#include #include #include #include #include #include #include #include #include #include #ifndef MIN #define MIN(x,y) ((x) < (y) ? (x) : (y)) #endif #ifndef MAX #define MAX(x,y) ((x) > (y) ? (x) : (y)) #endif #ifndef FALSE #define FALSE 0 #define TRUE 1 #endif typedef struct { int level; cairo_t *cr; hb_font_t *font; hb_font_t *unscaled_font; hb_color_t *colors; unsigned int num_colors; hb_color_t foreground_color; } paint_data_t; #define INDENT 2 static void print (paint_data_t *data, const char *format, ...) { va_list args; printf ("%*s", 2 * data->level, ""); va_start (args, format); vprintf (format, args); va_end (args); printf ("\n"); } typedef struct { float r, g, b, a; } color_t; static void get_color (paint_data_t *data, unsigned int color_index, float alpha, color_t *c) { hb_color_t color; if (color_index == 0xffff) color = data->foreground_color; else color = data->colors[color_index]; c->r = hb_color_get_red (color) / 255.; c->g = hb_color_get_green (color) / 255.; c->b = hb_color_get_blue (color) / 255.; c->a = (hb_color_get_alpha (color) / 255.) * alpha; } static cairo_operator_t to_operator (hb_paint_composite_mode_t mode) { switch (mode) { case HB_PAINT_COMPOSITE_MODE_CLEAR: return CAIRO_OPERATOR_CLEAR; case HB_PAINT_COMPOSITE_MODE_SRC: return CAIRO_OPERATOR_SOURCE; case HB_PAINT_COMPOSITE_MODE_DEST: return CAIRO_OPERATOR_DEST; case HB_PAINT_COMPOSITE_MODE_SRC_OVER: return CAIRO_OPERATOR_OVER; case HB_PAINT_COMPOSITE_MODE_DEST_OVER: return CAIRO_OPERATOR_DEST_OVER; case HB_PAINT_COMPOSITE_MODE_SRC_IN: return CAIRO_OPERATOR_IN; case HB_PAINT_COMPOSITE_MODE_DEST_IN: return CAIRO_OPERATOR_DEST_IN; case HB_PAINT_COMPOSITE_MODE_SRC_OUT: return CAIRO_OPERATOR_OUT; case HB_PAINT_COMPOSITE_MODE_DEST_OUT: return CAIRO_OPERATOR_DEST_OUT; case HB_PAINT_COMPOSITE_MODE_SRC_ATOP: return CAIRO_OPERATOR_ATOP; case HB_PAINT_COMPOSITE_MODE_DEST_ATOP: return CAIRO_OPERATOR_DEST_ATOP; case HB_PAINT_COMPOSITE_MODE_XOR: return CAIRO_OPERATOR_XOR; case HB_PAINT_COMPOSITE_MODE_PLUS: return CAIRO_OPERATOR_ADD; case HB_PAINT_COMPOSITE_MODE_SCREEN: return CAIRO_OPERATOR_SCREEN; case HB_PAINT_COMPOSITE_MODE_OVERLAY: return CAIRO_OPERATOR_OVERLAY; case HB_PAINT_COMPOSITE_MODE_DARKEN: return CAIRO_OPERATOR_DARKEN; case HB_PAINT_COMPOSITE_MODE_LIGHTEN: return CAIRO_OPERATOR_LIGHTEN; case HB_PAINT_COMPOSITE_MODE_COLOR_DODGE: return CAIRO_OPERATOR_COLOR_DODGE; case HB_PAINT_COMPOSITE_MODE_COLOR_BURN: return CAIRO_OPERATOR_COLOR_BURN; case HB_PAINT_COMPOSITE_MODE_HARD_LIGHT: return CAIRO_OPERATOR_HARD_LIGHT; case HB_PAINT_COMPOSITE_MODE_SOFT_LIGHT: return CAIRO_OPERATOR_SOFT_LIGHT; case HB_PAINT_COMPOSITE_MODE_DIFFERENCE: return CAIRO_OPERATOR_DIFFERENCE; case HB_PAINT_COMPOSITE_MODE_EXCLUSION: return CAIRO_OPERATOR_EXCLUSION; case HB_PAINT_COMPOSITE_MODE_MULTIPLY: return CAIRO_OPERATOR_MULTIPLY; case HB_PAINT_COMPOSITE_MODE_HSL_HUE: return CAIRO_OPERATOR_HSL_HUE; case HB_PAINT_COMPOSITE_MODE_HSL_SATURATION: return CAIRO_OPERATOR_HSL_SATURATION; case HB_PAINT_COMPOSITE_MODE_HSL_COLOR: