/* * Copyright © 2015 Google, Inc. * * This is part of HarfBuzz, a text shaping library. * * Permission is hereby granted, without written agreement and without * license or royalty fees, to use, copy, modify, and distribute this * software and its documentation for any purpose, provided that the * above copyright notice and the following two paragraphs appear in * all copies of this software. * * IN NO EVENT SHALL THE COPYRIGHT HOLDER BE LIABLE TO ANY PARTY FOR * DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES * ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN * IF THE COPYRIGHT HOLDER HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH * DAMAGE. * * THE COPYRIGHT HOLDER SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, * BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND * FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER IS * ON AN "AS IS" BASIS, AND THE COPYRIGHT HOLDER HAS NO OBLIGATION TO * PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS. * * Google Author(s): Behdad Esfahbod * Adobe Author(s): Michiharu Ariza */ #ifndef HB_OT_GLYF_TABLE_HH #define HB_OT_GLYF_TABLE_HH #include "hb-open-type.hh" #include "hb-ot-head-table.hh" #include "hb-ot-hmtx-table.hh" #include "hb-ot-var-gvar-table.hh" #include "hb-subset-glyf.hh" namespace OT { /* * loca -- Index to Location * https://docs.microsoft.com/en-us/typography/opentype/spec/loca */ #define HB_OT_TAG_loca HB_TAG('l','o','c','a') struct loca { friend struct glyf; static constexpr hb_tag_t tableTag = HB_OT_TAG_loca; bool sanitize (hb_sanitize_context_t *c HB_UNUSED) const { TRACE_SANITIZE (this); return_trace (true); } protected: UnsizedArrayOf dataZ; /* Location data. */ public: DEFINE_SIZE_MIN (0); /* In reality, this is UNBOUNDED() type; but since we always * check the size externally, allow Null() object of it by * defining it MIN() instead. */ }; /* * glyf -- TrueType Glyph Data * https://docs.microsoft.com/en-us/typography/opentype/spec/glyf */ #define HB_OT_TAG_glyf HB_TAG('g','l','y','f') struct glyf { static constexpr hb_tag_t tableTag = HB_OT_TAG_glyf; bool sanitize (hb_sanitize_context_t *c HB_UNUSED) const { TRACE_SANITIZE (this); /* We don't check for anything specific here. The users of the * struct do all the hard work... */ return_trace (true); } bool subset (hb_subset_plan_t *plan) const { hb_blob_t *glyf_prime = nullptr; hb_blob_t *loca_prime = nullptr; bool success = true; bool use_short_loca = false; if (hb_subset_glyf_and_loca (plan, &use_short_loca, &glyf_prime, &loca_prime)) { success = success && plan->add_table (HB_OT_TAG_glyf, glyf_prime); success = success && plan->add_table (HB_OT_TAG_loca, loca_prime); success = success && _add_head_and_set_loca_version (plan, use_short_loca); } else { success = false; } hb_blob_destroy (loca_prime); hb_blob_destroy (glyf_prime); return success; } static bool _add_head_and_set_loca_version (hb_subset_plan_t *plan, bool use_short_loca) { hb_blob_t *head_blob = hb_sanitize_context_t ().reference_table (plan->source); hb_blob_t *head_prime_blob = hb_blob_copy_writable_or_fail (head_blob); hb_blob_destroy (head_blob); if (unlikely (!head_prime_blob)) return false; head *head_prime = (head *) hb_blob_get_data_writable (head_prime_blob, nullptr); head_prime->indexToLocFormat.set (use_short_loca ? 0 : 1); bool success = plan->add_table (HB_OT_TAG_head, head_prime_blob); hb_blob_destroy (head_prime_blob); return success; } struct GlyphHeader { HBINT16 numberOfContours; /* If the number of contours is * greater than or equal to zero, * this is a simple glyph; if negative, * this is a composite glyph. */ FWORD xMin; /* Minimum x for coordinate data. */ FWORD yMin; /* Minimum y for coordinate data. */ FWORD xMax; /* Maximum x for coordinate data. */ FWORD yMax; /* Maximum y for coordinate data. */ DEFINE_SIZE_STATIC (10); }; struct CompositeGlyphHeader { enum composite_glyph_flag_t { ARG_1_AND_2_ARE_WORDS = 0x0001, ARGS_ARE_XY_VALUES = 0x0002, ROUND_XY_TO_GRID = 0x0004, WE_HAVE_A_SCALE = 0x0008, MORE_COMPONENTS = 0x0020, WE_HAVE_AN_X_AND_Y_SCALE = 0x0040, WE_HAVE_A_TWO_BY_TWO = 0x0080, WE_HAVE_INSTRUCTIONS = 0x0100, USE_MY_METRICS = 0x0200, OVERLAP_COMPOUND = 0x0400, SCALED_COMPONENT_OFFSET = 0x0800, UNSCALED_COMPONENT_OFFSET = 0x1000 }; HBUINT16 flags; GlyphID glyphIndex; unsigned int get_size () const { unsigned int size = min_size; // arg1 