cppcheck/lib/checkstl.cpp

2306 lines
102 KiB
C++

/*
* Cppcheck - A tool for static C/C++ code analysis
* Copyright (C) 2007-2019 Cppcheck team.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "checkstl.h"
#include "checknullpointer.h"
#include "errorlogger.h"
#include "settings.h"
#include "standards.h"
#include "symboldatabase.h"
#include "token.h"
#include "utils.h"
#include "astutils.h"
#include <cstddef>
#include <list>
#include <map>
#include <set>
#include <sstream>
#include <utility>
// Register this check class (by creating a static instance of it)
namespace {
CheckStl instance;
}
// CWE IDs used:
static const struct CWE CWE398(398U); // Indicator of Poor Code Quality
static const struct CWE CWE597(597U); // Use of Wrong Operator in String Comparison
static const struct CWE CWE628(628U); // Function Call with Incorrectly Specified Arguments
static const struct CWE CWE664(664U); // Improper Control of a Resource Through its Lifetime
static const struct CWE CWE704(704U); // Incorrect Type Conversion or Cast
static const struct CWE CWE762(762U); // Mismatched Memory Management Routines
static const struct CWE CWE786(786U); // Access of Memory Location Before Start of Buffer
static const struct CWE CWE788(788U); // Access of Memory Location After End of Buffer
static const struct CWE CWE825(825U); // Expired Pointer Dereference
static const struct CWE CWE834(834U); // Excessive Iteration
void CheckStl::outOfBounds()
{
for (const Scope *function : mTokenizer->getSymbolDatabase()->functionScopes) {
for (const Token *tok = function->bodyStart; tok != function->bodyEnd; tok = tok->next()) {
const Library::Container *container = getLibraryContainer(tok);
if (!container)
continue;
const Token * parent = astParentSkipParens(tok);
for (const ValueFlow::Value &value : tok->values()) {
if (!value.isContainerSizeValue())
continue;
if (value.isInconclusive() && !mSettings->inconclusive)
continue;
if (!value.errorSeverity() && !mSettings->isEnabled(Settings::WARNING))
continue;
if (value.intvalue == 0 && Token::Match(parent, ". %name% (") && container->getYield(parent->strAt(1)) == Library::Container::Yield::ITEM) {
outOfBoundsError(parent->tokAt(2), tok->expressionString(), &value, parent->strAt(1), nullptr);
continue;
}
if (Token::Match(tok, "%name% . %name% (") && container->getYield(tok->strAt(2)) == Library::Container::Yield::START_ITERATOR) {
const Token *fparent = tok->tokAt(3)->astParent();
const Token *other = nullptr;
if (Token::simpleMatch(fparent, "+") && fparent->astOperand1() == tok->tokAt(3))
other = fparent->astOperand2();
else if (Token::simpleMatch(fparent, "+") && fparent->astOperand2() == tok->tokAt(3))
other = fparent->astOperand1();
if (other && other->hasKnownIntValue() && other->getKnownIntValue() > value.intvalue) {
outOfBoundsError(fparent, tok->expressionString(), &value, other->expressionString(), &other->values().back());
continue;
} else if (other && !other->hasKnownIntValue() && value.isKnown() && value.intvalue==0) {
outOfBoundsError(fparent, tok->expressionString(), &value, other->expressionString(), nullptr);
continue;
}
}
if (!container->arrayLike_indexOp && !container->stdStringLike)
continue;
if (value.intvalue == 0 && Token::Match(parent, "[") && tok == parent->astOperand1()) {
outOfBoundsError(parent, tok->expressionString(), &value, "", nullptr);
continue;
}
if (container->arrayLike_indexOp && Token::Match(parent, "[")) {
const ValueFlow::Value *indexValue = parent->astOperand2() ? parent->astOperand2()->getMaxValue(false) : nullptr;
if (indexValue && indexValue->intvalue >= value.intvalue) {
outOfBoundsError(parent, tok->expressionString(), &value, parent->astOperand2()->expressionString(), indexValue);
continue;
}
if (mSettings->isEnabled(Settings::WARNING)) {
indexValue = parent->astOperand2() ? parent->astOperand2()->getMaxValue(true) : nullptr;
if (indexValue && indexValue->intvalue >= value.intvalue) {
outOfBoundsError(parent, tok->expressionString(), &value, parent->astOperand2()->expressionString(), indexValue);
continue;
}
}
}
}
}
}
}
void CheckStl::outOfBoundsError(const Token *tok, const std::string &containerName, const ValueFlow::Value *containerSize, const std::string &index, const ValueFlow::Value *indexValue)
{
// Do not warn if both the container size and index value are possible
if (containerSize && indexValue && containerSize->isPossible() && indexValue->isPossible())
return;
const std::string expression = tok ? tok->expressionString() : (containerName+"[x]");
std::string errmsg;
if (!containerSize)
errmsg = "Out of bounds access in expression '" + expression + "'";
else if (containerSize->intvalue == 0) {
if (containerSize->condition)
errmsg = ValueFlow::eitherTheConditionIsRedundant(containerSize->condition) + " or expression '" + expression + "' cause access out of bounds.";
else if (indexValue == nullptr && !index.empty())
errmsg = "Out of bounds access in expression '" + expression + "' because '$symbol' is empty and '" + index + "' may be non-zero.";
else
errmsg = "Out of bounds access in expression '" + expression + "' because '$symbol' is empty.";
} else if (indexValue) {
if (containerSize->condition)
errmsg = ValueFlow::eitherTheConditionIsRedundant(containerSize->condition) + " or $symbol size can be " + MathLib::toString(containerSize->intvalue) + ". Expression '" + expression + "' cause access out of bounds.";
else if (indexValue->condition)
errmsg = ValueFlow::eitherTheConditionIsRedundant(indexValue->condition) + " or '" + index + "' can have the value " + MathLib::toString(indexValue->intvalue) + ". Expression '" + expression + "' cause access out of bounds.";
else
errmsg = "Out of bounds access in '" + expression + "', if '$symbol' size is " + MathLib::toString(containerSize->intvalue) + " and '" + index + "' is " + MathLib::toString(indexValue->intvalue);
} else {
// should not happen
return;
}
ErrorPath errorPath;
if (!indexValue)
errorPath = getErrorPath(tok, containerSize, "Access out of bounds");
else {
ErrorPath errorPath1 = getErrorPath(tok, containerSize, "Access out of bounds");
ErrorPath errorPath2 = getErrorPath(tok, indexValue, "Access out of bounds");
if (errorPath1.size() <= 1)
errorPath = errorPath2;
else if (errorPath2.size() <= 1)
errorPath = errorPath1;
else {
errorPath = errorPath1;
errorPath.splice(errorPath.end(), errorPath2);
}
}
reportError(errorPath,
(containerSize && !containerSize->errorSeverity()) || (indexValue && !indexValue->errorSeverity()) ? Severity::warning : Severity::error,
"containerOutOfBounds",
"$symbol:" + containerName +"\n" + errmsg,
CWE398,
(containerSize && containerSize->isInconclusive()) || (indexValue && indexValue->isInconclusive()));
}
bool CheckStl::isContainerSize(const Token *containerToken, const Token *expr) const
{
if (!Token::simpleMatch(expr, "( )"))
return false;
if (!Token::Match(expr->astOperand1(), ". %name% ("))
return false;
if (!isSameExpression(mTokenizer->isCPP(), false, containerToken, expr->astOperand1()->astOperand1(), mSettings->library, false, false))
return false;
return containerToken->valueType()->container->getYield(expr->previous()->str()) == Library::Container::Yield::SIZE;
}
bool CheckStl::isContainerSizeGE(const Token * containerToken, const Token *expr) const
{
if (!expr)
return false;
if (isContainerSize(containerToken, expr))
return true;
if (expr->str() == "*") {
const Token *mul;
if (isContainerSize(containerToken, expr->astOperand1()))
mul = expr->astOperand2();
else if (isContainerSize(containerToken, expr->astOperand2()))
mul = expr->astOperand1();
else
return false;
return mul && (!mul->hasKnownIntValue() || mul->values().front().intvalue != 0);
}
if (expr->str() == "+") {
const Token *op;
if (isContainerSize(containerToken, expr->astOperand1()))
op = expr->astOperand2();
else if (isContainerSize(containerToken, expr->astOperand2()))
op = expr->astOperand1();
else
return false;
return op && op->getValueGE(0, mSettings);
}
return false;
}
void CheckStl::outOfBoundsIndexExpression()
{
for (const Scope *function : mTokenizer->getSymbolDatabase()->functionScopes) {
for (const Token *tok = function->bodyStart; tok != function->bodyEnd; tok = tok->next()) {
if (!tok->isName() || !tok->valueType())
continue;
const Library::Container *container = tok->valueType()->container;
if (!container)
continue;
if (!container->arrayLike_indexOp && !container->stdStringLike)
continue;
if (!Token::Match(tok, "%name% ["))
continue;
if (isContainerSizeGE(tok, tok->next()->astOperand2()))
outOfBoundsIndexExpressionError(tok, tok->next()->astOperand2());
}
}
}
void CheckStl::outOfBoundsIndexExpressionError(const Token *tok, const Token *index)
{
const std::string varname = tok ? tok->str() : std::string("var");
const std::string i = index ? index->expressionString() : std::string(varname + ".size()");
std::string errmsg = "Out of bounds access of $symbol, index '" + i + "' is out of bounds.";
reportError(tok,
Severity::error,
"containerOutOfBoundsIndexExpression",
"$symbol:" + varname +"\n" + errmsg,
CWE398,
false);
}
// Error message for bad iterator usage..
void CheckStl::invalidIteratorError(const Token *tok, const std::string &iteratorName)
{
reportError(tok, Severity::error, "invalidIterator1", "$symbol:"+iteratorName+"\nInvalid iterator: $symbol", CWE664, false);
}
void CheckStl::iteratorsError(const Token* tok, const std::string& containerName1, const std::string& containerName2)
{
reportError(tok, Severity::error, "iterators1",
"$symbol:" + containerName1 + "\n"
"$symbol:" + containerName2 + "\n"
"Same iterator is used with different containers '" + containerName1 + "' and '" + containerName2 + "'.", CWE664, false);
}
void CheckStl::iteratorsError(const Token* tok, const Token* containerTok, const std::string& containerName1, const std::string& containerName2)
{
std::list<const Token*> callstack = { tok, containerTok };
reportError(callstack, Severity::error, "iterators2",
"$symbol:" + containerName1 + "\n"
"$symbol:" + containerName2 + "\n"
"Same iterator is used with different containers '" + containerName1 + "' and '" + containerName2 + "'.", CWE664, false);
}
void CheckStl::iteratorsError(const Token* tok, const Token* containerTok, const std::string& containerName)
{
std::list<const Token*> callstack = { tok, containerTok };
reportError(callstack, Severity::error, "iterators3",
"$symbol:" + containerName + "\n"
"Same iterator is used with containers '" + containerName + "' that are defined in different scopes.", CWE664, false);
}
void CheckStl::iteratorsCmpError(const Token* cmpOperatorTok, const Token* containerTok1, const Token* containerTok2, const std::string& containerName1, const std::string& containerName2)
{
std::list<const Token*> callstack = { cmpOperatorTok, containerTok1, containerTok2 };
reportError(callstack, Severity::error, "iteratorsCmp1",
"$symbol:" + containerName1 + "\n"
"$symbol:" + containerName2 + "\n"
"Comparison of iterators from containers '" + containerName1 + "' and '" + containerName2 + "'.", CWE664, false);
}
void CheckStl::iteratorsCmpError(const Token* cmpOperatorTok, const Token* containerTok1, const Token* containerTok2, const std::string& containerName)
{
std::list<const Token*> callstack = { cmpOperatorTok, containerTok1, containerTok2 };
reportError(callstack, Severity::error, "iteratorsCmp2",
"$symbol:" + containerName + "\n"
"Comparison of iterators from containers '" + containerName + "' that are defined in different scopes.", CWE664, false);
}
// Error message used when dereferencing an iterator that has been erased..
