Implement gvar table and variable glyf

Split from Ariza's "[subset] TrueType/CFF2 variable font" work on #1594
This commit is contained in:
Michiharu Ariza 2019-10-01 16:13:40 +03:30 committed by Ebrahim Byagowi
parent 79ec65ae10
commit b9ff43c162
13 changed files with 1592 additions and 113 deletions

View File

@ -75,6 +75,7 @@ HB_BASE_sources = \
hb-ot-hdmx-table.hh \
hb-ot-head-table.hh \
hb-ot-hhea-table.hh \
hb-ot-hmtx-table.cc \
hb-ot-hmtx-table.hh \
hb-ot-kern-table.hh \
hb-ot-layout-base-table.hh \
@ -136,6 +137,7 @@ HB_BASE_sources = \
hb-ot-tag.cc \
hb-ot-var-avar-table.hh \
hb-ot-var-fvar-table.hh \
hb-ot-var-gvar-table.hh \
hb-ot-var-hvar-table.hh \
hb-ot-var-mvar-table.hh \
hb-ot-var.cc \

View File

@ -14,6 +14,7 @@
#include "hb-ot-color.cc"
#include "hb-ot-face.cc"
#include "hb-ot-font.cc"
#include "hb-ot-hmtx-table.cc"
#include "hb-ot-layout.cc"
#include "hb-ot-map.cc"
#include "hb-ot-math.cc"

View File

@ -160,7 +160,7 @@ hb_ot_get_glyph_v_origin (hb_font_t *font,
#endif
hb_glyph_extents_t extents = {0};
if (ot_face->glyf->get_extents (glyph, &extents))
if (ot_face->glyf->get_extents (font, glyph, &extents))
{
const OT::vmtx_accelerator_t &vmtx = *ot_face->vmtx;
hb_position_t tsb = vmtx.get_side_bearing (font, glyph);
@ -188,7 +188,7 @@ hb_ot_get_glyph_extents (hb_font_t *font,
#if !defined(HB_NO_OT_FONT_BITMAP) && !defined(HB_NO_COLOR)
if (!ret) ret = ot_face->sbix->get_extents (font, glyph, extents);
#endif
if (!ret) ret = ot_face->glyf->get_extents (glyph, extents);
if (!ret) ret = ot_face->glyf->get_extents (font, glyph, extents);
#ifndef HB_NO_OT_FONT_CFF
if (!ret) ret = ot_face->cff1->get_extents (glyph, extents);
if (!ret) ret = ot_face->cff2->get_extents (font, glyph, extents);