return CAIRO_OPERATOR_HSL_COLOR; case HB_PAINT_COMPOSITE_MODE_HSL_LUMINOSITY: return CAIRO_OPERATOR_HSL_LUMINOSITY; default:; } return CAIRO_OPERATOR_SOURCE; } static cairo_extend_t cairo_extend (hb_paint_extend_t extend) { switch (extend) { case HB_PAINT_EXTEND_PAD: return CAIRO_EXTEND_PAD; case HB_PAINT_EXTEND_REPEAT: return CAIRO_EXTEND_REPEAT; case HB_PAINT_EXTEND_REFLECT: return CAIRO_EXTEND_REFLECT; default:; } return CAIRO_EXTEND_PAD; } static void push_transform (hb_paint_funcs_t *funcs, void *paint_data, float xx, float yx, float xy, float yy, float dx, float dy, void *user_data) { paint_data_t *data = user_data; cairo_matrix_t m; print (data, "start transform %f %f %f %f %f %f", xx, yx, xy, yy, dx, dy); cairo_save (data->cr); cairo_matrix_init (&m, xx, yx, xy, yy, dx, dy); cairo_transform (data->cr, &m); data->level++; } static void pop_transform (hb_paint_funcs_t *funcs, void *paint_data, void *user_data) { paint_data_t *data = user_data; data->level--; cairo_restore (data->cr); print (data, "end transform"); } static void move_to (hb_draw_funcs_t *funcs, void *draw_data, hb_draw_state_t *st, float x, float y, void *user_data) { paint_data_t *data = user_data; print (data, "move to %f %f", x, y); cairo_move_to (data->cr, x, y); } static void line_to (hb_draw_funcs_t *funcs, void *draw_data, hb_draw_state_t *st, float x, float y, void *user_data) { paint_data_t *data = user_data; print (data, "line to %f %f", x, y); cairo_line_to (data->cr, x, y); } static void cubic_to (hb_draw_funcs_t *funcs, void *draw_data, hb_draw_state_t *st, float c1x, float c1y, float c2x, float c2y, float x, float y, void *user_data) { paint_data_t *data = user_data; print (data, "curve to %f %f %f %f %f %f", c1x, c1y, c2x, c2y, x, y); cairo_curve_to (data->cr, c1x, c1y, c2x, c2y, x, y); } static void close_path (hb_draw_funcs_t *funcs, void *draw_data, hb_draw_state_t *st, void *user_data) { paint_data_t *data = user_data; print (data, "close path\n"); cairo_close_path (data->cr); } static void push_clip_glyph (hb_paint_funcs_t *funcs, void *paint_data, hb_codepoint_t glyph, void *user_data) { paint_data_t *data = user_data; hb_draw_funcs_t *dfuncs; print (data, "start clip glyph %u", glyph); data->level++; cairo_save (data->cr); dfuncs = hb_draw_funcs_create (); hb_draw_funcs_set_move_to_func (dfuncs, move_to, data, NULL); hb_draw_funcs_set_line_to_func (dfuncs, line_to, data, NULL); hb_draw_funcs_set_cubic_to_func (dfuncs, cubic_to, data, NULL); hb_draw_funcs_set_close_path_func (dfuncs, close_path, data, NULL); cairo_new_path (data->cr); /* Note: we need to use a upem-scaled, unslanted copy of the font here, * since hb has already applied the root transform. */ hb_font_get_glyph_shape (data->unscaled_font, glyph, dfuncs, data); cairo_close_path (data->cr); cairo_clip (data->cr); hb_draw_funcs_destroy (dfuncs); } static void push_clip_rectangle (hb_paint_funcs_t *funcs, void *paint_data, float xmin, float ymin, float xmax, float ymax, void *user_data) { paint_data_t *data = user_data; print (data, "start clip rectangle %f %f %f %f", xmin, ymin, xmax, ymax); data->level++; cairo_save (data->cr); cairo_rectangle (data->cr, xmin, ymin, xmax - xmin, ymax - ymin); cairo_clip (data->cr); } static void pop_clip (hb_paint_funcs_t *funcs, void *paint_data, void *user_data) { paint_data_t *data = user_data; cairo_restore (data->cr); data->level--; print (data, "end clip"); } static void paint_color (hb_paint_funcs_t *funcs, void *paint_data, unsigned int color_index, float alpha, void *user_data) { paint_data_t *data = user_data; color_t c; print (data, "solid %u %f", color_index, alpha); get_color (data, color_index, alpha, &c); data->level++; print (data, "color %f %f %f %f", c.r, c.g, c.b, c.a); data->level--; cairo_set_source_rgba (data->cr, c.r, c.g, c.b, c.a); cairo_paint (data->cr); } typedef struct { hb_blob_t *blob; unsigned int offset; } read_blob_data_t; cairo_status_t read_blob (void *closure, unsigned char *data, unsigned int length) { read_blob_data_t *r = closure; const char *d; unsigned int size; d = hb_blob_get_data (r->blob, &size); if (r->offset + length > size) return CAIRO_STATUS_READ_ERROR; memcpy (data, d + r->offset, length); r->offset += length; return CAIRO_STATUS_SUCCESS; } static void paint_image (hb_paint_funcs_t *funcs, void *paint_data, hb_blob_t *blob, hb_tag_t format, hb_glyph_extents_t *extents, void *user_data) { paint_data_t *data = user_data; read_blob_data_t r; cairo_surface_t *surface; cairo_pattern_t *pattern; cairo_matrix_t m; if (format != HB_PAINT_IMAGE_FORMAT_PNG) return; r.blob = blob; r.offset = 0; surface = cairo_image_surface_create_from_png_stream (read_blob, &r); pattern = cairo_pattern_create_for_surface (surface); cairo_matrix_init_scale (&m, 1, -1); cairo_matrix_translate (&m, extents ? extents->x_bearing : 0, extents ? - extents->y_bearing : 0); cairo_pattern_set_matrix (pattern, &m); cairo_set_source (data->cr, pattern); cairo_paint (data->cr); cairo_pattern_destroy (pattern); cairo_surface_destroy (surface); } static void reduce_anchors (float x0, float y0, float x1, float y1, float x2, float y2, float *xx0, float *yy0, float *xx1, float *yy1) { float q1x, q1y, q2x, q2y; float s; float k; q2x = x2 - x0; q2y = y2 - y0; q1x = y1 - x0; q1y = y1 - y0; s = q2x * q2x + q2y * q2y; if (s < 0.000001) { *xx0 = x0; *yy0 = y0; *xx1 = x1; *yy1 = y1; return; } k = (q2x * q1x + q2y * q1y) / s; *xx0 = x0; *yy0 = y0; *xx1 = x1 - k * q2x; *yy1 = y1 - k * q2y; } static int cmp_color_stop (const void *p1, const void *p2) { const hb_color_stop_t *c1 = p1; const hb_color_stop_t *c2 = p2; if (c1->offset < c2->offset) return -1; else if (c1->offset > c2->offset) return 1; else return 0; } static void normalize_color_line (hb_color_stop_t *stops, unsigned int len, float *omin, float *omax) { float min, max; qsort (stops, len, sizeof (hb_color_stop_t), cmp_color_stop); min = max = stops[0].offset; for (unsigned int i = 0; i < len; i++) { min = MIN (min, stops[i].offset); max = MAX (max, stops[i].offset); } if (min != max) { for (unsigned int i = 0; i < len; i++) stops[i].offset = (stops[i].offset - min) / (max - min); } *omin = min; *omax = max; } static void paint_linear_gradient (hb_paint_funcs_t *funcs, void *paint_data, hb_color_line_t *color_line, float x0, float y0, float x1, float y1, float x2, float y2, void *user_data) { paint_data_t *data = user_data; unsigned int len; hb_color_stop_t *stops; float xx0, yy0, xx1, yy1; float xxx0, yyy0, xxx1, yyy1; float min, max; cairo_pattern_t *pattern; len = hb_color_line_get_color_stops (color_line, 0, NULL, NULL); stops = alloca (len * sizeof (hb_color_stop_t)); hb_color_line_get_color_stops (color_line, 0, &len, stops); print (data, "linear gradient"); data->level += 1; print (data, "p0 %f %f", x0, y0); print (data, "p1 %f %f", x1, y1); print (data, "p2 %f %f", x2, y2); print (data, "colors"); data->level += 1; for (unsigned int i = 0; i < len; i++) print (data, "%f %u %f", stops[i].offset, stops[i].color_index, stops[i].alpha); data->level -= 2; reduce_anchors (x0, y0, x1, y1, x2, y2, &xx0, &yy0, &xx1, &yy1); normalize_color_line (stops, len, &min, &max); xxx0 = xx0 + min * (xx1 - xx0); yyy0 = yy0 + min * (yy1 - yy0); xxx1 = xx0 + max * (xx1 - xx0); yyy1 = yy0 + max * (yy1 - yy0); pattern = cairo_pattern_create_linear (xxx0, yyy0, xxx1, yyy1); cairo_pattern_set_extend (pattern, cairo_extend (hb_color_line_get_extend (color_line))); for (unsigned int i = 0; i < len; i++) { color_t c; get_color (data, stops[i].color_index, stops[i].alpha, &c); cairo_pattern_add_color_stop_rgba (pattern, stops[i].offset, c.r, c.g, c.b, c.a); } cairo_set_source (data->cr, pattern); cairo_paint (data->cr); cairo_pattern_destroy (pattern); } static void paint_radial_gradient (hb_paint_funcs_t *funcs, void *paint_data, hb_color_line_t *color_line, float x0, float y0, float r0, float x1, float y1, float r1, void *user_data) { paint_data_t *data = user_data; unsigned int len; hb_color_stop_t *stops; cairo_extend_t extend; float min, max; float xx0, yy0, xx1, yy1; float rr0, rr1; cairo_pattern_t *pattern; print (data, "radial gradient"); len = hb_color_line_get_color_stops (color_line, 0, NULL, NULL); stops = alloca (len * sizeof (hb_color_stop_t)); hb_color_line_get_color_stops (color_line, 0, &len, stops); extend = cairo_extend (hb_color_line_get_extend (color_line)); normalize_color_line (stops, len, &min, &max); xx0 = x0 + min * (x1 - x0); yy0 = y0 + min * (y1 - y0); xx1 = x0 + max * (x1 - x0); yy1 = y0 + max * (y1 - y0); rr0 = r0 + min * (r1 - r0); rr1 = r0 + max * (r1 - r0); pattern = cairo_pattern_create_radial (xx0, yy0, rr0, xx1, yy1, rr1); cairo_pattern_set_extend (pattern, extend); for (unsigned int i = 0; i < len; i++) { color_t c; get_color (data, stops[i].color_index, stops[i].alpha, &c); cairo_pattern_add_color_stop_rgba (pattern, stops[i].offset, c.r, c.g, c.b, c.a); } cairo_set_source (data->cr, pattern); cairo_paint (data->cr); cairo_pattern_destroy (pattern); } typedef struct { float x, y; } Point; static inline float interpolate (float f0, float f1, float f) { return f0 + f * (f1 - f0); } static inline void interpolate_points (Point *p0, Point *p1, float f, Point *out) { out->x = interpolate (p0->x, p1->x, f); out->y = interpolate (p0->y, p1->y, f); } void interpolate_colors (color_t *c0, color_t *c1, float k, color_t *c) { c->r = c0->r + k * (c1->r - c0->r); c->g = c0->g + k * (c1->g - c0->g); c->b = c0->b + k * (c1->b - c0->b); c->a = c0->a + k * (c1->a - c0->a); } static inline float dot (Point p, Point q) { return p.x * q.x + p.y * q.y; } static inline Point normalize (Point p) { float len = sqrt (dot (p, p)); return (Point) { p.x / len, p.y / len }; } static inline Point sum (Point p, Point q) { return (Point) { p.x + q.x, p.y + q.y }; } static inline Point difference (Point p, Point q) { return (Point) { p.x - q.x, p.y - q.y }; } static inline Point scale (Point p, float f) { return (Point) { p.x * f, p.y * f }; } typedef struct { Point center, p0, c0, c1, p1; color_t color0, color1; } Patch; static void add_patch (cairo_pattern_t *pattern, Point *center, Patch *p) { cairo_mesh_pattern_begin_patch (pattern); cairo_mesh_pattern_move_to (pattern, center->x, center->y); cairo_mesh_pattern_line_to (pattern, p->p0.x, p->p0.y); cairo_mesh_pattern_curve_to (pattern, p->c0.x, p->c0.y, p->c1.x, p->c1.y, p->p1.x, p->p1.y); cairo_mesh_pattern_line_to (pattern, center->x, center->y); cairo_mesh_pattern_set_corner_color_rgba (pattern, 0, p->color0.r, p->color0.g, p->color0.b, p->color0.a); cairo_mesh_pattern_set_corner_color_rgba (pattern, 1, p->color0.r, p->color0.g, p->color0.b, p->color0.a); cairo_mesh_pattern_set_corner_color_rgba (pattern, 2, p->color1.r, p->color1.g, p->color1.b, p->color1.a); cairo_mesh_pattern_set_corner_color_rgba (pattern, 3, p->color1.r, p->color1.g, p->color1.b, p->color1.a); cairo_mesh_pattern_end_patch (pattern); } #define MAX_ANGLE (M_PI / 8.) static void add_sweep_gradient_patches1 (float cx, float cy, float radius, float a0, color_t *c0, float a1, color_t *c1, cairo_pattern_t *pattern) { Point center = (Point) { cx, cy }; int num_splits; Point p0; color_t color0, color1; num_splits = ceilf (fabs (a1 - a0) / MAX_ANGLE); p0 = (Point) { cosf (a0), sinf (a0) }; color0 = *c0; for (int a = 0; a < num_splits; a++) { float k = (a + 1.) / num_splits; float angle1; Point p1; Point A, U; Point C0, C1; Patch patch; angle1 = interpolate (a0, a1, k); interpolate_colors (c0, c1, k, &color1); patch.color0 = color0; patch.color1 = color1; p1 = (Point) { cosf (angle1), sinf (angle1) }; patch.p0 = sum (center, scale (p0, radius)); patch.p1 = sum (center, scale (p1, radius)); A = normalize (sum (p0, p1)); U = (Point) { -A.y, A.x }; C0 = sum (A, scale (U, dot (difference (p0, A), p0) / dot (U, p0))); C1 = sum (A, scale (U, dot (difference (p1, A), p1) / dot (U, p1))); patch.c0 = sum (center, scale (sum (C0, scale (difference (C0, p0), 0.33333)), radius)); patch.c1 = sum (center, scale (sum (C1, scale (difference (C1, p1), 0.33333)), radius)); add_patch (pattern, ¢er, &patch); p0 = p1; color0 = color1; } } static void add_sweep_gradient_patches (paint_data_t *data, hb_color_stop_t *stops, unsigned int n_stops, cairo_extend_t extend, float cx, float cy, float radius, float start_angle, float end_angle, cairo_pattern_t *pattern) { float *angles; color_t *colors; color_t color0, color1; if (start_angle == end_angle) { if (extend == CAIRO_EXTEND_PAD) { color_t c; if (start_angle > 0) { get_color (data, stops[0].color_index, stops[0].alpha, &c); add_sweep_gradient_patches1 (cx, cy, radius, 0., &c, start_angle, &c, pattern); } if (end_angle < 2 * M_PI) { get_color (data, stops[n_stops - 1].color_index, stops[n_stops - 1].alpha, &c); add_sweep_gradient_patches1 (cx, cy, radius, end_angle, &c, 2 * M_PI, &c, pattern); } } return; } assert (start_angle != end_angle); /* handle directions */ if (end_angle < start_angle) { float angle = end_angle; end_angle = start_angle; start_angle = angle; for (int i = 0; i < n_stops - 1 - i; i++) { hb_color_stop_t stop = stops[i]; stops[i] = stops[n_stops - 1 - i]; stops[n_stops - 1 - i] = stop; } } angles = alloca (sizeof (float) * n_stops); colors = alloca (sizeof (color_t) * n_stops); for (int i = 0; i < n_stops; i++) { angles[i] = start_angle + stops[i].offset * (end_angle - start_angle); get_color (data, stops[i].color_index, stops[i].alpha, &colors[i]); } if (extend == CAIRO_EXTEND_PAD) { int pos; color0 = colors[0]; for (pos = 0; pos < n_stops; pos++) { if (angles[pos] >= 0) { if (pos > 0) { float k = (0 - angles[pos - 1]) / (angles[pos] - angles[pos - 1]); interpolate_colors (&colors[pos-1], &colors[pos], k, &color0); } break; } } if (pos == n_stops) { /* everything is below 0 */ color0 = colors[n_stops-1]; add_sweep_gradient_patches1 (cx, cy, radius, 0., &color0, 2 * M_PI, &color0, pattern); return; } add_sweep_gradient_patches1 (cx, cy, radius, 0., &color0, angles[pos], &colors[pos], pattern); for (pos++; pos < n_stops; pos++) { if (angles[pos] <= 2 * M_PI) { add_sweep_gradient_patches1 (cx, cy, radius, angles[pos - 1], &colors[pos-1], angles[pos], &colors[pos], pattern); } else { float k = (2 * M_PI - angles[pos - 1]) / (angles[pos] - angles[pos - 1]); interpolate_colors (&colors[pos - 1], &colors[pos], k, &color1); add_sweep_gradient_patches1 (cx, cy, radius, angles[pos - 1], &colors[pos - 1], 2 * M_PI, &color1, pattern); break; } } if (pos == n_stops) { /* everything is below 2*M_PI */ color0 = colors[n_stops - 1]; add_sweep_gradient_patches1 (cx, cy, radius, angles[n_stops - 1], &color0, 2 * M_PI, &color0, pattern); return; } } else { int k; float span; span = angles[n_stops - 1] - angles[0]; k = 0; if (angles[0] >= 0) { float ss = angles[0]; while (ss > 0) { if (span > 0) { ss -= span; k--; } else { ss += span; k++; } } } else if (angles[0] < 0) { float ee = angles[n_stops - 1]; while (ee < 0) { if (span > 0) { ee += span; k++; } else { ee -= span; k--; } } } //assert (angles[0] + k * span <= 0 && 0 < angles[n_stops - 1] + k * span); for (int l = k; TRUE; l++) { for (int i = 1; i < n_stops; i++) { float