Merge pull request #3248 from googlefonts/connected_components

[repacker] Keep connected subgraphs in the same space.
This commit is contained in:
Behdad Esfahbod 2021-10-23 13:18:22 -07:00 committed by GitHub
commit 4262636926
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
7 changed files with 917 additions and 172 deletions

View File

@ -45,24 +45,57 @@ struct graph_t
vertex_t () : vertex_t () :
distance (0), distance (0),
space (0), space (0),
incoming_edges (0), parents (),
start (0), start (0),
end (0), end (0),
priority(0) {} priority(0) {}
void fini () { obj.fini (); } void fini () {
obj.fini ();
parents.fini ();
}
hb_serialize_context_t::object_t obj; hb_serialize_context_t::object_t obj;
int64_t distance; int64_t distance;
int64_t space; int64_t space;
unsigned incoming_edges; hb_vector_t<unsigned> parents;
unsigned start; unsigned start;
unsigned end; unsigned end;
unsigned priority; unsigned priority;
bool is_shared () const bool is_shared () const
{ {
return incoming_edges > 1; return parents.length > 1;
}
unsigned incoming_edges () const
{
return parents.length;
}
void remove_parent (unsigned parent_index)
{
for (unsigned i = 0; i < parents.length; i++)
{
if (parents[i] != parent_index) continue;
parents.remove (i);
break;
}
}
void remap_parents (const hb_vector_t<unsigned>& id_map)
{
for (unsigned i = 0; i < parents.length; i++)
parents[i] = id_map[parents[i]];
}
void remap_parent (unsigned old_index, unsigned new_index)
{
for (unsigned i = 0; i < parents.length; i++)
{
if (parents[i] == old_index)
parents[i] = new_index;
}
} }
bool is_leaf () const bool is_leaf () const
@ -100,33 +133,6 @@ struct graph_t
unsigned child; unsigned child;
}; };
struct clone_buffer_t
{
clone_buffer_t () : head (nullptr), tail (nullptr) {}
bool copy (const hb_serialize_context_t::object_t& object)
{
fini ();
unsigned size = object.tail - object.head;
head = (char*) hb_malloc (size);
if (!head) return false;
memcpy (head, object.head, size);
tail = head + size;
return true;
}
char* head;
char* tail;
void fini ()
{
if (!head) return;
hb_free (head);
head = nullptr;
}
};
/* /*
* A topological sorting of an object graph. Ordered * A topological sorting of an object graph. Ordered
* in reverse serialization order (first object in the * in reverse serialization order (first object in the
@ -135,11 +141,12 @@ struct graph_t
* serializer * serializer
*/ */
graph_t (const hb_vector_t<hb_serialize_context_t::object_t *>& objects) graph_t (const hb_vector_t<hb_serialize_context_t::object_t *>& objects)
: edge_count_invalid (true), : parents_invalid (true),
distance_invalid (true), distance_invalid (true),
positions_invalid (true), positions_invalid (true),
successful (true) successful (true)
{ {
num_roots_for_space_.push (1);
bool removed_nil = false; bool removed_nil = false;
for (unsigned i = 0; i < objects.length; i++) for (unsigned i = 0; i < objects.length; i++)
{ {
@ -166,12 +173,13 @@ struct graph_t
~graph_t () ~graph_t ()
{ {
vertices_.fini_deep (); vertices_.fini_deep ();
clone_buffers_.fini_deep ();
} }
bool in_error () const bool in_error () const
{ {
return !successful || vertices_.in_error () || clone_buffers_.in_error (); return !successful ||
vertices_.in_error () ||
num_roots_for_space_.in_error ();
} }
const vertex_t& root () const const vertex_t& root () const
@ -232,12 +240,13 @@ struct graph_t
hb_vector_t<unsigned> queue; hb_vector_t<unsigned> queue;
hb_vector_t<vertex_t> sorted_graph; hb_vector_t<vertex_t> sorted_graph;
if (unlikely (!check_success (sorted_graph.resize (vertices_.length)))) return;
hb_vector_t<unsigned> id_map; hb_vector_t<unsigned> id_map;
if (unlikely (!check_success (id_map.resize (vertices_.length)))) return; if (unlikely (!check_success (id_map.resize (vertices_.length)))) return;
hb_vector_t<unsigned> removed_edges; hb_vector_t<unsigned> removed_edges;
if (unlikely (!check_success (removed_edges.resize (vertices_.length)))) return; if (unlikely (!check_success (removed_edges.resize (vertices_.length)))) return;
update_incoming_edge_count (); update_parents ();
queue.push (root_idx ()); queue.push (root_idx ());
int new_id = vertices_.length - 1; int new_id = vertices_.length - 1;
@ -248,12 +257,12 @@ struct graph_t
queue.remove (0); queue.remove (0);
vertex_t& next = vertices_[next_id]; vertex_t& next = vertices_[next_id];
sorted_graph.push (next); sorted_graph[new_id] = next;
id_map[next_id] = new_id--; id_map[next_id] = new_id--;
for (const auto& link : next.obj.links) { for (const auto& link : next.obj.links) {
removed_edges[link.objidx]++; removed_edges[link.objidx]++;
if (!(vertices_[link.objidx].incoming_edges - removed_edges[link.objidx])) if (!(vertices_[link.objidx].incoming_edges () - removed_edges[link.objidx]))
queue.push (link.objidx); queue.push (link.objidx);
} }
} }
@ -261,14 +270,11 @@ struct graph_t
check_success (!queue.in_error ()); check_success (!queue.in_error ());
check_success (!sorted_graph.in_error ()); check_success (!sorted_graph.in_error ());
if (!check_success (new_id == -1)) if (!check_success (new_id == -1))
DEBUG_MSG (SUBSET_REPACK, nullptr, "Graph is not fully connected."); print_orphaned_nodes ();
remap_obj_indices (id_map, &sorted_graph); remap_all_obj_indices (id_map, &sorted_graph);
sorted_graph.as_array ().reverse (); vertices_.swap (sorted_graph);
vertices_.fini_deep ();
vertices_ = sorted_graph;
sorted_graph.fini_deep (); sorted_graph.fini_deep ();
} }
@ -289,12 +295,13 @@ struct graph_t
hb_priority_queue_t queue; hb_priority_queue_t queue;
hb_vector_t<vertex_t> sorted_graph; hb_vector_t<vertex_t> sorted_graph;
if (unlikely (!check_success (sorted_graph.resize (vertices_.length)))) return;
hb_vector_t<unsigned> id_map; hb_vector_t<unsigned> id_map;
if (unlikely (!check_success (id_map.resize (vertices_.length)))) return; if (unlikely (!check_success (id_map.resize (vertices_.length)))) return;
hb_vector_t<unsigned> removed_edges; hb_vector_t<unsigned> removed_edges;
if (unlikely (!check_success (removed_edges.resize (vertices_.length)))) return; if (unlikely (!check_success (removed_edges.resize (vertices_.length)))) return;
update_incoming_edge_count (); update_parents ();
queue.insert (root ().modified_distance (0), root_idx ()); queue.insert (root ().modified_distance (0), root_idx ());
int new_id = root_idx (); int new_id = root_idx ();
@ -304,12 +311,12 @@ struct graph_t
unsigned next_id = queue.pop_minimum().second; unsigned next_id = queue.pop_minimum().second;
vertex_t& next = vertices_[next_id]; vertex_t& next = vertices_[next_id];
sorted_graph.push (next); sorted_graph[new_id] = next;
id_map[next_id] = new_id--; id_map[next_id] = new_id--;
for (const auto& link : next.obj.links) { for (const auto& link : next.obj.links) {
removed_edges[link.objidx]++; removed_edges[link.objidx]++;
if (!(vertices_[link.objidx].incoming_edges - removed_edges[link.objidx])) if (!(vertices_[link.objidx].incoming_edges () - removed_edges[link.objidx]))
// Add the order that the links were encountered to the priority. // Add the order that the links were encountered to the priority.