View File

@ -1,5 +1,6 @@
/*
* Copyright © 2015 Google, Inc.
* Copyright © 2019 Adobe Inc.
* Copyright © 2019 Ebrahim Byagowi
*
* This is part of HarfBuzz, a text shaping library.
@ -23,6 +24,7 @@
* PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.
*
* Google Author(s): Behdad Esfahbod, Garret Rieger, Roderick Sheeter
* Adobe Author(s): Michiharu Ariza
*/
#ifndef HB_OT_GLYF_TABLE_HH
@ -30,6 +32,10 @@
#include "hb-open-type.hh"
#include "hb-ot-head-table.hh"
#include "hb-ot-hmtx-table.hh"
#include "hb-ot-var-gvar-table.hh"
#include <float.h>
namespace OT {
@ -54,12 +60,11 @@ struct loca
}
protected:
UnsizedArrayOf<HBUINT8>
dataZ; /* Location data. */
UnsizedArrayOf<HBUINT8> dataZ; /* Location data. */
public:
DEFINE_SIZE_MIN (0); /* In reality, this is UNBOUNDED() type; but since we always
* check the size externally, allow Null() object of it by
* defining it _MIN instead. */
DEFINE_SIZE_MIN (0); /* In reality, this is UNBOUNDED() type; but since we always
* check the size externally, allow Null() object of it by
* defining it _MIN instead. */
};
@ -111,7 +116,7 @@ struct glyf
free);
bool result = plan->add_table (HB_OT_TAG_loca, loca_blob)
&& _add_head_and_set_loca_version(plan, use_short_loca);
&& _add_head_and_set_loca_version (plan, use_short_loca);
hb_blob_destroy (loca_blob);
return result;
@ -230,8 +235,7 @@ struct glyf
if (!glyph_header.is_simple_glyph ()) return; // only for simple glyphs
unsigned int instruction_len_offset = glyph_header.simple_instruction_len_offset ();
const HBUINT16 &instruction_len = StructAtOffset<HBUINT16> (&glyph,
instruction_len_offset);
const HBUINT16 &instruction_len = StructAtOffset<HBUINT16> (&glyph, instruction_len_offset);
(HBUINT16 &) instruction_len = 0;
}
@ -284,26 +288,17 @@ struct glyf
bool is_composite_glyph () const { return numberOfContours < 0; }
bool is_simple_glyph () const { return numberOfContours > 0; }
void get_extents (hb_glyph_extents_t *extents) const
{
extents->x_bearing = hb_min (xMin, xMax);
extents->y_bearing = hb_max (yMin, yMax);
extents->width = hb_max (xMin, xMax) - extents->x_bearing;
extents->height = hb_min (yMin, yMax) - extents->y_bearing;
}
bool has_data () const { return numberOfContours; }
protected:
HBINT16 numberOfContours;/* If the number of contours is
* greater than or equal to zero,
* this is a simple glyph; if negative,
* this is a composite glyph. */
FWORD xMin; /* Minimum x for coordinate data. */
FWORD yMin; /* Minimum y for coordinate data. */
FWORD xMax; /* Maximum x for coordinate data. */
FWORD yMax; /* Maximum y for coordinate data. */
public:
HBINT16 numberOfContours; /* If the number of contours is
* greater than or equal to zero,
* this is a simple glyph; if negative,
* this is a composite glyph. */
FWORD xMin; /* Minimum x for coordinate data. */
FWORD yMin; /* Minimum y for coordinate data. */
FWORD xMax; /* Maximum x for coordinate data. */
FWORD yMax; /* Maximum y for coordinate data. */
DEFINE_SIZE_STATIC (10);
};
@ -325,8 +320,8 @@ struct glyf
UNSCALED_COMPONENT_OFFSET = 0x1000
};
HBUINT16 flags;
HBGlyphID glyphIndex;
HBUINT16 flags;
HBGlyphID glyphIndex;
unsigned int get_size () const
{
@ -346,6 +341,91 @@ struct glyf
return size;
}
bool is_anchored () const { return (flags & ARGS_ARE_XY_VALUES) == 0; }
void get_anchor_points (unsigned int &point1, unsigned int &point2) const
{
const HBUINT8 *p = &StructAfter<const HBUINT8> (glyphIndex);
if (flags & ARG_1_AND_2_ARE_WORDS)
{
point1 = ((const HBUINT16 *)p)[0];
point2 = ((const HBUINT16 *)p)[1];
}
else
{
point1 = p[0];
point2 = p[1];
}
}
void transform_points (contour_point_vector_t &points) const
{
float matrix[4];
contour_point_t trans;
if (get_transformation (matrix, trans))
{
if (scaled_offsets ())
{
points.translate (trans);
points.transform (matrix);
}
else
{
points.transform (matrix);
points.translate (trans);
}
}
}
protected:
bool scaled_offsets () const
{ return (flags & (SCALED_COMPONENT_OFFSET|UNSCALED_COMPONENT_OFFSET)) == SCALED_COMPONENT_OFFSET; }
bool get_transformation (float (&matrix)[4], contour_point_t &trans) const
{
matrix[0] = matrix[3] = 1.f;
matrix[1] = matrix[2] = 0.f;
int tx, ty;
const HBINT8 *p = &StructAfter<const HBINT8> (glyphIndex);
if (flags & ARG_1_AND_2_ARE_WORDS)
{
tx = *(const HBINT16 *)p;
p += HBINT16::static_size;
ty = *(const HBINT16 *)p;
p += HBINT16::static_size;
}
else
{
tx = *p++;
ty = *p++;
}
if (is_anchored ()) tx = ty = 0;
trans.init ((float)tx, (float)ty);
if (flags & WE_HAVE_A_SCALE)
{
matrix[0] = matrix[3] = ((const F2DOT14*)p)->to_float ();
return true;
}
else if (flags & WE_HAVE_AN_X_AND_Y_SCALE)
{
matrix[0] = ((const F2DOT14*)p)[0].to_float ();
matrix[3] = ((const F2DOT14*)p)[1].to_float ();
return true;
}
else if (flags & WE_HAVE_A_TWO_BY_TWO)
{
matrix[0] = ((const F2DOT14*)p)[0].to_float ();
matrix[1] = ((const F2DOT14*)p)[1].to_float ();
matrix[2] = ((const F2DOT14*)p)[2].to_float ();
matrix[3] = ((const F2DOT14*)p)[3].to_float ();
return true;
}
return tx || ty;
}
public:
// TODO rewrite using new iterator framework if possible
struct Iterator
{
@ -359,8 +439,7 @@ struct glyf
{
const CompositeGlyphHeader *possible =
&StructAfter<CompositeGlyphHeader, CompositeGlyphHeader> (*current);
if (!in_range (possible))
return false;
if (unlikely (!in_range (possible))) return false;
current = possible;
return true;
}
@ -417,12 +496,19 @@ struct glyf
glyf_table = hb_sanitize_context_t ().reference_table<glyf> (face);
num_glyphs = hb_max (1u, loca_table.get_length () / (short_offset ? 2 : 4)) - 1;
gvar_accel.init (face);
hmtx_accel.init (face);
vmtx_accel.init (face);
}
void fini ()
{
loca_table.destroy ();
glyf_table.destroy ();
gvar_accel.fini ();
hmtx_accel.fini ();
vmtx_accel.fini ();
}
/*
@ -457,12 +543,323 @@ struct glyf
FLAG_RESERVED2 = 0x80
};
enum phantom_point_index_t {
PHANTOM_LEFT = 0,
PHANTOM_RIGHT = 1,
PHANTOM_TOP = 2,
PHANTOM_BOTTOM = 3,
PHANTOM_COUNT = 4
};
protected:
const GlyphHeader &get_header (hb_codepoint_t glyph) const
{
unsigned int start_offset, end_offset;
if (!get_offsets (glyph, &start_offset, &end_offset) || end_offset - start_offset < GlyphHeader::static_size)
return Null(GlyphHeader);
return StructAtOffset<GlyphHeader> (glyf_table, start_offset);
}
struct x_setter_t
{
void set (contour_point_t &point, float v) const { point.x = v; }
bool is_short (uint8_t flag) const { return (flag & FLAG_X_SHORT) != 0; }
bool is_same (uint8_t flag) const { return (flag & FLAG_X_SAME) != 0; }
};
struct y_setter_t
{
void set (contour_point_t &point, float v) const { point.y = v; }
bool is_short (uint8_t flag) const { return (flag & FLAG_Y_SHORT) != 0; }
bool is_same (uint8_t flag) const { return (flag & FLAG_Y_SAME) != 0; }
};
template <typename T>
static bool read_points (const HBUINT8 *&p /* IN/OUT */,
contour_point_vector_t &points_ /* IN/OUT */,
const range_checker_t &checker)
{
T coord_setter;
float v = 0;
for (unsigned int i = 0; i < points_.length - PHANTOM_COUNT; i++)
{
uint8_t flag = points_[i].flag;
if (coord_setter.is_short (flag))
{
if (unlikely (!checker.in_range (p))) return false;
if (coord_setter.is_same (flag))
v += *p++;
else
v -= *p++;
}
else
{
if (!coord_setter.is_same (flag))
{
if (unlikely (!checker.in_range ((const HBUINT16 *)p))) return false;
v += *(const HBINT16 *)p;
p += HBINT16::static_size;
}
}
coord_setter.set (points_[i], v);
}
return true;
}
void init_phantom_points (hb_codepoint_t glyph, hb_array_t<contour_point_t> &phantoms /* IN/OUT */) const
{
const GlyphHeader &header = get_header (glyph);
int h_delta = (int)header.xMin - hmtx_accel.get_side_bearing (glyph);
