
FLAWFINDER(1) Flawfinder FLAWFINDER(1)

NAME
flawfinder − find potential security flaws ("hits") in source code

SYNOPSIS
flawfinder [−−help] [−−version] [−−allowlink] [−−inputs|−I] [−−minlevel=X | -m X] [−−falseposi-
tive|−F] [−−neverignore|−n] [−−context|−c] [−−columns|−C] [−−dataonly|−D] [−−html] [−−immedi-
ate|-i] [−−singleline|−S] [−−omittime] [−−quiet|−Q] [−−loadhitlist=F] [−−savehitlist=F] [
−−diffhitlist=F] [−−] [source code file or source root directory]+

DESCRIPTION
Flawfinder searches through C/C++ source code looking for potential security flaws. To run flawfinder,
simply give flawfinder a list of directories or files. For each directory given, all files that have C/C++ file-
name extensions in that directory (and its subdirectories, recursively) will be examined. Thus, for most
projects, simply give flawfinder the name of the source code’s topmost directory (use ‘‘.’’ for the current
directory), and flawfinder will examine all of the project’s C/C++ source code.

Flawfinder will produce a list of ‘‘hits’’ (potential security flaws), sorted by risk; the riskiest hits are shown
first. The risk level is shown inside square brackets and varies from 0, very little risk, to 5, great risk. This
risk level depends not only on the function, but on the values of the parameters of the function. For exam-
ple, constant strings are often less risky than fully variable strings in many contexts, and in those contexts
the hit will have a lower risk level. Flawfinder knows about gettext (a common library for internationalized
programs) and will treat constant strings passed through gettext as though they were constant strings; this
reduces the number of false hits in internationalized programs. Flawfinder will do the same sort of thing
with _T() and _TEXT(), common Microsoft macros for handling internationalized programs Flawfinder
correctly ignores most text inside comments and strings. Normally flawfinder shows all hits with a risk
level of at least 1, but you can use the −−minlevel option to show only hits with higher risk levels if you
wish.

Not every hit is actually a security vulnerability, and not every security vulnerability is necessarily found.
Nevertheless, flawfinder can be an aid in finding and removing security vulnerabilities. A common way to
use flawfinder is to first apply flawfinder to a set of source code and examine the highest-risk items. Then,
use −−inputs to examine the input locations, and check to make sure that only legal and safe input values
are accepted from untrusted users.

Once you’ve audited a program, you can mark source code lines that are actually fine but cause spurious
warnings so that flawfinder will stop complaining about them. To mark a line so that these warnings are
suppressed, put a specially-formatted comment either on the same line (after the source code) or all by
itself in the previous line. The comment must have one of the two following formats:

• // Flawfinder: ignore

• /* Flawfinder: ignore */

Note that, for compatibility’s sake, you can replace "Flawfinder:" with "ITS4:" or "RATS:" in these spe-
cially-formatted comments. Since it’s possible that such lines are wrong, you can use the ‘‘−−neverignore’’
option, which causes flawfinder to never ignore any line no matter what the comments say. Thus, responses
that would otherwise be ignored would be included (or, more confusingly, −−neverignore ignores the
ignores). This comment syntax is actually a more general syntax for special directives to flawfinder, but
currently only ignoring lines is supported.

Flawfinder uses an internal database called the ‘‘ruleset’’; the ruleset identifies functions that are common
causes of security flaws. The standard ruleset includes a large number of different potential problems,
including both general issues that can impact any C/C++ program, as well as a number of specific Unix-like
and Windows functions that are especially problematic. As noted above, every potential security flaw
found in a given source code file (matching an entry in the ruleset) is called a ‘‘hit,’’ and the set of hits
found during any particular run of the program is called the ‘‘hitlist.’’ Hitlists can be saved (using
−−savehitlist), reloaded back for redisplay (using −−loadhitlist), and you can show only the hits that are dif-
ferent from another run (using −−diffhitlist).