// This ensures that ties between priorities objects are broken in a consistent // This ensures that ties between priorities objects are broken in a consistent
// way. More specifically this is set up so that if a set of objects have the same // way. More specifically this is set up so that if a set of objects have the same
@ -323,61 +330,89 @@ struct graph_t
check_success (!queue.in_error ()); check_success (!queue.in_error ());
check_success (!sorted_graph.in_error ()); check_success (!sorted_graph.in_error ());
if (!check_success (new_id == -1)) if (!check_success (new_id == -1))
DEBUG_MSG (SUBSET_REPACK, nullptr, "Graph is not fully connected."); print_orphaned_nodes ();
remap_obj_indices (id_map, &sorted_graph); remap_all_obj_indices (id_map, &sorted_graph);
sorted_graph.as_array ().reverse (); vertices_.swap (sorted_graph);
vertices_.fini_deep ();
vertices_ = sorted_graph;
sorted_graph.fini_deep (); sorted_graph.fini_deep ();
} }
/* /*
* Finds any links using 32 bits and isolates the subgraphs they point too. * Assign unique space numbers to each connected subgraph of 32 bit offset(s).
*/ */
bool isolate_32bit_links () bool assign_32bit_spaces ()
{ {
bool made_changes = false;
hb_set_t target_links;
unsigned root_index = root_idx (); unsigned root_index = root_idx ();
int64_t next_space = 0; hb_set_t visited;
hb_set_t roots;
for (unsigned i = 0; i <= root_index; i++) for (unsigned i = 0; i <= root_index; i++)
{ {
if (i == root_index && root_idx () > i)
// root index may have moved due to graph modifications.
i = root_idx ();
for (auto& l : vertices_[i].obj.links) for (auto& l : vertices_[i].obj.links)
{ {
if (l.width == 4 && !l.is_signed) if (l.width == 4 && !l.is_signed)
{ {
isolate_subgraph (l.objidx); roots.add (l.objidx);
vertices_[l.objidx].space = next_space++; find_subgraph (l.objidx, visited);
}
}
}
// Mark everything not in the subgraphs of 32 bit roots as visited.
// This prevents 32 bit subgraphs from being connected via nodes not in the 32 bit subgraphs.
visited.invert ();
if (!roots) return false;
while (roots)
{
unsigned next = HB_SET_VALUE_INVALID;
if (!roots.next (&next)) break;
hb_set_t connected_roots;
find_connected_nodes (next, roots, visited, connected_roots);
isolate_subgraph (connected_roots);
unsigned next_space = this->next_space ();
num_roots_for_space_.push (0);
for (unsigned root : connected_roots)
{
DEBUG_MSG (SUBSET_REPACK, nullptr, "Subgraph %u gets space %u", root, next_space);
vertices_[root].space = next_space;
num_roots_for_space_[next_space] = num_roots_for_space_[next_space] + 1;
distance_invalid = true; distance_invalid = true;
made_changes = true; positions_invalid = true;
} }
// TODO(grieger): special case for GSUB/GPOS use extension promotions to move 16 bit space
// into the 32 bit space as needed, instead of using isolation.
} }
}
return made_changes; return true;
} }
/* /*
* Isolates the subgraph of nodes reachable from root. Any links to nodes in the subgraph * Isolates the subgraph of nodes reachable from root. Any links to nodes in the subgraph
* that originate from outside of the subgraph will be removed by duplicating the linked to * that originate from outside of the subgraph will be removed by duplicating the linked to
* object. * object.
*
* Indices stored in roots will be updated if any of the roots are duplicated to new indices.
*/ */
bool isolate_subgraph (unsigned root_idx) bool isolate_subgraph (hb_set_t& roots)
{ {
update_incoming_edge_count (); update_parents ();
hb_hashmap_t<unsigned, unsigned> subgraph; hb_hashmap_t<unsigned, unsigned> subgraph;
// incoming edges to root_idx should be all 32 bit in length so we don't need to de-dup these // incoming edges to root_idx should be all 32 bit in length so we don't need to de-dup these
// set the subgraph incoming edge count to match all of root_idx's incoming edges // set the subgraph incoming edge count to match all of root_idx's incoming edges
subgraph.set (root_idx, vertices_[root_idx].incoming_edges); hb_set_t parents;
for (unsigned root_idx : roots)
{
subgraph.set (root_idx, wide_parents (root_idx, parents));
find_subgraph (root_idx, subgraph); find_subgraph (root_idx, subgraph);
}
unsigned original_root_idx = root_idx ();
hb_hashmap_t<unsigned, unsigned> index_map; hb_hashmap_t<unsigned, unsigned> index_map;
bool made_changes = false; bool made_changes = false;
for (auto entry : subgraph.iter ()) for (auto entry : subgraph.iter ())
@ -385,7 +420,7 @@ struct graph_t
const auto& node = vertices_[entry.first]; const auto& node = vertices_[entry.first];
unsigned subgraph_incoming_edges = entry.second; unsigned subgraph_incoming_edges = entry.second;
if (subgraph_incoming_edges < node.incoming_edges) if (subgraph_incoming_edges < node.incoming_edges ())
{ {
// Only de-dup objects with incoming links from outside the subgraph. // Only de-dup objects with incoming links from outside the subgraph.
made_changes = true; made_changes = true;
@ -396,6 +431,14 @@ struct graph_t
if (!made_changes) if (!made_changes)
return false; return false;
if (original_root_idx != root_idx ()
&& parents.has (original_root_idx))
{
// If the root idx has changed since parents was determined, update root idx in parents
parents.add (root_idx ());
parents.del (original_root_idx);
}
auto new_subgraph = auto new_subgraph =
+ subgraph.keys () + subgraph.keys ()
| hb_map([&] (unsigned node_idx) { | hb_map([&] (unsigned node_idx) {
@ -403,7 +446,21 @@ struct graph_t
return node_idx; return node_idx;
}) })
; ;
remap_obj_indices (index_map, new_subgraph); remap_obj_indices (index_map, new_subgraph);
remap_obj_indices (index_map, parents.iter (), true);
// Update roots set with new indices as needed.