int v_orig = (int)header.yMax + vmtx_accel.get_side_bearing (glyph);
unsigned int h_adv = hmtx_accel.get_advance (glyph);
unsigned int v_adv = vmtx_accel.get_advance (glyph);
phantoms[PHANTOM_LEFT].x = h_delta;
phantoms[PHANTOM_RIGHT].x = h_adv + h_delta;
phantoms[PHANTOM_TOP].y = v_orig;
phantoms[PHANTOM_BOTTOM].y = -(int)v_adv + v_orig;
}
/* for a simple glyph, return contour end points, flags, along with coordinate points
* for a composite glyph, return pseudo component points
* in both cases points trailed with four phantom points
*/
bool get_contour_points (hb_codepoint_t glyph,
contour_point_vector_t &points_ /* OUT */,
hb_vector_t<unsigned int> &end_points_ /* OUT */,
const bool phantom_only=false) const
{
unsigned int num_points = 0;
unsigned int start_offset, end_offset;
if (unlikely (!get_offsets (glyph, &start_offset, &end_offset))) return false;
if (unlikely (end_offset - start_offset < GlyphHeader::static_size))
{
/* empty glyph */
points_.resize (PHANTOM_COUNT);
for (unsigned int i = 0; i < points_.length; i++) points_[i].init ();
return true;
}
CompositeGlyphHeader::Iterator composite;
if (get_composite (glyph, &composite))
{
/* For a composite glyph, add one pseudo point for each component */
do { num_points++; } while (composite.move_to_next());
points_.resize (num_points + PHANTOM_COUNT);
for (unsigned int i = 0; i < points_.length; i++) points_[i].init ();
return true;
}
const GlyphHeader &glyph_header = StructAtOffset<GlyphHeader> (glyf_table, start_offset);
int16_t num_contours = (int16_t) glyph_header.numberOfContours;
const HBUINT16 *end_pts = &StructAfter<HBUINT16, GlyphHeader> (glyph_header);
range_checker_t checker (glyf_table, start_offset, end_offset);
num_points = 0;
if (num_contours > 0)
{
if (unlikely (!checker.in_range (&end_pts[num_contours + 1]))) return false;
num_points = end_pts[num_contours - 1] + 1;
}
else if (num_contours < 0)
{
CompositeGlyphHeader::Iterator composite;
if (unlikely (!get_composite (glyph, &composite))) return false;
do
{
num_points++;
} while (composite.move_to_next());
}
points_.resize (num_points + PHANTOM_COUNT);
for (unsigned int i = 0; i < points_.length; i++) points_[i].init ();
if ((num_contours <= 0) || phantom_only) return true;
/* Read simple glyph points if !phantom_only */
end_points_.resize (num_contours);
for (int16_t i = 0; i < num_contours; i++)
end_points_[i] = end_pts[i];
/* Skip instructions */
const HBUINT8 *p = &StructAtOffset<HBUINT8> (&end_pts[num_contours+1], end_pts[num_contours]);
/* Read flags */
for (unsigned int i = 0; i < num_points; i++)
{
if (unlikely (!checker.in_range (p))) return false;
uint8_t flag = *p++;
points_[i].flag = flag;
if ((flag & FLAG_REPEAT) != 0)
{
if (unlikely (!checker.in_range (p))) return false;
unsigned int repeat_count = *p++;
while ((repeat_count-- > 0) && (++i < num_points))
points_[i].flag = flag;
}
}
/* Read x & y coordinates */
return (read_points<x_setter_t> (p, points_, checker) &&
read_points<y_setter_t> (p, points_, checker));
}
struct contour_bounds_t
{
contour_bounds_t () { min.x = min.y = FLT_MAX; max.x = max.y = -FLT_MAX; }
void add (const contour_point_t &p)
{
min.x = hb_min (min.x, p.x);
min.y = hb_min (min.y, p.y);
max.x = hb_max (max.x, p.x);
max.y = hb_max (max.y, p.y);
}
bool empty () const { return (min.x >= max.x) || (min.y >= max.y); }
contour_point_t min;
contour_point_t max;
};
/* Note: Recursively calls itself.
* all_points includes phantom points
*/
bool get_points_var (hb_codepoint_t glyph,
const int *coords, unsigned int coord_count,
contour_point_vector_t &all_points /* OUT */,
unsigned int depth=0) const
{
if (unlikely (depth++ > HB_MAX_NESTING_LEVEL)) return false;
contour_point_vector_t points;
hb_vector_t<unsigned int> end_points;
if (unlikely (!get_contour_points (glyph, points, end_points))) return false;
hb_array_t<contour_point_t> phantoms = points.sub_array (points.length-PHANTOM_COUNT, PHANTOM_COUNT);
init_phantom_points (glyph, phantoms);
if (unlikely (!gvar_accel.apply_deltas_to_points (glyph, coords, coord_count, points.as_array (), end_points.as_array ()))) return false;
unsigned int comp_index = 0;
CompositeGlyphHeader::Iterator composite;
if (!get_composite (glyph, &composite))
{
/* simple glyph */
all_points.extend (points.as_array ());
}
else
{
/* composite glyph */
do
{
contour_point_vector_t comp_points;
if (unlikely (!get_points_var (composite.current->glyphIndex, coords, coord_count,
comp_points, depth))
|| comp_points.length < PHANTOM_COUNT) return false;
/* Copy phantom points from component if USE_MY_METRICS flag set */
if (composite.current->flags & CompositeGlyphHeader::USE_MY_METRICS)
for (unsigned int i = 0; i < PHANTOM_COUNT; i++)
phantoms[i] = comp_points[comp_points.length - PHANTOM_COUNT + i];
/* Apply component transformation & translation */
composite.current->transform_points (comp_points);
/* Apply translatation from gvar */
comp_points.translate (points[comp_index]);
if (composite.current->is_anchored ())
{
unsigned int p1, p2;
composite.current->get_anchor_points (p1, p2);
if (likely (p1 < all_points.length && p2 < comp_points.length))
{
contour_point_t delta;
delta.init (all_points[p1].x - comp_points[p2].x,
all_points[p1].y - comp_points[p2].y);
comp_points.translate (delta);
}
}
all_points.extend (comp_points.sub_array (0, comp_points.length - PHANTOM_COUNT));
comp_index++;
} while (composite.move_to_next());
all_points.extend (phantoms);
}
return true;
}
bool get_var_extents_and_phantoms (hb_codepoint_t glyph,
const int *coords, unsigned int coord_count,
hb_glyph_extents_t *extents=nullptr /* OUt */,
contour_point_vector_t *phantoms=nullptr /* OUT */) const
{
contour_point_vector_t all_points;
if (unlikely (!get_points_var (glyph, coords, coord_count, all_points) ||
all_points.length < PHANTOM_COUNT)) return false;
/* Undocumented rasterizer behavior:
* Shift points horizontally by the updated left side bearing
*/
contour_point_t delta;
delta.init (-all_points[all_points.length - PHANTOM_COUNT + PHANTOM_LEFT].x, 0.f);
if (delta.x != 0.f) all_points.translate (delta);
if (extents != nullptr)
{
contour_bounds_t bounds;
for (unsigned int i = 0; i + PHANTOM_COUNT < all_points.length; i++)
bounds.add (all_points[i]);
if (bounds.min.x > bounds.max.x)
{
extents->width = 0;
extents->x_bearing = 0;
}
else
{
extents->x_bearing = (int32_t)floorf (bounds.min.x);
extents->width = (int32_t)ceilf (bounds.max.x) - extents->x_bearing;
}
if (bounds.min.y > bounds.max.y)
{
extents->height = 0;
extents->y_bearing = 0;
}
else
{
extents->y_bearing = (int32_t)ceilf (bounds.max.y);
extents->height = (int32_t)floorf (bounds.min.y) - extents->y_bearing;
}
}
if (phantoms != nullptr)
{
for (unsigned int i = 0; i < PHANTOM_COUNT; i++)
(*phantoms)[i] = all_points[all_points.length - PHANTOM_COUNT + i];
}
return true;
}
bool get_var_metrics (hb_codepoint_t glyph,
const int *coords, unsigned int coord_count,
contour_point_vector_t &phantoms) const
{ return get_var_extents_and_phantoms (glyph, coords, coord_count, nullptr, &phantoms); }
bool get_extents_var (hb_codepoint_t glyph,
const int *coords, unsigned int coord_count,
hb_glyph_extents_t *extents) const
{ return get_var_extents_and_phantoms (glyph, coords, coord_count, extents); }
public:
/* based on FontTools _g_l_y_f.py::trim */
bool remove_padding (unsigned int start_offset,
unsigned int *end_offset) const
{
const char *glyph = ((const char *) glyf_table) + start_offset;
unsigned int glyph_length = *end_offset - start_offset;
const char *glyph = ((const char *) glyf_table) + start_offset;
const GlyphHeader &glyph_header = *hb_bytes_t (glyph, glyph_length).as<GlyphHeader> ();