and 2 are int16 if (flags & ARG_1_AND_2_ARE_WORDS) size += 4; // arg1 and 2 are int8 else size += 2; // One x 16 bit (scale) if (flags & WE_HAVE_A_SCALE) size += 2; // Two x 16 bit (xscale, yscale) else if (flags & WE_HAVE_AN_X_AND_Y_SCALE) size += 4; // Four x 16 bit (xscale, scale01, scale10, yscale) else if (flags & WE_HAVE_A_TWO_BY_TWO) size += 8; return size; } void transform_point (float &x, float &y) const { int tx, ty; const HBINT8 *p = &StructAfter (glyphIndex); if (flags & ARG_1_AND_2_ARE_WORDS) { tx = *(const HBINT16 *)p; p += HBINT16::static_size; ty = *(const HBINT16 *)p; p += HBINT16::static_size; } else { tx = *p++; ty = *p++; } if (!(flags & ARGS_ARE_XY_VALUES)) tx = ty = 0; /* TODO: anchor point unsupported for now */ if (flags & WE_HAVE_A_SCALE) { float scale = ((const F2DOT14*)p)->to_float (); x *= scale; y *= scale; } else if (flags & WE_HAVE_AN_X_AND_Y_SCALE) { x *= ((const F2DOT14*)p)[0].to_float (); y *= ((const F2DOT14*)p)[1].to_float (); } else if (flags & WE_HAVE_A_TWO_BY_TWO) { float x_ = x * ((const F2DOT14*)p)[0].to_float () + y * ((const F2DOT14*)p)[1].to_float (); y = x * ((const F2DOT14*)p)[2].to_float () + y * ((const F2DOT14*)p)[3].to_float (); x = x_; } if (tx | ty) { x += tx; y += ty; } } struct Iterator { const char *glyph_start; const char *glyph_end; const CompositeGlyphHeader *current; bool move_to_next () { if (current->flags & CompositeGlyphHeader::MORE_COMPONENTS) { const CompositeGlyphHeader *possible = &StructAfter (*current); if (unlikely (!in_range (possible))) return false; current = possible; return true; } return false; } bool in_range (const CompositeGlyphHeader *composite) const { return (const char *) composite >= glyph_start && ((const char *) composite + CompositeGlyphHeader::min_size) <= glyph_end && ((const char *) composite + composite->get_size ()) <= glyph_end; } }; static bool get_iterator (const char * glyph_data, unsigned int length, CompositeGlyphHeader::Iterator *iterator /* OUT */) { if (length < GlyphHeader::static_size) return false; /* Empty glyph; zero extents. */ const GlyphHeader &glyph_header = StructAtOffset (glyph_data, 0); if (glyph_header.numberOfContours < 0) { const CompositeGlyphHeader *possible = &StructAfter (glyph_header); iterator->glyph_start = glyph_data; iterator->glyph_end = (const char *) glyph_data + length; if (!iterator->in_range (possible)) return false; iterator->current = possible; return true; } return false; } DEFINE_SIZE_MIN (4); }; struct accelerator_t { void init (hb_face_t *face) { memset (this, 0, sizeof (accelerator_t)); const OT::head &head = *face->table.head; if (head.indexToLocFormat > 1 || head.glyphDataFormat != 0) /* Unknown format. Leave num_glyphs=0, that takes care of disabling us. */ return; short_offset = 0 == head.indexToLocFormat; loca_table = hb_sanitize_context_t ().reference_table (face); glyf_table = hb_sanitize_context_t ().reference_table (face); num_glyphs = MAX (1u, loca_table.get_length () / (short_offset ? 2 : 4)) - 1; gvar_accel.init (face); hmtx_accel.init (face); vmtx_accel.init (face); } void fini () { loca_table.destroy (); glyf_table.destroy (); gvar_accel.fini (); hmtx_accel.fini (); vmtx_accel.fini (); } /* * Returns true if the referenced glyph is a valid glyph and a composite glyph. * If true is returned a pointer to the composite glyph will be written into * composite. */ bool get_composite (hb_codepoint_t glyph, CompositeGlyphHeader::Iterator *composite /* OUT */) const { if (unlikely (!num_glyphs)) return false; unsigned int start_offset, end_offset; if (!get_offsets (glyph, &start_offset, &end_offset)) return false; /* glyph not found */ return CompositeGlyphHeader::get_iterator ((const char *) this->glyf_table + start_offset, end_offset - start_offset, composite); } enum simple_glyph_flag_t { FLAG_ON_CURVE = 0x01, FLAG_X_SHORT = 0x02, FLAG_Y_SHORT = 0x04, FLAG_REPEAT = 0x08, FLAG_X_SAME = 0x10, FLAG_Y_SAME = 0x20, FLAG_RESERVED1 = 0x40, FLAG_RESERVED2 = 0x80 }; enum phantom_point_index_t { PHANTOM_LEFT = 0, PHANTOM_RIGHT = 1, PHANTOM_TOP = 2, PHANTOM_BOTTOM = 3, PHANTOM_COUNT = 4 }; protected: const GlyphHeader &get_header (hb_codepoint_t glyph) const { unsigned int start_offset, end_offset; if (!get_offsets (glyph, &start_offset, &end_offset) || end_offset - start_offset < GlyphHeader::static_size) return Null(GlyphHeader); return