[subset] Remove switch to alternate unicode collection at large subset sizes.
Benchmarks show that the first path is always faster even at large subset sizes: BM_subset_codepoints/subset_roboto/10_median +0.0324 +0.0325 0 0 0 0 BM_subset_codepoints/subset_roboto/64_median +0.0253 +0.0255 0 1 0 1 BM_subset_codepoints/subset_roboto/512_median +0.0126 +0.0128 1 1 1 1 BM_subset_codepoints/subset_roboto/4000_median +0.0500 +0.0491 6 7 6 7 BM_subset_codepoints/subset_amiri/10_median +0.0338 +0.0332 1 1 1 1 BM_subset_codepoints/subset_amiri/64_median +0.0238 +0.0234 1 1 1 1 BM_subset_codepoints/subset_amiri/512_median +0.0066 +0.0063 8 8 8 8 BM_subset_codepoints/subset_amiri/4000_median -0.0011 -0.0012 13 13 13 13 BM_subset_codepoints/subset_noto_nastaliq_urdu/10_median +0.0226 +0.0226 0 0 0 0 BM_subset_codepoints/subset_noto_nastaliq_urdu/64_median +0.0047 +0.0044 20 20 20 20 BM_subset_codepoints/subset_noto_nastaliq_urdu/512_median +0.0022 +0.0021 165 166 165 166 BM_subset_codepoints/subset_noto_nastaliq_urdu/1000_median -0.0021 -0.0023 166 166 166 165 BM_subset_codepoints/subset_noto_devangari/10_median +0.0054 +0.0054 0 0 0 0 BM_subset_codepoints/subset_noto_devangari/64_median +0.0024 +0.0019 0 0 0 0 BM_subset_codepoints/subset_noto_devangari/512_median +0.0089 +0.0090 5 5 5 5 BM_subset_codepoints/subset_noto_devangari/1000_median -0.0028 -0.0019 5 5 5 5 BM_subset_codepoints/subset_mplus1p/10_median +0.0001 +0.0002 0 0 0 0 BM_subset_codepoints/subset_mplus1p/64_median +0.0073 +0.0075 1 1 1 1 BM_subset_codepoints/subset_mplus1p/512_median +0.0034 +0.0034 1 1 1 1 BM_subset_codepoints/subset_mplus1p/4096_median -0.1248 -0.1248 7 6 7 6 BM_subset_codepoints/subset_mplus1p/10000_median -0.0885 -0.0885 13 12 13 12 BM_subset_codepoints/subset_notocjk/10_median +0.0031 +0.0032 2 2 2 2 BM_subset_codepoints/subset_notocjk/64_median -0.0010 -0.0010 2 2 2 2 BM_subset_codepoints/subset_notocjk/512_median -0.0023 -0.0023 9 9 9 9 BM_subset_codepoints/subset_notocjk/4096_median -0.1725 -0.1726 28 23 28 23 BM_subset_codepoints/subset_notocjk/32768_median -0.0277 -0.0287 140 137 140 136 BM_subset_codepoints/subset_notocjk/100000_median -0.0929 -0.0926 162 147 162 147
This commit is contained in:
parent
f0c04114bc
commit
7c7c01d28c
|
@ -302,12 +302,10 @@ _populate_unicodes_to_retain (const hb_set_t *unicodes,
|
|||
{
|
||||
OT::cmap::accelerator_t cmap (plan->source);
|
||||
|
||||
constexpr static const int size_threshold = 4096;
|
||||
|
||||
if (glyphs->is_empty () && unicodes->get_population () < size_threshold)
|
||||
if (glyphs->is_empty ())
|
||||
{
|
||||
/* This is the fast path if it's anticipated that size of unicodes
|
||||
* is << than the number of codepoints in the font. */
|
||||
// This is approach to collection is faster, but can only be used if glyphs
|
||||
// are not being explicitly added to the subset.
|
||||
plan->unicode_to_new_gid_list.alloc (unicodes->get_population ());
|
||||
for (hb_codepoint_t cp : *unicodes)
|
||||
{
|
||||
|
@ -324,6 +322,8 @@ _populate_unicodes_to_retain (const hb_set_t *unicodes,
|
|||
}
|
||||
else
|
||||
{
|
||||
// This approach is slower, but can handle adding in glyphs to the subset and will match
|
||||
// them with cmap entries.
|
||||
hb_map_t unicode_glyphid_map;
|
||||
cmap.collect_mapping (hb_set_get_empty (), &unicode_glyphid_map);
|
||||
plan->unicode_to_new_gid_list.alloc (unicode_glyphid_map.get_population ());
|
||||
|
|
Loading…
Reference in New Issue