if (!glyph_header.has_data ()) return true;
@ -599,18 +996,15 @@ struct glyf
unsigned int instruction_len_offset = glyph_header.simple_instruction_len_offset ();
if (unlikely (instruction_len_offset + 2 > glyph.length))
{
DEBUG_MSG (SUBSET, nullptr, "Glyph size is too short, missing field "
"instructionLength.");
DEBUG_MSG(SUBSET, nullptr, "Glyph size is too short, missing field instructionLength.");
return false;
}
const HBUINT16 &instruction_len = StructAtOffset<HBUINT16> (&glyph,
instruction_len_offset);
const HBUINT16 &instruction_len = StructAtOffset<HBUINT16> (&glyph, instruction_len_offset);
/* Out of bounds of the current glyph */
if (unlikely (glyph_header.simple_length (instruction_len) > glyph.length))
{
DEBUG_MSG (SUBSET, nullptr, "The instructions array overruns the "
"glyph's boundaries.");
DEBUG_MSG(SUBSET, nullptr, "The instructions array overruns the glyph's boundaries.");
return false;
}
*length = (uint16_t) instruction_len;
@ -618,42 +1012,95 @@ struct glyf
return true;
}
bool get_extents (hb_codepoint_t glyph, hb_glyph_extents_t *extents) const
unsigned int get_advance_var (hb_codepoint_t glyph,
const int *coords, unsigned int coord_count,
bool vertical) const
{
bool success = false;
contour_point_vector_t phantoms;
phantoms.resize (PHANTOM_COUNT);
if (likely (coord_count == gvar_accel.get_axis_count ()))
success = get_var_metrics (glyph, coords, coord_count, phantoms);
if (unlikely (!success))
return vertical? vmtx_accel.get_advance (glyph): hmtx_accel.get_advance (glyph);
if (vertical)
return roundf (phantoms[PHANTOM_TOP].y - phantoms[PHANTOM_BOTTOM].y);
else
return roundf (phantoms[PHANTOM_RIGHT].x - phantoms[PHANTOM_LEFT].x);
}
int get_side_bearing_var (hb_codepoint_t glyph, const int *coords, unsigned int coord_count, bool vertical) const
{
hb_glyph_extents_t extents;
contour_point_vector_t phantoms;
phantoms.resize (PHANTOM_COUNT);
if (unlikely (!get_var_extents_and_phantoms (glyph, coords, coord_count, &extents, &phantoms)))
return vertical? vmtx_accel.get_side_bearing (glyph): hmtx_accel.get_side_bearing (glyph);
return vertical? (int)ceilf (phantoms[PHANTOM_TOP].y) - extents.y_bearing: (int)floorf (phantoms[PHANTOM_LEFT].x);
}
bool get_extents (hb_font_t *font, hb_codepoint_t glyph, hb_glyph_extents_t *extents) const
{
unsigned int coord_count;
const int *coords = hb_font_get_var_coords_normalized (font, &coord_count);
if (coords && coord_count > 0 && coord_count == gvar_accel.get_axis_count ())
return get_extents_var (glyph, coords, coord_count, extents);
unsigned int start_offset, end_offset;
if (!get_offsets (glyph, &start_offset, &end_offset))
return false;
hb_bytes_t ((const char *) glyf_table + start_offset,
end_offset - start_offset).as<GlyphHeader> ()->get_extents (extents);
if (end_offset - start_offset < GlyphHeader::static_size)
return true; /* Empty glyph; zero extents. */
const GlyphHeader &glyph_header = StructAtOffset<GlyphHeader> (glyf_table, start_offset);
/* Undocumented rasterizer behavior: shift glyph to the left by (lsb - xMin), i.e., xMin = lsb */
/* extents->x_bearing = hb_min (glyph_header.xMin, glyph_header.xMax); */
extents->x_bearing = hmtx_accel.get_side_bearing (glyph);
extents->y_bearing = hb_max (glyph_header.yMin, glyph_header.yMax);
extents->width = hb_max (glyph_header.xMin, glyph_header.xMax) - hb_min (glyph_header.xMin, glyph_header.xMax);
extents->height = hb_min (glyph_header.yMin, glyph_header.yMax) - extents->y_bearing;
return true;
}
hb_bytes_t bytes_for_glyph (const char *glyf, hb_codepoint_t gid)
hb_bytes_t bytes_for_glyph (const char * glyf, hb_codepoint_t gid)
{
unsigned int start_offset, end_offset;
if (unlikely (!(get_offsets (gid, &start_offset, &end_offset) &&
remove_padding (start_offset, &end_offset))))
{
unsigned int start_offset, end_offset;
if (unlikely (!(get_offsets (gid, &start_offset, &end_offset) &&
remove_padding (start_offset, &end_offset))))
{
DEBUG_MSG (SUBSET, nullptr, "Unable to get offset or remove padding for %d", gid);
return hb_bytes_t ();
}
hb_bytes_t glyph_bytes = hb_bytes_t (glyf + start_offset, end_offset - start_offset);
if (!glyph_bytes.as<GlyphHeader> ()->has_data ())
{
DEBUG_MSG (SUBSET, nullptr, "Empty or invalid glyph size, %d", gid);
return hb_bytes_t ();
}
return glyph_bytes;
DEBUG_MSG(SUBSET, nullptr, "Unable to get offset or remove padding for %d", gid);
return hb_bytes_t ();
}
hb_bytes_t glyph_bytes = hb_bytes_t (glyf + start_offset, end_offset - start_offset);
if (!glyph_bytes.as<GlyphHeader> ()->has_data ())
{
DEBUG_MSG(SUBSET, nullptr, "Glyph size smaller than minimum header %d", gid);
return hb_bytes_t ();
}
return glyph_bytes;
}
private:
bool short_offset;
unsigned int num_glyphs;
hb_blob_ptr_t<loca> loca_table;
hb_blob_ptr_t<glyf> glyf_table;
/* variable font support */
gvar::accelerator_t gvar_accel;
hmtx::accelerator_t hmtx_accel;
vmtx::accelerator_t vmtx_accel;
};
struct SubsetGlyph
{
hb_codepoint_t new_gid;
@ -662,38 +1109,38 @@ struct glyf
hb_bytes_t dest_start; /* region of source_glyph to copy first */
hb_bytes_t dest_end; /* region of source_glyph to copy second */
bool serialize (hb_serialize_context_t *c,
const hb_subset_plan_t *plan) const
bool serialize (hb_serialize_context_t *c,
const hb_subset_plan_t *plan) const
{
TRACE_SERIALIZE (this);
hb_bytes_t dest_glyph = dest_start.copy (c);
dest_glyph = hb_bytes_t (&dest_glyph, dest_glyph.length + dest_end.copy(c).length);
unsigned int pad_length = padding ();
DEBUG_MSG(SUBSET, nullptr, "serialize %d byte glyph, width %d pad %d", dest_glyph.length, dest_glyph.length + pad_length, pad_length);
HBUINT8 pad;
pad = 0;
while (pad_length > 0)
{
TRACE_SERIALIZE (this);
hb_bytes_t dest_glyph = dest_start.copy (c);
dest_glyph = hb_bytes_t (&dest_glyph, dest_glyph.length + dest_end.copy (c).length);
unsigned int pad_length = padding ();
DEBUG_MSG (SUBSET, nullptr, "serialize %d byte glyph, width %d pad %d",
dest_glyph.length, dest_glyph.length + pad_length, pad_length);
HBUINT8 pad;
pad = 0;
while (pad_length > 0)
{
c->embed (pad);
pad_length--;
}
if (dest_glyph.length)
{
_fix_component_gids (plan, dest_glyph);
if (plan->drop_hints)
{
_zero_instruction_length (dest_glyph);
c->check_success (_remove_composite_instruction_flag (dest_glyph));
}
}
return_trace (true);
c->embed(pad);
pad_length--;
}
if (dest_glyph.length)
{
_fix_component_gids (plan, dest_glyph);
if (plan->drop_hints)
{
_zero_instruction_length (dest_glyph);
c->check_success (_remove_composite_instruction_flag (dest_glyph));
}
}
return_trace (true);
}
void drop_hints (const OT::glyf::accelerator_t& glyf)
{
if (source_glyph.length == 0) return;
@ -703,13 +1150,12 @@ struct glyf
{
DEBUG_MSG (SUBSET, nullptr, "Unable to read instruction length for new_gid %d",
new_gid);
return ;
return;
}
const GlyphHeader& header = *source_glyph.as<GlyphHeader> ();
DEBUG_MSG (SUBSET, nullptr, "new_gid %d drop %d instruction bytes "
"from %d byte source glyph",
new_gid, instruction_len, source_glyph.length);
DEBUG_MSG (SUBSET, nullptr, "Unable to read instruction length for new_gid %d",
new_gid);
if (header.is_composite_glyph ())
{
/* just chop instructions off the end for composite glyphs */
@ -728,9 +1174,9 @@ struct glyf
}
}
unsigned int length () const { return dest_start.length + dest_end.length; }
unsigned int length () const { return dest_start.length + dest_end.length; }
/* pad to 2 to ensure 2-byte loca will be ok */
unsigned int padding () const { return length () % 2; }
unsigned int padding () const { return length () % 2; }
unsigned int padded_size () const { return length () + padding (); }
};