unsigned next = HB_SET_VALUE_INVALID;
while (roots.next (&next))
{
if (index_map.has (next))
{
roots.del (next);
roots.add (index_map[next]);
}
}
return true; return true;
} }
@ -421,6 +478,14 @@ struct graph_t
} }
} }
void find_subgraph (unsigned node_idx, hb_set_t& subgraph)
{
if (subgraph.has (node_idx)) return;
subgraph.add (node_idx);
for (const auto& link : vertices_[node_idx].obj.links)
find_subgraph (link.objidx, subgraph);
}
/* /*
* duplicates all nodes in the subgraph reachable from node_idx. Does not re-assign * duplicates all nodes in the subgraph reachable from node_idx. Does not re-assign
* links. index_map is updated with mappings from old id to new id. If a duplication has already * links. index_map is updated with mappings from old id to new id. If a duplication has already
@ -447,23 +512,21 @@ struct graph_t
auto* clone = vertices_.push (); auto* clone = vertices_.push ();
auto& child = vertices_[node_idx]; auto& child = vertices_[node_idx];
clone_buffer_t* buffer = clone_buffers_.push (); if (vertices_.in_error ()) {
if (vertices_.in_error ()
|| clone_buffers_.in_error ()
|| !check_success (buffer->copy (child.obj))) {
return -1; return -1;
} }
clone->obj.head = buffer->head; clone->obj.head = child.obj.head;
clone->obj.tail = buffer->tail; clone->obj.tail = child.obj.tail;
clone->distance = child.distance; clone->distance = child.distance;
clone->space = child.space; clone->space = child.space;
clone->incoming_edges = 0; clone->parents.reset ();
unsigned clone_idx = vertices_.length - 2;
for (const auto& l : child.obj.links) for (const auto& l : child.obj.links)
{ {
clone->obj.links.push (l); clone->obj.links.push (l);
vertices_[l.objidx].incoming_edges++; vertices_[l.objidx].parents.push (clone_idx);
} }
check_success (!clone->obj.links.in_error ()); check_success (!clone->obj.links.in_error ());
@ -472,10 +535,14 @@ struct graph_t
// The root's obj idx does change, however since it's root nothing else refers to it. // The root's obj idx does change, however since it's root nothing else refers to it.
// all other obj idx's will be unaffected. // all other obj idx's will be unaffected.
vertex_t root = vertices_[vertices_.length - 2]; vertex_t root = vertices_[vertices_.length - 2];
vertices_[vertices_.length - 2] = *clone; vertices_[clone_idx] = *clone;
vertices_[vertices_.length - 1] = root; vertices_[vertices_.length - 1] = root;
return vertices_.length - 2; // Since the root moved, update the parents arrays of all children on the root.
for (const auto& l : root.obj.links)
vertices_[l.objidx].remap_parent (root_idx () - 1, root_idx ());
return clone_idx;
} }
/* /*
@ -485,7 +552,7 @@ struct graph_t
*/ */
bool duplicate (unsigned parent_idx, unsigned child_idx) bool duplicate (unsigned parent_idx, unsigned child_idx)
{ {
update_incoming_edge_count (); update_parents ();
unsigned links_to_child = 0; unsigned links_to_child = 0;
for (const auto& l : vertices_[parent_idx].obj.links) for (const auto& l : vertices_[parent_idx].obj.links)
@ -493,7 +560,7 @@ struct graph_t
if (l.objidx == child_idx) links_to_child++; if (l.objidx == child_idx) links_to_child++;
} }
if (vertices_[child_idx].incoming_edges <= links_to_child) if (vertices_[child_idx].incoming_edges () <= links_to_child)
{ {
// Can't duplicate this node, doing so would orphan the original one as all remaining links // Can't duplicate this node, doing so would orphan the original one as all remaining links
// to child are from parent. // to child are from parent.
@ -509,19 +576,15 @@ struct graph_t
if (clone_idx == (unsigned) -1) return false; if (clone_idx == (unsigned) -1) return false;
// duplicate shifts the root node idx, so if parent_idx was root update it. // duplicate shifts the root node idx, so if parent_idx was root update it.
if (parent_idx == clone_idx) parent_idx++; if (parent_idx == clone_idx) parent_idx++;
auto& clone = vertices_[clone_idx];
auto& child = vertices_[child_idx];
auto& parent = vertices_[parent_idx]; auto& parent = vertices_[parent_idx];
for (unsigned i = 0; i < parent.obj.links.length; i++) for (unsigned i = 0; i < parent.obj.links.length; i++)
{ {
auto& l = parent.obj.links[i]; auto& l = parent.obj.links[i];
if (l.objidx == child_idx) if (l.objidx != child_idx)
{ continue;
l.objidx = clone_idx;
clone.incoming_edges++; reassign_link (l, parent_idx, clone_idx);
child.incoming_edges--;
}
} }
return true; return true;
@ -571,52 +634,134 @@ struct graph_t
return overflows->length; return overflows->length;
} }
void print_orphaned_nodes ()
{
if (!DEBUG_ENABLED(SUBSET_REPACK)) return;
DEBUG_MSG (SUBSET_REPACK, nullptr, "Graph is not fully connected.");
parents_invalid = true;
update_parents();
for (unsigned i = 0; i < root_idx (); i++)
{
const auto& v = vertices_[i];
if (!v.parents)
DEBUG_MSG (SUBSET_REPACK, nullptr, "Node %u is orphaned.", i);
}
}
void print_overflows (const hb_vector_t<overflow_record_t>& overflows) void print_overflows (const hb_vector_t<overflow_record_t>& overflows)
{ {
if (!DEBUG_ENABLED(SUBSET_REPACK)) return; if (!DEBUG_ENABLED(SUBSET_REPACK)) return;
update_incoming_edge_count (); update_parents ();
for (const auto& o : overflows) for (const auto& o : overflows)
{ {
const auto& parent = vertices_[o.parent]; const auto& parent = vertices_[o.parent];
const auto& child = vertices_[o.child]; const auto& child = vertices_[o.child];
DEBUG_MSG (SUBSET_REPACK, nullptr, DEBUG_MSG (SUBSET_REPACK, nullptr,
" overflow from %d (%d in, %d out) => %d (%d in, %d out)", " overflow from "
"%4d (%4d in, %4d out, space %2d) => "
"%4d (%4d in, %4d out, space %2d)",
o.parent, o.parent,
parent.incoming_edges, parent.incoming_edges (),
parent.obj.links.length, parent.obj.links.length,
space_for (o.parent),
o.child, o.child,
child.incoming_edges, child.incoming_edges (),
child.obj.links.length); child.obj.links.length,
space_for (o.child));
} }
} }
unsigned num_roots_for_space (unsigned space) const
{
return num_roots_for_space_[space];
}
unsigned next_space () const
{
return num_roots_for_space_.length;
}
void move_to_new_space (unsigned index)
{
auto& node = vertices_[index];
num_roots_for_space_.push (1);
num_roots_for_space_[node.space] = num_roots_for_space_[node.space] - 1;
node.space = num_roots_for_space_.length - 1;
}
unsigned space_for (unsigned index, unsigned* root = nullptr) const
{
const auto& node = vertices_[index];
if (node.space)
{
if (root != nullptr)
*root = index;
return node.space;
}
if (!node.parents)
{
if (root)
*root = index;
return 0;
}
return space_for (node.parents[0], root);
}
void err_other_error () { this->successful = false; } void err_other_error () { this->successful = false; }
private: private:
/*
* Returns the numbers of incoming edges that are 32bits wide.
*/
unsigned wide_parents (unsigned node_idx, hb_set_t& parents) const
{
unsigned count = 0;
hb_set_t visited;
for (unsigned p : vertices_[node_idx].parents)
{
if (visited.has (p)) continue;
visited.add (p);
for (const auto& l : vertices_[p].obj.links)
{
if (l.objidx == node_idx && l.width == 4 && !l.is_signed)
{
count++;
parents.add (p);
}
}
}
return count;
}
bool check_success (bool success) bool check_success (bool success)
{ return this->successful && (success || (err_other_error (), false)); } { return this->successful && (success || (err_other_error (), false)); }
/* /*
* Creates a map from objid to # of incoming edges. * Creates a map from objid to # of incoming edges.