Any filename given on the command line will be examined (even if it doesn’t hav e a usual C/C++ filename

Flawfinder 30 May 2004 1

FLAWFINDER(1) Flawfinder FLAWFINDER(1)

extension); thus you can force flawfinder to examine any specific files you desire. While searching directo-
ries recursively, flawfinder only opens and examines regular files that have C/C++ filename extensions.
Flawfinder presumes that, files are C/C++ files if they hav e the extensions ".c", ".h", ".ec", ".ecp", ".pgc",
".C", ".cpp", ".CPP", ".cxx", ".cc", ".CC", ".pcc", ".hpp", or ".H". The filename ‘‘−’’ means the standard
input. To prevent security problems, special files (such as device special files and named pipes) are always
skipped, and by default symbolic links are skipped,

After the list of hits is a brief summary of the results (use -D to remove this information). It will show the
number of hits, lines analyzed (as reported by wc −l), and the physical source lines of code (SLOC) ana-
lyzed. A physical SLOC is a non-blank, non-comment line. It will then show the number of hits at each
level; note that there will never be a hit at a level lower than minlevel (1 by default). Thus, "[0] 0 [1] 9"
means that at level 0 there were 0 hits reported, and at level 1 there were 9 hits reported. It will next show
the number of hits at a given lev el or larger (so level 3+ has the sum of the number of hits at level 3, 4, and
5). Thus, an entry of "[0+] 37" shows that at level 0 or higher there were 37 hits (the 0+ entry will always
be the same as the "hits" number above). Hits per KSLOC is next shown; this is each of the "level or
higher" values multiplied by 1000 and divided by the physical SLOC. If symlinks were skipped, the count
of those is reported. If hits were suppressed (using the "ignore" directive in source code comments as
described above), the number suppressed is reported. The minimum risk level to be included in the report
is displayed; by default this is 1 (use −−minlevel to change this). The summary ends with important
reminders: Not every hit is necessarily a security vulnerability, and there may be other security vulnerabili-
ties not reported by the tool.

Flawfinder intentionally works similarly to another program, ITS4, which is not fully open source software
(as defined in the Open Source Definition) nor free software (as defined by the Free Software Foundation).
The author of Flawfinder has never seen ITS4’s source code.

BRIEF TUTORIAL
Here’s a brief example of how flawfinder might be used. Imagine that you have the C/C++ source code for
some program named xyzzy (which you may or may not have written), and you’re searching for security
vulnerabilities (so you can fix them before customers encounter the vulnerabilities). For this tutorial, I’ll
assume that you’re using a Unix-like system, such as Linux, OpenBSD, or MacOS X.

If the source code is in a subdirectory named xyzzy, you would probably start by opening a text window
and using flawfinder’s default settings, to analyze the program and report a prioritized list of potential secu-
rity vulnerabilities (the ‘‘less’’ just makes sure the results stay on the screen):

flawfinder xyzzy | less

At this point, you will a large number of entries; each entry begins with a filename, a colon, a line number,
a risk level in brackets (where 5 is the most risky), a category, the name of the function, and a description of
why flawfinder thinks the line is a vulnerability. Flawfinder normally sorts by risk level, showing the riski-
est items first; if you have limited time, it’s probably best to start working on the riskiest items and continue
until you run out of time. If you want to limit the display to risks with only a certain risk level or higher,
use the −−minlevel option. If you’re getting an extraordinary number of false positives because variable
names look like dangerous function names, use the −F option to remove reports about them. If you don’t
understand the error message, please see documents such as the Writing Secure Pro grams for Linux and
Unix HOWTO at http://www.dwheeler.com/secure-programs which provides more information on writing
secure programs.

Once you identify the problem and understand it, you can fix it. Occasionally you may want to re-do the
analysis, both because the line numbers will change and to make sure that the new code doesn’t introduce
yet a different vulnerability.

If you’ve determined that some line isn’t really a problem, and you’re sure of it, you can insert just before
or on the offending line a comment like

/* Flawfinder: ignore */

Flawfinder 30 May 2004 2

FLAWFINDER(1) Flawfinder FLAWFINDER(1)

to keep them from showing up in the output.