54
src/hb-ot-hmtx-table.cc Normal file
View File

@ -0,0 +1,54 @@
/*
* Copyright © 2019 Adobe Inc.
*
* This is part of HarfBuzz, a text shaping library.
*
* Permission is hereby granted, without written agreement and without
* license or royalty fees, to use, copy, modify, and distribute this
* software and its documentation for any purpose, provided that the
* above copyright notice and the following two paragraphs appear in
* all copies of this software.
*
* IN NO EVENT SHALL THE COPYRIGHT HOLDER BE LIABLE TO ANY PARTY FOR
* DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES
* ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN
* IF THE COPYRIGHT HOLDER HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
* DAMAGE.
*
* THE COPYRIGHT HOLDER SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING,
* BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
* FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER IS
* ON AN "AS IS" BASIS, AND THE COPYRIGHT HOLDER HAS NO OBLIGATION TO
* PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.
*
* Adobe Author(s): Michiharu Ariza
*/
#include "hb-ot-hmtx-table.hh"
#include "hb-ot-glyf-table.hh"
namespace OT {
int hmtxvmtx_accelerator_base_t::get_side_bearing_var_tt (hb_font_t *font, hb_codepoint_t glyph, bool vertical)
{
glyf::accelerator_t glyf_accel;
glyf_accel.init (font->face);
int side_bearing = glyf_accel.get_side_bearing_var (glyph, font->coords, font->num_coords, vertical);
glyf_accel.fini ();
return side_bearing;
}
unsigned int hmtxvmtx_accelerator_base_t::get_advance_var_tt (hb_font_t *font, hb_codepoint_t glyph, bool vertical)
{
glyf::accelerator_t glyf_accel;
glyf_accel.init (font->face);
unsigned int advance = glyf_accel.get_advance_var (glyph, font->coords, font->num_coords, vertical);
glyf_accel.fini ();
return advance;
}
}

View File

@ -55,14 +55,8 @@ struct LongMetric
struct hmtxvmtx_accelerator_base_t
{
static int get_side_bearing_var_tt (hb_font_t *font HB_UNUSED,
hb_codepoint_t glyph HB_UNUSED,
bool is_vertical HB_UNUSED)
{ return 0; } /* Not implemented yet */
static unsigned int get_advance_var_tt (hb_font_t *font HB_UNUSED,
hb_codepoint_t glyph HB_UNUSED,
bool is_vertical HB_UNUSED)
{ return 0; } /* Not implemented yet */
HB_INTERNAL static int get_side_bearing_var_tt (hb_font_t *font, hb_codepoint_t glyph, bool vertical);
HB_INTERNAL static unsigned int get_advance_var_tt (hb_font_t *font, hb_codepoint_t glyph, bool vertical);
};
template <typename T, typename H>
@ -140,13 +134,12 @@ struct hmtxvmtx
auto it =
+ hb_range (c->plan->num_output_glyphs ())
| hb_map ([c, &_mtx] (unsigned _)
{
hb_codepoint_t old_gid;
if (c->plan->old_gid_for_new_gid (_, &old_gid))
return hb_pair (_mtx.get_advance (old_gid), _mtx.get_side_bearing (old_gid));
else
return hb_pair (0u, 0);
})
{
hb_codepoint_t old_gid;
if (!c->plan->old_gid_for_new_gid (_, &old_gid))
return hb_pair (0u, 0);
return hb_pair (_mtx.get_advance (old_gid), _mtx.get_side_bearing (old_gid));
})
;
table_prime->serialize (c->serializer, it, num_advances);
@ -158,9 +151,7 @@ struct hmtxvmtx
// Amend header num hmetrics
if (unlikely (!subset_update_header (c->plan, num_advances)))
{
return_trace (false);
}
return_trace (true);
}
@ -221,8 +212,8 @@ struct hmtxvmtx
if (unlikely (glyph >= num_metrics) || !font->num_coords)
return side_bearing;
// if (var_table.get_blob () == &Null (hb_blob_t))
// return get_side_bearing_var_tt (font, glyph, T::tableTag == HB_OT_TAG_vmtx);
if (var_table.get_blob () == &Null (hb_blob_t))
return get_side_bearing_var_tt (font, glyph, T::tableTag == HB_OT_TAG_vmtx);
return side_bearing + var_table->get_side_bearing_var (glyph, font->coords, font->num_coords); // TODO Optimize?!
}
@ -251,8 +242,8 @@ struct hmtxvmtx
if (unlikely (glyph >= num_metrics) || !font->num_coords)
return advance;
// if (var_table.get_blob () == &Null (hb_blob_t))
// return get_advance_var_tt (font, glyph, T::tableTag == HB_OT_TAG_vmtx);
if (var_table.get_blob () == &Null (hb_blob_t))
return get_advance_var_tt (font, glyph, T::tableTag == HB_OT_TAG_vmtx);
return advance + roundf (var_table->get_advance_var (glyph, font->coords, font->num_coords)); // TODO Optimize?!
}

