {
|
|
section[i].xa0 = vx[section[i].ia0];
|
|
section[i].ya0 = vy[section[i].ia0];
|
|
section[i].xa1 = vx[section[i].ia1];
|
|
section[i].ya1 = vy[section[i].ia1];
|
|
section[i].xb0 = vx[section[i].ib0];
|
|
section[i].yb0 = vy[section[i].ib0];
|
|
section[i].xb1 = vx[section[i].ib1];
|
|
section[i].yb1 = vy[section[i].ib1];
|
|
section[i].dxdya = (section[i].xa1 - section[i].xa0) /
|
|
(section[i].ya1 - section[i].ya0);
|
|
section[i].dxdyb = (section[i].xb1 - section[i].xb0) /
|
|
(section[i].yb1 - section[i].yb0);
|
|
}
|
|
|
|
// initialize the pixel pipe
|
|
pipeInit(&pipe, NULL,
|
|
(Guchar)splashRound(state->fillAlpha * 255),
|
|
gTrue, gFalse);
|
|
|
|
// make sure narrow images cover at least one pixel
|
|
if (nSections == 1) {
|
|
if (section[0].y0 == section[0].y1) {
|
|
++section[0].y1;
|
|
clipRes = opClipRes = splashClipPartial;
|
|
}
|
|
} else {
|
|
if (section[0].y0 == section[2].y1) {
|
|
++section[1].y1;
|
|
clipRes = opClipRes = splashClipPartial;
|
|
}
|
|
}
|
|
|
|
pixelBuf = (SplashColorPtr)gmallocn(xMax - xMin + 1, bitmapComps);
|
|
|
|
// scan all pixels inside the target region
|
|
for (i = 0; i < nSections; ++i) {
|
|
for (y = section[i].y0; y <= section[i].y1; ++y) {
|
|
xa = splashRound(section[i].xa0 +
|
|
((SplashCoord)y + 0.5 - section[i].ya0) *
|
|
section[i].dxdya);
|
|
xb = splashRound(section[i].xb0 +
|
|
((SplashCoord)y + 0.5 - section[i].yb0) *
|
|
section[i].dxdyb);
|
|
if (xa > xb) {
|
|
continue;
|
|
}
|
|
// make sure narrow images cover at least one pixel
|
|
if (xa == xb) {
|
|
++xb;
|
|
}
|
|
// check the scanBuf bounds
|
|
if (xa >= bitmap->width || xb < 0) {
|
|
continue;
|
|
}
|
|
if (xa < 0) {
|
|
xa = 0;
|
|
}
|
|
if (xb > bitmap->width) {
|
|
xb = bitmap->width;
|
|
}
|
|
// clip the scan line
|
|
memset(scanBuf + xa, 0xff, xb - xa);
|
|
if (clipRes != splashClipAllInside) {
|
|
if (vectorAntialias) {
|
|
state->clip->clipSpan(scanBuf, y, xa, xb - 1,
|
|
state->strokeAdjust);
|
|
} else {
|
|
state->clip->clipSpanBinary(scanBuf, y, xa, xb - 1,
|
|
state->strokeAdjust);
|
|
}
|
|
}
|
|
// draw the scan line
|
|
for (x = xa; x < xb; ++x) {
|
|
// map (x+0.5, y+0.5) back to the scaled image
|
|
xx = splashFloor(((SplashCoord)x + 0.5 - mat[4]) * ir00 +
|
|
((SplashCoord)y + 0.5 - mat[5]) * ir10);
|
|
yy = splashFloor(((SplashCoord)x + 0.5 - mat[4]) * ir01 +
|
|
((SplashCoord)y + 0.5 - mat[5]) * ir11);
|
|
// xx should always be within bounds, but floating point
|
|
// inaccuracy can cause problems
|
|
if (xx < 0) {
|
|
xx = 0;
|
|
} else if (xx >= scaledWidth) {
|
|
xx = scaledWidth - 1;
|
|
}
|
|
if (yy < 0) {
|
|
yy = 0;
|
|
} else if (yy >= scaledHeight) {
|
|
yy = scaledHeight - 1;
|
|
}
|
|
// get the color
|
|
scaledImg->getPixel(xx, yy, pixelBuf + (x - xa) * bitmapComps);
|
|
// apply alpha
|
|
if (srcAlpha) {
|
|
scanBuf[x] = div255(scanBuf[x] *
|
|
scaledImg->alpha[yy * scaledWidth + xx]);
|
|
}
|
|
}
|
|
(this->*pipe.run)(&pipe, xa, xb - 1, y, scanBuf + xa, pixelBuf);
|
|
}
|
|
}
|
|
|
|
gfree(pixelBuf);
|
|
delete scaledImg;
|
|
}
|
|
|
|
// Scale an image into a SplashBitmap.
|
|
SplashBitmap *Splash::scaleImage(SplashImageSource src, void *srcData,
|
|
SplashColorMode srcMode, int nComps,
|
|
GBool srcAlpha, int srcWidth, int srcHeight,
|
|
int scaledWidth, int scaledHeight,
|
|
GBool interpolate) {
|
|
SplashBitmap *dest;
|
|
|
|
dest = new SplashBitmap(scaledWidth, scaledHeight, 1, srcMode, srcAlpha);
|
|
if (scaledHeight < srcHeight) {
|
|
if (scaledWidth < srcWidth) {
|
|
scaleImageYdXd(src, srcData, srcMode, nComps, srcAlpha,
|
|
srcWidth, srcHeight, scaledWidth, scaledHeight, dest);
|
|
} else {
|
|
scaleImageYdXu(src, srcData, srcMode, nComps, srcAlpha,
|
|
srcWidth, srcHeight, scaledWidth, scaledHeight, dest);
|
|
}
|
|
} else {
|
|
if (scaledWidth < srcWidth) {
|
|
scaleImageYuXd(src, srcData, srcMode, nComps, srcAlpha,
|
|
srcWidth, srcHeight, scaledWidth, scaledHeight, dest);
|
|
} else {
|
|
if (interpolate) {
|
|
scaleImageYuXuI(src, srcData, srcMode, nComps, srcAlpha,
|
|
srcWidth, srcHeight, scaledWidth, scaledHeight, dest);
|
|
} else {
|
|
scaleImageYuXu(src, srcData, srcMode, nComps, srcAlpha,
|
|
srcWidth, srcHeight, scaledWidth, scaledHeight, dest);
|
|
}
|
|
}
|
|
}
|
|
return dest;
|
|
}
|
|
|
|
void Splash::scaleImageYdXd(SplashImageSource src, void *srcData,
|
|
SplashColorMode srcMode, int nComps,
|
|
GBool srcAlpha, int srcWidth, int srcHeight,
|
|
int scaledWidth, int scaledHeight,
|
|
SplashBitmap *dest) {
|
|
Guchar *lineBuf, *alphaLineBuf;
|
|
Guint *pixBuf, *alphaPixBuf;
|
|
Guint pix0, pix1, pix2;
|
|
#if SPLASH_CMYK
|
|
Guint pix3;
|
|
#endif
|
|
Guint alpha;
|
|
Guchar *destPtr, *destAlphaPtr;
|
|
int yp, yq, xp, xq, yt, y, yStep, xt, x, xStep, xx, xxa, d, d0, d1;
|
|
int i, j;
|
|
|
|
// Bresenham parameters for y scale
|
|
yp = srcHeight / scaledHeight;
|
|
yq = srcHeight % scaledHeight;
|
|
|
|
// Bresenham parameters for x scale
|
|
xp = srcWidth / scaledWidth;
|
|
xq = srcWidth % scaledWidth;
|
|
|
|
// allocate buffers
|
|
lineBuf = (Guchar *)gmallocn(srcWidth, nComps);
|
|
pixBuf = (Guint *)gmallocn(srcWidth, (int)(nComps * sizeof(int)));
|
|
if (srcAlpha) {
|
|
alphaLineBuf = (Guchar *)gmalloc(srcWidth);
|
|
alphaPixBuf = (Guint *)gmallocn(srcWidth, sizeof(int));
|
|
} else {
|
|
alphaLineBuf = NULL;
|
|
alphaPixBuf = NULL;
|
|
}
|
|
|
|
// init y scale Bresenham
|
|
yt = 0;
|
|
|
|
destPtr = dest->data;
|
|
destAlphaPtr = dest->alpha;
|
|
for (y = 0; y < scaledHeight; ++y) {
|
|
|
|
// y scale Bresenham
|
|
if ((yt += yq) >= scaledHeight) {
|
|
yt -= scaledHeight;
|
|
yStep = yp + 1;
|
|
} else {
|
|
yStep = yp;
|
|
}
|
|
|
|
// read rows from image
|
|
memset(pixBuf, 0, srcWidth * nComps * sizeof(int));
|
|
if (srcAlpha) {
|
|
memset(alphaPixBuf, 0, srcWidth * sizeof(int));
|
|
}
|
|
for (i = 0; i < yStep; ++i) {
|
|
(*src)(srcData, lineBuf, alphaLineBuf);
|
|
for (j = 0; j < srcWidth * nComps; ++j) {
|
|
pixBuf[j] += lineBuf[j];
|
|
}
|
|
if (srcAlpha) {
|
|
for (j = 0; j < srcWidth; ++j) {
|
|
alphaPixBuf[j] += alphaLineBuf[j];
|
|
}
|
|
}
|
|
}
|
|
|
|
// init x scale Bresenham
|
|
xt = 0;
|
|
d0 = (1 << 23) / (yStep * xp);
|
|
d1 = (1 << 23) / (yStep * (xp + 1));
|
|
|
|
xx = xxa = 0;
|
|
for (x = 0; x < scaledWidth; ++x) {
|
|
|
|
// x scale Bresenham
|
|
if ((xt += xq) >= scaledWidth) {
|
|
xt -= scaledWidth;
|
|
xStep = xp + 1;
|
|
d = d1;
|
|
} else {
|
|
xStep = xp;
|
|
d = d0;
|
|
}
|
|
|
|
switch (srcMode) {
|
|
|
|
case splashModeMono8:
|
|
|
|
// compute the final pixel
|
|
pix0 = 0;
|
|
for (i = 0; i < xStep; ++i) {
|
|
pix0 += pixBuf[xx++];
|
|
}
|
|
// pix / xStep * yStep
|
|
pix0 = (pix0 * d) >> 23;
|
|
|
|
// store the pixel
|
|
*destPtr++ = (Guchar)pix0;
|
|
break;
|
|
|
|
case splashModeRGB8:
|
|
|
|
// compute the final pixel
|
|
pix0 = pix1 = pix2 = 0;
|
|
for (i = 0; i < xStep; ++i) {
|
|
pix0 += pixBuf[xx];
|
|
pix1 += pixBuf[xx+1];
|
|
pix2 += pixBuf[xx+2];
|
|
xx += 3;
|
|
}
|
|
// pix / xStep * yStep
|
|
pix0 = (pix0 * d) >> 23;
|
|
pix1 = (pix1 * d) >> 23;
|
|
pix2 = (pix2 * d) >> 23;
|
|
|
|
// store the pixel
|
|
*destPtr++ = (Guchar)pix0;
|
|
*destPtr++ = (Guchar)pix1;
|
|
*destPtr++ = (Guchar)pix2;
|
|
break;
|
|
|
|
#if SPLASH_CMYK
|
|
case splashModeCMYK8:
|
|
|
|
// compute the final pixel
|
|
pix0 = pix1 = pix2 = pix3 = 0;
|
|
for (i = 0; i < xStep; ++i) {
|
|
pix0 += pixBuf[xx];
|
|
pix1 += pixBuf[xx+1];
|
|
pix2 += pixBuf[xx+2];
|
|
pix3 += pixBuf[xx+3];
|
|
xx += 4;
|
|
}
|
|
// pix / xStep * yStep
|
|
pix0 = (pix0 * d) >> 23;
|
|
pix1 = (pix1 * d) >> 23;
|
|
pix2 = (pix2 * d) >> 23;
|
|
pix3 = (pix3 * d) >> 23;
|
|
|
|
// store the pixel
|
|
*destPtr++ = (Guchar)pix0;
|
|
*destPtr++ = (Guchar)pix1;
|
|
*destPtr++ = (Guchar)pix2;
|
|
*destPtr++ = (Guchar)pix3;
|
|
break;
|
|
#endif
|
|
|
|
|
|
case splashModeMono1: // mono1 is not allowed
|
|