Once you’ve done that, you should go back and search for the program’s inputs, to make sure that the pro-
gram strongly filters any of its untrusted inputs. Flawfinder can identify many program inputs by using the
−−inputs option, like this:

flawfinder −−inputs xyzzy

Flawfinder can integrate well with text editors and integrated development environments; see the examples
for more information.

Flawfinder includes many other options, including ones to create HTML versions of the output (useful for
prettier displays). The next section describes those options in more detail.

OPTIONS
Flawfinder has a number of options, which can be grouped into options that control its own documentation,
select which hits to display, select the output format, and perform hitlist management.

Documentation
−−help Show usage (help) information.

−−version Shows (just) the version number and exits.

Selecting Hits to Display
−−allowlink Allow the use of symbolic links; normally symbolic links are skipped. Don’t use this option

if you’re analyzing code by others; attackers could do many things to cause problems for an
analysis with this option enabled. For example, an attacker could insert symbolic links to
files such as /etc/passwd (leaking information about the file) or create a circular loop, which
would cause flawfinder to run ‘‘forever’’. Another problem with enabling this option is that
if the same file is referenced multiple times using symbolic links, it will be analyzed multi-
ple times (and thus reported multiple times). Note that flawfinder already includes some
protection against symbolic links to special file types such as device file types (e.g.,
/dev/zero or C:\mystuff\com1). Note that for flawfinder version 1.01 and before, this was
the default.

−−inputs

−I Show only functions that obtain data from outside the program; this also sets minlevel to 0.

−−minlevel=X

-m X Set minimum risk level to X for inclusion in hitlist. This can be from 0 (‘‘no risk’’) to 5
(‘‘maximum risk’’); the default is 1.

−−falsepositive

−F Do not include hits that are likely to be false positives. Currently, this means that function
names are ignored if they’re not followed by "(", and that declarations of character arrays
aren’t noted. Thus, if you have use a variable named "access" everywhere, this will elimi-
nate references to this ordinary variable. This isn’t the default, because this also increases
the likelihood of missing important hits; in particular, function names in #define clauses and
calls through function pointers will be missed.

Flawfinder 30 May 2004 3

FLAWFINDER(1) Flawfinder FLAWFINDER(1)

−−neverignore

-n Never ignore security issues, even if they hav e an ‘‘ignore’’ directive in a comment.

Selecting Output Format
−−columns

−C Show the column number (as well as the file name and line number) of each hit; this is
shown after the line number by adding a colon and the column number in the line (the first
character in a line is column number 1). This is useful for editors that can jump to specific
columns, or for integrating with other tools (such as those to further filter out false posi-
tives).

−−context

−c Show context, i.e., the line having the "hit"/potential flaw. By default the line is shown
immediately after the warning.

−−dataonly

−D Don’t display the header and footer. Use this along with −−quiet to see just the data itself.

−−html Format the output as HTML instead of as simple text.

−−immediate

-i Immediately display hits (don’t just wait until the end).

−−singleline

-S Display as single line of text output for each hit. Useful for interacting with compilation
tools.

−−omittime Omit timing information. This is useful for regression tests of flawfinder itself, so that the
output doesn’t vary depending on how long the analysis takes.

−−quiet

−Q Don’t display status information (i.e., which files are being examined) while the analysis is
going on.

Hitlist Management
−−savehitlist=F

Save all resulting hits (the "hitlist") to F.

−−loadhitlist=F
Load the hitlist from F instead of analyzing source programs.

−−diffhitlist=F
Show only hits (loaded or analyzed) not in F. F was presumably created previously using
−−savehitlist. If the −−loadhitlist option is not provided, this will show the hits in the ana-
lyzed source code files that were not previously stored in F. If used along with −−loadhitlist,

Flawfinder 30 May 2004 4

FLAWFINDER(1) Flawfinder FLAWFINDER(1)

this will show the hits in the loaded hitlist not in F. The difference algorithm is conservative;
hits are only considered the ‘‘same’’ if they hav e the same filename, line number, column
position, function name, and risk level.