734
src/hb-ot-var-gvar-table.hh Normal file
View File

@ -0,0 +1,734 @@
/*
* Copyright © 2019 Adobe Inc.
*
* This is part of HarfBuzz, a text shaping library.
*
* Permission is hereby granted, without written agreement and without
* license or royalty fees, to use, copy, modify, and distribute this
* software and its documentation for any purpose, provided that the
* above copyright notice and the following two paragraphs appear in
* all copies of this software.
*
* IN NO EVENT SHALL THE COPYRIGHT HOLDER BE LIABLE TO ANY PARTY FOR
* DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES
* ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN
* IF THE COPYRIGHT HOLDER HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
* DAMAGE.
*
* THE COPYRIGHT HOLDER SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING,
* BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
* FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER IS
* ON AN "AS IS" BASIS, AND THE COPYRIGHT HOLDER HAS NO OBLIGATION TO
* PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.
*
* Adobe Author(s): Michiharu Ariza
*/
#ifndef HB_OT_VAR_GVAR_TABLE_HH
#define HB_OT_VAR_GVAR_TABLE_HH
#include "hb-open-type.hh"
#include "hb-ot-glyf-table.hh"
#include "hb-ot-var-fvar-table.hh"
/*
* gvar -- Glyph Variation Table
* https://docs.microsoft.com/en-us/typography/opentype/spec/gvar
*/
#define HB_OT_TAG_gvar HB_TAG('g','v','a','r')
namespace OT {
struct contour_point_t
{
void init (float x_=0.f, float y_=0.f) { flag = 0; x = x_; y = y_; }
void translate (const contour_point_t &p) { x += p.x; y += p.y; }
uint8_t flag;
float x, y;
};
struct contour_point_vector_t : hb_vector_t<contour_point_t>
{
void extend (const hb_array_t<contour_point_t> &a)
{
unsigned int old_len = length;
resize (old_len + a.length);
for (unsigned int i = 0; i < a.length; i++)
(*this)[old_len + i] = a[i];
}
void transform (const float (&matrix)[4])
{
for (unsigned int i = 0; i < length; i++)
{
contour_point_t &p = (*this)[i];
float x_ = p.x * matrix[0] + p.y * matrix[2];
p.y = p.x * matrix[1] + p.y * matrix[3];
p.x = x_;
}
}
void translate (const contour_point_t& delta)
{
for (unsigned int i = 0; i < length; i++)
(*this)[i].translate (delta);
}
};
struct range_checker_t
{
range_checker_t (const void *table_, unsigned int start_offset_, unsigned int end_offset_)
: table ((const char*)table_), start_offset (start_offset_), end_offset (end_offset_) {}
template <typename T>
bool in_range (const T *p) const
{
return ((const char *) p) >= table + start_offset
&& ((const char *) p + T::static_size) <= table + end_offset;
}
protected:
const char *table;
const unsigned int start_offset;
const unsigned int end_offset;
};
struct Tuple : UnsizedArrayOf<F2DOT14> {};
struct TuppleIndex : HBUINT16
{
enum Flags {
EmbeddedPeakTuple = 0x8000u,
IntermediateRegion = 0x4000u,
PrivatePointNumbers = 0x2000u,
TupleIndexMask = 0x0FFFu
};
DEFINE_SIZE_STATIC (2);
};
struct TupleVarHeader
{
unsigned int get_size (unsigned int axis_count) const
{
return min_size +
(has_peak ()? get_peak_tuple ().get_size (axis_count): 0) +
(has_intermediate ()? (get_start_tuple (axis_count).get_size (axis_count) +
get_end_tuple (axis_count).get_size (axis_count)): 0);
}
const TupleVarHeader &get_next (unsigned int axis_count) const
{ return StructAtOffset<TupleVarHeader> (this, get_size (axis_count)); }
float calculate_scalar (const int *coords, unsigned int coord_count,
const hb_array_t<const F2DOT14> shared_tuples) const
{
const F2DOT14 *peak_tuple;
if (has_peak ())
peak_tuple = &(get_peak_tuple ()[0]);
else
{
unsigned int index = get_index ();
if (unlikely (index * coord_count >= shared_tuples.length))
return 0.f;
peak_tuple = &shared_tuples[coord_count * index];
}
const F2DOT14 *start_tuple = nullptr;
const F2DOT14 *end_tuple = nullptr;
if (has_intermediate ())
{
start_tuple = get_start_tuple (coord_count);
end_tuple = get_end_tuple (coord_count);
}
float scalar = 1.f;
for (unsigned int i = 0; i < coord_count; i++)
{
int v = coords[i];
int peak = peak_tuple[i];
if (!peak || v == peak) continue;
if (has_intermediate ())
{
int start = start_tuple[i];
int end = end_tuple[i];
if (unlikely (start > peak || peak > end ||
(start < 0 && end > 0 && peak))) continue;
if (v < start || v > end) return 0.f;
if (v < peak)
{ if (peak != start) scalar *= (float)(v - start) / (peak - start); }
else
{ if (peak != end) scalar *= (float)(end - v) / (end - peak); }
}
else if (!v || v < hb_min (0, peak) || v > hb_max (0, peak)) return 0.f;
else
scalar *= (float)v / peak;
}
return scalar;
}
unsigned int get_data_size () const { return varDataSize; }
bool has_peak () const { return (tupleIndex & TuppleIndex::EmbeddedPeakTuple); }
bool has_intermediate () const { return (tupleIndex & TuppleIndex::IntermediateRegion); }
bool has_private_points () const { return (tupleIndex & TuppleIndex::PrivatePointNumbers); }
unsigned int get_index () const { return (tupleIndex & TuppleIndex::TupleIndexMask); }
protected:
const Tuple &get_peak_tuple () const
{ return StructAfter<Tuple> (tupleIndex); }
const Tuple &get_start_tuple (unsigned int axis_count) const
{ return *(const Tuple *)&get_peak_tuple ()[has_peak ()? axis_count: 0]; }
const Tuple &get_end_tuple (unsigned int axis_count) const
{ return *(const Tuple *)&get_peak_tuple ()[has_peak ()? (axis_count * 2): axis_count]; }
HBUINT16 varDataSize;
TuppleIndex tupleIndex;
/* UnsizedArrayOf<F2DOT14> peakTuple - optional */
/* UnsizedArrayOf<F2DOT14> intermediateStartTuple - optional */
/* UnsizedArrayOf<F2DOT14> intermediateEndTuple - optional */
public:
DEFINE_SIZE_MIN (4);
};
struct TupleVarCount : HBUINT16
{
bool has_shared_point_numbers () const { return ((*this) & SharedPointNumbers); }
unsigned int get_count () const { return (*this) & CountMask; }
protected:
enum Flags {
SharedPointNumbers = 0x8000u,
CountMask = 0x0FFFu
};
public:
DEFINE_SIZE_STATIC (2);
};
struct GlyphVarData
{
const TupleVarHeader &get_tuple_var_header (void) const
{ return StructAfter<TupleVarHeader>(data); }
struct tuple_iterator_t
{
void init (const GlyphVarData *var_data_, unsigned int length_, unsigned int axis_count_)
{
var_data = var_data_;
length = length_;
index = 0;
axis_count = axis_count_;
current_tuple = &var_data->get_tuple_var_header ();
data_offset = 0;
}
bool get_shared_indices (hb_vector_t<unsigned int> &shared_indices /* OUT */)
{
if (var_data->has_shared_point_numbers ())
{
range_checker_t checker (var_data, 0, length);
const HBUINT8 *base = &(var_data+var_data->data);
const HBUINT8 *p = base;
if (!unpack_points (p, shared_indices, checker)) return false;
data_offset = p - base;
}
return true;
}
bool is_valid () const
{
return (index < var_data->tupleVarCount.get_count ()) &&
in_range (current_tuple) &&
current_tuple->get_size (axis_count);
}
bool move_to_next ()
{
data_offset += current_tuple->get_data_size ();
current_tuple = &current_tuple->get_next (axis_count);
index++;
return is_valid ();
}
bool in_range (const void *p, unsigned int l) const
{ return (const char*)p >= (const char*)var_data && (const char*)p+l <= (const char*)var_data + length; }
template <typename T> bool in_range (const T *p) const { return in_range (p, sizeof (*p)); }
const HBUINT8 *get_serialized_data () const
{ return &(var_data+var_data->data) + data_offset; }
private:
const GlyphVarData *var_data;
unsigned int length;
unsigned int index;
unsigned int axis_count;
unsigned int data_offset;
public:
const TupleVarHeader *current_tuple;
};
static bool get_tuple_iterator (const GlyphVarData *var_data,
unsigned int length,
unsigned int axis_count,
hb_vector_t<unsigned int> &shared_indices /* OUT */,
tuple_iterator_t *iterator /* OUT */)
{
iterator->init (var_data, length, axis_count);
if (!iterator->get_shared_indices (shared_indices))
return false;
return iterator->is_valid ();
}
bool has_shared_point_numbers () const { return tupleVarCount.has_shared_point_numbers (); }
static bool unpack_points (const HBUINT8 *&p /* IN/OUT */,
hb_vector_t<unsigned int> &points /* OUT */,
const range_checker_t &check)
{
enum packed_point_flag_t
{
POINTS_ARE_WORDS = 0x80,
POINT_RUN_COUNT_MASK = 0x7F
};
if (!check.in_range (p)) return false;
uint16_t count = *p++;
if (count & POINTS_ARE_WORDS)
{
if (!check.in_range (p)) return false;
count = ((count & POINT_RUN_COUNT_MASK) << 8) | *p++;
}
points.resize (count);
unsigned int n = 0;
uint16_t i = 0;
while (i < count)
{
if (!check.in_range (p)) return false;
uint16_t j;
uint8_t control = *p++;
uint16_t run_count = (control & POINT_RUN_COUNT_MASK) + 1;
if (control & POINTS_ARE_WORDS)
{
for (j = 0; j < run_count && i < count; j++, i++)
{
if (!check.in_range ((const HBUINT16 *)p)) return false;
n += *(const HBUINT16 *)p;
points[i] = n;
p += HBUINT16::static_size;
}
}
else
{
for (j = 0; j < run_count && i < count; j++, i++)
{
if (!check.in_range (p)) return false;
n += *p++;
points[i] = n;
}
}
if (j < run_count) return false;
}
return true;
}
static bool unpack_deltas (const HBUINT8 *&p /* IN/OUT */,
hb_vector_t<int> &deltas /* IN/OUT */,
const range_checker_t &check)
{
enum packed_delta_flag_t
{
DELTAS_ARE_ZERO = 0x80,
DELTAS_ARE_WORDS = 0x40,
DELTA_RUN_COUNT_MASK = 0x3F
};
unsigned int i = 0;
unsigned int count = deltas.length;
while (i < count)
{
if (!check.in_range (p)) return false;
uint16_t j;
uint8_t control = *p++;
uint16_t run_count = (control & DELTA_RUN_COUNT_MASK) + 1;
if (control & DELTAS_ARE_ZERO)
{
for (j = 0; j < run_count && i < count; j++, i++)
deltas[i] = 0;
}
else if (control & DELTAS_ARE_WORDS)
{
for (j = 0; j < run_count && i < count; j++, i++)
{
if (!check.in_range ((const HBUINT16 *)p))
return false;
deltas[i] = *(const HBINT16 *)p;
p += HBUINT16::static_size;
}
}
else
{
for (j = 0; j < run_count && i < count; j++, i++)
{
if (!check.in_range (p))
return false;
deltas[i] = *(const HBINT8 *)p++;
}
}
if (j < run_count)
return false;
}
return true;
}
protected:
TupleVarCount tupleVarCount;
OffsetTo<HBUINT8> data;
/* TupleVarHeader tupleVarHeaders[] */
public:
DEFINE_SIZE_MIN (4);
};
struct gvar
{
static constexpr hb_tag_t tableTag = HB_OT_TAG_gvar;
bool sanitize_shallow (hb_sanitize_context_t *c) const
{
TRACE_SANITIZE (this);
return_trace (c->check_struct (this) && (version.major == 1) &&
(glyphCount == c->get_num_glyphs ()) &&