*/ */
void update_incoming_edge_count () void update_parents ()
{ {
if (!edge_count_invalid) return; if (!parents_invalid) return;
for (unsigned i = 0; i < vertices_.length; i++) for (unsigned i = 0; i < vertices_.length; i++)
vertices_[i].incoming_edges = 0; vertices_[i].parents.reset ();
for (const vertex_t& v : vertices_) for (unsigned p = 0; p < vertices_.length; p++)
{ {
for (auto& l : v.obj.links) for (auto& l : vertices_[p].obj.links)
{ {
vertices_[l.objidx].incoming_edges++; vertices_[l.objidx].parents.push (p);
} }
} }
edge_count_invalid = false; parents_invalid = false;
} }
/* /*
@ -667,19 +812,20 @@ struct graph_t
hb_priority_queue_t queue; hb_priority_queue_t queue;
queue.insert (0, vertices_.length - 1); queue.insert (0, vertices_.length - 1);
hb_set_t visited; hb_vector_t<bool> visited;
visited.resize (vertices_.length);
while (!queue.in_error () && !queue.is_empty ()) while (!queue.in_error () && !queue.is_empty ())
{ {
unsigned next_idx = queue.pop_minimum ().second; unsigned next_idx = queue.pop_minimum ().second;
if (visited.has (next_idx)) continue; if (visited[next_idx]) continue;
const auto& next = vertices_[next_idx]; const auto& next = vertices_[next_idx];
int64_t next_distance = vertices_[next_idx].distance; int64_t next_distance = vertices_[next_idx].distance;
visited.add (next_idx); visited[next_idx] = true;
for (const auto& link : next.obj.links) for (const auto& link : next.obj.links)
{ {
if (visited.has (link.objidx)) continue; if (visited[link.objidx]) continue;
const auto& child = vertices_[link.objidx].obj; const auto& child = vertices_[link.objidx].obj;
int64_t child_weight = (child.tail - child.head) + int64_t child_weight = (child.tail - child.head) +
@ -697,7 +843,7 @@ struct graph_t
check_success (!queue.in_error ()); check_success (!queue.in_error ());
if (!check_success (queue.is_empty ())) if (!check_success (queue.is_empty ()))
{ {
DEBUG_MSG (SUBSET_REPACK, nullptr, "Graph is not fully connected."); print_orphaned_nodes ();
return; return;
} }
@ -746,12 +892,27 @@ struct graph_t
} }
} }
/*
* Updates a link in the graph to point to a different object. Corrects the
* parents vector on the previous and new child nodes.
*/
void reassign_link (hb_serialize_context_t::object_t::link_t& link,
unsigned parent_idx,
unsigned new_idx)
{
unsigned old_idx = link.objidx;
link.objidx = new_idx;
vertices_[old_idx].remove_parent (parent_idx);
vertices_[new_idx].parents.push (parent_idx);
}
/* /*
* Updates all objidx's in all links using the provided mapping. Corrects incoming edge counts. * Updates all objidx's in all links using the provided mapping. Corrects incoming edge counts.
*/ */
template<typename Iterator, hb_requires (hb_is_iterator (Iterator))> template<typename Iterator, hb_requires (hb_is_iterator (Iterator))>
void remap_obj_indices (const hb_hashmap_t<unsigned, unsigned>& id_map, void remap_obj_indices (const hb_hashmap_t<unsigned, unsigned>& id_map,
Iterator subgraph) Iterator subgraph,
bool only_wide = false)
{ {
if (!id_map) return; if (!id_map) return;
for (unsigned i : subgraph) for (unsigned i : subgraph)
@ -760,9 +921,9 @@ struct graph_t
{ {
auto& link = vertices_[i].obj.links[j]; auto& link = vertices_[i].obj.links[j];
if (!id_map.has (link.objidx)) continue; if (!id_map.has (link.objidx)) continue;
vertices_[link.objidx].incoming_edges--; if (only_wide && !(link.width == 4 && !link.is_signed)) continue;
link.objidx = id_map[link.objidx];
vertices_[link.objidx].incoming_edges++; reassign_link (link, i, id_map[link.objidx]);
} }
} }
} }
@ -770,11 +931,12 @@ struct graph_t
/* /*
* Updates all objidx's in all links using the provided mapping. * Updates all objidx's in all links using the provided mapping.
*/ */
void remap_obj_indices (const hb_vector_t<unsigned>& id_map, void remap_all_obj_indices (const hb_vector_t<unsigned>& id_map,
hb_vector_t<vertex_t>* sorted_graph) const hb_vector_t<vertex_t>* sorted_graph) const
{ {
for (unsigned i = 0; i < sorted_graph->length; i++) for (unsigned i = 0; i < sorted_graph->length; i++)
{ {
(*sorted_graph)[i].remap_parents (id_map);
for (unsigned j = 0; j < (*sorted_graph)[i].obj.links.length; j++) for (unsigned j = 0; j < (*sorted_graph)[i].obj.links.length; j++)
{ {
auto& link = (*sorted_graph)[i].obj.links[j]; auto& link = (*sorted_graph)[i].obj.links[j];
@ -829,17 +991,74 @@ struct graph_t
} }
} }
/*
* Finds all nodes in targets that are reachable from start_idx, nodes in visited will be skipped.
* For this search the graph is treated as being undirected.
*
* Connected targets will be added to connected and removed from targets. All visited nodes
* will be added to visited.
*/
void find_connected_nodes (unsigned start_idx,
hb_set_t& targets,
hb_set_t& visited,
hb_set_t& connected)
{
if (visited.has (start_idx)) return;
visited.add (start_idx);
if (targets.has (start_idx))
{
targets.del (start_idx);
connected.add (start_idx);
}
const auto& v = vertices_[start_idx];
// Graph is treated as undirected so search children and parents of start_idx
for (const auto& l : v.obj.links)
find_connected_nodes (l.objidx, targets, visited, connected);
for (unsigned p : v.parents)
find_connected_nodes (p, targets, visited, connected);
}
public: public:
// TODO(garretrieger): make private, will need to move most of offset overflow code into graph. // TODO(garretrieger): make private, will need to move most of offset overflow code into graph.