EXAMPLES
Here are various examples of how to inv oke flawfinder. The first examples show various simple command-
line options. Flawfinder is designed to work well with text editors and integrated development environ-
ments, so the next sections show how to integrate flawfinder into vim and emacs.

Simple command-line options
flawfinder /usr/src/linux-2.4.12

Examine all the C/C++ files in the directory /usr/src/linux-2.4.12 and all its subdirectories
(recursively), reporting on all hits found.

flawfinder −−minlevel=4 .
Examine all the C/C++ files in the current directory and its subdirectories (recursively); only
report vulnerabilities level 4 and up (the two highest risk levels).

flawfinder −−inputs mydir
Examine all the C/C++ files in mydir and its subdirectories (recursively), and report func-
tions that take inputs (so that you can ensure that they filter the inputs appropriately).

flawfinder −−neverignore mydir
Examine all the C/C++ files in the directory mydir and its subdirectories, including even the
hits marked for ignoring in the code comments.

flawfinder -QD mydir
Examine mydir and report only the actual results (removing the header and footer of the out-
put). This form is useful if the output will be piped into other tools for further analysis. The
−C (−−columns) and −S (−−singleline) options can also be useful if you’re piping the data
into other tools.

flawfinder −−quiet −−html −−context mydir > results.html
Examine all the C/C++ files in the directory mydir and its subdirectories, and produce an
HTML formatted version of the results. Source code management systems (such as Source-
Forge and Savannah) might use a command like this.

flawfinder −−quiet −−savehitlist saved.hits *.[ch]
Examine all .c and .h files in the current directory. Don’t report on the status of processing,
and save the resulting hitlist (the set of all hits) in the file saved.hits.

flawfinder −−diffhitlist saved.hits *.[ch]
Examine all .c and .h files in the current directory, and show any hits that weren’t already in
the file saved.hits. This can be used to show only the ‘‘new’’ vulnerabilities in a modified
program, if saved.hits was created from the older version of the program being analyzed.

Invoking from vim
The text editor vim includes a "quickfix" mechanism that works well with flawfinder, so that you can easily
view the warning messages and jump to the relevant source code.

Flawfinder 30 May 2004 5

FLAWFINDER(1) Flawfinder FLAWFINDER(1)

First, you need to invoke flawfinder to create a list of hits, and there are two ways to do this. The first way
is to start flawfinder first, and then (using its output) invoke vim. The second way is to start (or continue to
run) vim, and then invoke flawfinder (typically from inside vim).

For the first way, run flawfinder and store its output in some FLAWFILE (say "flawfile"), then invoke vim
using its -q option, like this: "vim -q flawfile". The second way (starting flawfinder after starting vim) can
be done a legion of ways. One is to invoke flawfinder using a shell command, ":!flawfinder-command >
FLAWFILE", then follow that with the command ":cf FLAWFILE". Another way is to store the flawfinder
command in your makefile (as, say, a pseudocommand like "flaw"), and then run ":make flaw".

In all these cases you need a command for flawfinder to run. A plausible command, which places each hit
in its own line (-S) and removes headers and footers that would confuse it, is:

flawfinder −SQD .

You can now use various editing commands to view the results. The command ":cn" displays the next hit;
":cN" displays the previous hit, and ":cr" rewinds back to the first hit. ":copen" will open a window to show
the current list of hits, called the "quickfix window"; ":cclose" will close the quickfix window. If the buffer
in the used window has changed, and the error is in another file, jumping to the error will fail. You have to
make sure the window contains a buffer which can be abandoned before trying to jump to a new file, say by
saving the file; this prevents accidental data loss.

Invoking from emacs
The text editor / operating system emacs includes "grep mode" and "compile mode" mechanisms that work
well with flawfinder, making it easy to view warning messages, jump to the relevant source code, and fix
any problems you find.

First, you need to invoke flawfinder to create a list of warning messages. You can use "grep mode" or
"compile mode" to create this list. Often "grep mode" is more convenient; it leaves compile mode
untouched so you can easily recompile once you’ve changed something. However, if you want to jump to
the exact column position of a hit, compile mode may be more convenient because emacs can use the col-
umn output of flawfinder to directly jump to the right location without any special configuration.