void CheckStl::dereferenceErasedError(const Token *erased, const Token* deref, const std::string &itername, bool inconclusive)
{
if (erased) {
std::list<const Token*> callstack = { deref, erased };
reportError(callstack, Severity::error, "eraseDereference",
"$symbol:" + itername + "\n"
"Iterator '$symbol' used after element has been erased.\n"
"The iterator '$symbol' is invalid after the element it pointed to has been erased. "
"Dereferencing or comparing it with another iterator is invalid operation.", CWE664, inconclusive);
} else {
reportError(deref, Severity::error, "eraseDereference",
"$symbol:" + itername + "\n"
"Invalid iterator '$symbol' used.\n"
"The iterator '$symbol' is invalid before being assigned. "
"Dereferencing or comparing it with another iterator is invalid operation.", CWE664, inconclusive);
}
}
static const Token *skipMembers(const Token *tok)
{
while (Token::Match(tok, "%name% ."))
tok = tok->tokAt(2);
return tok;
}
static bool isIterator(const Variable *var, bool& inconclusiveType)
{
// Check that its an iterator
if (!var || !var->isLocal() || !Token::Match(var->typeEndToken(), "iterator|const_iterator|reverse_iterator|const_reverse_iterator|auto"))
return false;
inconclusiveType = false;
if (var->typeEndToken()->str() == "auto")
return (var->nameToken()->valueType() && var->nameToken()->valueType()->type == ValueType::Type::ITERATOR);
if (var->type()) { // If it is defined, ensure that it is defined like an iterator
// look for operator* and operator++
const Function* end = var->type()->getFunction("operator*");
const Function* incOperator = var->type()->getFunction("operator++");
if (!end || end->argCount() > 0 || !incOperator) {
return false;
} else {
inconclusiveType = true; // heuristics only
}
}
return true;
}
static std::string getContainerName(const Token *containerToken)
{
if (!containerToken)
return std::string();
std::string ret(containerToken->str());
for (const Token *nametok = containerToken; nametok; nametok = nametok->tokAt(-2)) {
if (!Token::Match(nametok->tokAt(-2), "%name% ."))
break;
ret = nametok->strAt(-2) + '.' + ret;
}
return ret;
}
enum OperandPosition {
Left,
Right
};
static const Token* findIteratorContainer(const Token* start, const Token* end, nonneg int id)
{
const Token* containerToken = nullptr;
for (const Token* tok = start; tok != end; tok = tok->next()) {
if (Token::Match(tok, "%varid% = %name% . %name% (", id)) {
// Iterator is assigned to value
if (tok->tokAt(5)->valueType() && tok->tokAt(5)->valueType()->type == ValueType::Type::ITERATOR) {
containerToken = tok->tokAt(2);
}
} else if (Token::Match(tok, "%varid% = %name% (", id)) {
// Prevent FP: iterator is assigned to something
// TODO: Fix it in future
containerToken = nullptr;
}
}
return containerToken;
}
static bool isVector(const Token* tok)
{
if (!tok)
return false;
const Variable *var = tok->variable();
const Token *decltok = var ? var->typeStartToken() : nullptr;
return Token::simpleMatch(decltok, "std :: vector");
}
void CheckStl::iterators()
{
const SymbolDatabase *symbolDatabase = mTokenizer->getSymbolDatabase();
// Filling map of iterators id and their scope begin
std::map<int, const Token*> iteratorScopeBeginInfo;
for (const Variable* var : symbolDatabase->variableList()) {
bool inconclusiveType=false;
if (!isIterator(var, inconclusiveType))
continue;
const int iteratorId = var->declarationId();
if (iteratorId != 0)
iteratorScopeBeginInfo[iteratorId] = var->nameToken();
}
// Storage to save found comparison problems to avoid duplicate error messages
std::set<const Token*> foundOperatorErrors;
for (const Variable* var : symbolDatabase->variableList()) {
bool inconclusiveType=false;
if (!isIterator(var, inconclusiveType))
continue;
if (inconclusiveType && !mSettings->inconclusive)
continue;
const int iteratorId = var->declarationId();
// the validIterator flag says if the iterator has a valid value or not
bool validIterator = Token::Match(var->nameToken()->next(), "[(=:{]");
const Scope* invalidationScope = nullptr;
// The container this iterator can be used with
const Token* containerToken = nullptr;
const Scope* containerAssignScope = nullptr;
// When "validatingToken" is reached the validIterator is set to true
const Token* validatingToken = nullptr;
const Token* eraseToken = nullptr;
// Scan through the rest of the code and see if the iterator is
// used against other containers.
for (const Token *tok2 = var->nameToken(); tok2 && tok2 != var->scope()->bodyEnd; tok2 = tok2->next()) {
if (invalidationScope && tok2 == invalidationScope->bodyEnd)
validIterator = true; // Assume that the iterator becomes valid again
if (containerAssignScope && tok2 == containerAssignScope->bodyEnd)
containerToken = nullptr; // We don't know which containers might be used with the iterator
if (tok2 == validatingToken) {
validIterator = true;
eraseToken = nullptr;
invalidationScope = nullptr;
}
// Is comparison expression?
// Check whether iterator compared against different container or iterator of different container?
if (tok2->isComparisonOp() && tok2->astOperand1() && tok2->astOperand2() &&
(foundOperatorErrors.find(tok2) == foundOperatorErrors.end()) &&
compareIteratorAgainstDifferentContainer(tok2, containerToken, iteratorId, iteratorScopeBeginInfo)) {
foundOperatorErrors.insert(tok2);
}
// Is the iterator used in a insert/erase operation?
else if (Token::Match(tok2, "%name% . insert|erase ( *| %varid% )|,", iteratorId) && !isVector(tok2)) {
const Token* itTok = tok2->tokAt(4);
if (itTok->str() == "*") {
if (tok2->strAt(2) == "insert")
continue;
itTok = itTok->next();
}
// It is bad to insert/erase an invalid iterator
if (!validIterator)
invalidIteratorError(tok2, itTok->str());
// If insert/erase is used on different container then
// report an error
if (containerToken && tok2->varId() != containerToken->varId()) {
// skip error message if container is a set..
const Variable *variableInfo = tok2->variable();
const Token *decltok = variableInfo ? variableInfo->typeStartToken() : nullptr;
if (Token::simpleMatch(decltok, "std :: set"))
continue; // No warning
// skip error message if the iterator is erased/inserted by value
if (itTok->previous()->str() == "*")
continue;
// inserting iterator range..
if (tok2->strAt(2) == "insert") {
const Token *par2 = itTok->nextArgument();
if (!par2 || par2->nextArgument())
continue;
while (par2->str() != ")") {
if (par2->varId() == containerToken->varId())
break;
bool inconclusiveType2=false;
if (isIterator(par2->variable(), inconclusiveType2))
break; // TODO: check if iterator points at same container
if (par2->str() == "(")
par2 = par2->link();
par2 = par2->next();
}
if (par2->str() != ")")
continue;
}
// Show error message, mismatching iterator is used.
iteratorsError(tok2, getContainerName(containerToken), getContainerName(tok2));
}
// invalidate the iterator if it is erased
else if (tok2->strAt(2) == "erase" && (tok2->strAt(4) != "*" || (containerToken && tok2->varId() == containerToken->varId()))) {
validIterator = false;
eraseToken = tok2;
invalidationScope = tok2->scope();
}
// skip the operation
tok2 = itTok->next();
}
// it = foo.erase(..
// taking the result of an erase is ok
else if (Token::Match(tok2, "%varid% = %name% .", iteratorId) &&
Token::simpleMatch(skipMembers(tok2->tokAt(2)), "erase (")) {
// the returned iterator is valid
validatingToken = skipMembers(tok2->tokAt(2))->linkAt(1);
tok2 = validatingToken->link();
}
// Reassign the iterator
else if (Token::Match(tok2, "%varid% = %name% .", iteratorId) &&
Token::Match(skipMembers(tok2->tokAt(2)), "begin|rbegin|cbegin|crbegin|find (")) {
validatingToken = skipMembers(tok2->tokAt(2))->linkAt(1);
containerToken = skipMembers(tok2->tokAt(2))->tokAt(-2);
if (containerToken->varId() == 0 || Token::simpleMatch(validatingToken, ") ."))
containerToken = nullptr;
containerAssignScope = tok2->scope();
// skip ahead
tok2 = validatingToken->link();
}
// Reassign the iterator
else if (Token::Match(tok2, "%varid% =", iteratorId)) {
break;
}
// Passing iterator to function. Iterator might be initialized
else if (Token::Match(tok2, "%varid% ,|)", iteratorId)) {
validIterator = true;
}
// Dereferencing invalid iterator?
else if (!validIterator && Token::Match(tok2, "* %varid%", iteratorId)) {
dereferenceErasedError(eraseToken, tok2, tok2->strAt(1), inconclusiveType);
tok2 = tok2->next();
} else if (!validIterator && Token::Match(tok2, "%varid% . %name%", iteratorId)) {
dereferenceErasedError(eraseToken, tok2, tok2->str(), inconclusiveType);
tok2 = tok2->tokAt(2);
}
// bailout handling. Assume that the iterator becomes valid if we see return/break.
// TODO: better handling
else if (tok2->scope() == invalidationScope && Token::Match(tok2, "return|break|continue")) {
validatingToken = Token::findsimplematch(tok2->next(), ";");
}
// bailout handling. Assume that the iterator becomes valid if we see else.