hb_vector_t<vertex_t> vertices_; hb_vector_t<vertex_t> vertices_;
private: private:
hb_vector_t<clone_buffer_t> clone_buffers_; bool parents_invalid;
bool edge_count_invalid;
bool distance_invalid; bool distance_invalid;
bool positions_invalid; bool positions_invalid;
bool successful; bool successful;
hb_vector_t<unsigned> num_roots_for_space_;
}; };
static bool _try_isolating_subgraphs (const hb_vector_t<graph_t::overflow_record_t>& overflows,
graph_t& sorted_graph)
{
for (int i = overflows.length - 1; i >= 0; i--)
{
const graph_t::overflow_record_t& r = overflows[i];
unsigned root = 0;
unsigned space = sorted_graph.space_for (r.parent, &root);
if (!space) continue;
if (sorted_graph.num_roots_for_space (space) <= 1) continue;
DEBUG_MSG (SUBSET_REPACK, nullptr, "Overflow in space %d moving subgraph %d to space %d.",
space,
root,
sorted_graph.next_space ());
hb_set_t roots;
roots.add (root);
sorted_graph.isolate_subgraph (roots);
for (unsigned new_root : roots)
sorted_graph.move_to_new_space (new_root);
return true;
}
return false;
}
static bool _process_overflows (const hb_vector_t<graph_t::overflow_record_t>& overflows, static bool _process_overflows (const hb_vector_t<graph_t::overflow_record_t>& overflows,
hb_set_t& priority_bumped_parents, hb_set_t& priority_bumped_parents,
graph_t& sorted_graph) graph_t& sorted_graph)
@ -921,12 +1140,10 @@ hb_resolve_overflows (const hb_vector_t<hb_serialize_context_t::object_t *>& pac
|| table_tag == HB_OT_TAG_GSUB) || table_tag == HB_OT_TAG_GSUB)
&& sorted_graph.will_overflow ()) && sorted_graph.will_overflow ())
{ {
if (sorted_graph.isolate_32bit_links ()) DEBUG_MSG (SUBSET_REPACK, nullptr, "Assigning spaces to 32 bit subgraphs.");
{ if (sorted_graph.assign_32bit_spaces ())
DEBUG_MSG (SUBSET_REPACK, nullptr, "Isolated extension sub tables.");
sorted_graph.sort_shortest_distance (); sorted_graph.sort_shortest_distance ();
} }
}
unsigned round = 0; unsigned round = 0;
hb_vector_t<graph_t::overflow_record_t> overflows; hb_vector_t<graph_t::overflow_record_t> overflows;
@ -938,11 +1155,15 @@ hb_resolve_overflows (const hb_vector_t<hb_serialize_context_t::object_t *>& pac
sorted_graph.print_overflows (overflows); sorted_graph.print_overflows (overflows);
hb_set_t priority_bumped_parents; hb_set_t priority_bumped_parents;
if (!_try_isolating_subgraphs (overflows, sorted_graph))
{
if (!_process_overflows (overflows, priority_bumped_parents, sorted_graph)) if (!_process_overflows (overflows, priority_bumped_parents, sorted_graph))
{ {
DEBUG_MSG (SUBSET_REPACK, nullptr, "No resolution available :("); DEBUG_MSG (SUBSET_REPACK, nullptr, "No resolution available :(");
break; break;
} }
}
sorted_graph.sort_shortest_distance (); sorted_graph.sort_shortest_distance ();
} }

View File

@ -87,6 +87,21 @@ struct hb_vector_t
resize (0); resize (0);
} }
void swap (hb_vector_t& other)
{
int allocated_copy = allocated;
unsigned int length_copy = length;
Type *arrayZ_copy = arrayZ;
allocated = other.allocated;
length = other.length;
arrayZ = other.arrayZ;
other.allocated = allocated_copy;
other.length = length_copy;
other.arrayZ = arrayZ_copy;
}
hb_vector_t& operator = (const hb_vector_t &o) hb_vector_t& operator = (const hb_vector_t &o)
{ {
reset (); reset ();

View File

@ -64,6 +64,39 @@ static void add_wide_offset (unsigned id,
c->add_link (*offset, id); c->add_link (*offset, id);
} }
static void run_resolve_overflow_test (const char* name,
hb_serialize_context_t& overflowing,
hb_serialize_context_t& expected,
unsigned num_iterations = 0)
{
printf (">>> Testing overflowing resolution for %s\n",
name);
graph_t graph (overflowing.object_graph ());
unsigned buffer_size = overflowing.end - overflowing.start;
void* out_buffer = malloc (buffer_size);
hb_serialize_context_t out (out_buffer, buffer_size);
assert (overflowing.offset_overflow ());
hb_resolve_overflows (overflowing.object_graph (), HB_TAG ('G', 'S', 'U', 'B'), &out, num_iterations);
assert (!out.offset_overflow ());
hb_bytes_t result = out.copy_bytes ();
assert (!expected.offset_overflow ());
hb_bytes_t expected_result = expected.copy_bytes ();
assert (result.length == expected_result.length);
for (unsigned i = 0; i < expected_result.length; i++)
{
assert (result[i] == expected_result[i]);
}
result.fini ();
expected_result.fini ();
free (out_buffer);
}
static void static void
populate_serializer_simple (hb_serialize_context_t* c) populate_serializer_simple (hb_serialize_context_t* c)
{ {
@ -75,7 +108,7 @@ populate_serializer_simple (hb_serialize_context_t* c)
start_object ("abc", 3, c); start_object ("abc", 3, c);
add_offset (obj_2, c); add_offset (obj_2, c);
add_offset (obj_1, c); add_offset (obj_1, c);
c->pop_pack (); c->pop_pack (false);
c->end_serialize(); c->end_serialize();
} }
@ -94,7 +127,7 @@ populate_serializer_with_overflow (hb_serialize_context_t* c)
add_offset (obj_3, c); add_offset (obj_3, c);
add_offset (obj_2, c); add_offset (obj_2, c);
add_offset (obj_1, c); add_offset (obj_1, c);
c->pop_pack (); c->pop_pack (false);
c->end_serialize(); c->end_serialize();
} }
@ -129,16 +162,16 @@ populate_serializer_with_isolation_overflow (hb_serialize_context_t* c)
start_object (large_string.c_str(), 60000, c); start_object (large_string.c_str(), 60000, c);
add_offset (obj_4, c); add_offset (obj_4, c);
unsigned obj_3 = c->pop_pack (); unsigned obj_3 = c->pop_pack (false);
start_object (large_string.c_str(), 10000, c); start_object (large_string.c_str(), 10000, c);
add_offset (obj_4, c); add_offset (obj_4, c);
unsigned obj_2 = c->pop_pack (); unsigned obj_2 = c->pop_pack (false);
start_object ("1", 1, c); start_object ("1", 1, c);
add_wide_offset (obj_3, c); add_wide_offset (obj_3, c);
add_offset (obj_2, c); add_offset (obj_2, c);
c->pop_pack (); c->pop_pack (false);
c->end_serialize(); c->end_serialize();
} }
@ -153,29 +186,38 @@ populate_serializer_with_isolation_overflow_complex (hb_serialize_context_t* c)
start_object ("e", 1, c); start_object ("e", 1, c);
add_offset (obj_f, c); add_offset (obj_f, c);
unsigned obj_e = c->pop_pack (); unsigned obj_e = c->pop_pack (false);
start_object ("cc", 2, c); start_object ("c", 1, c);
add_offset (obj_e, c); add_offset (obj_e, c);
unsigned obj_c = c->pop_pack (); unsigned obj_c = c->pop_pack (false);
start_object ("d", 1, c); start_object ("d", 1, c);
add_offset (obj_e, c); add_offset (obj_e, c);