To use grep mode, enter the command "M-x grep" and then enter the needed flawfinder command. To use
compile mode, enter the command "M-x compile" and enter the needed flawfinder command. This is a
meta-key command, so you’ll need to use the meta key for your keyboard (this is usually the ESC key). As
with all emacs commands, you’ll need to press RETURN after typing "grep" or "compile". So on many
systems, the grep mode is invoked by typing ESC x g r e p RETURN.

You then need to enter a command, removing whatever was there before if necessary. A plausible com-
mand is:

flawfinder −SQDC .

This command makes every hit report a single line, which is much easier for tools to handle. The quiet and
dataonly options remove the other status information not needed for use inside emacs. The trailing period
means that the current directory and all descendents are searched for C/C++ code, and analyzed for flaws.

Once you’ve inv oked flawfinder, you can use emacs to jump around in its results. The command C-x `
(Control-x backtick) visits the source code location for the next warning message. C-u C-x ` (control-u
control-x backtick) restarts from the beginning. You can visit the source for any particular error message
by moving to that hit message in the *compilation* buffer or *grep* buffer and typing the return key.
(Technical note: in the compilation buffer, this invokes compile-goto-error). You can also click the
Mouse-2 button on the error message (when using the mouse you don’t need to switch to the *compilation*
buffer first).

If you want to use grep mode to jump to specific columns of a hit, you’ll need to specially configure emacs
to do this. To do this, modify the emacs variable "grep-regexp-alist". This variable tells Emacs how to
parse output of a "grep" command, similar to the variable "compilation-error-regexp-alist" which lists vari-
ous formats of compilation error messages.

Flawfinder 30 May 2004 6

FLAWFINDER(1) Flawfinder FLAWFINDER(1)

SECURITY
You should always analyze a copy of the source program being analyzed, not a directory that can be modi-
fied by a developer while flawfinder is performing the analysis. This is especially true if you don’t necess-
ily trust a developer of the program being analyzed. If an attacker has control over the files while you’re
analyzing them, the attacker could move files around or change their contents to prevent the exposure of a
security problem (or create the impression of a problem where there is none). If you’re worried about mali-
cious programmers you should do this anyway, because after analysis you’ll need to verify that the code
ev entually run is the code you analyzed. Also, do not use the −−allowlink option in such cases; attackers
could create malicious symbolic links to files outside of their source code area (such as /etc/passwd).

Source code management systems (like SourceForge and Savannah) definitely fall into this category; if
you’re maintaining one of those systems, first copy or extract the files into a separate directory (that can’t
be controlled by attackers) before running flawfinder or any other code analysis tool.

Note that flawfinder only opens regular files, directories, and (if requested) symbolic links; it will never
open other kinds of files, even if a symbolic link is made to them. This counters attackers who insert
unusual file types into the source code. However, this only works if the filesystem being analyzed can’t be
modified by an attacker during the analysis, as recommended above. This protection also doesn’t work on
Cygwin platforms, unfortunately.

Cygwin systems (Unix emulation on top of Windows) have an additional problem if flawfinder is used to
analyze programs the analyzer cannot trust due to a design flaw in Windows (that it inherits from MS-
DOS). On Windows and MS-DOS, certain filenames (e.g., ‘‘com1’’) are automatically treated by the oper-
ating system as the names of peripherals, and this is true even when a full pathname is given. Yes, Win-
dows and MS-DOS really are designed this badly. Flawfinder deals with this by checking what a filesystem
object is, and then only opening directories and regular files (and symlinks if enabled). Unfortunately, this
doesn’t work on Cygwin; on at least some versions of Cygwin on some versions of Windows, merely trying
to determine if a file is a device type can cause the program to hang. A workaround is to delete or rename
any filenames that are interpreted as device names before performing the analysis. These so-called
‘‘reserved names’’ are CON, PRN, AUX, CLOCK$, NUL, COM1-COM9, and LPT1-LPT9, optionally fol-
lowed by an extension (e.g., ‘‘com1.txt’’), in any directory, and in any case (Windows is case-insensitive).