// TODO: better handling
else if (tok2->str() == "else") {
validIterator = true;
}
}
}
}
bool CheckStl::compareIteratorAgainstDifferentContainer(const Token* operatorTok, const Token* containerTok, const nonneg int iteratorId, const std::map<int, const Token*>& iteratorScopeBeginInfo)
{
if (!containerTok)
return false;
const Token *otherOperand = nullptr;
OperandPosition operandPosition;
if (operatorTok->astOperand1()->varId() == iteratorId) {
otherOperand = operatorTok->astOperand2();
operandPosition = OperandPosition::Right;
} else if (operatorTok->astOperand2()->varId() == iteratorId) {
otherOperand = operatorTok->astOperand1();
operandPosition = OperandPosition::Left;
}
if (!otherOperand)
return false;
const Token * const otherExprPart = otherOperand->tokAt(-3);
if (Token::Match(otherExprPart, "%name% . end|rend|cend|crend ( )") && otherExprPart->varId() != containerTok->varId()) {
const std::string& firstContainerName = getContainerName(containerTok);
const std::string& secondContainerName = getContainerName(otherExprPart);
if (firstContainerName != secondContainerName) {
if (operandPosition == OperandPosition::Right)
iteratorsError(operatorTok, containerTok, firstContainerName, secondContainerName);
else
iteratorsError(operatorTok, containerTok, secondContainerName, firstContainerName);
} else {
iteratorsError(operatorTok, containerTok, firstContainerName);
}
return true;
} else {
const int otherId = otherOperand->varId();
auto it = iteratorScopeBeginInfo.find(otherId);
if (it != iteratorScopeBeginInfo.end()) {
const Token* otherContainerToken = findIteratorContainer(it->second, operatorTok->astOperand1(), otherId);
if (otherContainerToken && otherContainerToken->varId() != containerTok->varId()) {
const std::string& firstContainerName = getContainerName(containerTok);
const std::string& secondContainerName = getContainerName(otherContainerToken);
if (firstContainerName != secondContainerName) {
if (operandPosition == OperandPosition::Right)
iteratorsCmpError(operatorTok, containerTok, otherContainerToken, firstContainerName, secondContainerName);
else
iteratorsCmpError(operatorTok, containerTok, otherContainerToken, secondContainerName, firstContainerName);
} else {
iteratorsCmpError(operatorTok, containerTok, otherContainerToken, firstContainerName);
}
return true;
}
}
}
return false;
}
// Error message for bad iterator usage..
void CheckStl::mismatchingContainersError(const Token *tok)
{
reportError(tok, Severity::error, "mismatchingContainers", "Iterators of different containers are used together.", CWE664, false);
}
void CheckStl::mismatchingContainerExpressionError(const Token *tok1, const Token *tok2)
{
const std::string expr1(tok1 ? tok1->expressionString() : std::string("v1"));
const std::string expr2(tok2 ? tok2->expressionString() : std::string("v2"));
reportError(tok1, Severity::warning, "mismatchingContainerExpression",
"Iterators to containers from different expressions '" +
expr1 + "' and '" + expr2 + "' are used together.", CWE664, false);
}
void CheckStl::sameIteratorExpressionError(const Token *tok)
{
reportError(tok, Severity::style, "sameIteratorExpression", "Same iterators expression are used for algorithm.", CWE664, false);
}
static const std::set<std::string> algorithm2 = { // func(begin1, end1
"binary_search", "copy", "copy_if", "equal_range"
, "generate", "is_heap", "is_heap_until", "is_partitioned"
, "is_permutation", "is_sorted", "is_sorted_until", "lower_bound", "make_heap", "max_element", "minmax_element"
, "min_element", "mismatch", "move", "move_backward", "next_permutation", "partition", "partition_copy"
, "partition_point", "pop_heap", "prev_permutation", "push_heap", "random_shuffle", "remove", "remove_copy"
, "remove_copy_if", "remove_if", "replace", "replace_copy", "replace_copy_if", "replace_if", "reverse", "reverse_copy"
, "shuffle", "sort", "sort_heap", "stable_partition", "stable_sort", "swap_ranges", "transform", "unique"
, "unique_copy", "upper_bound", "string", "wstring", "u16string", "u32string"
};
static const std::set<std::string> algorithm22 = { // func(begin1, end1, begin2, end2
"includes", "lexicographical_compare", "merge", "partial_sort_copy"
, "set_difference", "set_intersection", "set_symmetric_difference", "set_union"
};
static const std::set<std::string> algorithm1x1 = { // func(begin1, x, end1
"nth_element", "partial_sort", "rotate", "rotate_copy"
};
static const std::string iteratorBeginFuncPattern = "begin|cbegin|rbegin|crbegin";
static const std::string iteratorEndFuncPattern = "end|cend|rend|crend";
static const std::string pattern1x1_1 = "%name% . " + iteratorBeginFuncPattern + " ( ) , ";
static const std::string pattern1x1_2 = "%name% . " + iteratorEndFuncPattern + " ( ) ,|)";
static const std::string pattern2 = pattern1x1_1 + pattern1x1_2;
static const Variable *getContainer(const Token *argtok)
{
while (argtok && argtok->astOperand1())
argtok = argtok->astOperand1();
if (!Token::Match(argtok, "%var% . begin|end|rbegin|rend ( )")) // TODO: use Library yield
return nullptr;
const Variable *var = argtok->variable();
if (var && Token::simpleMatch(var->typeStartToken(), "std ::"))
return var;
return nullptr;
}
static const Token * getIteratorExpression(const Token * tok)
{
if (!tok)
return nullptr;
if (tok->isUnaryOp("*"))
return nullptr;
if (!tok->isName()) {
const Token *iter1 = getIteratorExpression(tok->astOperand1());
if (iter1)
return iter1;
if (tok->str() == "(")
return nullptr;
const Token *iter2 = getIteratorExpression(tok->astOperand2());
if (iter2)
return iter2;
} else if (Token::Match(tok, "begin|cbegin|rbegin|crbegin|end|cend|rend|crend (")) {
if (Token::Match(tok->previous(), ". %name% ( ) !!."))
return tok->previous()->astOperand1();
if (!Token::simpleMatch(tok->previous(), ".") && Token::Match(tok, "%name% ( !!)") && !Token::simpleMatch(tok->linkAt(1), ") ."))
return tok->next()->astOperand2();
}
return nullptr;
}
void CheckStl::mismatchingContainers()
{
// Check if different containers are used in various calls of standard functions
const SymbolDatabase *symbolDatabase = mTokenizer->getSymbolDatabase();
for (const Scope * scope : symbolDatabase->functionScopes) {
for (const Token* tok = scope->bodyStart->next(); tok != scope->bodyEnd; tok = tok->next()) {
if (Token::Match(tok, "%comp%|-")) {
const Token * iter1 = getIteratorExpression(tok->astOperand1());
const Token * iter2 = getIteratorExpression(tok->astOperand2());
if (iter1 && iter2 && !isSameExpression(true, false, iter1, iter2, mSettings->library, false, false)) {
mismatchingContainerExpressionError(iter1, iter2);
continue;
}
}
if (!Token::Match(tok, "%name% ( !!)"))
continue;
const Token * const ftok = tok;
const Token * firstArg = nullptr;
const std::vector<const Token *> args = getArguments(ftok);
if (args.size() < 2)
continue;
std::map<const Variable *, int> containerNr;
for (int argnr = 1; argnr <= args.size(); ++argnr) {
const Library::ArgumentChecks::IteratorInfo *i = mSettings->library.getArgIteratorInfo(ftok, argnr);
if (!i)
continue;
const Token * const argTok = args[argnr - 1];
if (i->first) {
firstArg = argTok;
}
if (i->last && firstArg && argTok && isSameExpression(true, false, firstArg, argTok, mSettings->library, false, false)) {
sameIteratorExpressionError(firstArg);
}
const Variable *c = getContainer(argTok);
if (c) {
std::map<const Variable *, int>::const_iterator it = containerNr.find(c);
if (it == containerNr.end()) {
for (it = containerNr.begin(); it != containerNr.end(); ++it) {
if (it->second == i->container) {
mismatchingContainersError(argTok);
break;
}
}
containerNr[c] = i->container;
} else if (it->second != i->container) {
mismatchingContainersError(argTok);
}
} else {
if (i->last && firstArg && argTok) {
const Token * iter1 = getIteratorExpression(firstArg);
const Token * iter2 = getIteratorExpression(argTok);
if (iter1 && iter2 && !isSameExpression(true, false, iter1, iter2, mSettings->library, false, false)) {
mismatchingContainerExpressionError(iter1, iter2);
}
}
}
}
const int ret = mSettings->library.returnValueContainer(ftok);
if (ret != -1 && Token::Match(ftok->next()->astParent(), "==|!=")) {
const Token *parent = ftok->next()->astParent();
const Token *other = (parent->astOperand1() == ftok->next()) ? parent->astOperand2() : parent->astOperand1();
const Variable *c = getContainer(other);
if (c) {
const std::map<const Variable *, int>::const_iterator it = containerNr.find(c);
if (it == containerNr.end() || it->second != ret)
mismatchingContainersError(other);
}
}
}
}
for (const Variable *var : symbolDatabase->variableList()) {
if (var && var->isStlStringType() && Token::Match(var->nameToken(), "%var% (") && Token::Match(var->nameToken()->tokAt(2), pattern2.c_str())) {
if (var->nameToken()->strAt(2) != var->nameToken()->strAt(8)) {
mismatchingContainersError(var->nameToken());
}
}
}
}
static bool isInvalidMethod(const Token * tok)
{
if (Token::Match(tok->next(), ". assign|clear"))
return true;
if (Token::Match(tok->next(), "%assign%"))
return true;
if (isVector(tok) && Token::Match(tok->next(), ". insert|emplace|emplace_back|push_back|erase|pop_back|reserve ("))
return true;
return false;
}
static bool isVariableDecl(const Token* tok)
{
if (!tok)
return false;
const Variable* var = tok->variable();
if (!var)
return false;
if (var->nameToken() == tok)
return true;
if (Token::Match(var->declEndToken(), "; %var%") && var->declEndToken()->next() == tok)
return true;
return false;
}
void CheckStl::invalidContainer()
{
const SymbolDatabase *symbolDatabase = mTokenizer->getSymbolDatabase();
const Library& library = mSettings->library;
for (const Scope * scope : symbolDatabase->functionScopes) {
for (const Token* tok = scope->bodyStart->next(); tok != scope->bodyEnd; tok = tok->next()) {
if (!Token::Match(tok, "%var%"))
continue;
if (tok->varId() == 0)
continue;
if (!astIsContainer(tok))
continue;
if (!isInvalidMethod(tok))
continue;
// Skip if the variable is assigned to
unsigned int skipVarId = 0;
if (Token::Match(tok->astTop(), "%assign%") && Token::Match(tok->astTop()->previous(), "%var%"))
skipVarId = tok->astTop()->previous()->varId();
const Token * endToken = nextAfterAstRightmostLeaf(tok->next()->astParent());
if (!endToken)
endToken = tok->next();
const ValueFlow::Value* v = nullptr;
ErrorPath errorPath;
PathAnalysis::Info info = PathAnalysis{endToken, library} .forwardFind([&](const PathAnalysis::Info& info) {
if (!info.tok->variable())
return false;
if (info.tok->varId() == skipVarId)
return false;
if (info.tok->variable()->isReference() &&
!isVariableDecl(info.tok) &&
reaches(info.tok->variable()->nameToken(), tok, library, nullptr)) {
ErrorPath ep;
bool addressOf = false;
const Variable* var = getLifetimeVariable(info.tok, ep, &addressOf);
// Check the reference is created before the change
if (var && var->declarationId() == tok->varId() && !addressOf) {
// An argument always reaches
if (var->isArgument() || (!var->isReference() && !var->isRValueReference() &&
!isVariableDecl(tok) && reaches(var->nameToken(), tok, library, &ep))) {
errorPath = ep;
return true;
}
}
}
for (const ValueFlow::Value& val:info.tok->values()) {
if (!val.isLocalLifetimeValue())
continue;
if (val.lifetimeKind == ValueFlow::Value::LifetimeKind::Address)
continue;
if (!val.tokvalue->variable())
continue;
if (val.tokvalue->varId() != tok->varId())
continue;
ErrorPath ep;
// Check the iterator is created before the change
if (reaches(val.tokvalue, tok, library, &ep)) {
v = &val;
errorPath = ep;
return true;
}
}
return false;
});
if (!info.tok)
continue;
errorPath.insert(errorPath.end(), info.errorPath.begin(), info.errorPath.end());
if (v) {
invalidContainerError(info.tok, tok, v, errorPath);
} else {
invalidContainerReferenceError(info.tok, tok, errorPath);
}
}
}
}
void CheckStl::invalidContainerError(const Token *tok, const Token * contTok, const ValueFlow::Value *val, ErrorPath errorPath)
{
const bool inconclusive = val ? val->isInconclusive() : false;
std::string method = contTok ? contTok->strAt(2) : "erase";
errorPath.emplace_back(contTok, "After calling '" + method + "', iterators or references to the container's data may be invalid .");
if (val)
errorPath.insert(errorPath.begin(), val->errorPath.begin(), val->errorPath.end());
std::string msg = "Using " + lifetimeMessage(tok, val, errorPath);
errorPath.emplace_back(tok, "");
reportError(errorPath, Severity::error, "invalidContainer", msg + " that may be invalid.", CWE664, inconclusive);
}
void CheckStl::invalidContainerReferenceError(const Token* tok, const Token* contTok, ErrorPath errorPath)
{
std::string method = contTok ? contTok->strAt(2) : "erase";
std::string name = contTok ? contTok->expressionString() : "x";
errorPath.emplace_back(
contTok, "After calling '" + method + "', iterators or references to the container's data may be invalid .");
std::string msg = "Reference to " + name;
errorPath.emplace_back(tok, "");
reportError(errorPath, Severity::error, "invalidContainerReference", msg + " that may be invalid.", CWE664, false);
}
void CheckStl::stlOutOfBounds()
{
const SymbolDatabase* const symbolDatabase = mTokenizer->getSymbolDatabase();
// Scan through all scopes..