unsigned obj_d = c->pop_pack (); unsigned obj_d = c->pop_pack (false);
start_object (large_string.c_str(), 60000, c);
add_offset (obj_d, c);
unsigned obj_h = c->pop_pack (false);
start_object (large_string.c_str(), 60000, c); start_object (large_string.c_str(), 60000, c);
add_offset (obj_c, c); add_offset (obj_c, c);
add_offset (obj_d, c); add_offset (obj_h, c);
unsigned obj_b = c->pop_pack (); unsigned obj_b = c->pop_pack (false);
start_object (large_string.c_str(), 10000, c); start_object (large_string.c_str(), 10000, c);
add_offset (obj_d, c); add_offset (obj_d, c);
unsigned obj_g = c->pop_pack (); unsigned obj_g = c->pop_pack (false);
start_object (large_string.c_str(), 11000, c);
add_offset (obj_d, c);
unsigned obj_i = c->pop_pack (false);
start_object ("a", 1, c); start_object ("a", 1, c);
add_wide_offset (obj_b, c); add_wide_offset (obj_b, c);
add_offset (obj_g, c); add_offset (obj_g, c);
c->pop_pack (); add_offset (obj_i, c);
c->pop_pack (false);
c->end_serialize(); c->end_serialize();
} }
@ -186,45 +228,58 @@ populate_serializer_with_isolation_overflow_complex_expected (hb_serialize_conte
std::string large_string(70000, 'a'); std::string large_string(70000, 'a');
c->start_serialize<char> (); c->start_serialize<char> ();
// 32 bit subgraph
// space 1
unsigned obj_f_prime = add_object ("f", 1, c); unsigned obj_f_prime = add_object ("f", 1, c);
start_object ("e", 1, c); start_object ("e", 1, c);
add_offset (obj_f_prime, c); add_offset (obj_f_prime, c);
unsigned obj_e_prime = c->pop_pack (); unsigned obj_e_prime = c->pop_pack (false);
start_object ("cc", 2, c);
add_offset (obj_e_prime, c);
unsigned obj_c = c->pop_pack ();
start_object ("d", 1, c); start_object ("d", 1, c);
add_offset (obj_e_prime, c); add_offset (obj_e_prime, c);
unsigned obj_d_prime = c->pop_pack (); unsigned obj_d_prime = c->pop_pack (false);
start_object (large_string.c_str(), 60000, c);
add_offset (obj_d_prime, c);
unsigned obj_h = c->pop_pack (false);
start_object ("c", 1, c);
add_offset (obj_e_prime, c);
unsigned obj_c = c->pop_pack (false);
start_object (large_string.c_str(), 60000, c); start_object (large_string.c_str(), 60000, c);
add_offset (obj_c, c); add_offset (obj_c, c);
add_offset (obj_d_prime, c); add_offset (obj_h, c);
unsigned obj_b = c->pop_pack (); unsigned obj_b = c->pop_pack (false);
// space 0
// 16 bit subgraph
unsigned obj_f = add_object ("f", 1, c); unsigned obj_f = add_object ("f", 1, c);
start_object ("e", 1, c); start_object ("e", 1, c);
add_offset (obj_f, c); add_offset (obj_f, c);
unsigned obj_e = c->pop_pack (); unsigned obj_e = c->pop_pack (false);
start_object ("d", 1, c); start_object ("d", 1, c);
add_offset (obj_e, c); add_offset (obj_e, c);
unsigned obj_d = c->pop_pack (); unsigned obj_d = c->pop_pack (false);
start_object (large_string.c_str(), 11000, c);
add_offset (obj_d, c);
unsigned obj_i = c->pop_pack (false);
start_object (large_string.c_str(), 10000, c); start_object (large_string.c_str(), 10000, c);
add_offset (obj_d, c); add_offset (obj_d, c);
unsigned obj_g = c->pop_pack (); unsigned obj_g = c->pop_pack (false);
start_object ("a", 1, c); start_object ("a", 1, c);
add_wide_offset (obj_b, c); add_wide_offset (obj_b, c);
add_offset (obj_g, c); add_offset (obj_g, c);
c->pop_pack (); add_offset (obj_i, c);
c->pop_pack (false);
c->end_serialize(); c->end_serialize();
} }
@ -255,6 +310,368 @@ populate_serializer_with_isolation_overflow_spaces (hb_serialize_context_t* c)
c->end_serialize(); c->end_serialize();
} }
static void
populate_serializer_spaces (hb_serialize_context_t* c, bool with_overflow)
{
std::string large_string(70000, 'a');
c->start_serialize<char> ();
unsigned obj_i;
if (with_overflow)
obj_i = add_object ("i", 1, c);
// Space 2
unsigned obj_h = add_object ("h", 1, c);
start_object (large_string.c_str(), 30000, c);
add_offset (obj_h, c);
unsigned obj_e = c->pop_pack (false);
start_object ("b", 1, c);
add_offset (obj_e, c);
unsigned obj_b = c->pop_pack (false);
// Space 1
if (!with_overflow)
obj_i = add_object ("i", 1, c);
start_object (large_string.c_str(), 30000, c);
add_offset (obj_i, c);
unsigned obj_g = c->pop_pack (false);
start_object (large_string.c_str(), 30000, c);
add_offset (obj_i, c);
unsigned obj_f = c->pop_pack (false);
start_object ("d", 1, c);
add_offset (obj_g, c);
unsigned obj_d = c->pop_pack (false);
start_object ("c", 1, c);
add_offset (obj_f, c);
unsigned obj_c = c->pop_pack (false);
start_object ("a", 1, c);
add_wide_offset (obj_b, c);
add_wide_offset (obj_c, c);
add_wide_offset (obj_d, c);
c->pop_pack (false);
c->end_serialize();
}
static void
populate_serializer_spaces_16bit_connection (hb_serialize_context_t* c)
{
std::string large_string(70000, 'a');
c->start_serialize<char> ();
unsigned obj_g = add_object ("g", 1, c);
unsigned obj_h = add_object ("h", 1, c);
start_object (large_string.c_str (), 40000, c);
add_offset (obj_g, c);
unsigned obj_e = c->pop_pack (false);
start_object (large_string.c_str (), 40000, c);
add_offset (obj_h, c);
unsigned obj_f = c->pop_pack (false);
start_object ("c", 1, c);
add_offset (obj_e, c);
unsigned obj_c = c->pop_pack (false);
start_object ("d", 1, c);
add_offset (obj_f, c);
unsigned obj_d = c->pop_pack (false);
start_object ("b", 1, c);
add_offset (obj_e, c);
add_offset (obj_h, c);
unsigned obj_b = c->pop_pack (false);
start_object ("a", 1, c);
add_offset (obj_b, c);
add_wide_offset (obj_c, c);
add_wide_offset (obj_d, c);
c->pop_pack (false);
c->end_serialize();
}
static void
populate_serializer_spaces_16bit_connection_expected (hb_serialize_context_t* c)
{
std::string large_string(70000, 'a');
c->start_serialize<char> ();
unsigned obj_g_prime = add_object ("g", 1, c);
start_object (large_string.c_str (), 40000, c);
add_offset (obj_g_prime, c);
unsigned obj_e_prime = c->pop_pack (false);
start_object ("c", 1, c);
add_offset (obj_e_prime, c);
unsigned obj_c = c->pop_pack (false);
unsigned obj_h_prime = add_object ("h", 1, c);
start_object (large_string.c_str (), 40000, c);
add_offset (obj_h_prime, c);
unsigned obj_f = c->pop_pack (false);
start_object ("d", 1, c);
add_offset (obj_f, c);
unsigned obj_d = c->pop_pack (false);
unsigned obj_g = add_object ("g", 1, c);
start_object (large_string.c_str (), 40000, c);
add_offset (obj_g, c);
unsigned obj_e = c->pop_pack (false);
unsigned obj_h = add_object ("h", 1, c);
start_object ("b", 1, c);
add_offset (obj_e, c);