BUGS
Flawfinder is currently limited to C/C++. It’s designed so that adding support for other languages should
be easy.

Flawfinder can be fooled by user-defined functions or method names that happen to be the same as those
defined as ‘‘hits’’ in its database, and will often trigger on definitions (as well as uses) of functions with the
same name. This is because flawfinder is based on text pattern matching, which is part of its fundamental
design and not easily changed. This isn’t as much of a problem for C code, but it can be more of a problem
for some C++ code which heavily uses classes and namespaces. On the positive side, flawfinder doesn’t get
confused by many complicated preprocessor sequences that other tools sometimes choke on. Also, having
the same name as a common library routine name can indicate that the developer is simply rewriting a com-
mon library routine, say for portability’s sake. Thus, there are reasonable odds that these rewritten routines
will be vulnerable to the same kinds of misuse. The −−falsepositive option can help somewhat. If this is a
serious problem, feel free to modify the program, or process the flawfinder output through other tools to
remove the false positives.

Preprocessor commands embedded in the middle of a parameter list of a call can cause problems in parsing,
in particular, if a string is opened and then closed multiple times using an #ifdef .. #else construct,
flawfinder gets confused. Such constructs are bad style, and will confuse many other tools too. If you must
analyze such files, rewrite those lines. Thankfully, these are quite rare.

The routine to detect statically defined character arrays uses simple text matching; some complicated expre-
sions can cause it to trigger or not trigger unexpectedly.

Flawfinder looks for specific patterns known to be common mistakes. Flawfinder (or any tool like it) is not

Flawfinder 30 May 2004 7

FLAWFINDER(1) Flawfinder FLAWFINDER(1)

a good tool for finding intentionally malicious code (e.g., Trojan horses); malicious programmers can easily
insert code that would not be detected by this kind of tool.

Flawfinder looks for specific patterns known to be common mistakes in application code. Thus, it is likely
to be less effective analyzing programs that aren’t application-layer code (e.g., kernel code or self-hosting
code). The techniques may still be useful; feel free to replace the database if your situation is significantly
different from normal.

Flawfinder’s output format (filename:linenumber, followed optionally by a :columnnumber) can be misun-
derstood if any source files have very weird filenames. Filenames embedding a newline/linefeed character
will cause odd breaks, and filenames including colon (:) are likely to be misunderstood. This is especially
important if flawfinder’s output is being used by other tools, such as filters or text editors. If you’re looking
at new code, examine the files for such characters. It’s incredibly unwise to have such filenames anyway;
many tools can’t handle such filenames at all. Newline and linefeed are often used as internal data delime-
ters. The colon is often used as special characters in filesystems: MacOS uses it as a directory separator,
Windows/MS-DOS uses it to identify drive letters, Windows/MS-DOS inconsistently uses it to identify spe-
cial devices like CON:, and applications on many platforms use the colon to identify URIs/URLs. File-
names including spaces and/or tabs don’t cause problems for flawfinder, though note that other tools might
have problems with them.

In general, flawfinder attempts to err on the side of caution; it tends to report hits, so that they can be exam-
ined further, instead of silently ignoring them. Thus, flawfinder prefers to have false positives (reports that
turn out to not be problems) rather than false negatives (failure to report on a security vulnerability). But
this is a generality; flawfinder uses simplistic heuristics and simply can’t get everything "right".

Security vulnerabilities might not be identified as such by flawfinder, and conversely, some hits aren’t really
security vulnerabilities. This is true for all static security scanners, especially those like flawfinder that use
a simple pattern-based approach to identifying problems. Still, it can serve as a useful aid for humans,
helping to identify useful places to examine further, and that’s the point of this tool.

SEE ALSO
See the flawfinder website at http://www.dwheeler.com/flawfinder. You should also see the Secure Pro-
gramming for Unix and Linux HOWTO at http://www.dwheeler.com/secure-programs.

AUTHOR
David A. Wheeler (dwheeler@dwheeler.com).

Flawfinder 30 May 2004 8