a0, a1; color_t *c0, *c1; if ((l % 2 != 0) && (extend == CAIRO_EXTEND_REFLECT)) { a0 = angles[0] + angles[n_stops - 1] - angles[n_stops - 1 - (i-1)] + l * span; a1 = angles[0] + angles[n_stops - 1] - angles[n_stops - 1 - i] + l * span; c0 = &colors[n_stops - 1 - (i - 1)]; c1 = &colors[n_stops - 1 - i]; } else { a0 = angles[i-1] + l * span; a1 = angles[i] + l * span; c0 = &colors[i-1]; c1 = &colors[i]; } if (a1 < 0) continue; if (a0 < 0) { color_t color; float f = (0 - a0)/(a1 - a0); interpolate_colors (c0, c1, f, &color); add_sweep_gradient_patches1 (cx, cy, radius, 0, &color, a1, c1, pattern); } else if (a1 >= 2 * M_PI) { color_t color; float f = (2 * M_PI - a0)/(a1 - a0); interpolate_colors (c0, c1, f, &color); add_sweep_gradient_patches1 (cx, cy, radius, a0, c0, 2 * M_PI, &color, pattern); goto done; } else { add_sweep_gradient_patches1 (cx, cy, radius, a0, c0, a1, c1, pattern); } } } done: ; } } static void paint_sweep_gradient (hb_paint_funcs_t *funcs, void *paint_data, hb_color_line_t *color_line, float cx, float cy, float start_angle, float end_angle, void *user_data) { paint_data_t *data = user_data; unsigned int len; hb_color_stop_t *stops; cairo_extend_t extend; double x1, y1, x2, y2; float max_x, max_y, radius; cairo_pattern_t *pattern; len = hb_color_line_get_color_stops (color_line, 0, NULL, NULL); stops = alloca (len * sizeof (hb_color_stop_t)); hb_color_line_get_color_stops (color_line, 0, &len, stops); qsort (stops, len, sizeof (hb_color_stop_t), cmp_color_stop); print (data, "sweep gradient"); data->level++; print (data, "center %f %f", cx, cy); print (data, "angles %f %f", start_angle, end_angle); data->level += 1; for (unsigned int i = 0; i < len; i++) print (data, "%f %u %f", stops[i].offset, stops[i].color_index, stops[i].alpha); data->level -= 2; cairo_clip_extents (data->cr, &x1, &y1, &x2, &y2); max_x = MAX ((x1 - cx) * (x1 - cx), (x2 - cx) * (x2 - cx)); max_y = MAX ((y1 - cy) * (y1 - cy), (y2 - cy) * (y2 - cy)); radius = sqrt (max_x + max_y); extend = cairo_extend (hb_color_line_get_extend (color_line)); pattern = cairo_pattern_create_mesh (); add_sweep_gradient_patches (data, stops, len, extend, cx, cy, radius, start_angle, end_angle, pattern); cairo_set_source (data->cr, pattern); cairo_paint (data->cr); cairo_pattern_destroy (pattern); data->level--; } static void push_group (hb_paint_funcs_t *funcs, void *paint_data, void *user_data) { paint_data_t *data = user_data; print (data, "push group"); data->level++; cairo_save (data->cr); cairo_push_group (data->cr); } static void pop_group (hb_paint_funcs_t *funcs, void *paint_data, hb_paint_composite_mode_t mode, void *user_data) { paint_data_t *data = user_data; cairo_pop_group_to_source (data->cr); cairo_set_operator (data->cr, to_operator (mode)); cairo_paint (data->cr); cairo_restore (data->cr); data->level--; print (data, "pop group mode %d", mode); } int main (int argc, char *argv[]) { paint_data_t data; hb_paint_funcs_t *funcs; hb_blob_t *blob = hb_blob_create_from_file (argv[1]); hb_face_t *face = hb_face_create (blob, 0); hb_font_t *font = hb_font_create (face); hb_font_t *unscaled_font; hb_font_set_scale (font, 20, 20); hb_codepoint_t gid = atoi (argv[2]); hb_glyph_extents_t extents; cairo_surface_t *surface; cairo_pattern_t *pattern; cairo_matrix_t m; float xmin, ymin, xmax, ymax; unsigned int upem; float size = 120.; hb_font_set_scale (font, size, size); hb_font_get_glyph_extents (font, gid, &extents); unscaled_font = hb_font_create (face); upem = hb_face_get_upem (face); hb_font_set_scale (unscaled_font, upem, upem); hb_font_set_synthetic_slant (unscaled_font, 0.); printf ("size %f upem %u\n", size, upem); xmin = extents.x_bearing; xmax = xmin + extents.width; ymin = - extents.y_bearing; ymax = - extents.y_bearing - extents.height; printf ("surface %f %f, offset %f %f\n", ceil (xmax - xmin), ceil (ymax - ymin), - xmin, - ymin); if ((int) ceil (xmax - xmin) == 0 || (int) ceil (ymax - ymin) == 0) { printf ("ERROR: empty surface\n"); return 1; } surface = cairo_image_surface_create (CAIRO_FORMAT_ARGB32, (int) ceil (xmax - xmin), (int) ceil (ymax - ymin)); cairo_surface_set_device_offset (surface, - xmin, ymax); data.level = 0; data.cr = cairo_create (surface); cairo_push_group (data.cr); data.font = font; data.unscaled_font = unscaled_font; data.foreground_color = HB_COLOR (0, 0, 0, 255); data.num_colors = hb_ot_color_palette_get_colors (hb_font_get_face (font), 0, 0, NULL, NULL); data.colors = alloca (data.num_colors * sizeof (hb_color_t)); hb_ot_color_palette_get_colors (hb_font_get_face (font), 0, 0, &data.num_colors, data.colors); funcs = hb_paint_funcs_create (); hb_paint_funcs_set_push_transform_func (funcs, push_transform, &data, NULL); hb_paint_funcs_set_pop_transform_func (funcs, pop_transform, &data, NULL); hb_paint_funcs_set_push_clip_glyph_func (funcs, push_clip_glyph, &data, NULL); hb_paint_funcs_set_push_clip_rectangle_func (funcs, push_clip_rectangle, &data, NULL); hb_paint_funcs_set_pop_clip_func (funcs, pop_clip, &data, NULL); hb_paint_funcs_set_push_group_func (funcs, push_group, &data, NULL); hb_paint_funcs_set_pop_group_func (funcs, pop_group, &data, NULL); hb_paint_funcs_set_color_func (funcs, paint_color, &data, NULL); hb_paint_funcs_set_image_func (funcs, paint_image, &data, NULL); hb_paint_funcs_set_linear_gradient_func (funcs, paint_linear_gradient, &data, NULL); hb_paint_funcs_set_radial_gradient_func (funcs, paint_radial_gradient, &data, NULL); hb_paint_funcs_set_sweep_gradient_func (funcs, paint_sweep_gradient, &data, NULL); hb_font_paint_glyph (font, gid, funcs, NULL); pattern = cairo_pop_group (data.cr); cairo_matrix_init_scale (&m, 1, -1); cairo_matrix_translate (&m, 0, (ymax - ymin) + 2 * ymin); cairo_pattern_set_matrix (pattern, &m); cairo_set_source (data.cr, pattern); cairo_paint (data.cr); cairo_surface_set_device_offset (surface, - xmin, - ymin); printf ("writing glyph.png\n"); cairo_surface_write_to_png (surface, "glyph.png"); execvp ("eog", (char *const[]) { "eog", "glyph.png", NULL }); return 0; }