c->check_array (&(this+sharedTuples), axisCount * sharedTupleCount) &&
(is_long_offset ()?
c->check_array (get_long_offset_array (), glyphCount+1):
c->check_array (get_short_offset_array (), glyphCount+1)) &&
c->check_array (((const HBUINT8*)&(this+dataZ)) + get_offset (0),
get_offset (glyphCount) - get_offset (0)));
}
/* GlyphVarData not sanitized here; must be checked while accessing each glyph varation data */
bool sanitize (hb_sanitize_context_t *c) const
{ return sanitize_shallow (c); }
bool subset (hb_subset_context_t *c) const
{
TRACE_SUBSET (this);
gvar *out = c->serializer->allocate_min<gvar> ();
if (unlikely (!out)) return_trace (false);
out->version.major = 1;
out->version.minor = 0;
out->axisCount = axisCount;
out->sharedTupleCount = sharedTupleCount;
unsigned int num_glyphs = c->plan->num_output_glyphs ();
out->glyphCount = num_glyphs;
unsigned int subset_data_size = 0;
for (hb_codepoint_t gid = 0; gid < num_glyphs; gid++)
{
hb_codepoint_t old_gid;
if (!c->plan->old_gid_for_new_gid (gid, &old_gid)) continue;
subset_data_size += get_glyph_var_data_length (old_gid);
}
bool long_offset = subset_data_size & ~0xFFFFu;
out->flags = long_offset? 1: 0;
HBUINT8 *subset_offsets = c->serializer->allocate_size<HBUINT8> ((long_offset? 4: 2) * (num_glyphs+1));
if (!subset_offsets) return_trace (false);
/* shared tuples */
if (!sharedTupleCount || !sharedTuples)
out->sharedTuples = 0;
else
{
unsigned int shared_tuple_size = F2DOT14::static_size * axisCount * sharedTupleCount;
F2DOT14 *tuples = c->serializer->allocate_size<F2DOT14> (shared_tuple_size);
if (!tuples) return_trace (false);
out->sharedTuples = (char *)tuples - (char *)out;
memcpy (tuples, &(this+sharedTuples), shared_tuple_size);
}
char *subset_data = c->serializer->allocate_size<char>(subset_data_size);
if (!subset_data) return_trace (false);
out->dataZ = subset_data - (char *)out;
unsigned int glyph_offset = 0;
for (hb_codepoint_t gid = 0; gid < num_glyphs; gid++)
{
hb_codepoint_t old_gid;
unsigned int length = c->plan->old_gid_for_new_gid (gid, &old_gid)? get_glyph_var_data_length (old_gid): 0;
if (long_offset)
((HBUINT32 *)subset_offsets)[gid] = glyph_offset;
else
((HBUINT16 *)subset_offsets)[gid] = glyph_offset / 2;
if (length > 0) memcpy (subset_data, get_glyph_var_data (old_gid), length);
subset_data += length;
glyph_offset += length;
}
if (long_offset)
((HBUINT32 *)subset_offsets)[num_glyphs] = glyph_offset;
else
((HBUINT16 *)subset_offsets)[num_glyphs] = glyph_offset / 2;
return_trace (true);
}
protected:
const GlyphVarData *get_glyph_var_data (hb_codepoint_t glyph) const
{
unsigned int start_offset = get_offset (glyph);
unsigned int end_offset = get_offset (glyph+1);
if ((start_offset == end_offset) ||
unlikely ((start_offset > get_offset (glyphCount)) ||
(start_offset + GlyphVarData::min_size > end_offset)))
return &Null(GlyphVarData);
return &(((unsigned char *)this+start_offset)+dataZ);
}
bool is_long_offset () const { return (flags & 1)!=0; }
unsigned int get_offset (unsigned int i) const
{
if (is_long_offset ())
return get_long_offset_array ()[i];
else
return get_short_offset_array ()[i] * 2;
}
unsigned int get_glyph_var_data_length (unsigned int glyph) const
{
unsigned int end_offset = get_offset (glyph+1);
unsigned int start_offset = get_offset (glyph);
if (unlikely (start_offset > end_offset || end_offset > get_offset(glyphCount)))
return 0;
return end_offset - start_offset;
}
const HBUINT32 *get_long_offset_array () const { return (const HBUINT32 *)&offsetZ; }
const HBUINT16 *get_short_offset_array () const { return (const HBUINT16 *)&offsetZ; }
public:
struct accelerator_t
{
void init (hb_face_t *face)
{
memset (this, 0, sizeof (accelerator_t));
gvar_table = hb_sanitize_context_t ().reference_table<gvar> (face);
hb_blob_ptr_t<fvar> fvar_table = hb_sanitize_context_t ().reference_table<fvar> (face);
unsigned int axis_count = fvar_table->get_axis_count ();
fvar_table.destroy ();
if (unlikely ((gvar_table->glyphCount != face->get_num_glyphs ()) ||
(gvar_table->axisCount != axis_count)))
fini ();
unsigned int num_shared_coord = gvar_table->sharedTupleCount * gvar_table->axisCount;
shared_tuples.resize (num_shared_coord);
for (unsigned int i = 0; i < num_shared_coord; i++)
shared_tuples[i] = (&(gvar_table+gvar_table->sharedTuples))[i];
}
void fini ()
{
gvar_table.destroy ();
shared_tuples.fini ();
}
private:
struct x_getter { static float get (const contour_point_t &p) { return p.x; } };
struct y_getter { static float get (const contour_point_t &p) { return p.y; } };
template <typename T>
static float infer_delta (const hb_array_t<contour_point_t> points,
const hb_array_t<contour_point_t> deltas,
unsigned int target, unsigned int prev, unsigned int next)
{
float target_val = T::get (points[target]);
float prev_val = T::get (points[prev]);
float next_val = T::get (points[next]);
float prev_delta = T::get (deltas[prev]);
float next_delta = T::get (deltas[next]);
if (prev_val == next_val)
return (prev_delta == next_delta)? prev_delta: 0.f;
else if (target_val <= hb_min (prev_val, next_val))
return (prev_val < next_val) ? prev_delta: next_delta;
else if (target_val >= hb_max (prev_val, next_val))
return (prev_val > next_val)? prev_delta: next_delta;
/* linear interpolation */
float r = (target_val - prev_val) / (next_val - prev_val);
return (1.f - r) * prev_delta + r * next_delta;
}
static unsigned int next_index (unsigned int i, unsigned int start, unsigned int end)
{ return (i >= end)? start: (i + 1); }
public:
bool apply_deltas_to_points (hb_codepoint_t glyph,
const int *coords, unsigned int coord_count,
const hb_array_t<contour_point_t> points,
const hb_array_t<unsigned int> end_points) const
{
if (unlikely (coord_count != gvar_table->axisCount)) return false;
const GlyphVarData *var_data = gvar_table->get_glyph_var_data (glyph);
if (var_data == &Null(GlyphVarData)) return true;
hb_vector_t <unsigned int> shared_indices;
GlyphVarData::tuple_iterator_t iterator;
if (!GlyphVarData::get_tuple_iterator (var_data,
gvar_table->get_glyph_var_data_length (glyph),
gvar_table->axisCount,
shared_indices,
&iterator))
return false;
/* Save original points for inferred delta calculation */
contour_point_vector_t orig_points;
orig_points.resize (points.length);
for (unsigned int i = 0; i < orig_points.length; i++)
orig_points[i] = points[i];
contour_point_vector_t deltas; /* flag is used to indicate referenced point */
deltas.resize (points.length);
do {
float scalar = iterator.current_tuple->calculate_scalar (coords, coord_count, shared_tuples.as_array ());
if (scalar == 0.f) continue;
const HBUINT8 *p = iterator.get_serialized_data ();
unsigned int length = iterator.current_tuple->get_data_size ();
if (unlikely (!iterator.in_range (p, length)))
return false;
range_checker_t checker (p, 0, length);
hb_vector_t <unsigned int> private_indices;
if (iterator.current_tuple->has_private_points () &&
!GlyphVarData::unpack_points (p, private_indices, checker))
return false;
const hb_array_t<unsigned int> &indices = private_indices.length? private_indices: shared_indices;
bool apply_to_all = (indices.length == 0);
unsigned int num_deltas = apply_to_all? points.length: indices.length;
hb_vector_t <int> x_deltas;
x_deltas.resize (num_deltas);
if (!GlyphVarData::unpack_deltas (p, x_deltas, checker))
return false;
hb_vector_t <int> y_deltas;
y_deltas.resize (num_deltas);
if (!GlyphVarData::unpack_deltas (p, y_deltas, checker))
return false;
for (unsigned int i = 0; i < deltas.length; i++)
deltas[i].init ();
for (unsigned int i = 0; i < num_deltas; i++)
{
unsigned int pt_index = apply_to_all? i: indices[i];
deltas[pt_index].flag = 1; /* this point is referenced, i.e., explicit deltas specified */
deltas[pt_index].x += x_deltas[i] * scalar;
deltas[pt_index].y += y_deltas[i] * scalar;
}
/* infer deltas for unreferenced points */
unsigned int start_point = 0;
for (unsigned int c = 0; c < end_points.length; c++)
{
unsigned int end_point = end_points[c];
unsigned int i, j;
/* Check the number of unreferenced points in a contour. If no unref points or no ref points, nothing to do. */
unsigned int unref_count = 0;
for (i = start_point; i <= end_point; i++)
if (!deltas[i].flag) unref_count++;
if (unref_count == 0 || unref_count > end_point - start_point)
goto no_more_gaps;
j = start_point;
for (;;)
{
/* Locate the next gap of unreferenced points between two referenced points prev and next.
* Note that a gap may wrap around at left (start_point) and/or at right (end_point).
*/
unsigned int prev, next;
for (;;) {
i = j;
j = next_index (i, start_point, end_point);
if (deltas[i].flag && !deltas[j].flag) break;
}
prev = j = i;
for (;;) {
i = j;
j = next_index (i, start_point, end_point);
if (!deltas[i].flag && deltas[j].flag) break;
}
next = j;
/* Infer deltas for all unref points in the gap between prev and next */
i = prev;
for (;;) {
i = next_index (i, start_point, end_point);
if (i == next) break;
deltas[i].x = infer_delta<x_getter> (orig_points.as_array (), deltas.as_array (), i, prev, next);
deltas[i].y = infer_delta<y_getter> (orig_points.as_array (), deltas.as_array (), i, prev, next);
if (--unref_count == 0) goto no_more_gaps;
}
}
no_more_gaps:
start_point = end_point + 1;
}
/* apply specified / inferred deltas to points */
for (unsigned int i = 0; i < points.length; i++)
{
points[i].x += (float) roundf (deltas[i].x);
points[i].y += (float) roundf (deltas[i].y);
}
} while (iterator.move_to_next ());
return true;
}
unsigned int get_axis_count () const { return gvar_table->axisCount; }
protected:
const GlyphVarData *get_glyph_var_data (hb_codepoint_t glyph) const
{ return gvar_table->get_glyph_var_data (glyph); }
private:
hb_blob_ptr_t<gvar> gvar_table;
hb_vector_t<F2DOT14> shared_tuples;
};
protected:
FixedVersion<> version; /* Version of gvar table. Set to 0x00010000u. */
HBUINT16 axisCount;
HBUINT16 sharedTupleCount;
LOffsetTo<F2DOT14> sharedTuples; /* LOffsetTo<UnsizedArrayOf<Tupple>> */
HBUINT16 glyphCount;
HBUINT16 flags;
LOffsetTo<GlyphVarData> dataZ; /* Array of GlyphVarData */
UnsizedArrayOf<HBUINT8> offsetZ; /* Array of 16-bit or 32-bit (glyphCount+1) offsets */
public:
DEFINE_SIZE_MIN (20);
};
struct gvar_accelerator_t : gvar::accelerator_t {};
} /* namespace OT */
#endif /* HB_OT_VAR_GVAR_TABLE_HH */