case splashModeBGR8: // bgr8 is not allowed
|
|
default:
|
|
break;
|
|
}
|
|
|
|
// process alpha
|
|
if (srcAlpha) {
|
|
alpha = 0;
|
|
for (i = 0; i < xStep; ++i, ++xxa) {
|
|
alpha += alphaPixBuf[xxa];
|
|
}
|
|
// alpha / xStep * yStep
|
|
alpha = (alpha * d) >> 23;
|
|
*destAlphaPtr++ = (Guchar)alpha;
|
|
}
|
|
}
|
|
}
|
|
|
|
gfree(alphaPixBuf);
|
|
gfree(alphaLineBuf);
|
|
gfree(pixBuf);
|
|
gfree(lineBuf);
|
|
}
|
|
|
|
void Splash::scaleImageYdXu(SplashImageSource src, void *srcData,
|
|
SplashColorMode srcMode, int nComps,
|
|
GBool srcAlpha, int srcWidth, int srcHeight,
|
|
int scaledWidth, int scaledHeight,
|
|
SplashBitmap *dest) {
|
|
Guchar *lineBuf, *alphaLineBuf;
|
|
Guint *pixBuf, *alphaPixBuf;
|
|
Guint pix[splashMaxColorComps];
|
|
Guint alpha;
|
|
Guchar *destPtr, *destAlphaPtr;
|
|
int yp, yq, xp, xq, yt, y, yStep, xt, x, xStep, d;
|
|
int i, j;
|
|
|
|
// Bresenham parameters for y scale
|
|
yp = srcHeight / scaledHeight;
|
|
yq = srcHeight % scaledHeight;
|
|
|
|
// Bresenham parameters for x scale
|
|
xp = scaledWidth / srcWidth;
|
|
xq = scaledWidth % srcWidth;
|
|
|
|
// allocate buffers
|
|
lineBuf = (Guchar *)gmallocn(srcWidth, nComps);
|
|
pixBuf = (Guint *)gmallocn(srcWidth, (int)(nComps * sizeof(int)));
|
|
if (srcAlpha) {
|
|
alphaLineBuf = (Guchar *)gmalloc(srcWidth);
|
|
alphaPixBuf = (Guint *)gmallocn(srcWidth, sizeof(int));
|
|
} else {
|
|
alphaLineBuf = NULL;
|
|
alphaPixBuf = NULL;
|
|
}
|
|
|
|
// make gcc happy
|
|
pix[0] = pix[1] = pix[2] = 0;
|
|
#if SPLASH_CMYK
|
|
pix[3] = 0;
|
|
#endif
|
|
|
|
// init y scale Bresenham
|
|
yt = 0;
|
|
|
|
destPtr = dest->data;
|
|
destAlphaPtr = dest->alpha;
|
|
for (y = 0; y < scaledHeight; ++y) {
|
|
|
|
// y scale Bresenham
|
|
if ((yt += yq) >= scaledHeight) {
|
|
yt -= scaledHeight;
|
|
yStep = yp + 1;
|
|
} else {
|
|
yStep = yp;
|
|
}
|
|
|
|
// read rows from image
|
|
memset(pixBuf, 0, srcWidth * nComps * sizeof(int));
|
|
if (srcAlpha) {
|
|
memset(alphaPixBuf, 0, srcWidth * sizeof(int));
|
|
}
|
|
for (i = 0; i < yStep; ++i) {
|
|
(*src)(srcData, lineBuf, alphaLineBuf);
|
|
for (j = 0; j < srcWidth * nComps; ++j) {
|
|
pixBuf[j] += lineBuf[j];
|
|
}
|
|
if (srcAlpha) {
|
|
for (j = 0; j < srcWidth; ++j) {
|
|
alphaPixBuf[j] += alphaLineBuf[j];
|
|
}
|
|
}
|
|
}
|
|
|
|
// init x scale Bresenham
|
|
xt = 0;
|
|
d = (1 << 23) / yStep;
|
|
|
|
for (x = 0; x < srcWidth; ++x) {
|
|
|
|
// x scale Bresenham
|
|
if ((xt += xq) >= srcWidth) {
|
|
xt -= srcWidth;
|
|
xStep = xp + 1;
|
|
} else {
|
|
xStep = xp;
|
|
}
|
|
|
|
// compute the final pixel
|
|
for (i = 0; i < nComps; ++i) {
|
|
// pixBuf[] / yStep
|
|
pix[i] = (pixBuf[x * nComps + i] * d) >> 23;
|
|
}
|
|
|
|
// store the pixel
|
|
switch (srcMode) {
|
|
case splashModeMono8:
|
|
for (i = 0; i < xStep; ++i) {
|
|
*destPtr++ = (Guchar)pix[0];
|
|
}
|
|
break;
|
|
case splashModeRGB8:
|
|
for (i = 0; i < xStep; ++i) {
|
|
*destPtr++ = (Guchar)pix[0];
|
|
*destPtr++ = (Guchar)pix[1];
|
|
*destPtr++ = (Guchar)pix[2];
|
|
}
|
|
break;
|
|
#if SPLASH_CMYK
|
|
case splashModeCMYK8:
|
|
for (i = 0; i < xStep; ++i) {
|
|
*destPtr++ = (Guchar)pix[0];
|
|
*destPtr++ = (Guchar)pix[1];
|
|
*destPtr++ = (Guchar)pix[2];
|
|
*destPtr++ = (Guchar)pix[3];
|
|
}
|
|
break;
|
|
#endif
|
|
case splashModeMono1: // mono1 is not allowed
|
|
case splashModeBGR8: // BGR8 is not allowed
|
|
default:
|
|
break;
|
|
}
|
|
|
|
// process alpha
|
|
if (srcAlpha) {
|
|
// alphaPixBuf[] / yStep
|
|
alpha = (alphaPixBuf[x] * d) >> 23;
|
|
for (i = 0; i < xStep; ++i) {
|
|
*destAlphaPtr++ = (Guchar)alpha;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
gfree(alphaPixBuf);
|
|
gfree(alphaLineBuf);
|
|
gfree(pixBuf);
|
|
gfree(lineBuf);
|
|
}
|
|
|
|
void Splash::scaleImageYuXd(SplashImageSource src, void *srcData,
|
|
SplashColorMode srcMode, int nComps,
|
|
GBool srcAlpha, int srcWidth, int srcHeight,
|
|
int scaledWidth, int scaledHeight,
|
|
SplashBitmap *dest) {
|
|
Guchar *lineBuf, *alphaLineBuf;
|
|
Guint pix[splashMaxColorComps];
|
|
Guint alpha;
|
|
Guchar *destPtr0, *destPtr, *destAlphaPtr0, *destAlphaPtr;
|
|
int yp, yq, xp, xq, yt, y, yStep, xt, x, xStep, xx, xxa, d, d0, d1;
|
|
int i, j;
|
|
|
|
// Bresenham parameters for y scale
|
|
yp = scaledHeight / srcHeight;
|
|
yq = scaledHeight % srcHeight;
|
|
|
|
// Bresenham parameters for x scale
|
|
xp = srcWidth / scaledWidth;
|
|
xq = srcWidth % scaledWidth;
|
|
|
|
// allocate buffers
|
|
lineBuf = (Guchar *)gmallocn(srcWidth, nComps);
|
|
if (srcAlpha) {
|
|
alphaLineBuf = (Guchar *)gmalloc(srcWidth);
|
|
} else {
|
|
alphaLineBuf = NULL;
|
|
}
|
|
|
|
// make gcc happy
|
|
pix[0] = pix[1] = pix[2] = 0;
|
|
#if SPLASH_CMYK
|
|
pix[3] = 0;
|
|
#endif
|
|
|
|
// init y scale Bresenham
|
|
yt = 0;
|
|
|
|
destPtr0 = dest->data;
|
|
destAlphaPtr0 = dest->alpha;
|
|
for (y = 0; y < srcHeight; ++y) {
|
|
|
|
// y scale Bresenham
|
|
if ((yt += yq) >= srcHeight) {
|
|
yt -= srcHeight;
|
|
yStep = yp + 1;
|
|
} else {
|
|
yStep = yp;
|
|
}
|
|
|
|
// read row from image
|
|
(*src)(srcData, lineBuf, alphaLineBuf);
|
|
|
|
// init x scale Bresenham
|
|
xt = 0;
|
|
d0 = (1 << 23) / xp;
|
|
d1 = (1 << 23) / (xp + 1);
|
|
|
|
xx = xxa = 0;
|
|
for (x = 0; x < scaledWidth; ++x) {
|
|
|
|
// x scale Bresenham
|
|
if ((xt += xq) >= scaledWidth) {
|
|
xt -= scaledWidth;
|
|
xStep = xp + 1;
|
|
d = d1;
|
|
} else {
|
|
xStep = xp;
|
|
d = d0;
|
|
}
|
|
|
|
// compute the final pixel
|
|
for (i = 0; i < nComps; ++i) {
|
|
pix[i] = 0;
|
|
}
|
|
for (i = 0; i < xStep; ++i) {
|
|
for (j = 0; j < nComps; ++j, ++xx) {
|
|
pix[j] += lineBuf[xx];
|
|
}
|
|
}
|
|
for (i = 0; i < nComps; ++i) {
|
|
// pix[] / xStep
|
|
pix[i] = (pix[i] * d) >> 23;
|
|
}
|
|
|
|
// store the pixel
|
|
switch (srcMode) {
|
|
case splashModeMono8:
|
|
for (i = 0; i < yStep; ++i) {
|
|
destPtr = destPtr0 + (i * scaledWidth + x) * nComps;
|
|
*destPtr++ = (Guchar)pix[0];
|
|
}
|
|
break;
|
|
case splashModeRGB8:
|
|
for (i = 0; i < yStep; ++i) {
|
|
destPtr = destPtr0 + (i * scaledWidth + x) * nComps;
|
|
*destPtr++ = (Guchar)pix[0];
|
|
*destPtr++ = (Guchar)pix[1];
|
|
*destPtr++ = (Guchar)pix[2];
|
|
}
|
|
break;
|
|
#if SPLASH_CMYK
|
|
case splashModeCMYK8:
|
|
for (i = 0; i < yStep; ++i) {
|
|
destPtr = destPtr0 + (i * scaledWidth + x) * nComps;
|
|
*destPtr++ = (Guchar)pix[0];
|
|
*destPtr++ = (Guchar)pix[1];
|
|
*destPtr++ = (Guchar)pix[2];
|
|
*destPtr++ = (Guchar)pix[3];
|
|
}
|
|
break;
|
|
#endif
|
|
case splashModeMono1: // mono1 is not allowed
|
|
case splashModeBGR8: // BGR8 is not allowed
|
|
default:
|
|
break;
|
|
}
|
|
|
|
// process alpha
|
|
if (srcAlpha) {
|
|
alpha = 0;
|
|
for (i = 0; i < xStep; ++i, ++xxa) {
|
|
alpha += alphaLineBuf[xxa];
|
|
}
|
|
// alpha / xStep
|
|
alpha = (alpha * d) >> 23;
|
|
for (i = 0; i < yStep; ++i) {
|
|
destAlphaPtr = destAlphaPtr0 + i * scaledWidth + x;
|
|
*destAlphaPtr = (Guchar)alpha;
|
|
}
|
|
}
|
|
}
|
|
|
|
destPtr0 += yStep * scaledWidth * nComps;
|
|
if (srcAlpha) {
|
|
destAlphaPtr0 += yStep * scaledWidth;
|
|
}
|
|
}
|
|
|
|
gfree(alphaLineBuf);
|
|
gfree(lineBuf);
|
|
}
|
|
|
|
void Splash::scaleImageYuXu(SplashImageSource src, void *srcData,
|
|
SplashColorMode srcMode, int nComps,
|
|
GBool srcAlpha, int srcWidth, int srcHeight,
|
|
int scaledWidth, int scaledHeight,
|
|
SplashBitmap *dest) {
|
|
Guchar *lineBuf, *alphaLineBuf;
|
|
Guchar pix0, pix1, pix2;
|
|
#if SPLASH_CMYK
|
|
Guchar pix3;
|
|
#endif
|
|
Guchar alpha;
|
|
Guchar *srcPtr, *srcAlphaPtr;
|
|
Guchar *destPtr, *destAlphaPtr;
|
|
int yp, yq, xp, xq, yt, y, yStep, xt, x, xStep;
|
|
int i;
|
|
|
|
// Bresenham parameters for y scale
|
|
yp = scaledHeight / srcHeight;
|
|
yq = scaledHeight % srcHeight;
|
|
|
|
// Bresenham parameters for x scale
|
|
xp = scaledWidth / srcWidth; // cppcheck-suppress bughuntingDivByZero
|
|