for (const Scope &scope : symbolDatabase->scopeList) {
const Token* tok = scope.classDef;
// only interested in conditions
if ((scope.type != Scope::eFor && scope.type != Scope::eWhile && scope.type != Scope::eIf && scope.type != Scope::eDo) || !tok)
continue;
const Token *condition = nullptr;
if (scope.type == Scope::eFor) {
if (Token::simpleMatch(tok->next()->astOperand2(), ";") && Token::simpleMatch(tok->next()->astOperand2()->astOperand2(), ";"))
condition = tok->next()->astOperand2()->astOperand2()->astOperand1();
} else if (Token::simpleMatch(tok, "do {") && Token::simpleMatch(tok->linkAt(1), "} while ("))
condition = tok->linkAt(1)->tokAt(2)->astOperand2();
else
condition = tok->next()->astOperand2();
if (!condition)
continue;
std::vector<const Token *> conds;
visitAstNodes(condition,
[&](const Token *cond) {
if (Token::Match(cond, "%oror%|&&"))
return ChildrenToVisit::op1_and_op2;
if (cond->isComparisonOp())
conds.emplace_back(cond);
return ChildrenToVisit::none;
});
for (const Token *cond : conds) {
const Token *vartok;
const Token *containerToken;
if (Token::Match(cond, "<= %var% . %name% ( )") && Token::Match(cond->astOperand1(), "%var%")) {
vartok = cond->astOperand1();
containerToken = cond->next();
} else {
continue;
}
// Is it a array like container?
const Library::Container* container = containerToken->valueType() ? containerToken->valueType()->container : nullptr;
if (!container)
continue;
if (container->getYield(containerToken->strAt(2)) != Library::Container::Yield::SIZE)
continue;
// variable id for loop variable.
const int numId = vartok->varId();
// variable id for the container variable
const int declarationId = containerToken->varId();
const std::string &containerName = containerToken->str();
for (const Token *tok3 = scope.bodyStart; tok3 && tok3 != scope.bodyEnd; tok3 = tok3->next()) {
if (tok3->varId() == declarationId) {
tok3 = tok3->next();
if (Token::Match(tok3, ". %name% ( )")) {
if (container->getYield(tok3->strAt(1)) == Library::Container::Yield::SIZE)
break;
} else if (container->arrayLike_indexOp && Token::Match(tok3, "[ %varid% ]", numId))
stlOutOfBoundsError(tok3, tok3->strAt(1), containerName, false);
else if (Token::Match(tok3, ". %name% ( %varid% )", numId)) {
const Library::Container::Yield yield = container->getYield(tok3->strAt(1));
if (yield == Library::Container::Yield::AT_INDEX)
stlOutOfBoundsError(tok3, tok3->strAt(3), containerName, true);
}
}
}
}
}
}
void CheckStl::stlOutOfBoundsError(const Token *tok, const std::string &num, const std::string &var, bool at)
{
if (at)
reportError(tok, Severity::error, "stlOutOfBounds", "$symbol:" + var + "\nWhen " + num + "==$symbol.size(), $symbol.at(" + num + ") is out of bounds.", CWE788, false);
else
reportError(tok, Severity::error, "stlOutOfBounds", "$symbol:" + var + "\nWhen " + num + "==$symbol.size(), $symbol[" + num + "] is out of bounds.", CWE788, false);
}
void CheckStl::negativeIndex()
{
// Negative index is out of bounds..
const SymbolDatabase* const symbolDatabase = mTokenizer->getSymbolDatabase();
for (const Scope * scope : symbolDatabase->functionScopes) {
for (const Token* tok = scope->bodyStart->next(); tok != scope->bodyEnd; tok = tok->next()) {
if (!Token::Match(tok, "%var% [") || WRONG_DATA(!tok->next()->astOperand2(), tok))
continue;
const Variable * const var = tok->variable();
if (!var || tok == var->nameToken())
continue;
const Library::Container * const container = mSettings->library.detectContainer(var->typeStartToken());
if (!container || !container->arrayLike_indexOp)
continue;
const ValueFlow::Value *index = tok->next()->astOperand2()->getValueLE(-1, mSettings);
if (!index)
continue;
negativeIndexError(tok, *index);
}
}
}
void CheckStl::negativeIndexError(const Token *tok, const ValueFlow::Value &index)
{
const ErrorPath errorPath = getErrorPath(tok, &index, "Negative array index");
std::ostringstream errmsg;
if (index.condition)
errmsg << ValueFlow::eitherTheConditionIsRedundant(index.condition)
<< ", otherwise there is negative array index " << index.intvalue << ".";
else
errmsg << "Array index " << index.intvalue << " is out of bounds.";
reportError(errorPath, index.errorSeverity() ? Severity::error : Severity::warning, "negativeContainerIndex", errmsg.str(), CWE786, index.isInconclusive());
}
void CheckStl::erase()
{
const SymbolDatabase* const symbolDatabase = mTokenizer->getSymbolDatabase();
for (const Scope &scope : symbolDatabase->scopeList) {
if (scope.type == Scope::eFor && Token::simpleMatch(scope.classDef, "for (")) {
const Token *tok = scope.classDef->linkAt(1);
if (!Token::Match(tok->tokAt(-3), "; ++| %var% ++| ) {"))
continue;
tok = tok->previous();
if (!tok->isName())
tok = tok->previous();
eraseCheckLoopVar(scope, tok->variable());
} else if (scope.type == Scope::eWhile && Token::Match(scope.classDef, "while ( %var% !=")) {
eraseCheckLoopVar(scope, scope.classDef->tokAt(2)->variable());
}
}
}
void CheckStl::eraseCheckLoopVar(const Scope &scope, const Variable *var)
{
bool inconclusiveType=false;
if (!isIterator(var, inconclusiveType))
return;
for (const Token *tok = scope.bodyStart; tok != scope.bodyEnd; tok = tok->next()) {
if (tok->str() != "(")
continue;
if (!Token::Match(tok->tokAt(-2), ". erase ( ++| %varid% )", var->declarationId()))
continue;
// Vector erases are handled by invalidContainer check
if (isVector(tok->tokAt(-3)))
continue;
if (Token::simpleMatch(tok->astParent(), "="))
continue;
// Iterator is invalid..
int indentlevel = 0U;
const Token *tok2 = tok->link();
for (; tok2 != scope.bodyEnd; tok2 = tok2->next()) {
if (tok2->str() == "{") {
++indentlevel;
continue;
}
if (tok2->str() == "}") {
if (indentlevel > 0U)
--indentlevel;
else if (Token::simpleMatch(tok2, "} else {"))
tok2 = tok2->linkAt(2);
continue;
}
if (tok2->varId() == var->declarationId()) {
if (Token::simpleMatch(tok2->next(), "="))
break;
dereferenceErasedError(tok, tok2, tok2->str(), inconclusiveType);
break;
}
if (indentlevel == 0U && Token::Match(tok2, "break|return|goto"))
break;
}
if (tok2 == scope.bodyEnd)
dereferenceErasedError(tok, scope.classDef, var->nameToken()->str(), inconclusiveType);
}
}
void CheckStl::stlBoundaries()
{
const SymbolDatabase* const symbolDatabase = mTokenizer->getSymbolDatabase();
for (const Variable* var : symbolDatabase->variableList()) {
if (!var || !var->scope() || !var->scope()->isExecutable())
continue;
const Library::Container* container = mSettings->library.detectContainer(var->typeStartToken(), true);
if (!container || container->opLessAllowed)
continue;
const Token* const end = var->scope()->bodyEnd;
for (const Token *tok = var->nameToken(); tok != end; tok = tok->next()) {
if (Token::Match(tok, "!!* %varid% <", var->declarationId())) {
stlBoundariesError(tok);
} else if (Token::Match(tok, "> %varid% !!.", var->declarationId())) {
stlBoundariesError(tok);
}
}
}
}
// Error message for bad boundary usage..
void CheckStl::stlBoundariesError(const Token *tok)
{
reportError(tok, Severity::error, "stlBoundaries",
"Dangerous comparison using operator< on iterator.\n"
"Iterator compared with operator<. This is dangerous since the order of items in the "
"container is not guaranteed. One should use operator!= instead to compare iterators.", CWE664, false);
}
static bool if_findCompare(const Token * const tokBack)
{
const Token *tok = tokBack->astParent();
if (!tok)
return true;
if (tok->isComparisonOp())
return (!tok->astOperand1()->isNumber() && !tok->astOperand2()->isNumber());
if (tok->isArithmeticalOp()) // result is used in some calculation
return true; // TODO: check if there is a comparison of the result somewhere
if (tok->str() == ".")