View File

@ -88,6 +88,7 @@ TEST_PROGS += \
test-ot-metrics \
test-ot-tag \
test-ot-extents-cff \
test-ot-metrics-tt-var \
$(NULL)

Binary file not shown.

Binary file not shown.

Binary file not shown.

View File

@ -0,0 +1,250 @@
/*
* Copyright © 2019 Adobe Inc.
*
* This is part of HarfBuzz, a text shaping library.
*
* Permission is hereby granted, without written agreement and without
* license or royalty fees, to use, copy, modify, and distribute this
* software and its documentation for any purpose, provided that the
* above copyright notice and the following two paragraphs appear in
* all copies of this software.
*
* IN NO EVENT SHALL THE COPYRIGHT HOLDER BE LIABLE TO ANY PARTY FOR
* DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES
* ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN
* IF THE COPYRIGHT HOLDER HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
* DAMAGE.
*
* THE COPYRIGHT HOLDER SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING,
* BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
* FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER IS
* ON AN "AS IS" BASIS, AND THE COPYRIGHT HOLDER HAS NO OBLIGATION TO
* PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.
*
* Adobe Author(s): Michiharu Ariza
*/
#include "hb-test.h"
#include <hb-ot.h>
/* Unit tests for glyph advance widths and extents of TrueType variable fonts */
static void
test_extents_tt_var (void)
{
hb_face_t *face = hb_test_open_font_file ("fonts/SourceSansVariable-Roman-nohvar-41,C1.ttf");
g_assert (face);
hb_font_t *font = hb_font_create (face);
hb_face_destroy (face);
g_assert (font);
hb_ot_font_set_funcs (font);
hb_glyph_extents_t extents;
hb_bool_t result = hb_font_get_glyph_extents (font, 2, &extents);
g_assert (result);
g_assert_cmpint (extents.x_bearing, ==, 10);
g_assert_cmpint (extents.y_bearing, ==, 846);
g_assert_cmpint (extents.width, ==, 500);
g_assert_cmpint (extents.height, ==, -846);
float coords[1] = { 500.0f };
hb_font_set_var_coords_design (font, coords, 1);
result = hb_font_get_glyph_extents (font, 2, &extents);
g_assert (result);
g_assert_cmpint (extents.x_bearing, ==, 0);
g_assert_cmpint (extents.y_bearing, ==, 874);
g_assert_cmpint (extents.width, ==, 551);
g_assert_cmpint (extents.height, ==, -874);
hb_font_destroy (font);
}
static void
test_advance_tt_var_nohvar (void)
{
hb_face_t *face = hb_test_open_font_file ("fonts/SourceSansVariable-Roman-nohvar-41,C1.ttf");
g_assert (face);
hb_font_t *font = hb_font_create (face);
hb_face_destroy (face);
g_assert (font);
hb_ot_font_set_funcs (font);
hb_position_t x, y;
hb_font_get_glyph_advance_for_direction(font, 2, HB_DIRECTION_LTR, &x, &y);
g_assert_cmpint (x, ==, 520);
g_assert_cmpint (y, ==, 0);
hb_font_get_glyph_advance_for_direction(font, 2, HB_DIRECTION_TTB, &x, &y);
g_assert_cmpint (x, ==, 0);
g_assert_cmpint (y, ==, -1000);
float coords[1] = { 500.0f };
hb_font_set_var_coords_design (font, coords, 1);
hb_font_get_glyph_advance_for_direction(font, 2, HB_DIRECTION_LTR, &x, &y);
g_assert_cmpint (x, ==, 551);
g_assert_cmpint (y, ==, 0);
hb_font_get_glyph_advance_for_direction(font, 2, HB_DIRECTION_TTB, &x, &y);
g_assert_cmpint (x, ==, 0);
g_assert_cmpint (y, ==, -1000);
hb_font_destroy (font);
}
static void
test_advance_tt_var_hvarvvar (void)
{
hb_face_t *face = hb_test_open_font_file ("fonts/SourceSerifVariable-Roman-VVAR.abc.ttf");
g_assert (face);
hb_font_t *font = hb_font_create (face);
hb_face_destroy (face);
g_assert (font);
hb_ot_font_set_funcs (font);
hb_position_t x, y;
hb_font_get_glyph_advance_for_direction(font, 1, HB_DIRECTION_LTR, &x, &y);
g_assert_cmpint (x, ==, 508);
g_assert_cmpint (y, ==, 0);
hb_font_get_glyph_advance_for_direction(font, 1, HB_DIRECTION_TTB, &x, &y);
g_assert_cmpint (x, ==, 0);
g_assert_cmpint (y, ==, -1000);
float coords[1] = { 700.0f };
hb_font_set_var_coords_design (font, coords, 1);
hb_font_get_glyph_advance_for_direction(font, 1, HB_DIRECTION_LTR, &x, &y);
g_assert_cmpint (x, ==, 531);
g_assert_cmpint (y, ==, 0);
hb_font_get_glyph_advance_for_direction(font, 1, HB_DIRECTION_TTB, &x, &y);
g_assert_cmpint (x, ==, 0);
g_assert_cmpint (y, ==, -1012);
hb_font_destroy (font);
}
static void
test_advance_tt_var_anchor (void)
{
hb_face_t *face = hb_test_open_font_file ("fonts/SourceSansVariable-Roman.anchor.ttf");
g_assert (face);
hb_font_t *font = hb_font_create (face);
hb_face_destroy (face);
g_assert (font);
hb_ot_font_set_funcs (font);
hb_glyph_extents_t extents;
hb_bool_t result = hb_font_get_glyph_extents (font, 2, &extents);
g_assert (result);
g_assert_cmpint (extents.x_bearing, ==, 56);
g_assert_cmpint (extents.y_bearing, ==, 672);
g_assert_cmpint (extents.width, ==, 556);
g_assert_cmpint (extents.height, ==, -684);
float coords[1] = { 500.0f };
hb_font_set_var_coords_design (font, coords, 1);
result = hb_font_get_glyph_extents (font, 2, &extents);
g_assert (result);
g_assert_cmpint (extents.x_bearing, ==, 50);
g_assert_cmpint (extents.y_bearing, ==, 667);
g_assert_cmpint (extents.width, ==, 593);
g_assert_cmpint (extents.height, ==, -679);
hb_font_destroy (font);
}
static void
test_extents_tt_var_comp (void)
{
hb_face_t *face = hb_test_open_font_file ("fonts/SourceSansVariable-Roman.modcomp.ttf");
g_assert (face);
hb_font_t *font = hb_font_create (face);
hb_face_destroy (face);
g_assert (font);
hb_ot_font_set_funcs (font);
hb_glyph_extents_t extents;
float coords[1] = { 800.0f };
hb_font_set_var_coords_design (font, coords, 1);
hb_bool_t result;
result = hb_font_get_glyph_extents (font, 2, &extents); /* Ccedilla, cedilla y-scaled by 0.8, with unscaled component offset */
g_assert (result);
g_assert_cmpint (extents.x_bearing, ==, 19);
g_assert_cmpint (extents.y_bearing, ==, 663);
g_assert_cmpint (extents.width, ==, 519);
g_assert_cmpint (extents.height, ==, -895);
result = hb_font_get_glyph_extents (font, 3, &extents); /* Cacute, acute y-scaled by 0.8, with unscaled component offset (default) */
g_assert (result);
g_assert_cmpint (extents.x_bearing, ==, 19);
g_assert_cmpint (extents.y_bearing, ==, 909);
g_assert_cmpint (extents.width, ==, 519);
g_assert_cmpint (extents.height, ==, -921);
result = hb_font_get_glyph_extents (font, 4, &extents); /* Ccaron, caron y-scaled by 0.8, with scaled component offset */
g_assert (result);
g_assert_cmpint (extents.x_bearing, ==, 19);
g_assert_cmpint (extents.y_bearing, ==, 866);
g_assert_cmpint (extents.width, ==, 519);
g_assert_cmpint (extents.height, ==, -878);
hb_font_destroy (font);
}
static void
test_advance_tt_var_comp_v (void)
{
hb_face_t *face = hb_test_open_font_file ("fonts/SourceSansVariable-Roman.modcomp.ttf");
g_assert (face);
hb_font_t *font = hb_font_create (face);
hb_face_destroy (face);
g_assert (font);
hb_ot_font_set_funcs (font);
float coords[1] = { 800.0f };
hb_font_set_var_coords_design (font, coords, 1);
hb_position_t x, y;
hb_font_get_glyph_advance_for_direction(font, 2, HB_DIRECTION_TTB, &x, &y); /* No VVAR; 'C' in composite Ccedilla determines metrics */
g_assert_cmpint (x, ==, 0);
g_assert_cmpint (y, ==, -991);
hb_font_get_glyph_origin_for_direction(font, 2, HB_DIRECTION_TTB, &x, &y);
g_assert_cmpint (x, ==, 292);
g_assert_cmpint (y, ==, 1013);
hb_font_destroy (font);
}
int
main (int argc, char **argv)
{
hb_test_init (&argc, &argv);
hb_test_add (test_extents_tt_var);
hb_test_add (test_advance_tt_var_nohvar);
hb_test_add (test_advance_tt_var_hvarvvar);
hb_test_add (test_advance_tt_var_anchor);
hb_test_add (test_extents_tt_var_comp);
hb_test_add (test_advance_tt_var_comp_v);
return hb_test_run ();
}