xq = scaledWidth % srcWidth; // cppcheck-suppress bughuntingDivByZero
|
|
|
|
// allocate buffers
|
|
lineBuf = (Guchar *)gmallocn(srcWidth, nComps);
|
|
if (srcAlpha) {
|
|
alphaLineBuf = (Guchar *)gmalloc(srcWidth);
|
|
} else {
|
|
alphaLineBuf = NULL;
|
|
}
|
|
|
|
// init y scale Bresenham
|
|
yt = 0;
|
|
|
|
destPtr = dest->data;
|
|
destAlphaPtr = dest->alpha;
|
|
for (y = 0; y < srcHeight; ++y) {
|
|
|
|
// y scale Bresenham
|
|
if ((yt += yq) >= srcHeight) {
|
|
yt -= srcHeight;
|
|
yStep = yp + 1;
|
|
} else {
|
|
yStep = yp;
|
|
}
|
|
|
|
// read row from image
|
|
(*src)(srcData, lineBuf, alphaLineBuf);
|
|
|
|
// init x scale Bresenham
|
|
xt = 0;
|
|
|
|
// generate one row
|
|
srcPtr = lineBuf;
|
|
srcAlphaPtr = alphaLineBuf;
|
|
for (x = 0; x < srcWidth; ++x) {
|
|
|
|
// x scale Bresenham
|
|
if ((xt += xq) >= srcWidth) {
|
|
xt -= srcWidth;
|
|
xStep = xp + 1;
|
|
} else {
|
|
xStep = xp;
|
|
}
|
|
|
|
// duplicate the pixel horizontally
|
|
switch (srcMode) {
|
|
case splashModeMono8:
|
|
pix0 = *srcPtr++;
|
|
for (i = 0; i < xStep; ++i) {
|
|
*destPtr++ = pix0;
|
|
}
|
|
break;
|
|
case splashModeRGB8:
|
|
pix0 = *srcPtr++;
|
|
pix1 = *srcPtr++;
|
|
pix2 = *srcPtr++;
|
|
for (i = 0; i < xStep; ++i) {
|
|
*destPtr++ = pix0;
|
|
*destPtr++ = pix1;
|
|
*destPtr++ = pix2;
|
|
}
|
|
break;
|
|
#if SPLASH_CMYK
|
|
case splashModeCMYK8:
|
|
pix0 = *srcPtr++;
|
|
pix1 = *srcPtr++;
|
|
pix2 = *srcPtr++;
|
|
pix3 = *srcPtr++;
|
|
for (i = 0; i < xStep; ++i) {
|
|
*destPtr++ = pix0;
|
|
*destPtr++ = pix1;
|
|
*destPtr++ = pix2;
|
|
*destPtr++ = pix3;
|
|
}
|
|
break;
|
|
#endif
|
|
case splashModeMono1: // mono1 is not allowed
|
|
case splashModeBGR8: // BGR8 is not allowed
|
|
default:
|
|
break;
|
|
}
|
|
|
|
// duplicate the alpha value horizontally
|
|
if (srcAlpha) {
|
|
alpha = *srcAlphaPtr++;
|
|
for (i = 0; i < xStep; ++i) {
|
|
*destAlphaPtr++ = alpha;
|
|
}
|
|
}
|
|
}
|
|
|
|
// duplicate the row vertically
|
|
for (i = 1; i < yStep; ++i) {
|
|
memcpy(destPtr, destPtr - scaledWidth * nComps,
|
|
scaledWidth * nComps);
|
|
destPtr += scaledWidth * nComps;
|
|
}
|
|
if (srcAlpha) {
|
|
for (i = 1; i < yStep; ++i) {
|
|
memcpy(destAlphaPtr, destAlphaPtr - scaledWidth, scaledWidth);
|
|
destAlphaPtr += scaledWidth;
|
|
}
|
|
}
|
|
}
|
|
|
|
gfree(alphaLineBuf);
|
|
gfree(lineBuf);
|
|
}
|
|
|
|
void Splash::scaleImageYuXuI(SplashImageSource src, void *srcData,
|
|
SplashColorMode srcMode, int nComps,
|
|
GBool srcAlpha, int srcWidth, int srcHeight,
|
|
int scaledWidth, int scaledHeight,
|
|
SplashBitmap *dest) {
|
|
Guchar *lineBuf0, *lineBuf1, *alphaLineBuf0, *alphaLineBuf1, *tBuf;
|
|
Guchar pix[splashMaxColorComps];
|
|
SplashCoord yr, xr, ys, xs, ySrc, xSrc;
|
|
int ySrc0, ySrc1, yBuf, xSrc0, xSrc1, y, x, i;
|
|
Guchar *destPtr, *destAlphaPtr;
|
|
|
|
// ratios
|
|
yr = (SplashCoord)srcHeight / (SplashCoord)scaledHeight;
|
|
xr = (SplashCoord)srcWidth / (SplashCoord)scaledWidth;
|
|
|
|
// allocate buffers
|
|
lineBuf0 = (Guchar *)gmallocn(scaledWidth, nComps);
|
|
lineBuf1 = (Guchar *)gmallocn(scaledWidth, nComps);
|
|
if (srcAlpha) {
|
|
alphaLineBuf0 = (Guchar *)gmalloc(scaledWidth);
|
|
alphaLineBuf1 = (Guchar *)gmalloc(scaledWidth);
|
|
} else {
|
|
alphaLineBuf0 = NULL;
|
|
alphaLineBuf1 = NULL;
|
|
}
|
|
|
|
// read first two rows
|
|
(*src)(srcData, lineBuf0, alphaLineBuf0);
|
|
if (srcHeight > 1) {
|
|
(*src)(srcData, lineBuf1, alphaLineBuf1);
|
|
yBuf = 1;
|
|
} else {
|
|
memcpy(lineBuf1, lineBuf0, srcWidth * nComps);
|
|
if (srcAlpha) {
|
|
memcpy(alphaLineBuf1, alphaLineBuf0, srcWidth);
|
|
}
|
|
yBuf = 0;
|
|
}
|
|
|
|
// interpolate first two rows
|
|
for (x = scaledWidth - 1; x >= 0; --x) {
|
|
xSrc = xr * x;
|
|
xSrc0 = splashFloor(xSrc + xr * 0.5 - 0.5);
|
|
xSrc1 = xSrc0 + 1;
|
|
xs = ((SplashCoord)xSrc1 + 0.5) - (xSrc + xr * 0.5);
|
|
if (xSrc0 < 0) {
|
|
xSrc0 = 0;
|
|
}
|
|
if (xSrc1 >= srcWidth) {
|
|
xSrc1 = srcWidth - 1;
|
|
}
|
|
for (i = 0; i < nComps; ++i) {
|
|
lineBuf0[x*nComps+i] = (Guchar)(int)
|
|
(xs * (int)lineBuf0[xSrc0*nComps+i] +
|
|
((SplashCoord)1 - xs) * (int)lineBuf0[xSrc1*nComps+i]);
|
|
lineBuf1[x*nComps+i] = (Guchar)(int)
|
|
(xs * (int)lineBuf1[xSrc0*nComps+i] +
|
|
((SplashCoord)1 - xs) * (int)lineBuf1[xSrc1*nComps+i]);
|
|
}
|
|
if (srcAlpha) {
|
|
alphaLineBuf0[x] = (Guchar)(int)
|
|
(xs * (int)alphaLineBuf0[xSrc0] +
|
|
((SplashCoord)1 - xs) * (int)alphaLineBuf0[xSrc1]);
|
|
alphaLineBuf1[x] = (Guchar)(int)
|
|
(xs * (int)alphaLineBuf1[xSrc0] +
|
|
((SplashCoord)1 - xs) * (int)alphaLineBuf1[xSrc1]);
|
|
}
|
|
}
|
|
|
|
// make gcc happy
|
|
pix[0] = pix[1] = pix[2] = 0;
|
|
#if SPLASH_CMYK
|
|
pix[3] = 0;
|
|
#endif
|
|
|
|
destPtr = dest->data;
|
|
destAlphaPtr = dest->alpha;
|
|
for (y = 0; y < scaledHeight; ++y) {
|
|
|
|
// compute vertical interpolation parameters
|
|
ySrc = yr * y;
|
|
ySrc0 = splashFloor(ySrc + yr * 0.5 - 0.5);
|
|
ySrc1 = ySrc0 + 1;
|
|
ys = ((SplashCoord)ySrc1 + 0.5) - (ySrc + yr * 0.5);
|
|
if (ySrc0 < 0) {
|
|
ySrc0 = 0;
|
|
ys = 1;
|
|
}
|
|
if (ySrc1 >= srcHeight) {
|
|
ySrc1 = srcHeight - 1;
|
|
ys = 0;
|
|
}
|
|
|
|
// read another row (if necessary)
|
|
if (ySrc1 > yBuf) {
|
|
tBuf = lineBuf0;
|
|
lineBuf0 = lineBuf1;
|
|
lineBuf1 = tBuf;
|
|
tBuf = alphaLineBuf0;
|
|
alphaLineBuf0 = alphaLineBuf1;
|
|
alphaLineBuf1 = tBuf;
|
|
(*src)(srcData, lineBuf1, alphaLineBuf1);
|
|
|
|
// interpolate the row
|
|
for (x = scaledWidth - 1; x >= 0; --x) {
|
|
xSrc = xr * x;
|
|
xSrc0 = splashFloor(xSrc + xr * 0.5 - 0.5);
|
|
xSrc1 = xSrc0 + 1;
|
|
xs = ((SplashCoord)xSrc1 + 0.5) - (xSrc + xr * 0.5);
|
|
if (xSrc0 < 0) {
|
|
xSrc0 = 0;
|
|
}
|
|
if (xSrc1 >= srcWidth) {
|
|
xSrc1 = srcWidth - 1;
|
|
}
|
|
for (i = 0; i < nComps; ++i) {
|
|
lineBuf1[x*nComps+i] = (Guchar)(int)
|
|
(xs * (int)lineBuf1[xSrc0*nComps+i] +
|
|
((SplashCoord)1 - xs) * (int)lineBuf1[xSrc1*nComps+i]);
|
|
}
|
|
if (srcAlpha) {
|
|
alphaLineBuf1[x] = (Guchar)(int)
|
|
(xs * (int)alphaLineBuf1[xSrc0] +
|
|
((SplashCoord)1 - xs) * (int)alphaLineBuf1[xSrc1]);
|
|
}
|
|
}
|
|
|
|
++yBuf;
|
|
}
|
|
|
|
// do the vertical interpolation
|
|
for (x = 0; x < scaledWidth; ++x) {
|
|
|
|
for (i = 0; i < nComps; ++i) {
|
|
pix[i] = (Guchar)(int)
|
|
(ys * (int)lineBuf0[x*nComps+i] +
|
|
((SplashCoord)1 - ys) * (int)lineBuf1[x*nComps+i]);
|
|
}
|
|
|
|
// store the pixel
|
|
switch (srcMode) {
|
|
case splashModeMono8:
|
|
*destPtr++ = pix[0];
|
|
break;
|
|
case splashModeRGB8:
|
|
*destPtr++ = pix[0];
|
|
*destPtr++ = pix[1];
|
|
*destPtr++ = pix[2];
|
|
break;
|
|
#if SPLASH_CMYK
|
|
case splashModeCMYK8:
|
|
*destPtr++ = pix[0];
|
|
*destPtr++ = pix[1];
|
|
*destPtr++ = pix[2];
|
|
*destPtr++ = pix[3];
|
|
break;
|
|
#endif
|
|
case splashModeMono1: // mono1 is not allowed
|
|
case splashModeBGR8: // BGR8 is not allowed
|
|
default:
|
|
break;
|
|
}
|
|
|
|
// process alpha
|
|
if (srcAlpha) {
|
|
*destAlphaPtr++ = (Guchar)(int)
|
|
(ys * (int)alphaLineBuf0[x] +
|
|
((SplashCoord)1 - ys) * (int)alphaLineBuf1[x]);
|
|
}
|
|
}
|
|
}
|
|
|
|
gfree(alphaLineBuf1);
|
|
gfree(alphaLineBuf0);
|
|
gfree(lineBuf1);
|
|
gfree(lineBuf0);
|
|
}
|
|
|
|
void Splash::vertFlipImage(SplashBitmap *img, int width, int height,
|
|
int nComps) {
|
|
Guchar *lineBuf;
|
|
Guchar *p0, *p1;
|
|
int w;
|
|
|
|
w = width * nComps;
|
|
lineBuf = (Guchar *)gmalloc(w);
|
|
for (p0 = img->data, p1 = img->data + (height - 1) * (size_t)w;
|
|
p0 < p1;
|
|
p0 += w, p1 -= w) {
|
|
memcpy(lineBuf, p0, w);
|
|
memcpy(p0, p1, w);
|
|
memcpy(p1, lineBuf, w);
|
|
}
|
|
if (img->alpha) {
|
|
for (p0 = img->alpha, p1 = img->alpha + (height - 1) * (size_t)width;
|
|
p0 < p1;
|
|
p0 += width, p1 -= width) {
|
|
memcpy(lineBuf, p0, width);
|
|
memcpy(p0, p1, width);
|
|
memcpy(p1, lineBuf, width);
|
|
}
|
|
}
|
|
gfree(lineBuf);
|
|
}
|
|
|
|
void Splash::horizFlipImage(SplashBitmap *img, int width, int height,