return true; // Dereferencing is OK, the programmer might know that the element exists - TODO: An inconclusive warning might be appropriate
if (tok->isAssignmentOp())
return if_findCompare(tok); // Go one step upwards in the AST
return false;
}
void CheckStl::if_find()
{
const bool printWarning = mSettings->isEnabled(Settings::WARNING);
const bool printPerformance = mSettings->isEnabled(Settings::PERFORMANCE);
if (!printWarning && !printPerformance)
return;
const SymbolDatabase *symbolDatabase = mTokenizer->getSymbolDatabase();
for (const Scope &scope : symbolDatabase->scopeList) {
if ((scope.type != Scope::eIf && scope.type != Scope::eWhile) || !scope.classDef)
continue;
for (const Token *tok = scope.classDef->next(); tok->str() != "{"; tok = tok->next()) {
const Token* funcTok = nullptr;
const Library::Container* container = nullptr;
if (Token::Match(tok, "%name% ("))
tok = tok->linkAt(1);
else if (tok->variable() && Token::Match(tok, "%var% . %name% (")) {
container = mSettings->library.detectContainer(tok->variable()->typeStartToken());
funcTok = tok->tokAt(2);
}
// check also for vector-like or pointer containers
else if (tok->variable() && tok->astParent() && (tok->astParent()->str() == "*" || tok->astParent()->str() == "[")) {
const Token *tok2 = tok->astParent();
if (!Token::Match(tok2->astParent(), ". %name% ("))
continue;
funcTok = tok2->astParent()->next();
if (tok->variable()->isArrayOrPointer())
container = mSettings->library.detectContainer(tok->variable()->typeStartToken());
else { // Container of container - find the inner container
container = mSettings->library.detectContainer(tok->variable()->typeStartToken()); // outer container
tok2 = Token::findsimplematch(tok->variable()->typeStartToken(), "<", tok->variable()->typeEndToken());
if (container && container->type_templateArgNo >= 0 && tok2) {
tok2 = tok2->next();
for (int j = 0; j < container->type_templateArgNo; j++)
tok2 = tok2->nextTemplateArgument();
container = mSettings->library.detectContainer(tok2); // innner container
} else
container = nullptr;
}
}
if (container && container->getAction(funcTok->str()) == Library::Container::Action::FIND) {
if (if_findCompare(funcTok->next()))
continue;
if (printWarning && container->getYield(funcTok->str()) == Library::Container::Yield::ITERATOR)
if_findError(tok, false);
else if (printPerformance && container->stdStringLike && funcTok->str() == "find")
if_findError(tok, true);
} else if (printWarning && Token::Match(tok, "std :: find|find_if (")) {
// check that result is checked properly
if (!if_findCompare(tok->tokAt(3))) {
if_findError(tok, false);
}
}
}
}
}
void CheckStl::if_findError(const Token *tok, bool str)
{
if (str && mSettings->standards.cpp >= Standards::CPP20)
reportError(tok, Severity::performance, "stlIfStrFind",
"Inefficient usage of string::find() in condition; string::starts_with() could be faster.\n"
"Either inefficient or wrong usage of string::find(). string::starts_with() will be faster if "
"string::find's result is compared with 0, because it will not scan the whole "
"string. If your intention is to check that there are no findings in the string, "
"you should compare with std::string::npos.", CWE597, false);
if (!str)
reportError(tok, Severity::warning, "stlIfFind", "Suspicious condition. The result of find() is an iterator, but it is not properly checked.", CWE398, false);
}
static std::pair<const Token *, const Token *> isMapFind(const Token *tok)
{
if (!Token::simpleMatch(tok, "("))
return {};
if (!Token::simpleMatch(tok->astOperand1(), "."))
return {};
if (!astIsContainer(tok->astOperand1()->astOperand1()))
return {};
const Token * contTok = tok->astOperand1()->astOperand1();
const Library::Container * container = contTok->valueType()->container;
if (!container)
return {};
if (!container->stdAssociativeLike)
return {};
if (!Token::Match(tok->astOperand1(), ". find|count ("))
return {};
if (!tok->astOperand2())
return {};
return {contTok, tok->astOperand2()};
}
static const Token *skipLocalVars(const Token *tok)
{
if (!tok)
return tok;
if (Token::simpleMatch(tok, "{"))
return skipLocalVars(tok->next());
const Scope *scope = tok->scope();
const Token *top = tok->astTop();
if (!top) {
const Token *semi = Token::findsimplematch(tok, ";");
if (!semi)
return tok;
if (!Token::Match(semi->previous(), "%var% ;"))
return tok;
const Token *varTok = semi->previous();
const Variable *var = varTok->variable();
if (!var)
return tok;
if (var->nameToken() != varTok)
return tok;
return skipLocalVars(semi->next());
}
if (Token::Match(top, "%assign%")) {
const Token *varTok = top->astOperand1();
if (!Token::Match(varTok, "%var%"))
return tok;
const Variable *var = varTok->variable();
if (!var)
return tok;
if (var->scope() != scope)
return tok;
const Token *endTok = nextAfterAstRightmostLeaf(top);
if (!endTok)
return tok;
return skipLocalVars(endTok->next());
}
return tok;
}
static const Token *findInsertValue(const Token *tok, const Token *containerTok, const Token *keyTok, const Library &library)
{
const Token *startTok = skipLocalVars(tok);
const Token *top = startTok->astTop();
const Token *icontainerTok = nullptr;
const Token *ikeyTok = nullptr;
const Token *ivalueTok = nullptr;
if (Token::simpleMatch(top, "=") && Token::simpleMatch(top->astOperand1(), "[")) {
icontainerTok = top->astOperand1()->astOperand1();
ikeyTok = top->astOperand1()->astOperand2();
ivalueTok = top->astOperand2();
}
if (Token::simpleMatch(top, "(") && Token::Match(top->astOperand1(), ". insert|emplace (") && !astIsIterator(top->astOperand1()->tokAt(2))) {
icontainerTok = top->astOperand1()->astOperand1();
const Token *itok = top->astOperand1()->tokAt(2)->astOperand2();
if (Token::simpleMatch(itok, ",")) {
ikeyTok = itok->astOperand1();
ivalueTok = itok->astOperand2();
} else {
ikeyTok = itok;
}
}
if (!ikeyTok || !icontainerTok)
return nullptr;
if (isSameExpression(true, true, containerTok, icontainerTok, library, true, false) &&
isSameExpression(true, true, keyTok, ikeyTok, library, true, true)) {
if (ivalueTok)
return ivalueTok;
else
return ikeyTok;
}
return nullptr;
}
void CheckStl::checkFindInsert()
{
if (!mSettings->isEnabled(Settings::PERFORMANCE))
return;
const SymbolDatabase *const symbolDatabase = mTokenizer->getSymbolDatabase();
for (const Scope *scope : symbolDatabase->functionScopes) {
for (const Token *tok = scope->bodyStart->next(); tok != scope->bodyEnd; tok = tok->next()) {
if (!Token::simpleMatch(tok, "if ("))
continue;
if (!Token::simpleMatch(tok->next()->link(), ") {"))
continue;
if (!Token::Match(tok->next()->astOperand2(), "%comp%"))
continue;
const Token *condTok = tok->next()->astOperand2();
const Token *containerTok;
const Token *keyTok;
std::tie(containerTok, keyTok) = isMapFind(condTok->astOperand1());
if (!containerTok)
continue;
const Token *thenTok = tok->next()->link()->next();
const Token *valueTok = findInsertValue(thenTok, containerTok, keyTok, mSettings->library);
if (!valueTok)
continue;
if (Token::simpleMatch(thenTok->link(), "} else {")) {
const Token *valueTok2 =
findInsertValue(thenTok->link()->tokAt(2), containerTok, keyTok, mSettings->library);
if (!valueTok2)
continue;
if (isSameExpression(true, true, valueTok, valueTok2, mSettings->library, true, true)) {
checkFindInsertError(valueTok);
}
} else {
checkFindInsertError(valueTok);
}
}
}
}
void CheckStl::checkFindInsertError(const Token *tok)
{
reportError(
tok, Severity::performance, "stlFindInsert", "Searching before insertion is not necessary.", CWE398, false);
}
/**
* Is container.size() slow?
*/
static bool isCpp03ContainerSizeSlow(const Token *tok)
{
if (!tok)
return false;
const Variable* var = tok->variable();
return var && var->isStlType("list");
}
void CheckStl::size()
{
if (!mSettings->isEnabled(Settings::PERFORMANCE))
return;
if (mSettings->standards.cpp >= Standards::CPP11)
return;
const SymbolDatabase* const symbolDatabase = mTokenizer->getSymbolDatabase();
for (const Scope * scope : symbolDatabase->functionScopes) {
for (const Token* tok = scope->bodyStart->next(); tok != scope->bodyEnd; tok = tok->next()) {
if (Token::Match(tok, "%var% . size ( )") ||
Token::Match(tok, "%name% . %var% . size ( )")) {
// get the variable
const Token *varTok = tok;
if (tok->strAt(2) != "size")
varTok = varTok->tokAt(2);
const Token* const end = varTok->tokAt(5);
// check for comparison to zero
if ((tok->previous() && !tok->previous()->isArithmeticalOp() && Token::Match(end, "==|<=|!=|> 0")) ||
(end->next() && !end->next()->isArithmeticalOp() && Token::Match(tok->tokAt(-2), "0 ==|>=|!=|<"))) {
if (isCpp03ContainerSizeSlow(varTok)) {
sizeError(varTok);
continue;
}
}
// check for comparison to one
if ((tok->previous() && !tok->previous()->isArithmeticalOp() && Token::Match(end, ">=|< 1") && !end->tokAt(2)->isArithmeticalOp()) ||
(end->next() && !end->next()->isArithmeticalOp() && Token::Match(tok->tokAt(-2), "1 <=|>") && !tok->tokAt(-3)->isArithmeticalOp())) {
if (isCpp03ContainerSizeSlow(varTok))
sizeError(varTok);
}
// check for using as boolean expression
else if ((Token::Match(tok->tokAt(-2), "if|while (") && end->str() == ")") ||
(tok->previous()->tokType() == Token::eLogicalOp && Token::Match(end, "&&|)|,|;|%oror%"))) {
if (isCpp03ContainerSizeSlow(varTok))
sizeError(varTok);
}
}
}
}
}
void CheckStl::sizeError(const Token *tok)
{
const std::string varname = tok ? tok->str() : std::string("list");
reportError(tok, Severity::performance, "stlSize",
"$symbol:" + varname + "\n"
"Possible inefficient checking for '$symbol' emptiness.\n"
"Checking for '$symbol' emptiness might be inefficient. "
"Using $symbol.empty() instead of $symbol.size() can be faster. "
"$symbol.size() can take linear time but $symbol.empty() is "
"guaranteed to take constant time.", CWE398, false);
}
void CheckStl::redundantCondition()
{
if (!mSettings->isEnabled(Settings::STYLE))
return;
const SymbolDatabase *symbolDatabase = mTokenizer->getSymbolDatabase();
for (const Scope &scope : symbolDatabase->scopeList) {
if (scope.type != Scope::eIf)
continue;
const Token* tok = scope.classDef->tokAt(2);
if (!Token::Match(tok, "%name% . find ( %any% ) != %name% . end|rend|cend|crend ( ) ) { %name% . remove|erase ( %any% ) ;"))
continue;
// Get tokens for the fields %name% and %any%
const Token *var1 = tok;
const Token *any1 = var1->tokAt(4);
const Token *var2 = any1->tokAt(3);
const Token *var3 = var2->tokAt(7);
const Token *any2 = var3->tokAt(4);
// Check if all the "%name%" fields are the same and if all the "%any%" are the same..