add_offset (obj_h, c);
unsigned obj_b = c->pop_pack (false);
start_object ("a", 1, c);
add_offset (obj_b, c);
add_wide_offset (obj_c, c);
add_wide_offset (obj_d, c);
c->pop_pack (false);
c->end_serialize ();
}
static void
populate_serializer_short_and_wide_subgraph_root (hb_serialize_context_t* c)
{
std::string large_string(70000, 'a');
c->start_serialize<char> ();
unsigned obj_e = add_object ("e", 1, c);
start_object (large_string.c_str (), 40000, c);
add_offset (obj_e, c);
unsigned obj_c = c->pop_pack (false);
start_object (large_string.c_str (), 40000, c);
add_offset (obj_c, c);
unsigned obj_d = c->pop_pack (false);
start_object ("b", 1, c);
add_offset (obj_c, c);
add_offset (obj_e, c);
unsigned obj_b = c->pop_pack (false);
start_object ("a", 1, c);
add_offset (obj_b, c);
add_wide_offset (obj_c, c);
add_wide_offset (obj_d, c);
c->pop_pack (false);
c->end_serialize();
}
static void
populate_serializer_short_and_wide_subgraph_root_expected (hb_serialize_context_t* c)
{
std::string large_string(70000, 'a');
c->start_serialize<char> ();
unsigned obj_e_prime = add_object ("e", 1, c);
start_object (large_string.c_str (), 40000, c);
add_offset (obj_e_prime, c);
unsigned obj_c_prime = c->pop_pack (false);
start_object (large_string.c_str (), 40000, c);
add_offset (obj_c_prime, c);
unsigned obj_d = c->pop_pack (false);
unsigned obj_e = add_object ("e", 1, c);
start_object (large_string.c_str (), 40000, c);
add_offset (obj_e, c);
unsigned obj_c = c->pop_pack (false);
start_object ("b", 1, c);
add_offset (obj_c, c);
add_offset (obj_e, c);
unsigned obj_b = c->pop_pack (false);
start_object ("a", 1, c);
add_offset (obj_b, c);
add_wide_offset (obj_c_prime, c);
add_wide_offset (obj_d, c);
c->pop_pack (false);
c->end_serialize();
}
static void
populate_serializer_with_split_spaces (hb_serialize_context_t* c)
{
// Overflow needs to be resolved by splitting the single space
std::string large_string(70000, 'a');
c->start_serialize<char> ();
unsigned obj_f = add_object ("f", 1, c);
start_object (large_string.c_str(), 40000, c);
add_offset (obj_f, c);
unsigned obj_d = c->pop_pack (false);
start_object (large_string.c_str(), 40000, c);
add_offset (obj_f, c);
unsigned obj_e = c->pop_pack (false);
start_object ("b", 1, c);
add_offset (obj_d, c);
unsigned obj_b = c->pop_pack (false);
start_object ("c", 1, c);
add_offset (obj_e, c);
unsigned obj_c = c->pop_pack (false);
start_object ("a", 1, c);
add_wide_offset (obj_b, c);
add_wide_offset (obj_c, c);
c->pop_pack (false);
c->end_serialize();
}
static void
populate_serializer_with_split_spaces_2 (hb_serialize_context_t* c)
{
// Overflow needs to be resolved by splitting the single space
std::string large_string(70000, 'a');
c->start_serialize<char> ();
unsigned obj_f = add_object ("f", 1, c);
start_object (large_string.c_str(), 40000, c);
add_offset (obj_f, c);
unsigned obj_d = c->pop_pack (false);
start_object (large_string.c_str(), 40000, c);
add_offset (obj_f, c);
unsigned obj_e = c->pop_pack (false);
start_object ("b", 1, c);
add_offset (obj_d, c);
unsigned obj_b = c->pop_pack (false);
start_object ("c", 1, c);
add_offset (obj_e, c);
unsigned obj_c = c->pop_pack (false);
start_object ("a", 1, c);
add_offset (obj_b, c);
add_wide_offset (obj_b, c);
add_wide_offset (obj_c, c);
c->pop_pack (false);
c->end_serialize();
}
static void
populate_serializer_with_split_spaces_expected (hb_serialize_context_t* c)
{
// Overflow needs to be resolved by splitting the single space
std::string large_string(70000, 'a');
c->start_serialize<char> ();
unsigned obj_f_prime = add_object ("f", 1, c);
start_object (large_string.c_str(), 40000, c);
add_offset (obj_f_prime, c);
unsigned obj_d = c->pop_pack (false);
start_object ("b", 1, c);
add_offset (obj_d, c);
unsigned obj_b = c->pop_pack (false);
unsigned obj_f = add_object ("f", 1, c);
start_object (large_string.c_str(), 40000, c);
add_offset (obj_f, c);
unsigned obj_e = c->pop_pack (false);
start_object ("c", 1, c);
add_offset (obj_e, c);
unsigned obj_c = c->pop_pack (false);
start_object ("a", 1, c);
add_wide_offset (obj_b, c);
add_wide_offset (obj_c, c);
c->pop_pack (false);
c->end_serialize();
}
static void
populate_serializer_with_split_spaces_expected_2 (hb_serialize_context_t* c)
{
// Overflow needs to be resolved by splitting the single space
std::string large_string(70000, 'a');
c->start_serialize<char> ();
// Space 2
unsigned obj_f_double_prime = add_object ("f", 1, c);
start_object (large_string.c_str(), 40000, c);
add_offset (obj_f_double_prime, c);
unsigned obj_d_prime = c->pop_pack (false);
start_object ("b", 1, c);
add_offset (obj_d_prime, c);
unsigned obj_b_prime = c->pop_pack (false);
// Space 1
unsigned obj_f_prime = add_object ("f", 1, c);
start_object (large_string.c_str(), 40000, c);
add_offset (obj_f_prime, c);
unsigned obj_e = c->pop_pack (false);
start_object ("c", 1, c);
add_offset (obj_e, c);
unsigned obj_c = c->pop_pack (false);
// Space 0
unsigned obj_f = add_object ("f", 1, c);
start_object (large_string.c_str(), 40000, c);
add_offset (obj_f, c);
unsigned obj_d = c->pop_pack (false);
start_object ("b", 1, c);
add_offset (obj_d, c);
unsigned obj_b = c->pop_pack (false);
// Root
start_object ("a", 1, c);
add_offset (obj_b, c);
add_wide_offset (obj_b_prime, c);
add_wide_offset (obj_c, c);
c->pop_pack (false);
c->end_serialize();
}
static void static void
populate_serializer_complex_1 (hb_serialize_context_t* c) populate_serializer_complex_1 (hb_serialize_context_t* c)
{ {
@ -270,7 +687,7 @@ populate_serializer_complex_1 (hb_serialize_context_t* c)
start_object ("abc", 3, c); start_object ("abc", 3, c);
add_offset (obj_2, c); add_offset (obj_2, c);
add_offset (obj_4, c); add_offset (obj_4, c);
c->pop_pack (); c->pop_pack (false);
c->end_serialize(); c->end_serialize();
} }
@ -296,7 +713,7 @@ populate_serializer_complex_2 (hb_serialize_context_t* c)
add_offset (obj_2, c); add_offset (obj_2, c);
add_offset (obj_4, c); add_offset (obj_4, c);
add_offset (obj_5, c); add_offset (obj_5, c);
c->pop_pack (); c->pop_pack (false);
c->end_serialize(); c->end_serialize();
} }
@ -326,7 +743,7 @@ populate_serializer_complex_3 (hb_serialize_context_t* c)
add_offset (obj_2, c); add_offset (obj_2, c);
add_offset (obj_4, c); add_offset (obj_4, c);
add_offset (obj_5, c); add_offset (obj_5, c);
c->pop_pack (); c->pop_pack (false);
c->end_serialize(); c->end_serialize();