|
|
int nComps) {
|
|
Guchar *lineBuf;
|
|
SplashColorPtr p0, p1, p2;
|
|
int w, x, y, i;
|
|
|
|
w = width * nComps;
|
|
lineBuf = (Guchar *)gmalloc(w);
|
|
for (y = 0, p0 = img->data; y < height; ++y, p0 += img->rowSize) {
|
|
memcpy(lineBuf, p0, w);
|
|
p1 = p0;
|
|
p2 = lineBuf + (w - nComps);
|
|
for (x = 0; x < width; ++x) {
|
|
for (i = 0; i < nComps; ++i) {
|
|
p1[i] = p2[i];
|
|
}
|
|
p1 += nComps;
|
|
p2 -= nComps;
|
|
}
|
|
}
|
|
if (img->alpha) {
|
|
for (y = 0, p0 = img->alpha; y < height; ++y, p0 += width) {
|
|
memcpy(lineBuf, p0, width);
|
|
p1 = p0;
|
|
p2 = lineBuf + (width - 1);
|
|
for (x = 0; x < width; ++x) {
|
|
*p1++ = *p2--;
|
|
}
|
|
}
|
|
}
|
|
gfree(lineBuf);
|
|
}
|
|
|
|
void Splash::blitImage(SplashBitmap *src, GBool srcAlpha, int xDest, int yDest,
|
|
SplashClipResult clipRes) {
|
|
SplashPipe pipe;
|
|
int w, h, x0, y0, x1, y1, y;
|
|
|
|
// split the image into clipped and unclipped regions
|
|
w = src->width;
|
|
h = src->height;
|
|
if (clipRes == splashClipAllInside) {
|
|
x0 = 0;
|
|
y0 = 0;
|
|
x1 = w;
|
|
y1 = h;
|
|
} else {
|
|
if (state->clip->getNumPaths()) {
|
|
x0 = x1 = w;
|
|
y0 = y1 = h;
|
|
} else {
|
|
if ((x0 = splashCeil(state->clip->getXMin()) - xDest) < 0) {
|
|
x0 = 0;
|
|
}
|
|
if ((y0 = splashCeil(state->clip->getYMin()) - yDest) < 0) {
|
|
y0 = 0;
|
|
}
|
|
if ((x1 = splashFloor(state->clip->getXMax()) - xDest) > w) {
|
|
x1 = w;
|
|
}
|
|
if (x1 < x0) {
|
|
x1 = x0;
|
|
}
|
|
if ((y1 = splashFloor(state->clip->getYMax()) - yDest) > h) {
|
|
y1 = h;
|
|
}
|
|
if (y1 < y0) {
|
|
y1 = y0;
|
|
}
|
|
}
|
|
}
|
|
|
|
// draw the unclipped region
|
|
if (x0 < w && y0 < h && x0 < x1 && y0 < y1) {
|
|
pipeInit(&pipe, NULL,
|
|
(Guchar)splashRound(state->fillAlpha * 255),
|
|
srcAlpha, gFalse);
|
|
if (srcAlpha) {
|
|
for (y = y0; y < y1; ++y) {
|
|
(this->*pipe.run)(&pipe, xDest + x0, xDest + x1 - 1, yDest + y,
|
|
src->alpha + y * src->alphaRowSize + x0,
|
|
src->data + y * src->rowSize + x0 * bitmapComps);
|
|
}
|
|
} else {
|
|
for (y = y0; y < y1; ++y) {
|
|
(this->*pipe.run)(&pipe, xDest + x0, xDest + x1 - 1, yDest + y,
|
|
NULL,
|
|
src->data + y * src->getRowSize() +
|
|
x0 * bitmapComps);
|
|
}
|
|
}
|
|
}
|
|
|
|
// draw the clipped regions
|
|
if (y0 > 0) {
|
|
blitImageClipped(src, srcAlpha, 0, 0, xDest, yDest, w, y0);
|
|
}
|
|
if (y1 < h) {
|
|
blitImageClipped(src, srcAlpha, 0, y1, xDest, yDest + y1, w, h - y1);
|
|
}
|
|
if (x0 > 0 && y0 < y1) {
|
|
blitImageClipped(src, srcAlpha, 0, y0, xDest, yDest + y0, x0, y1 - y0);
|
|
}
|
|
if (x1 < w && y0 < y1) {
|
|
blitImageClipped(src, srcAlpha, x1, y0, xDest + x1, yDest + y0,
|
|
w - x1, y1 - y0);
|
|
}
|
|
}
|
|
|
|
void Splash::blitImageClipped(SplashBitmap *src, GBool srcAlpha,
|
|
int xSrc, int ySrc, int xDest, int yDest,
|
|
int w, int h) {
|
|
SplashPipe pipe;
|
|
int y;
|
|
|
|
if (xDest < 0) {
|
|
xSrc -= xDest;
|
|
w += xDest;
|
|
xDest = 0;
|
|
}
|
|
if (xDest + w > bitmap->width) {
|
|
w = bitmap->width - xDest;
|
|
}
|
|
if (yDest < 0) {
|
|
ySrc -= yDest;
|
|
h += yDest;
|
|
yDest = 0;
|
|
}
|
|
if (yDest + h > bitmap->height) {
|
|
h = bitmap->height - yDest;
|
|
}
|
|
if (w <= 0 || h <= 0) {
|
|
return;
|
|
}
|
|
|
|
pipeInit(&pipe, NULL,
|
|
(Guchar)splashRound(state->fillAlpha * 255),
|
|
gTrue, gFalse);
|
|
if (srcAlpha) {
|
|
for (y = 0; y < h; ++y) {
|
|
memcpy(scanBuf + xDest,
|
|
src->alpha + (ySrc + y) * src->alphaRowSize + xSrc,
|
|
w);
|
|
if (vectorAntialias) {
|
|
state->clip->clipSpan(scanBuf, yDest + y, xDest, xDest + w - 1,
|
|
state->strokeAdjust);
|
|
} else {
|
|
state->clip->clipSpanBinary(scanBuf, yDest + y, xDest, xDest + w - 1,
|
|
state->strokeAdjust);
|
|
}
|
|
(this->*pipe.run)(&pipe, xDest, xDest + w - 1, yDest + y,
|
|
scanBuf + xDest,
|
|
src->data + (ySrc + y) * src->rowSize +
|
|
xSrc * bitmapComps);
|
|
}
|
|
} else {
|
|
for (y = 0; y < h; ++y) {
|
|
memset(scanBuf + xDest, 0xff, w);
|
|
if (vectorAntialias) {
|
|
state->clip->clipSpan(scanBuf, yDest + y, xDest, xDest + w - 1,
|
|
state->strokeAdjust);
|
|
} else {
|
|
state->clip->clipSpanBinary(scanBuf, yDest + y, xDest, xDest + w - 1,
|
|
state->strokeAdjust);
|
|
}
|
|
(this->*pipe.run)(&pipe, xDest, xDest + w - 1, yDest + y,
|
|
scanBuf + xDest,
|
|
src->data + (ySrc + y) * src->rowSize +
|
|
xSrc * bitmapComps);
|
|
}
|
|
}
|
|
}
|
|
|
|
SplashError Splash::composite(SplashBitmap *src, int xSrc, int ySrc,
|
|
int xDest, int yDest, int w, int h,
|
|
GBool noClip, GBool nonIsolated) {
|
|
SplashPipe pipe;
|
|
Guchar *mono1Ptr, *lineBuf, *linePtr;
|
|
Guchar mono1Mask, b;
|
|
int x0, x1, x, y0, y1, y, t;
|
|
|
|
if (!(src->mode == bitmap->mode ||
|
|
(src->mode == splashModeMono8 && bitmap->mode == splashModeMono1) ||
|
|
(src->mode == splashModeRGB8 && bitmap->mode == splashModeBGR8))) {
|
|
return splashErrModeMismatch;
|
|
}
|
|
|
|
pipeInit(&pipe, NULL,
|
|
(Guchar)splashRound(state->fillAlpha * 255),
|
|
!noClip || src->alpha != NULL, nonIsolated);
|
|
if (src->mode == splashModeMono1) {
|
|
// in mono1 mode, pipeRun expects the source to be in mono8
|
|
// format, so we need to extract the source color values into
|
|
// scanBuf, expanding them from mono1 to mono8
|
|
if (noClip) {
|
|
if (src->alpha) {
|
|
for (y = 0; y < h; ++y) {
|
|
mono1Ptr = src->data + (ySrc + y) * src->rowSize + (xSrc >> 3);
|
|
mono1Mask = (Guchar)(0x80 >> (xSrc & 7));
|
|
for (x = 0; x < w; ++x) {
|
|
scanBuf[x] = (*mono1Ptr & mono1Mask) ? 0xff : 0x00;
|
|
mono1Ptr += mono1Mask & 1;
|
|
mono1Mask = (Guchar)((mono1Mask << 7) | (mono1Mask >> 1));
|
|
}
|
|
// this uses shape instead of alpha, which isn't technically
|
|
// correct, but works out the same
|
|
(this->*pipe.run)(&pipe, xDest, xDest + w - 1, yDest + y,
|
|
src->alpha +
|
|
(ySrc + y) * src->alphaRowSize + xSrc,
|
|
scanBuf);
|
|
}
|
|
} else {
|
|
for (y = 0; y < h; ++y) {
|
|
mono1Ptr = src->data + (ySrc + y) * src->rowSize + (xSrc >> 3);
|
|
mono1Mask = (Guchar)(0x80 >> (xSrc & 7));
|
|
for (x = 0; x < w; ++x) {
|
|
scanBuf[x] = (*mono1Ptr & mono1Mask) ? 0xff : 0x00;
|
|
mono1Ptr += mono1Mask & 1;
|
|
mono1Mask = (Guchar)((mono1Mask << 7) | (mono1Mask >> 1));
|
|
}
|
|
(this->*pipe.run)(&pipe, xDest, xDest + w - 1, yDest + y,
|
|
NULL,
|
|
scanBuf);
|
|
}
|
|
}
|
|
} else {
|
|
x0 = xDest;
|
|
if ((t = state->clip->getXMinI(state->strokeAdjust)) > x0) {
|
|
x0 = t;
|
|
}
|
|
x1 = xDest + w;
|
|
if ((t = state->clip->getXMaxI(state->strokeAdjust) + 1) < x1) {
|
|
x1 = t;
|
|
}
|
|
y0 = yDest;
|
|
if ((t = state->clip->getYMinI(state->strokeAdjust)) > y0) {
|
|
y0 = t;
|
|
}
|
|
y1 = yDest + h;
|
|
if ((t = state->clip->getYMaxI(state->strokeAdjust) + 1) < y1) {
|
|
y1 = t;
|
|
}
|
|
if (x0 < x1 && y0 < y1) {
|
|
if (src->alpha) {
|
|
for (y = y0; y < y1; ++y) {
|
|
mono1Ptr = src->data
|
|
+ (ySrc + y - yDest) * src->rowSize
|
|
+ ((xSrc + x0 - xDest) >> 3);
|
|
mono1Mask = (Guchar)(0x80 >> ((xSrc + x0 - xDest) & 7));
|
|
for (x = x0; x < x1; ++x) {
|
|
scanBuf[x] = (*mono1Ptr & mono1Mask) ? 0xff : 0x00;
|
|
mono1Ptr += mono1Mask & 1;
|
|
mono1Mask = (Guchar)((mono1Mask << 7) | (mono1Mask >> 1));
|
|
}
|
|
memcpy(scanBuf2 + x0,
|
|
src->alpha + (ySrc + y - yDest) * src->alphaRowSize +
|
|
(xSrc + x0 - xDest),
|
|
x1 - x0);
|
|
if (!state->clip->clipSpanBinary(scanBuf2, y, x0, x1 - 1,
|
|
state->strokeAdjust)) {
|
|
continue;
|
|
}
|
|
// this uses shape instead of alpha, which isn't technically
|
|
// correct, but works out the same
|
|
(this->*pipe.run)(&pipe, x0, x1 - 1, y,
|
|
scanBuf2 + x0,
|
|
scanBuf + x0);
|
|
}
|
|
} else {
|
|
for (y = y0; y < y1; ++y) {
|
|
mono1Ptr = src->data
|
|
+ (ySrc + y - yDest) * src->rowSize
|
|
+ ((xSrc + x0 - xDest) >> 3);
|
|
mono1Mask = (Guchar)(0x80 >> ((xSrc + x0 - xDest) & 7));
|
|
for (x = x0; x < x1; ++x) {
|
|
scanBuf[x] = (*mono1Ptr & mono1Mask) ? 0xff : 0x00;