if (var1->str() == var2->str() &&
var2->str() == var3->str() &&
any1->str() == any2->str()) {
redundantIfRemoveError(tok);
}
}
}
void CheckStl::redundantIfRemoveError(const Token *tok)
{
reportError(tok, Severity::style, "redundantIfRemove",
"Redundant checking of STL container element existence before removing it.\n"
"Redundant checking of STL container element existence before removing it. "
"It is safe to call the remove method on a non-existing element.", CWE398, false);
}
void CheckStl::missingComparison()
{
if (!mSettings->isEnabled(Settings::WARNING))
return;
const SymbolDatabase* const symbolDatabase = mTokenizer->getSymbolDatabase();
for (const Scope &scope : symbolDatabase->scopeList) {
if (scope.type != Scope::eFor || !scope.classDef)
continue;
for (const Token *tok2 = scope.classDef->tokAt(2); tok2 != scope.bodyStart; tok2 = tok2->next()) {
if (tok2->str() == ";")
break;
if (!Token::Match(tok2, "%var% = %name% . begin|rbegin|cbegin|crbegin ( ) ; %name% != %name% . end|rend|cend|crend ( ) ; ++| %name% ++| ) {"))
continue;
// same container
if (tok2->strAt(2) != tok2->strAt(10))
break;
const int iteratorId(tok2->varId());
// same iterator
if (iteratorId == tok2->tokAt(10)->varId())
break;
// increment iterator
if (!Token::Match(tok2->tokAt(16), "++ %varid% )", iteratorId) &&
!Token::Match(tok2->tokAt(16), "%varid% ++ )", iteratorId)) {
break;
}
const Token *incrementToken = nullptr;
// Parse loop..
for (const Token *tok3 = scope.bodyStart; tok3 != scope.bodyEnd; tok3 = tok3->next()) {
if (Token::Match(tok3, "%varid% ++", iteratorId))
incrementToken = tok3;
else if (Token::Match(tok3->previous(), "++ %varid% !!.", iteratorId))
incrementToken = tok3;
else if (Token::Match(tok3, "%varid% !=|==", iteratorId))
incrementToken = nullptr;
else if (tok3->str() == "break" || tok3->str() == "return")
incrementToken = nullptr;
else if (Token::Match(tok3, "%varid% = %name% . insert ( ++| %varid% ++| ,", iteratorId)) {
// skip insertion..
tok3 = tok3->linkAt(6);
if (!tok3)
break;
}
}
if (incrementToken)
missingComparisonError(incrementToken, tok2->tokAt(16));
}
}
}
void CheckStl::missingComparisonError(const Token *incrementToken1, const Token *incrementToken2)
{
std::list<const Token*> callstack = { incrementToken1,incrementToken2 };
std::ostringstream errmsg;
errmsg << "Missing bounds check for extra iterator increment in loop.\n"
<< "The iterator incrementing is suspicious - it is incremented at line ";
if (incrementToken1)
errmsg << incrementToken1->linenr();
errmsg << " and then at line ";
if (incrementToken2)
errmsg << incrementToken2->linenr();
errmsg << ". The loop might unintentionally skip an element in the container. "
<< "There is no comparison between these increments to prevent that the iterator is "
<< "incremented beyond the end.";
reportError(callstack, Severity::warning, "StlMissingComparison", errmsg.str(), CWE834, false);
}
static bool isLocal(const Token *tok)
{
const Variable *var = tok->variable();
return var && !var->isStatic() && var->isLocal();
}
namespace {
const std::set<std::string> stl_string_stream = {
"istringstream", "ostringstream", "stringstream", "wstringstream"
};
}
void CheckStl::string_c_str()
{
const bool printInconclusive = mSettings->inconclusive;
const bool printPerformance = mSettings->isEnabled(Settings::PERFORMANCE);
const SymbolDatabase* symbolDatabase = mTokenizer->getSymbolDatabase();
// Find all functions that take std::string as argument
std::multimap<std::string, int> c_strFuncParam;
if (printPerformance) {
for (const Scope &scope : symbolDatabase->scopeList) {
for (const Function &func : scope.functionList) {
if (c_strFuncParam.erase(func.tokenDef->str()) != 0) { // Check if function with this name was already found
c_strFuncParam.insert(std::make_pair(func.tokenDef->str(), 0)); // Disable, because there are overloads. TODO: Handle overloads
continue;
}
int numpar = 0;
c_strFuncParam.insert(std::make_pair(func.tokenDef->str(), numpar)); // Insert function as dummy, to indicate that there is at least one function with that name
for (const Variable &var : func.argumentList) {
numpar++;
if (var.isStlStringType() && (!var.isReference() || var.isConst()))
c_strFuncParam.insert(std::make_pair(func.tokenDef->str(), numpar));
}
}
}
}
// Try to detect common problems when using string::c_str()
for (const Scope &scope : symbolDatabase->scopeList) {
if (scope.type != Scope::eFunction || !scope.function)
continue;
enum {charPtr, stdString, stdStringConstRef, Other} returnType = Other;
if (Token::Match(scope.function->tokenDef->tokAt(-2), "char|wchar_t *"))
returnType = charPtr;
else if (Token::Match(scope.function->tokenDef->tokAt(-5), "const std :: string|wstring &"))
returnType = stdStringConstRef;
else if (Token::Match(scope.function->tokenDef->tokAt(-3), "std :: string|wstring !!&"))
returnType = stdString;
for (const Token *tok = scope.bodyStart; tok && tok != scope.bodyEnd; tok = tok->next()) {
// Invalid usage..
if (Token::Match(tok, "throw %var% . c_str|data ( ) ;") && isLocal(tok->next()) &&
tok->next()->variable() && tok->next()->variable()->isStlStringType()) {
string_c_strThrowError(tok);
} else if (Token::Match(tok, "[;{}] %name% = %var% . str ( ) . c_str|data ( ) ;")) {
const Variable* var = tok->next()->variable();
const Variable* var2 = tok->tokAt(3)->variable();
if (var && var->isPointer() && var2 && var2->isStlType(stl_string_stream))
string_c_strError(tok);
} else if (Token::Match(tok, "[;{}] %var% = %name% (") &&
Token::Match(tok->linkAt(4), ") . c_str|data ( ) ;") &&
tok->tokAt(3)->function() && Token::Match(tok->tokAt(3)->function()->retDef, "std :: string|wstring %name%")) {
const Variable* var = tok->next()->variable();
if (var && var->isPointer())
string_c_strError(tok);
} else if (printPerformance && Token::Match(tok, "%name% ( !!)") && c_strFuncParam.find(tok->str()) != c_strFuncParam.end() &&
!Token::Match(tok->previous(), "::|.") && tok->varId() == 0 && tok->str() != scope.className) { // calling function. TODO: Add support for member functions
const std::pair<std::multimap<std::string, int>::const_iterator, std::multimap<std::string, int>::const_iterator> range = c_strFuncParam.equal_range(tok->str());
for (std::multimap<std::string, int>::const_iterator i = range.first; i != range.second; ++i) {
if (i->second == 0)
continue;
const Token* tok2 = tok->tokAt(2);
int j;
for (j = 0; tok2 && j < i->second-1; j++)
tok2 = tok2->nextArgument();
if (tok2)
tok2 = tok2->nextArgument();
else
break;
if (!tok2 && j == i->second-1)
tok2 = tok->next()->link();
else if (tok2)
tok2 = tok2->previous();
else
break;
if (tok2 && Token::Match(tok2->tokAt(-4), ". c_str|data ( )")) {
const Variable* var = tok2->tokAt(-5)->variable();
if (var && var->isStlStringType()) {
string_c_strParam(tok, i->second);
} else if (Token::Match(tok2->tokAt(-9), "%name% . str ( )")) { // Check ss.str().c_str() as parameter
const Variable* ssVar = tok2->tokAt(-9)->variable();
if (ssVar && ssVar->isStlType(stl_string_stream))
string_c_strParam(tok, i->second);
}
}
}
}
// Using c_str() to get the return value is only dangerous if the function returns a char*
if ((returnType == charPtr || (printPerformance && (returnType == stdString || returnType == stdStringConstRef))) && tok->str() == "return") {
bool err = false;
const Token* tok2 = tok->next();
if (Token::Match(tok2, "std :: string|wstring (") &&
Token::Match(tok2->linkAt(3), ") . c_str|data ( ) ;")) {
err = true;
} else if (Token::simpleMatch(tok2, "(") &&
Token::Match(tok2->link(), ") . c_str|data ( ) ;")) {
// Check for "+ localvar" or "+ std::string(" inside the bracket
bool is_implicit_std_string = printInconclusive;
const Token *search_end = tok2->link();
for (const Token *search_tok = tok2->next(); search_tok != search_end; search_tok = search_tok->next()) {
if (Token::Match(search_tok, "+ %var%") && isLocal(search_tok->next()) &&
search_tok->next()->variable() && search_tok->next()->variable()->isStlStringType()) {
is_implicit_std_string = true;
break;
} else if (Token::Match(search_tok, "+ std :: string|wstring (")) {
is_implicit_std_string = true;
break;
}
}
if (is_implicit_std_string)
err = true;
}
bool local = false;
bool ptrOrRef = false;
const Variable* lastVar = nullptr;
const Function* lastFunc = nullptr;
bool funcStr = false;
if (Token::Match(tok2, "%var% .")) {
local = isLocal(tok2);
bool refToNonLocal = false;
if (tok2->variable() && tok2->variable()->isReference()) {
const Token *refTok = tok2->variable()->nameToken();
refToNonLocal = true; // safe assumption is default to avoid FPs
if (Token::Match(refTok, "%var% = %var% .|;|["))
refToNonLocal = !isLocal(refTok->tokAt(2));
}
ptrOrRef = refToNonLocal || (tok2->variable() && tok2->variable()->isPointer());
}
while (tok2) {
if (Token::Match(tok2, "%var% .|::")) {
if (ptrOrRef)
local = false;
lastVar = tok2->variable();
tok2 = tok2->tokAt(2);
} else if (Token::Match(tok2, "%name% (") && Token::simpleMatch(tok2->linkAt(1), ") .")) {