} }
@ -608,6 +1025,24 @@ static void test_resolve_overflows_via_duplication ()
free (out_buffer); free (out_buffer);
} }
static void test_resolve_overflows_via_space_assignment ()
{
size_t buffer_size = 160000;
void* buffer = malloc (buffer_size);
hb_serialize_context_t c (buffer, buffer_size);
populate_serializer_spaces (&c, true);
void* expected_buffer = malloc (buffer_size);
hb_serialize_context_t e (expected_buffer, buffer_size);
populate_serializer_spaces (&e, false);
run_resolve_overflow_test ("test_resolve_overflows_via_space_assignment",
c,
e);
free (buffer);
free (expected_buffer);
}
static void test_resolve_overflows_via_isolation () static void test_resolve_overflows_via_isolation ()
{ {
@ -638,31 +1073,54 @@ static void test_resolve_overflows_via_isolation_with_recursive_duplication ()
void* buffer = malloc (buffer_size); void* buffer = malloc (buffer_size);
hb_serialize_context_t c (buffer, buffer_size); hb_serialize_context_t c (buffer, buffer_size);
populate_serializer_with_isolation_overflow_complex (&c); populate_serializer_with_isolation_overflow_complex (&c);
graph_t graph (c.object_graph ());
void* out_buffer = malloc (buffer_size);
hb_serialize_context_t out (out_buffer, buffer_size);
assert (c.offset_overflow ());
hb_resolve_overflows (c.object_graph (), HB_TAG ('G', 'S', 'U', 'B'), &out, 0);
assert (!out.offset_overflow ());
hb_bytes_t result = out.copy_bytes ();
void* expected_buffer = malloc (buffer_size); void* expected_buffer = malloc (buffer_size);
hb_serialize_context_t e (expected_buffer, buffer_size); hb_serialize_context_t e (expected_buffer, buffer_size);
assert (!e.offset_overflow ());
populate_serializer_with_isolation_overflow_complex_expected (&e); populate_serializer_with_isolation_overflow_complex_expected (&e);
hb_bytes_t expected_result = e.copy_bytes ();
assert (result.length == expected_result.length); run_resolve_overflow_test ("test_resolve_overflows_via_isolation_with_recursive_duplication",
for (unsigned i = 0; i < result.length; i++) c,
assert (result[i] == expected_result[i]); e);
free (buffer);
result.fini (); free (expected_buffer);
expected_result.fini (); }
static void test_resolve_overflows_via_isolating_16bit_space ()
{
size_t buffer_size = 160000;
void* buffer = malloc (buffer_size);
hb_serialize_context_t c (buffer, buffer_size);
populate_serializer_spaces_16bit_connection (&c);
void* expected_buffer = malloc (buffer_size);
hb_serialize_context_t e (expected_buffer, buffer_size);
populate_serializer_spaces_16bit_connection_expected (&e);
run_resolve_overflow_test ("test_resolve_overflows_via_isolating_16bit_space",
c,
e);
free (buffer);
free (expected_buffer);
}
static void test_resolve_overflows_via_isolating_16bit_space_2 ()
{
size_t buffer_size = 160000;
void* buffer = malloc (buffer_size);
hb_serialize_context_t c (buffer, buffer_size);
populate_serializer_short_and_wide_subgraph_root (&c);
void* expected_buffer = malloc (buffer_size);
hb_serialize_context_t e (expected_buffer, buffer_size);
populate_serializer_short_and_wide_subgraph_root_expected (&e);
run_resolve_overflow_test ("test_resolve_overflows_via_isolating_16bit_space_2",
c,
e);
free (buffer); free (buffer);
free (expected_buffer); free (expected_buffer);
free (out_buffer);
} }
static void test_resolve_overflows_via_isolation_spaces () static void test_resolve_overflows_via_isolation_spaces ()
@ -690,6 +1148,47 @@ static void test_resolve_overflows_via_isolation_spaces ()
free (out_buffer); free (out_buffer);
} }
static void test_resolve_overflows_via_splitting_spaces ()
{
size_t buffer_size = 160000;
void* buffer = malloc (buffer_size);
hb_serialize_context_t c (buffer, buffer_size);
populate_serializer_with_split_spaces (&c);
void* expected_buffer = malloc (buffer_size);
hb_serialize_context_t e (expected_buffer, buffer_size);
populate_serializer_with_split_spaces_expected (&e);
run_resolve_overflow_test ("test_resolve_overflows_via_splitting_spaces",
c,
e,
1);
free (buffer);
free (expected_buffer);
}
static void test_resolve_overflows_via_splitting_spaces_2 ()
{
size_t buffer_size = 160000;
void* buffer = malloc (buffer_size);
hb_serialize_context_t c (buffer, buffer_size);
populate_serializer_with_split_spaces_2 (&c);
void* expected_buffer = malloc (buffer_size);
hb_serialize_context_t e (expected_buffer, buffer_size);
populate_serializer_with_split_spaces_expected_2 (&e);
run_resolve_overflow_test ("test_resolve_overflows_via_splitting_spaces_2",
c,
e,
1);
free (buffer);
free (expected_buffer);
}
// TODO(garretrieger): update will_overflow tests to check the overflows array. // TODO(garretrieger): update will_overflow tests to check the overflows array.
// TODO(garretrieger): add tests for priority raising. // TODO(garretrieger): add tests for priority raising.
@ -705,9 +1204,14 @@ main (int argc, char **argv)
test_will_overflow_3 (); test_will_overflow_3 ();
test_resolve_overflows_via_sort (); test_resolve_overflows_via_sort ();
test_resolve_overflows_via_duplication (); test_resolve_overflows_via_duplication ();
test_resolve_overflows_via_space_assignment ();
test_resolve_overflows_via_isolation (); test_resolve_overflows_via_isolation ();
test_resolve_overflows_via_isolation_with_recursive_duplication (); test_resolve_overflows_via_isolation_with_recursive_duplication ();
test_resolve_overflows_via_isolation_spaces (); test_resolve_overflows_via_isolation_spaces ();
test_resolve_overflows_via_isolating_16bit_space ();
test_resolve_overflows_via_isolating_16bit_space_2 ();
test_resolve_overflows_via_splitting_spaces ();
test_resolve_overflows_via_splitting_spaces_2 ();
test_duplicate_leaf (); test_duplicate_leaf ();
test_duplicate_interior (); test_duplicate_interior ();
} }

Binary file not shown.

View File

@ -3,10 +3,11 @@ TESTS = \
prioritization.tests \ prioritization.tests \
table_duplication.tests \ table_duplication.tests \
isolation.tests \ isolation.tests \
advanced_prioritization.tests \
space_splitting.tests \
$(NULL) $(NULL)
XFAIL_TESTS = \ XFAIL_TESTS = \
advanced_prioritization.tests \
$(NULL) $(NULL)
DISABLED_TESTS = \ DISABLED_TESTS = \

View File

@ -0,0 +1,2 @@
Harmattan-Regular.ttf
*

View File

@ -47,6 +47,8 @@ repack_tests = [
'prioritization', 'prioritization',
'table_duplication', 'table_duplication',
'isolation', 'isolation',
'advanced_prioritization',
'space_splitting',
] ]