|
|
mono1Ptr += mono1Mask & 1;
|
|
mono1Mask = (Guchar)((mono1Mask << 7) | (mono1Mask >> 1));
|
|
}
|
|
memset(scanBuf2 + x0, 0xff, x1 - x0);
|
|
if (!state->clip->clipSpanBinary(scanBuf2, y, x0, x1 - 1,
|
|
state->strokeAdjust)) {
|
|
continue;
|
|
}
|
|
(this->*pipe.run)(&pipe, x0, x1 - 1, y,
|
|
scanBuf2 + x0,
|
|
scanBuf + x0);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
} else if (src->mode == splashModeBGR8) {
|
|
// in BGR8 mode, pipeRun expects the source to be in RGB8 format,
|
|
// so we need to swap bytes
|
|
lineBuf = (Guchar *)gmallocn(w, 3);
|
|
if (noClip) {
|
|
if (src->alpha) {
|
|
for (y = 0; y < h; ++y) {
|
|
memcpy(lineBuf,
|
|
src->data + (ySrc + y) * src->rowSize + xSrc * 3,
|
|
w * 3);
|
|
for (x = 0, linePtr = lineBuf; x < w; ++x, linePtr += 3) {
|
|
b = linePtr[0];
|
|
linePtr[0] = linePtr[2];
|
|
linePtr[2] = b;
|
|
}
|
|
// this uses shape instead of alpha, which isn't technically
|
|
// correct, but works out the same
|
|
(this->*pipe.run)(&pipe, xDest, xDest + w - 1, yDest + y,
|
|
src->alpha +
|
|
(ySrc + y) * src->alphaRowSize + xSrc,
|
|
lineBuf);
|
|
}
|
|
} else {
|
|
for (y = 0; y < h; ++y) {
|
|
memcpy(lineBuf,
|
|
src->data + (ySrc + y) * src->rowSize + xSrc * 3,
|
|
w * 3);
|
|
for (x = 0, linePtr = lineBuf; x < w; ++x, linePtr += 3) {
|
|
b = linePtr[0];
|
|
linePtr[0] = linePtr[2];
|
|
linePtr[2] = b;
|
|
}
|
|
(this->*pipe.run)(&pipe, xDest, xDest + w - 1, yDest + y,
|
|
NULL, lineBuf);
|
|
}
|
|
}
|
|
} else {
|
|
x0 = xDest;
|
|
if ((t = state->clip->getXMinI(state->strokeAdjust)) > x0) {
|
|
x0 = t;
|
|
}
|
|
x1 = xDest + w;
|
|
if ((t = state->clip->getXMaxI(state->strokeAdjust) + 1) < x1) {
|
|
x1 = t;
|
|
}
|
|
y0 = yDest;
|
|
if ((t = state->clip->getYMinI(state->strokeAdjust)) > y0) {
|
|
y0 = t;
|
|
}
|
|
y1 = yDest + h;
|
|
if ((t = state->clip->getYMaxI(state->strokeAdjust) + 1) < y1) {
|
|
y1 = t;
|
|
}
|
|
if (x0 < x1 && y0 < y1) {
|
|
if (src->alpha) {
|
|
for (y = y0; y < y1; ++y) {
|
|
memcpy(scanBuf + x0,
|
|
src->alpha + (ySrc + y - yDest) * src->alphaRowSize +
|
|
(xSrc + x0 - xDest),
|
|
x1 - x0);
|
|
state->clip->clipSpan(scanBuf, y, x0, x1 - 1, state->strokeAdjust);
|
|
memcpy(lineBuf,
|
|
src->data +
|
|
(ySrc + y - yDest) * src->rowSize +
|
|
(xSrc + x0 - xDest) * 3,
|
|
(x1 - x0) * 3);
|
|
for (x = 0, linePtr = lineBuf; x < x1 - x0; ++x, linePtr += 3) {
|
|
b = linePtr[0];
|
|
linePtr[0] = linePtr[2];
|
|
linePtr[2] = b;
|
|
}
|
|
// this uses shape instead of alpha, which isn't technically
|
|
// correct, but works out the same
|
|
(this->*pipe.run)(&pipe, x0, x1 - 1, y,
|
|
scanBuf + x0, lineBuf);
|
|
}
|
|
} else {
|
|
for (y = y0; y < y1; ++y) {
|
|
memset(scanBuf + x0, 0xff, x1 - x0);
|
|
state->clip->clipSpan(scanBuf, y, x0, x1 - 1, state->strokeAdjust);
|
|
memcpy(lineBuf,
|
|
src->data +
|
|
(ySrc + y - yDest) * src->rowSize +
|
|
(xSrc + x0 - xDest) * 3,
|
|
(x1 - x0) * 3);
|
|
for (x = 0, linePtr = lineBuf; x < x1 - x0; ++x, linePtr += 3) {
|
|
b = linePtr[0];
|
|
linePtr[0] = linePtr[2];
|
|
linePtr[2] = b;
|
|
}
|
|
(this->*pipe.run)(&pipe, x0, x1 - 1, yDest + y,
|
|
scanBuf + x0,
|
|
src->data +
|
|
(ySrc + y - yDest) * src->rowSize +
|
|
(xSrc + x0 - xDest) * bitmapComps);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
gfree(lineBuf);
|
|
|
|
} else { // src->mode not mono1 or BGR8
|
|
if (noClip) {
|
|
if (src->alpha) {
|
|
for (y = 0; y < h; ++y) {
|
|
// this uses shape instead of alpha, which isn't technically
|
|
// correct, but works out the same
|
|
(this->*pipe.run)(&pipe, xDest, xDest + w - 1, yDest + y,
|
|
src->alpha +
|
|
(ySrc + y) * src->alphaRowSize + xSrc,
|
|
src->data + (ySrc + y) * src->rowSize +
|
|
xSrc * bitmapComps);
|
|
}
|
|
} else {
|
|
for (y = 0; y < h; ++y) {
|
|
(this->*pipe.run)(&pipe, xDest, xDest + w - 1, yDest + y,
|
|
NULL,
|
|
src->data + (ySrc + y) * src->rowSize +
|
|
xSrc * bitmapComps);
|
|
}
|
|
}
|
|
} else {
|
|
x0 = xDest;
|
|
if ((t = state->clip->getXMinI(state->strokeAdjust)) > x0) {
|
|
x0 = t;
|
|
}
|
|
x1 = xDest + w;
|
|
if ((t = state->clip->getXMaxI(state->strokeAdjust) + 1) < x1) {
|
|
x1 = t;
|
|
}
|
|
y0 = yDest;
|
|
if ((t = state->clip->getYMinI(state->strokeAdjust)) > y0) {
|
|
y0 = t;
|
|
}
|
|
y1 = yDest + h;
|
|
if ((t = state->clip->getYMaxI(state->strokeAdjust) + 1) < y1) {
|
|
y1 = t;
|
|
}
|
|
if (x0 < x1 && y0 < y1) {
|
|
if (src->alpha) {
|
|
for (y = y0; y < y1; ++y) {
|
|
memcpy(scanBuf + x0,
|
|
src->alpha + (ySrc + y - yDest) * src->alphaRowSize +
|
|
(xSrc + x0 - xDest),
|
|
x1 - x0);
|
|
state->clip->clipSpan(scanBuf, y, x0, x1 - 1, state->strokeAdjust);
|
|
// this uses shape instead of alpha, which isn't technically
|
|
// correct, but works out the same
|
|
(this->*pipe.run)(&pipe, x0, x1 - 1, y,
|
|
scanBuf + x0,
|
|
src->data +
|
|
(ySrc + y - yDest) * src->rowSize +
|
|
(xSrc + x0 - xDest) * bitmapComps);
|
|
}
|
|
} else {
|
|
for (y = y0; y < y1; ++y) {
|
|
memset(scanBuf + x0, 0xff, x1 - x0);
|
|
state->clip->clipSpan(scanBuf, y, x0, x1 - 1, state->strokeAdjust);
|
|
(this->*pipe.run)(&pipe, x0, x1 - 1, yDest + y,
|
|
scanBuf + x0,
|
|
src->data +
|
|
(ySrc + y - yDest) * src->rowSize +
|
|
(xSrc + x0 - xDest) * bitmapComps);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return splashOk;
|
|
}
|
|
|
|
void Splash::compositeBackground(SplashColorPtr color) {
|
|
SplashColorPtr p;
|
|
Guchar *q;
|
|
Guchar alpha, alpha1, c, color0, color1, color2, mask;
|
|
#if SPLASH_CMYK
|
|
Guchar color3;
|
|
#endif
|
|
int x, y;
|
|
|
|
switch (bitmap->mode) {
|
|
case splashModeMono1:
|
|
color0 = color[0];
|
|
for (y = 0; y < bitmap->height; ++y) {
|
|
p = &bitmap->data[y * bitmap->rowSize];
|
|
q = &bitmap->alpha[y * bitmap->alphaRowSize];
|
|
mask = 0x80;
|
|
for (x = 0; x < bitmap->width; ++x) {
|
|
alpha = *q++;
|
|
if (alpha == 0) {
|
|
if (color0 & 0x80) {
|
|
*p |= mask;
|
|
} else {
|
|
*p &= (Guchar)~mask;
|
|
}
|
|
} else if (alpha != 255) {
|
|
alpha1 = (Guchar)(255 - alpha);
|
|
c = (*p & mask) ? 0xff : 0x00;
|
|
c = div255(alpha1 * color0 + alpha * c);
|
|
if (c & 0x80) {
|
|
*p |= mask;
|
|
} else {
|
|
*p &= (Guchar)~mask;
|
|
}
|
|
}
|
|
if (!(mask = (Guchar)(mask >> 1))) {
|
|
mask = 0x80;
|
|
++p;
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
case splashModeMono8:
|
|
color0 = color[0];
|
|
for (y = 0; y < bitmap->height; ++y) {
|
|
p = &bitmap->data[y * bitmap->rowSize];
|
|
q = &bitmap->alpha[y * bitmap->alphaRowSize];
|
|
for (x = 0; x < bitmap->width; ++x) {
|
|
alpha = *q++;
|
|
if (alpha == 0) {
|
|
p[0] = color0;
|
|
} else if (alpha != 255) {
|
|
alpha1 = (Guchar)(255 - alpha);
|
|
p[0] = div255(alpha1 * color0 + alpha * p[0]);
|
|
}
|
|
++p;
|
|
}
|
|
}
|
|
break;
|
|
case splashModeRGB8:
|
|
case splashModeBGR8:
|
|
color0 = color[0];
|
|
color1 = color[1];
|
|
color2 = color[2];
|
|
for (y = 0; y < bitmap->height; ++y) {
|
|
p = &bitmap->data[y * bitmap->rowSize];
|
|
q = &bitmap->alpha[y * bitmap->alphaRowSize];
|
|
for (x = 0; x < bitmap->width; ++x) {
|
|
alpha = *q++;
|
|
if (alpha == 0) {
|
|
p[0] = color0;
|
|
p[1] = color1;
|
|
p[2] = color2;
|
|
} else if (alpha != 255) {
|
|
alpha1 = (Guchar)(255 - alpha);
|
|
p[0] = div255(alpha1 * color0 + alpha * p[0]);
|
|
p[1] = div255(alpha1 * color1 + alpha * p[1]);
|
|
p[2] = div255(alpha1 * color2 + alpha * p[2]);
|
|
}
|
|
p += 3;
|
|
}
|
|
}
|
|
break;
|
|
#if SPLASH_CMYK
|
|
case splashModeCMYK8:
|
|
color0 = color[0];
|
|
color1 = color[1];
|
|
color2 = color[2];
|
|
color3 = color[3];
|
|
for (y = 0; y < bitmap->height; ++y) {
|
|
p = &bitmap->data[y * bitmap->rowSize];
|
|
q = &bitmap->alpha[y * bitmap->alphaRowSize];
|
|
for (x = 0; x < bitmap->width; ++x) {
|
|
alpha = *q++;
|
|
if (alpha == 0) {
|
|
p[0] = color0;
|
|
p[1] = color1;
|
|
p[2] = color2;
|
|
p[3] = color3;
|
|
} else if (alpha != 255) {
|
|
alpha1 = (Guchar)(255 - alpha);