lastFunc = tok2->function();
local = false;
funcStr = tok2->str() == "str";
tok2 = tok2->linkAt(1)->tokAt(2);
} else
break;
}
if (Token::Match(tok2, "c_str|data ( ) ;")) {
if ((local || returnType != charPtr) && lastVar && lastVar->isStlStringType())
err = true;
else if (funcStr && lastVar && lastVar->isStlType(stl_string_stream))
err = true;
else if (lastFunc && Token::Match(lastFunc->tokenDef->tokAt(-3), "std :: string|wstring"))
err = true;
}
if (err) {
if (returnType == charPtr)
string_c_strError(tok);
else
string_c_strReturn(tok);
}
}
}
}
}
void CheckStl::string_c_strThrowError(const Token* tok)
{
reportError(tok, Severity::error, "stlcstrthrow", "Dangerous usage of c_str(). The value returned by c_str() is invalid after throwing exception.\n"
"Dangerous usage of c_str(). The string is destroyed after the c_str() call so the thrown pointer is invalid.");
}
void CheckStl::string_c_strError(const Token* tok)
{
reportError(tok, Severity::error, "stlcstr", "Dangerous usage of c_str(). The value returned by c_str() is invalid after this call.\n"
"Dangerous usage of c_str(). The c_str() return value is only valid until its string is deleted.", CWE664, false);
}
void CheckStl::string_c_strReturn(const Token* tok)
{
reportError(tok, Severity::performance, "stlcstrReturn", "Returning the result of c_str() in a function that returns std::string is slow and redundant.\n"
"The conversion from const char* as returned by c_str() to std::string creates an unnecessary string copy. Solve that by directly returning the string.", CWE704, false);
}
void CheckStl::string_c_strParam(const Token* tok, nonneg int number)
{
std::ostringstream oss;
oss << "Passing the result of c_str() to a function that takes std::string as argument no. " << number << " is slow and redundant.\n"
"The conversion from const char* as returned by c_str() to std::string creates an unnecessary string copy. Solve that by directly passing the string.";
reportError(tok, Severity::performance, "stlcstrParam", oss.str(), CWE704, false);
}
//---------------------------------------------------------------------------
//
//---------------------------------------------------------------------------
namespace {
const std::set<std::string> stl_containers_with_empty_and_clear = {
"deque", "forward_list", "list",
"map", "multimap", "multiset", "set", "string",
"unordered_map", "unordered_multimap", "unordered_multiset",
"unordered_set", "vector", "wstring"
};
}
void CheckStl::uselessCalls()
{
const bool printPerformance = mSettings->isEnabled(Settings::PERFORMANCE);
const bool printWarning = mSettings->isEnabled(Settings::WARNING);
if (!printPerformance && !printWarning)
return;
const SymbolDatabase* symbolDatabase = mTokenizer->getSymbolDatabase();
for (const Scope * scope : symbolDatabase->functionScopes) {
for (const Token* tok = scope->bodyStart; tok != scope->bodyEnd; tok = tok->next()) {
if (printWarning && Token::Match(tok, "%var% . compare|find|rfind|find_first_not_of|find_first_of|find_last_not_of|find_last_of ( %name% [,)]") &&
tok->varId() == tok->tokAt(4)->varId()) {
const Variable* var = tok->variable();
if (!var || !var->isStlType())
continue;
uselessCallsReturnValueError(tok->tokAt(4), tok->str(), tok->strAt(2));
} else if (printPerformance && Token::Match(tok, "%var% . swap ( %name% )") &&
tok->varId() == tok->tokAt(4)->varId()) {
const Variable* var = tok->variable();
if (!var || !var->isStlType())
continue;
uselessCallsSwapError(tok, tok->str());
} else if (printPerformance && Token::Match(tok, "%var% . substr (") &&
tok->variable() && tok->variable()->isStlStringType()) {
if (Token::Match(tok->tokAt(4), "0| )")) {
uselessCallsSubstrError(tok, false);
} else if (tok->strAt(4) == "0" && tok->linkAt(3)->strAt(-1) == "npos") {
if (!tok->linkAt(3)->previous()->variable()) // Make sure that its no variable
uselessCallsSubstrError(tok, false);
} else if (Token::simpleMatch(tok->linkAt(3)->tokAt(-2), ", 0 )"))
uselessCallsSubstrError(tok, true);
} else if (printWarning && Token::Match(tok, "[{};] %var% . empty ( ) ;") &&
!tok->tokAt(4)->astParent() &&
tok->next()->variable() && tok->next()->variable()->isStlType(stl_containers_with_empty_and_clear))
uselessCallsEmptyError(tok->next());
else if (Token::Match(tok, "[{};] std :: remove|remove_if|unique (") && tok->tokAt(5)->nextArgument())
uselessCallsRemoveError(tok->next(), tok->strAt(3));
}
}
}
void CheckStl::uselessCallsReturnValueError(const Token *tok, const std::string &varname, const std::string &function)
{
std::ostringstream errmsg;
errmsg << "$symbol:" << varname << '\n';
errmsg << "$symbol:" << function << '\n';
errmsg << "It is inefficient to call '" << varname << "." << function << "(" << varname << ")' as it always returns 0.\n"
<< "'std::string::" << function << "()' returns zero when given itself as parameter "
<< "(" << varname << "." << function << "(" << varname << ")). As it is currently the "
<< "code is inefficient. It is possible either the string searched ('"
<< varname << "') or searched for ('" << varname << "') is wrong.";
reportError(tok, Severity::warning, "uselessCallsCompare", errmsg.str(), CWE628, false);
}
void CheckStl::uselessCallsSwapError(const Token *tok, const std::string &varname)
{
reportError(tok, Severity::performance, "uselessCallsSwap",
"$symbol:" + varname + "\n"
"It is inefficient to swap a object with itself by calling '$symbol.swap($symbol)'\n"
"The 'swap()' function has no logical effect when given itself as parameter "
"($symbol.swap($symbol)). As it is currently the "
"code is inefficient. Is the object or the parameter wrong here?", CWE628, false);
}
void CheckStl::uselessCallsSubstrError(const Token *tok, bool empty)
{
if (empty)
reportError(tok, Severity::performance, "uselessCallsSubstr", "Ineffective call of function 'substr' because it returns an empty string.", CWE398, false);
else
reportError(tok, Severity::performance, "uselessCallsSubstr", "Ineffective call of function 'substr' because it returns a copy of the object. Use operator= instead.", CWE398, false);
}
void CheckStl::uselessCallsEmptyError(const Token *tok)
{
reportError(tok, Severity::warning, "uselessCallsEmpty", "Ineffective call of function 'empty()'. Did you intend to call 'clear()' instead?", CWE398, false);
}
void CheckStl::uselessCallsRemoveError(const Token *tok, const std::string& function)
{
reportError(tok, Severity::warning, "uselessCallsRemove",
"$symbol:" + function + "\n"
"Return value of std::$symbol() ignored. Elements remain in container.\n"
"The return value of std::$symbol() is ignored. This function returns an iterator to the end of the range containing those elements that should be kept. "
"Elements past new end remain valid but with unspecified values. Use the erase method of the container to delete them.", CWE762, false);
}
// Check for iterators being dereferenced before being checked for validity.
// E.g. if (*i && i != str.end()) { }
void CheckStl::checkDereferenceInvalidIterator()
{
if (!mSettings->isEnabled(Settings::WARNING))
return;
// Iterate over "if", "while", and "for" conditions where there may
// be an iterator that is dereferenced before being checked for validity.
for (const Scope &scope : mTokenizer->getSymbolDatabase()->scopeList) {
if (!(scope.type == Scope::eIf || scope.type == Scope::eDo || scope.type == Scope::eWhile || scope.type == Scope::eFor))
continue;
const Token* const tok = scope.classDef;
const Token* startOfCondition = tok->next();
if (scope.type == Scope::eDo)
startOfCondition = startOfCondition->link()->tokAt(2);
if (!startOfCondition) // ticket #6626 invalid code
continue;
const Token* endOfCondition = startOfCondition->link();
if (!endOfCondition)
continue;
// For "for" loops, only search between the two semicolons
if (scope.type == Scope::eFor) {
startOfCondition = Token::findsimplematch(tok->tokAt(2), ";", endOfCondition);
if (!startOfCondition)
continue;
endOfCondition = Token::findsimplematch(startOfCondition->next(), ";", endOfCondition);
if (!endOfCondition)
continue;
}
// Only consider conditions composed of all "&&" terms and
// conditions composed of all "||" terms
const bool isOrExpression =
Token::findsimplematch(startOfCondition, "||", endOfCondition) != nullptr;
const bool isAndExpression =
Token::findsimplematch(startOfCondition, "&&", endOfCondition) != nullptr;
// Look for a check of the validity of an iterator
const Token* validityCheckTok = nullptr;
if (!isOrExpression && isAndExpression) {
validityCheckTok =
Token::findmatch(startOfCondition, "&& %var% != %name% . end|rend|cend|crend ( )", endOfCondition);
} else if (isOrExpression && !isAndExpression) {
validityCheckTok =
Token::findmatch(startOfCondition, "%oror% %var% == %name% . end|rend|cend|crend ( )", endOfCondition);
}
if (!validityCheckTok)
continue;
const int iteratorVarId = validityCheckTok->next()->varId();
// If the iterator dereference is to the left of the check for
// the iterator's validity, report an error.
const Token* const dereferenceTok =
Token::findmatch(startOfCondition, "* %varid%", validityCheckTok, iteratorVarId);
if (dereferenceTok)
dereferenceInvalidIteratorError(dereferenceTok, dereferenceTok->strAt(1));
}
}
void CheckStl::dereferenceInvalidIteratorError(const Token* deref, const std::string &iterName)
{
reportError(deref, Severity::warning,
"derefInvalidIterator",
"$symbol:" + iterName + "\n"
"Possible dereference of an invalid iterator: $symbol\n"
"Possible dereference of an invalid iterator: $symbol. Make sure to check that the iterator is valid before dereferencing it - not after.", CWE825, false);
}
void CheckStl::readingEmptyStlContainer2()
{
for (const Scope *function : mTokenizer->getSymbolDatabase()->functionScopes) {
for (const Token *tok = function->bodyStart; tok != function->bodyEnd; tok = tok->next()) {
if (!tok->isName() || !tok->valueType())
continue;
const Library::Container *container = tok->valueType()->container;
if (!container)
continue;
const ValueFlow::Value *value = tok->getContainerSizeValue(0);
if (!value)
continue;
if (value->isInconclusive() && !mSettings->inconclusive)
continue;
if (!value->errorSeverity() && !mSettings->isEnabled(Settings::WARNING))
continue;
if (Token::Match(tok, "%name% . %name% (")) {
if (container->getYield(tok->strAt(2)) == Library::Container::Yield::ITEM)
readingEmptyStlContainerError(tok,value);
}
}
}
}
void CheckStl::readingEmptyStlContainerError(const Token *tok, const ValueFlow::Value *value)
{
const std::string varname = tok ? tok->str() : std::string("var");
std::string errmsg;
if (value && value->condition)
errmsg = "Reading from container '$symbol'. " + ValueFlow::eitherTheConditionIsRedundant(value->condition) + " or '$symbol' can be empty.";
else
errmsg = "Reading from empty STL container '$symbol'";
const ErrorPath errorPath = getErrorPath(tok, value, "Reading from empty container");
reportError(errorPath, value ? (value->errorSeverity() ? Severity::error : Severity::warning) : Severity::style, "reademptycontainer", "$symbol:" + varname +"\n" + errmsg, CWE398, !value);
}
void CheckStl::useStlAlgorithmError(const Token *tok, const std::string &algoName)
{
reportError(tok, Severity::style, "useStlAlgorithm",
"Consider using " + algoName + " algorithm instead of a raw loop.", CWE398, false);
}
static bool isEarlyExit(const Token *start)
{
if (start->str() != "{")
return false;
const Token *endToken = start->link();
const Token *tok = Token::findmatch(start, "return|throw|break", endToken);
if (!tok)
return false;
const Token *endStatement = Token::findsimplematch(tok, "; }", endToken);
if (!endStatement)
return false;
if (endStatement->next() != endToken)
return false;
return true;
}
static const Token *singleStatement(const Token *start)
{
if (start->str() != "{")
return nullptr;
const Token *endToken = start->link();
const Token *endStatement = Token::findsimplematch(start->next(), ";");
if (!Token::simpleMatch(endStatement, "; }"))
return nullptr;
if (endStatement->next() != endToken)
return nullptr;
return endStatement;
}
static const Token *singleAssignInScope(const Token *start, nonneg int varid, bool &input)
{
const Token *endStatement = singleStatement(start);
if (!endStatement)
return nullptr;
if (!Token::Match(start->next(), "%var% %assign%"))
return nullptr;
const Token *assignTok = start->tokAt(2);
if (isVariableChanged(assignTok->next(), endStatement, assignTok->astOperand1()->varId(), false, nullptr, true))
return nullptr;
if (isVariableChanged(assignTok->next(), endStatement, varid, false, nullptr, true))
return nullptr;
input = Token::findmatch(assignTok->next(), "%varid%", endStatement, varid) || !Token::Match(start->next(), "%var% =");
return assignTok;
}
static const Token *singleMemberCallInScope(const Token *start, nonneg int varid, bool &input)
{
if (start->str() != "{")
return nullptr;
const Token *endToken = start->link();
if (!Token::Match(start->next(), "%var% . %name% ("))
return nullptr;
if (!Token::simpleMatch(start->linkAt(4), ") ; }"))
return nullptr;
const Token *endStatement = start->linkAt(4)->next();
if (endStatement->next() != endToken)
return nullptr;
const Token *dotTok = start->tokAt(2);
if (!Token::findmatch(dotTok->tokAt(2), "%varid%", endStatement, varid))
return nullptr;
input = Token::Match(start->next(), "%var% . %name% ( %varid% )", varid);
if (isVariableChanged(dotTok->next(), endStatement, dotTok->astOperand1()->varId(), false, nullptr, true))
return nullptr;
return dotTok;
}
static const Token *singleIncrementInScope(const Token *start, nonneg int varid, bool &input)
{
if (start->str() != "{")
return nullptr;
const Token *varTok = nullptr;
if (Token::Match(start->next(), "++ %var% ; }"))
varTok = start->tokAt(2);
else if (Token::Match(start->next(), "%var% ++ ; }"))
varTok = start->tokAt(1);
if (!varTok)
return nullptr;
input = varTok->varId() == varid;
return varTok;
}
static const Token *singleConditionalInScope(const Token *start, nonneg int varid)
{
if (start->str() != "{")
return nullptr;
const Token *endToken = start->link();
if (!Token::simpleMatch(start->next(), "if ("))
return nullptr;
if (!Token::simpleMatch(start->linkAt(2), ") {"))
return nullptr;
const Token *bodyTok = start->linkAt(2)->next();
const Token *endBodyTok = bodyTok->link();
if (!Token::simpleMatch(endBodyTok, "} }"))
return nullptr;
if (endBodyTok->next() != endToken)
return nullptr;
if (!Token::findmatch(start, "%varid%", bodyTok, varid))
return nullptr;
if (isVariableChanged(start, bodyTok, varid, false, nullptr, true))
return nullptr;
return bodyTok;
}
static bool addByOne(const Token *tok, nonneg int varid)
{
if (Token::Match(tok, "+= %any% ;") &&
tok->tokAt(1)->hasKnownIntValue() &&
tok->tokAt(1)->getValue(1)) {
return true;
}
if (Token::Match(tok, "= %varid% + %any% ;", varid) &&
tok->tokAt(3)->hasKnownIntValue() &&
tok->tokAt(3)->getValue(1)) {
return true;
}
return false;
}
static bool accumulateBoolLiteral(const Token *tok, nonneg int varid)
{
if (Token::Match(tok, "%assign% %bool% ;") &&
tok->tokAt(1)->hasKnownIntValue()) {
return true;
}
if (Token::Match(tok, "= %varid% %oror%|%or%|&&|& %bool% ;", varid) &&
tok->tokAt(3)->hasKnownIntValue()) {
return true;
}
return false;
}
static bool accumulateBool(const Token *tok, nonneg int varid)
{
// Missing %oreq% so we have to check both manually
if (Token::simpleMatch(tok, "&=") || Token::simpleMatch(tok, "|=")) {
return true;
}
if (Token::Match(tok, "= %varid% %oror%|%or%|&&|&", varid)) {
return true;
}
return false;
}
static bool hasVarIds(const Token *tok, nonneg int var1, nonneg int var2)
{
if (tok->astOperand1()->varId() == tok->astOperand2()->varId())
return false;
if (tok->astOperand1()->varId() == var1 || tok->astOperand1()->varId() == var2) {
if (tok->astOperand2()->varId() == var1 || tok->astOperand2()->varId() == var2) {
return true;
}
}
return false;
}
static std::string flipMinMax(const std::string &algo)
{
if (algo == "std::max_element")
return "std::min_element";
if (algo == "std::min_element")
return "std::max_element";
return algo;
}
static std::string minmaxCompare(const Token *condTok, nonneg int loopVar, nonneg int assignVar, bool invert = false)
{
if (!Token::Match(condTok, "<|<=|>=|>"))
return "std::accumulate";
if (!hasVarIds(condTok, loopVar, assignVar))
return "std::accumulate";
std::string algo = "std::max_element";
if (Token::Match(condTok, "<|<="))
algo = "std::min_element";
if (condTok->astOperand1()->varId() == assignVar)
algo = flipMinMax(algo);
if (invert)
algo = flipMinMax(algo);
return algo;
}
void CheckStl::useStlAlgorithm()
{
if (!mSettings->isEnabled(Settings::STYLE))
return;
for (const Scope *function : mTokenizer->getSymbolDatabase()->functionScopes) {
for (const Token *tok = function->bodyStart; tok != function->bodyEnd; tok = tok->next()) {
// Parse range-based for loop
if (!Token::simpleMatch(tok, "for ("))
continue;
if (!Token::simpleMatch(tok->next()->link(), ") {"))
continue;
const Token *bodyTok = tok->next()->link()->next();
const Token *splitTok = tok->next()->astOperand2();
if (!Token::simpleMatch(splitTok, ":"))
continue;
const Token *loopVar = splitTok->previous();
if (!Token::Match(loopVar, "%var%"))
continue;
// Check for single assignment
bool useLoopVarInAssign;
const Token *assignTok = singleAssignInScope(bodyTok, loopVar->varId(), useLoopVarInAssign);
if (assignTok) {
int assignVarId = assignTok->astOperand1()->varId();
std::string algo;
if (assignVarId == loopVar->varId()) {
if (useLoopVarInAssign)
algo = "std::transform";
else if (Token::Match(assignTok->next(), "%var%|%bool%|%num%|%char% ;"))
algo = "std::fill";
else if (Token::Match(assignTok->next(), "%name% ( )"))
algo = "std::generate";
else
algo = "std::fill or std::generate";
} else {
if (addByOne(assignTok, assignVarId))
algo = "std::distance";
else if (accumulateBool(assignTok, assignVarId))
algo = "std::any_of, std::all_of, std::none_of, or std::accumulate";
else if (Token::Match(assignTok, "= %var% <|<=|>=|> %var% ? %var% : %var%") && hasVarIds(assignTok->tokAt(6), loopVar->varId(), assignVarId))
algo = minmaxCompare(assignTok->tokAt(2), loopVar->varId(), assignVarId, assignTok->tokAt(5)->varId() == assignVarId);
else
algo = "std::accumulate";
}
useStlAlgorithmError(assignTok, algo);
continue;
}
// Check for container calls
bool useLoopVarInMemCall;
const Token *memberAccessTok = singleMemberCallInScope(bodyTok, loopVar->varId(), useLoopVarInMemCall);
if (memberAccessTok) {
const Token *memberCallTok = memberAccessTok->astOperand2();
const int contVarId = memberAccessTok->astOperand1()->varId();
if (contVarId == loopVar->varId())
continue;
if (memberCallTok->str() == "push_back" ||
memberCallTok->str() == "push_front" ||
memberCallTok->str() == "emplace_back") {
std::string algo;
if (useLoopVarInMemCall)
algo = "std::copy";
else
algo = "std::transform";
useStlAlgorithmError(memberCallTok, algo);
}
continue;
}
// Check for increment in loop
bool useLoopVarInIncrement;
const Token *incrementTok = singleIncrementInScope(bodyTok, loopVar->varId(), useLoopVarInIncrement);
if (incrementTok) {
std::string algo;
if (useLoopVarInIncrement)
algo = "std::transform";
else
algo = "std::distance";
useStlAlgorithmError(incrementTok, algo);
continue;
}
// Check for conditionals
const Token *condBodyTok = singleConditionalInScope(bodyTok, loopVar->varId());
if (condBodyTok) {
// Check for single assign
assignTok = singleAssignInScope(condBodyTok, loopVar->varId(), useLoopVarInAssign);
if (assignTok) {
const int assignVarId = assignTok->astOperand1()->varId();
std::string algo;
if (assignVarId == loopVar->varId()) {
if (useLoopVarInAssign)
algo = "std::transform";
else
algo = "std::replace_if";
} else {
if (addByOne(assignTok, assignVarId))
algo = "std::count_if";
else if (accumulateBoolLiteral(assignTok, assignVarId))
algo = "std::any_of, std::all_of, std::none_of, or std::accumulate";
else
algo = "std::accumulate";
}
useStlAlgorithmError(assignTok, algo);
continue;
}
// Check for container call
memberAccessTok = singleMemberCallInScope(condBodyTok, loopVar->varId(), useLoopVarInMemCall);
if (memberAccessTok) {
const Token *memberCallTok = memberAccessTok->astOperand2();
const int contVarId = memberAccessTok->astOperand1()->varId();
if (contVarId == loopVar->varId())
continue;
if (memberCallTok->str() == "push_back" ||
memberCallTok->str() == "push_front" ||
memberCallTok->str() == "emplace_back") {
if (useLoopVarInMemCall)
useStlAlgorithmError(memberAccessTok, "std::copy_if");
// There is no transform_if to suggest
}
continue;
}
// Check for increment in loop
incrementTok = singleIncrementInScope(condBodyTok, loopVar->varId(), useLoopVarInIncrement);
if (incrementTok) {
std::string algo;
if (useLoopVarInIncrement)
algo = "std::transform";
else
algo = "std::count_if";
useStlAlgorithmError(incrementTok, algo);
continue;
}
// Check early return
if (isEarlyExit(condBodyTok)) {
const Token *loopVar2 = Token::findmatch(condBodyTok, "%varid%", condBodyTok->link(), loopVar->varId());
std::string algo;
if (loopVar2)
algo = "std::find_if";
else
algo = "std::any_of";
useStlAlgorithmError(condBodyTok, algo);
continue;
}
}
}
}
}