|
|
p[0] = div255(alpha1 * color0 + alpha * p[0]);
|
|
p[1] = div255(alpha1 * color1 + alpha * p[1]);
|
|
p[2] = div255(alpha1 * color2 + alpha * p[2]);
|
|
p[3] = div255(alpha1 * color3 + alpha * p[3]);
|
|
}
|
|
p += 4;
|
|
}
|
|
}
|
|
break;
|
|
#endif
|
|
}
|
|
memset(bitmap->alpha, 255, bitmap->alphaRowSize * bitmap->height);
|
|
}
|
|
|
|
SplashError Splash::blitTransparent(SplashBitmap *src, int xSrc, int ySrc,
|
|
int xDest, int yDest, int w, int h) {
|
|
SplashColorPtr p, q;
|
|
Guchar mask, srcMask;
|
|
int x, y;
|
|
|
|
if (src->mode != bitmap->mode) {
|
|
return splashErrModeMismatch;
|
|
}
|
|
|
|
switch (bitmap->mode) {
|
|
case splashModeMono1:
|
|
for (y = 0; y < h; ++y) {
|
|
p = &bitmap->data[(yDest + y) * bitmap->rowSize + (xDest >> 3)];
|
|
mask = (Guchar)(0x80 >> (xDest & 7));
|
|
q = &src->data[(ySrc + y) * src->rowSize + (xSrc >> 3)];
|
|
srcMask = (Guchar)(0x80 >> (xSrc & 7));
|
|
for (x = 0; x < w; ++x) {
|
|
if (*q & srcMask) {
|
|
*p |= mask;
|
|
} else {
|
|
*p &= (Guchar)~mask;
|
|
}
|
|
if (!(mask = (Guchar)(mask >> 1))) {
|
|
mask = 0x80;
|
|
++p;
|
|
}
|
|
if (!(srcMask = (Guchar)(srcMask >> 1))) {
|
|
srcMask = 0x80;
|
|
++q;
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
case splashModeMono8:
|
|
for (y = 0; y < h; ++y) {
|
|
p = &bitmap->data[(yDest + y) * bitmap->rowSize + xDest];
|
|
q = &src->data[(ySrc + y) * src->rowSize + xSrc];
|
|
memcpy(p, q, w);
|
|
}
|
|
break;
|
|
case splashModeRGB8:
|
|
case splashModeBGR8:
|
|
for (y = 0; y < h; ++y) {
|
|
p = &bitmap->data[(yDest + y) * bitmap->rowSize + 3 * xDest];
|
|
q = &src->data[(ySrc + y) * src->rowSize + 3 * xSrc];
|
|
memcpy(p, q, 3 * w);
|
|
}
|
|
break;
|
|
#if SPLASH_CMYK
|
|
case splashModeCMYK8:
|
|
for (y = 0; y < h; ++y) {
|
|
p = &bitmap->data[(yDest + y) * bitmap->rowSize + 4 * xDest];
|
|
q = &src->data[(ySrc + y) * src->rowSize + 4 * xSrc];
|
|
memcpy(p, q, 4 * w);
|
|
}
|
|
break;
|
|
#endif
|
|
}
|
|
|
|
if (bitmap->alpha) {
|
|
for (y = 0; y < h; ++y) {
|
|
q = &bitmap->alpha[(yDest + y) * bitmap->alphaRowSize + xDest];
|
|
memset(q, 0, w);
|
|
}
|
|
}
|
|
|
|
return splashOk;
|
|
}
|
|
|
|
SplashError Splash::blitCorrectedAlpha(SplashBitmap *dest, int xSrc, int ySrc,
|
|
int xDest, int yDest, int w, int h) {
|
|
SplashColorPtr p, q;
|
|
Guchar *alpha0Ptr;
|
|
Guchar alpha0, aSrc, mask, srcMask;
|
|
int x, y;
|
|
|
|
if (bitmap->mode != dest->mode ||
|
|
!bitmap->alpha ||
|
|
!dest->alpha ||
|
|
!groupBackBitmap) {
|
|
return splashErrModeMismatch;
|
|
}
|
|
|
|
switch (bitmap->mode) {
|
|
case splashModeMono1:
|
|
for (y = 0; y < h; ++y) {
|
|
p = &dest->data[(yDest + y) * dest->rowSize + (xDest >> 3)];
|
|
mask = (Guchar)(0x80 >> (xDest & 7));
|
|
q = &bitmap->data[(ySrc + y) * bitmap->rowSize + (xSrc >> 3)];
|
|
srcMask = (Guchar)(0x80 >> (xSrc & 7));
|
|
for (x = 0; x < w; ++x) {
|
|
if (*q & srcMask) {
|
|
*p |= mask;
|
|
} else {
|
|
*p &= (Guchar)~mask;
|
|
}
|
|
if (!(mask = (Guchar)(mask >> 1))) {
|
|
mask = 0x80;
|
|
++p;
|
|
}
|
|
if (!(srcMask = (Guchar)(srcMask >> 1))) {
|
|
srcMask = 0x80;
|
|
++q;
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
case splashModeMono8:
|
|
for (y = 0; y < h; ++y) {
|
|
p = &dest->data[(yDest + y) * dest->rowSize + xDest];
|
|
q = &bitmap->data[(ySrc + y) * bitmap->rowSize + xSrc];
|
|
memcpy(p, q, w);
|
|
}
|
|
break;
|
|
case splashModeRGB8:
|
|
case splashModeBGR8:
|
|
for (y = 0; y < h; ++y) {
|
|
p = &dest->data[(yDest + y) * dest->rowSize + 3 * xDest];
|
|
q = &bitmap->data[(ySrc + y) * bitmap->rowSize + 3 * xSrc];
|
|
memcpy(p, q, 3 * w);
|
|
}
|
|
break;
|
|
#if SPLASH_CMYK
|
|
case splashModeCMYK8:
|
|
for (y = 0; y < h; ++y) {
|
|
p = &dest->data[(yDest + y) * dest->rowSize + 4 * xDest];
|
|
q = &bitmap->data[(ySrc + y) * bitmap->rowSize + 4 * xSrc];
|
|
memcpy(p, q, 4 * w);
|
|
}
|
|
break;
|
|
#endif
|
|
}
|
|
|
|
for (y = 0; y < h; ++y) {
|
|
p = &dest->alpha[(yDest + y) * dest->alphaRowSize + xDest];
|
|
q = &bitmap->alpha[(ySrc + y) * bitmap->alphaRowSize + xSrc];
|
|
alpha0Ptr = &groupBackBitmap->alpha[(groupBackY + ySrc + y)
|
|
* groupBackBitmap->alphaRowSize +
|
|
(groupBackX + xSrc)];
|
|
for (x = 0; x < w; ++x) {
|
|
alpha0 = *alpha0Ptr++;
|
|
aSrc = *q++;
|
|
*p++ = (Guchar)(alpha0 + aSrc - div255(alpha0 * aSrc));
|
|
}
|
|
}
|
|
|
|
return splashOk;
|
|
}
|
|
|
|
SplashPath *Splash::makeStrokePath(SplashPath *path, SplashCoord w,
|
|
int lineCap, int lineJoin,
|
|
GBool flatten) {
|
|
SplashPath *pathIn, *dashPath, *pathOut;
|
|
SplashCoord d, dx, dy, wdx, wdy, dxNext, dyNext, wdxNext, wdyNext;
|
|
SplashCoord crossprod, dotprod, miter, m;
|
|
SplashCoord angle, angleNext, dAngle, xc, yc;
|
|
SplashCoord dxJoin, dyJoin, dJoin, kappa;
|
|
SplashCoord cx1, cy1, cx2, cy2, cx3, cy3, cx4, cy4;
|
|
GBool first, last, closed;
|
|
int subpathStart0, subpathStart1, seg, i0, i1, j0, j1, k0, k1;
|
|
int left0, left1, left2, right0, right1, right2, join0, join1, join2;
|
|
int leftFirst, rightFirst, firstPt;
|
|
|
|
pathOut = new SplashPath();
|
|
|
|
if (path->length == 0) {
|
|
return pathOut;
|
|
}
|
|
|
|
if (flatten) {
|
|
pathIn = flattenPath(path, state->matrix, state->flatness);
|
|
if (state->lineDashLength > 0) {
|
|
dashPath = makeDashedPath(pathIn);
|
|
delete pathIn;
|
|
pathIn = dashPath;
|
|
if (pathIn->length == 0) {
|
|
delete pathIn;
|
|
return pathOut;
|
|
}
|
|
}
|
|
} else {
|
|
pathIn = path;
|
|
}
|
|
|
|
subpathStart0 = subpathStart1 = 0; // make gcc happy
|
|
seg = 0; // make gcc happy
|
|
closed = gFalse; // make gcc happy
|
|
left0 = left1 = right0 = right1 = join0 = join1 = 0; // make gcc happy
|
|
leftFirst = rightFirst = firstPt = 0; // make gcc happy
|
|
|
|
i0 = 0;
|
|
for (i1 = i0;
|
|
!(pathIn->flags[i1] & splashPathLast) &&
|
|
i1 + 1 < pathIn->length &&
|
|
pathIn->pts[i1+1].x == pathIn->pts[i1].x &&
|
|
pathIn->pts[i1+1].y == pathIn->pts[i1].y;
|
|
++i1) ;
|
|
|
|
while (i1 < pathIn->length) {
|
|
if ((first = pathIn->flags[i0] & splashPathFirst)) {
|
|
subpathStart0 = i0;
|
|
subpathStart1 = i1;
|
|
seg = 0;
|
|
closed = pathIn->flags[i0] & splashPathClosed;
|
|
}
|
|
j0 = i1 + 1;
|
|
if (j0 < pathIn->length) {
|
|
for (j1 = j0;
|
|
!(pathIn->flags[j1] & splashPathLast) &&
|
|
j1 + 1 < pathIn->length &&
|
|
pathIn->pts[j1+1].x == pathIn->pts[j1].x &&
|
|
pathIn->pts[j1+1].y == pathIn->pts[j1].y;
|
|
++j1) ;
|
|
} else {
|
|
j1 = j0;
|
|
}
|
|
if (pathIn->flags[i1] & splashPathLast) {
|
|
if (first && lineCap == splashLineCapRound) {
|
|
// special case: zero-length subpath with round line caps -->
|
|
// draw a circle
|
|
pathOut->moveTo(pathIn->pts[i0].x + (SplashCoord)0.5 * w,
|
|
pathIn->pts[i0].y);
|
|
pathOut->curveTo(pathIn->pts[i0].x + (SplashCoord)0.5 * w,
|
|
pathIn->pts[i0].y + bezierCircle2 * w,
|
|
pathIn->pts[i0].x + bezierCircle2 * w,
|
|
pathIn->pts[i0].y + (SplashCoord)0.5 * w,
|
|
pathIn->pts[i0].x,
|
|
pathIn->pts[i0].y + (SplashCoord)0.5 * w);
|
|
pathOut->curveTo(pathIn->pts[i0].x - bezierCircle2 * w,
|
|
pathIn->pts[i0].y + (SplashCoord)0.5 * w,
|
|
pathIn->pts[i0].x - (SplashCoord)0.5 * w,
|
|
pathIn->pts[i0].y + bezierCircle2 * w,
|
|
pathIn->pts[i0].x - (SplashCoord)0.5 * w,
|
|
pathIn->pts[i0].y);
|
|
pathOut->curveTo(pathIn->pts[i0].x - (SplashCoord)0.5 * w,
|
|
pathIn->pts[i0].y - bezierCircle2 * w,
|
|
pathIn->pts[i0].x - bezierCircle2 * w,
|
|
pathIn->pts[i0].y - (SplashCoord)0.5 * w,
|
|
pathIn->pts[i0].x,
|
|
pathIn->pts[i0].y - (SplashCoord)0.5 * w);
|
|
pathOut->curveTo(pathIn->pts[i0].x + bezierCircle2 * w,
|
|
pathIn->pts[i0].y - (SplashCoord)0.5 * w,
|
|
pathIn->pts[i0].x + (SplashCoord)0.5 * w,
|
|
pathIn->pts[i0].y - bezierCircle2 * w,
|
|
pathIn->pts[i0].x + (SplashCoord)0.5 * w,
|
|
pathIn->pts[i0].y);
|
|
pathOut->close();
|
|
}
|
|
i0 = j0;
|
|
i1 = j1;
|
|
continue;
|
|
}
|
|
last = pathIn->flags[j1] & splashPathLast;
|
|
if (last) {
|
|
k0 = subpathStart1 + 1;
|
|
} else {
|
|
k0 = j1 + 1;
|
|
}
|
|
for (k1 = k0;
|
|
!(pathIn->flags[k1] & splashPathLast) &&
|
|
k1 + 1 < pathIn->length &&
|
|
pathIn->pts[k1+1].x == pathIn->pts[k1].x &&
|
|
pathIn->pts[k1+1].y == pathIn->pts[k1].y;
|
|
++k1) ;
|
|
|
|
// compute the deltas for segment (i1, j0)
|
|
#if USE_FIXEDPOINT
|
|
// the 1/d value can be small, which introduces significant
|
|
// inaccuracies in fixed point mode
|
|
d = splashDist(pathIn->pts[i1].x, pathIn->pts[i1].y,
|
|
pathIn->pts[j0].x, pathIn->pts[j0].y);
|
|
dx = (pathIn->pts[j0].x - pathIn->pts[i1].x) / d;
|
|
dy = (pathIn->pts[j0].y - pathIn->pts[i1].y) / d;
|
|
#else
|
|
d = (SplashCoord)1 / splashDist(pathIn->pts[i1].x, pathIn->pts[i1].y,
|
|
pathIn->pts[j0].x, pathIn->pts[j0].y);
|
|
dx = d * (pathIn->pts[j0].x - pathIn->pts[i1].x);
|
|
dy = d * (pathIn->pts[j0].y - pathIn->pts[i1].y);
|
|
#endif
|
|
wdx = (SplashCoord)0.5 * w * dx;
|
|
wdy = (SplashCoord)0.5 * w * dy;
|
|
|
|
// draw the start cap
|
|
if (i0 == subpathStart0) {
|
|
firstPt = pathOut->length;
|
|
}
|
|
if (first && !closed) {
|
|
switch (lineCap) {
|
|
case splashLineCapButt:
|
|
pathOut->moveTo(pathIn->pts[i0].x - wdy, pathIn->pts[i0].y + wdx);
|
|
pathOut->lineTo(pathIn->pts[i0].x + wdy, pathIn->pts[i0].y - wdx);
|
|
break;
|
|
case splashLineCapRound:
|
|
pathOut->moveTo(pathIn->pts[i0].x - wdy, pathIn->pts[i0].y + wdx);
|
|
pathOut->curveTo(pathIn->pts[i0].x - wdy - bezierCircle * wdx,
|
|
pathIn->pts[i0].y + wdx - bezierCircle * wdy,
|
|
pathIn->pts[i0].x - wdx - bezierCircle * wdy,
|
|
pathIn->pts[i0].y - wdy + bezierCircle * wdx,
|
|
pathIn->pts[i0].x - wdx,
|
|
pathIn->pts[i0].y - wdy);
|
|
pathOut->curveTo(pathIn->pts[i0].x - wdx + bezierCircle * wdy,
|
|
pathIn->pts[i0].y - wdy - bezierCircle * wdx,
|
|
pathIn->pts[i0].x + wdy - bezierCircle * wdx,
|
|
pathIn->pts[i0].y - wdx - bezierCircle * wdy,
|
|
pathIn->pts[i0].x + wdy,
|
|
pathIn->pts[i0].y - wdx);
|
|
break;
|
|
case splashLineCapProjecting:
|
|
pathOut->moveTo(pathIn->pts[i0].x - wdx - wdy,
|
|
pathIn->pts[i0].y + wdx - wdy);
|
|
pathOut->lineTo(pathIn->pts[i0].x - wdx + wdy,
|
|
pathIn->pts[i0].y - wdx - wdy);
|
|
break;
|
|
}
|
|
} else {
|
|
pathOut->moveTo(pathIn->pts[i0].x - wdy, pathIn->pts[i0].y + wdx);
|
|
pathOut->lineTo(pathIn->pts[i0].x + wdy, pathIn->pts[i0].y - wdx);
|
|
}
|
|
|
|
// draw the left side of the segment rectangle and the end cap
|
|
left2 = pathOut->length - 1;
|
|
if (last && !closed) {
|
|
switch (lineCap) {
|
|
case splashLineCapButt:
|
|
pathOut->lineTo(pathIn->pts[j0].x + wdy, pathIn->pts[j0].y - wdx);
|
|
pathOut->lineTo(pathIn->pts[j0].x - wdy, pathIn->pts[j0].y + wdx);
|
|
break;
|
|
case splashLineCapRound:
|
|
pathOut->lineTo(pathIn->pts[j0].x + wdy, pathIn->pts[j0].y - wdx);
|
|
pathOut->curveTo(pathIn->pts[j0].x + wdy + bezierCircle * wdx,
|
|
pathIn->pts[j0].y - wdx + bezierCircle * wdy,
|
|
pathIn->pts[j0].x + wdx + bezierCircle * wdy,
|
|
pathIn->pts[j0].y + wdy - bezierCircle * wdx,
|
|
pathIn->pts[j0].x + wdx,
|
|
pathIn->pts[j0].y + wdy);
|
|
pathOut->curveTo(pathIn->pts[j0].x + wdx - bezierCircle * wdy,
|
|
pathIn->pts[j0].y + wdy + bezierCircle * wdx,
|
|
pathIn->pts[j0].x - wdy + bezierCircle * wdx,
|
|
pathIn->pts[j0].y + wdx + bezierCircle * wdy,
|
|
pathIn->pts[j0].x - wdy,
|
|
pathIn->pts[j0].y + wdx);
|
|
break;
|
|
case splashLineCapProjecting:
|
|
pathOut->lineTo(pathIn->pts[j0].x + wdy + wdx,
|
|
pathIn->pts[j0].y - wdx + wdy);
|
|
pathOut->lineTo(pathIn->pts[j0].x - wdy + wdx,
|
|
pathIn->pts[j0].y + wdx + wdy);
|
|
break;
|
|
}
|
|
} else {
|
|
pathOut->lineTo(pathIn->pts[j0].x + wdy, pathIn->pts[j0].y - wdx);
|
|
pathOut->lineTo(pathIn->pts[j0].x - wdy, pathIn->pts[j0].y + wdx);
|
|
}
|
|
|
|
// draw the right side of the segment rectangle
|
|
// (NB: if stroke adjustment is enabled, the closepath operation MUST
|
|
// add a segment because this segment is used for a hint)
|
|
right2 = pathOut->length - 1;
|
|
pathOut->close(state->strokeAdjust != splashStrokeAdjustOff);
|
|
|
|
// draw the join
|
|
join2 = pathOut->length;
|
|
if (!last || closed) {
|
|
|
|
// compute the deltas for segment (j1, k0)
|
|
#if USE_FIXEDPOINT
|
|
// the 1/d value can be small, which introduces significant
|
|
// inaccuracies in fixed point mode
|
|
d = splashDist(pathIn->pts[j1].x, pathIn->pts[j1].y,
|
|
pathIn->pts[k0].x, pathIn->pts[k0].y);
|
|
dxNext = (pathIn->pts[k0].x - pathIn->pts[j1].x) / d;
|
|
dyNext = (pathIn->pts[k0].y - pathIn->pts[j1].y) / d;
|
|
#else
|
|
d = (SplashCoord)1 / splashDist(pathIn->pts[j1].x, pathIn->pts[j1].y,
|
|
pathIn->pts[k0].x, pathIn->pts[k0].y);
|
|
dxNext = d * (pathIn->pts[k0].x - pathIn->pts[j1].x);
|
|
dyNext = d * (pathIn->pts[k0].y - pathIn->pts[j1].y);
|
|
#endif
|
|
wdxNext = (SplashCoord)0.5 * w * dxNext;
|
|
wdyNext = (SplashCoord)0.5 * w * dyNext;
|
|
|
|
// compute the join parameters
|
|
crossprod = dx * dyNext - dy * dxNext;
|
|
dotprod = -(dx * dxNext + dy * dyNext);
|
|
if (dotprod > 0.9999) {
|
|
// avoid a divide-by-zero -- set miter to something arbitrary
|
|
// such that sqrt(miter) will exceed miterLimit (and m is never
|
|
// used in that situation)
|
|
// (note: the comparison value (0.9999) has to be less than
|
|
// 1-epsilon, where epsilon is the smallest value
|
|
// representable in the fixed point format)
|
|
miter = (state->miterLimit + 1) * (state->miterLimit + 1);
|
|
m = 0;
|
|
} else {
|
|
miter = (SplashCoord)2 / ((SplashCoord)1 - dotprod);
|
|
if (miter < 1) {
|
|
// this can happen because of floating point inaccuracies
|
|
miter = 1;
|
|
}
|
|
m = splashSqrt(miter - 1);
|
|
}
|
|
|
|
// round join
|
|
if (lineJoin == splashLineJoinRound) {
|
|
// join angle < 180
|
|
if (crossprod < 0) {
|
|
angle = atan2((double)dx, (double)-dy);
|
|
angleNext = atan2((double)dxNext, (double)-dyNext);
|
|
if (angle < angleNext) {
|
|
angle += 2 * M_PI;
|
|
}
|
|
dAngle = (angle - angleNext) / M_PI;
|
|
if (dAngle < 0.501) {
|
|
// span angle is <= 90 degrees -> draw a single arc
|
|
kappa = dAngle * bezierCircle * w;
|
|
cx1 = pathIn->pts[j0].x - wdy + kappa * dx;
|
|
cy1 = pathIn->pts[j0].y + wdx + kappa * dy;
|
|
cx2 = pathIn->pts[j0].x - wdyNext - kappa * dxNext;
|
|
cy2 = pathIn->pts[j0].y + wdxNext - kappa * dyNext;
|
|
pathOut->moveTo(pathIn->pts[j0].x, pathIn->pts[j0].y);
|
|
pathOut->lineTo(pathIn->pts[j0].x - wdyNext,
|
|
pathIn->pts[j0].y + wdxNext);
|
|
pathOut->curveTo(cx2, cy2, cx1, cy1,
|
|
pathIn->pts[j0].x - wdy,
|
|
pathIn->pts[j0].y + wdx);
|
|
} else {
|
|
// span angle is > 90 degrees -> split into two arcs
|
|
dJoin = splashDist(-wdy, wdx, -wdyNext, wdxNext);
|
|
if (dJoin > 0) {
|
|
dxJoin = (-wdyNext + wdy) / dJoin;
|
|
dyJoin = (wdxNext - wdx) / dJoin;
|
|
xc = pathIn->pts[j0].x
|
|
+ (SplashCoord)0.5 * w
|
|
* cos((double)((SplashCoord)0.5 * (angle + angleNext)));
|
|
yc = pathIn->pts[j0].y
|
|
+ (SplashCoord)0.5 * w
|
|
* sin((double)((SplashCoord)0.5 * (angle + angleNext)));
|
|
kappa = dAngle * bezierCircle2 * w;
|
|
cx1 = pathIn->pts[j0].x - wdy + kappa * dx;
|
|
cy1 = pathIn->pts[j0].y + wdx + kappa * dy;
|
|
cx2 = xc - kappa * dxJoin;
|
|
cy2 = yc - kappa * dyJoin;
|
|
cx3 = xc + kappa * dxJoin;
|
|
cy3 = yc + kappa * dyJoin;
|
|
cx4 = pathIn->pts[j0].x - wdyNext - kappa * dxNext;
|
|
cy4 = pathIn->pts[j0].y + wdxNext - kappa * dyNext;
|
|
pathOut->moveTo(pathIn->pts[j0].x, pathIn->pts[j0].y);
|
|
pathOut->lineTo(pathIn->pts[j0].x - wdyNext,
|
|
pathIn->pts[j0].y + wdxNext);
|
|
pathOut->curveTo(cx4, cy4, cx3, cy3, xc, yc);
|
|
pathOut->curveTo(cx2, cy2, cx1, cy1,
|
|
pathIn->pts[j0].x - wdy,
|
|
pathIn->pts[j0].y + wdx);
|
|
}
|
|
}
|
|
|
|
// join angle >= 180
|
|
} else {
|
|
angle = atan2((double)-dx, (double)dy);
|
|
angleNext = atan2((double)-dxNext, (double)dyNext);
|
|
if (angleNext < angle) {
|
|
angleNext += 2 * M_PI;
|
|
}
|
|
dAngle = (angleNext - angle) / M_PI;
|
|
if (dAngle < 0.501) {
|
|
// span angle is <= 90 degrees -> draw a single arc
|
|
kappa = dAngle * bezierCircle * w;
|
|
cx1 = pathIn->pts[j0].x + wdy + kappa * dx;
|
|
cy1 = pathIn->pts[j0].y - wdx + kappa * dy;
|
|
cx2 = pathIn->pts[j0].x + wdyNext - kappa * dxNext;
|
|
cy2 = pathIn->pts[j0].y - wdxNext - kappa * dyNext;
|
|
pathOut->moveTo(pathIn->pts[j0].x, pathIn->pts[j0].y);
|
|
pathOut->lineTo(pathIn->pts[j0].x + wdy,
|
|
pathIn->pts[j0].y - wdx);
|
|
pathOut->curveTo(cx1, cy1, cx2, cy2,
|
|
pathIn->pts[j0].x + wdyNext,
|
|
pathIn->pts[j0].y - wdxNext);
|
|
} else {
|
|
// span angle is > 90 degrees -> split into two arcs
|
|
dJoin = splashDist(wdy, -wdx, wdyNext, -wdxNext);
|
|
if (dJoin > 0) {
|
|
dxJoin = (wdyNext - wdy) / dJoin;
|
|
dyJoin = (-wdxNext + wdx) / dJoin;
|
|
xc = pathIn->pts[j0].x
|
|
+ (SplashCoord)0.5 * w
|
|
* cos((double)((SplashCoord)0.5 * (angle + angleNext)));
|
|
yc = pathIn->pts[j0].y
|
|
+ (SplashCoord)0.5 * w
|
|
* sin((double)((SplashCoord)0.5 * (angle + angleNext)));
|
|
kappa = dAngle * bezierCircle2 * w;
|
|
cx1 = pathIn->pts[j0].x + wdy + kappa * dx;
|
|
cy1 = pathIn->pts[j0].y - wdx + kappa * dy;
|
|
cx2 = xc - kappa * dxJoin;
|
|
cy2 = yc - kappa * dyJoin;
|
|
cx3 = xc + kappa * dxJoin;
|
|
cy3 = yc + kappa * dyJoin;
|
|
cx4 = pathIn->pts[j0].x + wdyNext - kappa * dxNext;
|
|
cy4 = pathIn->pts[j0].y - wdxNext - kappa * dyNext;
|
|
pathOut->moveTo(pathIn->pts[j0].x, pathIn->pts[j0].y);
|
|
pathOut->lineTo(pathIn->pts[j0].x + wdy,
|
|
pathIn->pts[j0].y - wdx);
|
|
pathOut->curveTo(cx1, cy1, cx2, cy2, xc, yc);
|
|
pathOut->curveTo(cx3, cy3, cx4, cy4,
|
|
pathIn->pts[j0].x + wdyNext,
|
|
pathIn->pts[j0].y - wdxNext);
|
|
}
|
|
}
|
|
}
|
|
|
|
} else {
|
|
pathOut->moveTo(pathIn->pts[j0].x, pathIn->pts[j0].y);
|
|
|
|
// join angle < 180
|
|
if (crossprod < 0) {
|
|
pathOut->lineTo(pathIn->pts[j0].x - wdyNext,
|
|
pathIn->pts[j0].y + wdxNext);
|
|
// miter join inside limit
|
|
if (lineJoin == splashLineJoinMiter &&
|
|
splashSqrt(miter) <= state->miterLimit) {
|
|
pathOut->lineTo(pathIn->pts[j0].x - wdy + wdx * m,
|
|
pathIn->pts[j0].y + wdx + wdy * m);
|
|
pathOut->lineTo(pathIn->pts[j0].x - wdy,
|
|
pathIn->pts[j0].y + wdx);
|
|
// bevel join or miter join outside limit
|
|
} else {
|
|
pathOut->lineTo(pathIn->pts[j0].x - wdy,
|
|
pathIn->pts[j0].y + wdx);
|
|
}
|
|
|
|
// join angle >= 180
|
|
} else {
|
|
pathOut->lineTo(pathIn->pts[j0].x + wdy,
|
|
pathIn->pts[j0].y - wdx);
|
|
// miter join inside limit
|
|
if (lineJoin == splashLineJoinMiter &&
|
|
splashSqrt(miter) <= state->miterLimit) {
|
|
pathOut->lineTo(pathIn->pts[j0].x + wdy + wdx * m,
|
|
pathIn->pts[j0].y - wdx + wdy * m);
|
|
pathOut->lineTo(pathIn->pts[j0].x + wdyNext,
|
|
pathIn->pts[j0].y - wdxNext);
|
|
// bevel join or miter join outside limit
|
|
} else {
|
|
pathOut->lineTo(pathIn->pts[j0].x + wdyNext,
|
|
pathIn->pts[j0].y - wdxNext);
|
|
}
|
|
}
|
|
}
|
|
|
|
pathOut->close();
|
|
}
|
|
|
|
// add stroke adjustment hints
|
|
if (state->strokeAdjust != splashStrokeAdjustOff) {
|
|
|
|
// subpath with one segment
|
|
if (seg == 0 && last) {
|
|
switch (lineCap) {
|
|
case splashLineCapButt:
|
|
pathOut->addStrokeAdjustHint(firstPt, left2 + 1,
|
|
firstPt, pathOut->length - 1);
|
|
break;
|
|
case splashLineCapProjecting:
|
|
pathOut->addStrokeAdjustHint(firstPt, left2 + 1,
|
|
firstPt, pathOut->length - 1, gTrue);
|
|
break;
|
|
case splashLineCapRound:
|
|
break;
|
|
}
|
|
pathOut->addStrokeAdjustHint(left2, right2,
|
|
firstPt, pathOut->length - 1);
|
|
} else {
|
|
|
|
// start of subpath
|
|
if (seg == 1) {
|
|
|
|
// start cap
|
|
if (!closed) {
|
|
switch (lineCap) {
|
|
case splashLineCapButt:
|
|
pathOut->addStrokeAdjustHint(firstPt, left1 + 1,
|
|
firstPt, firstPt + 1);
|
|
pathOut->addStrokeAdjustHint(firstPt, left1 + 1,
|
|
right1 + 1, right1 + 1);
|
|
break;
|
|
case splashLineCapProjecting:
|
|
pathOut->addStrokeAdjustHint(firstPt, left1 + 1,
|
|
firstPt, firstPt + 1, gTrue);
|
|
pathOut->addStrokeAdjustHint(firstPt, left1 + 1,
|
|
right1 + 1, right1 + 1, gTrue);
|
|
break;
|
|
case splashLineCapRound:
|
|
break;
|
|
}
|
|
}
|
|
|
|
// first segment
|
|
pathOut->addStrokeAdjustHint(left1, right1, firstPt, left2);
|
|
pathOut->addStrokeAdjustHint(left1, right1, right2 + 1, right2 + 1);
|
|
}
|
|
|
|
// middle of subpath
|
|
if (seg > 1) {
|
|
pathOut->addStrokeAdjustHint(left1, right1, left0 + 1, right0);
|
|
pathOut->addStrokeAdjustHint(left1, right1, join0, left2);
|
|
pathOut->addStrokeAdjustHint(left1, right1, right2 + 1, right2 + 1);
|
|
}
|
|
|
|
// end of subpath
|
|
if (last) {
|
|
|
|
if (closed) {
|
|
// first segment
|
|
pathOut->addStrokeAdjustHint(leftFirst, rightFirst,
|
|
left2 + 1, right2);
|
|
pathOut->addStrokeAdjustHint(leftFirst, rightFirst,
|
|
join2, pathOut->length - 1);
|
|
|
|
// last segment
|
|
pathOut->addStrokeAdjustHint(left2, right2,
|
|
left1 + 1, right1);
|
|
pathOut->addStrokeAdjustHint(left2, right2,
|
|
join1, pathOut->length - 1);
|
|
pathOut->addStrokeAdjustHint(left2, right2,
|
|
leftFirst - 1, leftFirst);
|
|
pathOut->addStrokeAdjustHint(left2, right2,
|
|
rightFirst + 1, rightFirst + 1);
|
|
|
|
} else {
|
|
|
|
// last segment
|
|
pathOut->addStrokeAdjustHint(left2, right2,
|
|
left1 + 1, right1);
|
|
pathOut->addStrokeAdjustHint(left2, right2,
|
|
join1, pathOut->length - 1);
|
|
|
|
// end cap
|
|
switch (lineCap) {
|
|
case splashLineCapButt:
|
|
pathOut->addStrokeAdjustHint(left2 - 1, left2 + 1,
|
|
left2 + 1, left2 + 2);
|
|
break;
|
|
case splashLineCapProjecting:
|
|
pathOut->addStrokeAdjustHint(left2 - 1, left2 + 1,
|
|
left2 + 1, left2 + 2, gTrue);
|
|
break;
|
|
case splashLineCapRound:
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
left0 = left1;
|
|
left1 = left2;
|
|
right0 = right1;
|
|
right1 = right2;
|
|
join0 = join1;
|
|
join1 = join2;
|
|
if (seg == 0) {
|
|
leftFirst = left2;
|
|
rightFirst = right2;
|
|
}
|
|
}
|
|
|
|
i0 = j0;
|
|
i1 = j1;
|
|
++seg;
|
|
}
|
|
|
|
if (pathIn != path) {
|
|
delete pathIn;
|
|
}
|
|
|
|
return pathOut;
|
|
}
|
|
|
|
SplashClipResult Splash::limitRectToClipRect(int *xMin, int *yMin,
|
|
int *xMax, int *yMax) {
|
|
int t;
|
|
|
|
if ((t = state->clip->getXMinI(state->strokeAdjust)) > *xMin) {
|
|
*xMin = t;
|
|
}
|
|
if ((t = state->clip->getXMaxI(state->strokeAdjust) + 1) < *xMax) {
|
|
*xMax = t;
|
|
}
|
|
if ((t = state->clip->getYMinI(state->strokeAdjust)) > *yMin) {
|
|
*yMin = t;
|
|
}
|
|
if ((t = state->clip->getYMaxI(state->strokeAdjust) + 1) < *yMax) {
|
|
*yMax = t;
|
|
}
|
|
if (*xMin >= *xMax || *yMin >= *yMax) {
|
|
return splashClipAllOutside;
|
|
}
|
|
return state->clip->testRect(*xMin, *yMin, *xMax - 1, *yMax - 1,
|
|
state->strokeAdjust);
|
|
}
|
|
|
|
void Splash::dumpPath(SplashPath *path) {
|
|
int i;
|
|
|
|
for (i = 0; i < path->length; ++i) {
|
|
printf(" %3d: x=%8.2f y=%8.2f%s%s%s%s\n",
|
|
i, (double)path->pts[i].x, (double)path->pts[i].y,
|
|
(path->flags[i] & splashPathFirst) ? " first" : "",
|
|
(path->flags[i] & splashPathLast) ? " last" : "",
|
|
(path->flags[i] & splashPathClosed) ? " closed" : "",
|
|
(path->flags[i] & splashPathCurve) ? " curve" : "");
|
|
}
|
|
if (path->hintsLength == 0) {
|
|
printf(" no hints\n");
|
|
} else {
|
|
for (i = 0; i < path->hintsLength; ++i) {
|
|
printf(" hint %3d: ctrl0=%d ctrl1=%d pts=%d..%d\n",
|
|
i, path->hints[i].ctrl0, path->hints[i].ctrl1,
|
|
path->hints[i].firstPt, path->hints[i].lastPt);
|
|
}
|
|
}
|
|
}
|
|
|
|
void Splash::dumpXPath(SplashXPath *path) {
|
|
int i;
|
|
|
|
for (i = 0; i < path->length; ++i) {
|
|
printf(" %4d: x0=%8.2f y0=%8.2f x1=%8.2f y1=%8.2f count=%d\n",
|
|
i, (double)path->segs[i].x0, (double)path->segs[i].y0,
|
|
(double)path->segs[i].x1, (double)path->segs[i].y1,
|
|
path->segs[i].count);
|
|
}
|
|
}
|
|
|