StructAtOffset (glyf_table, start_offset); } struct x_setter_t { void set (contour_point_t &point, float v) const { point.x = v; } bool is_short (uint8_t flag) const { return (flag & FLAG_X_SHORT) != 0; } bool is_same (uint8_t flag) const { return (flag & FLAG_X_SAME) != 0; } }; struct y_setter_t { void set (contour_point_t &point, float v) const { point.y = v; } bool is_short (uint8_t flag) const { return (flag & FLAG_Y_SHORT) != 0; } bool is_same (uint8_t flag) const { return (flag & FLAG_Y_SAME) != 0; } }; template static bool read_points (const HBUINT8 *&p /* IN/OUT */, hb_vector_t &points_ /* IN/OUT */, const range_checker_t &checker) { T coord_setter; float v = 0; for (unsigned int i = 0; i < points_.length - PHANTOM_COUNT; i++) { uint8_t flag = points_[i].flag; if (coord_setter.is_short (flag)) { if (unlikely (!checker.in_range (p))) return false; if (coord_setter.is_same (flag)) v += *p++; else v -= *p++; } else { if (!coord_setter.is_same (flag)) { if (unlikely (!checker.in_range ((const HBUINT16 *)p))) return false; v += *(const HBINT16 *)p; p += HBINT16::static_size; } } coord_setter.set (points_[i], v); } return true; } void init_phantom_points (hb_codepoint_t glyph, hb_array_t &phantoms /* IN/OUT */) const { const GlyphHeader &header = get_header (glyph); int h_delta = (int)header.xMin - hmtx_accel.get_side_bearing (glyph); int v_delta = (int)header.yMax - vmtx_accel.get_side_bearing (glyph); unsigned int h_adv = hmtx_accel.get_advance (glyph); unsigned int v_adv = vmtx_accel.get_advance (glyph); phantoms[PHANTOM_LEFT].x = h_delta; phantoms[PHANTOM_RIGHT].x = h_adv + h_delta; phantoms[PHANTOM_TOP].y = v_delta; phantoms[PHANTOM_BOTTOM].y = -v_adv + v_delta; } /* for a simple glyph, return contour end points, flags, along with coordinate points * for a composite glyph, return pseudo component points * in both cases points trailed with four phantom points */ bool get_contour_points (hb_codepoint_t glyph, hb_vector_t &points_ /* OUT */, hb_vector_t &end_points_ /* OUT */, const bool phantom_only=false) const { unsigned int num_points = 0; unsigned int start_offset, end_offset; if (unlikely (!get_offsets (glyph, &start_offset, &end_offset))) return false; if (unlikely (end_offset - start_offset < GlyphHeader::static_size)) { /* empty glyph */ points_.resize (PHANTOM_COUNT); for (unsigned int i = 0; i < points_.length; i++) points_[i].init (); return true; } CompositeGlyphHeader::Iterator composite; if (get_composite (glyph, &composite)) { /* For a composite glyph, add one pseudo point for each component */ do { num_points++; } while (composite.move_to_next()); points_.resize (num_points + PHANTOM_COUNT); for (unsigned int i = 0; i < points_.length; i++) points_[i].init (); return true; } const GlyphHeader &glyph_header = StructAtOffset (glyf_table, start_offset); int16_t num_contours = (int16_t) glyph_header.numberOfContours; const HBUINT16 *end_pts = &StructAfter (glyph_header); range_checker_t checker (glyf_table, start_offset, end_offset); num_points = 0; if (num_contours > 0) { if (unlikely (!checker.in_range (&end_pts[num_contours + 1]))) return false; num_points = end_pts[num_contours - 1] + 1; } else if (num_contours < 0) { CompositeGlyphHeader::Iterator composite; if (unlikely (!get_composite (glyph, &composite))) return false; do { num_points++; } while (composite.move_to_next()); } points_.resize (num_points + PHANTOM_COUNT); for (unsigned int i = 0; i < points_.length; i++) points_[i].init (); if ((num_contours <= 0) || phantom_only) return true; /* Read simple glyph points if !phantom_only */ end_points_.resize (num_contours); for (int16_t i = 0; i < num_contours; i++) end_points_[i] = end_pts[i]; /* Skip instructions */ const HBUINT8 *p = &StructAtOffset (&end_pts[num_contours+1], end_pts[num_contours]); /* Read flags */ for (unsigned int i = 0; i < num_points; i++) { if (unlikely (!checker.in_range (p))) return false; uint8_t flag = *p++; points_[i].flag = flag; if ((flag & FLAG_REPEAT) != 0) { if (unlikely (!checker.in_range (p))) return false; unsigned int repeat_count = *p++; while ((repeat_count-- > 0) && (++i < num_points)) points_[i].flag = flag; } } /* Read x & y coordinates */ return (read_points (p, points_, checker) && read_points (p, points_, checker)); } /* Note: Recursively calls itself. Who's checking recursively nested composite glyph BTW? */ bool get_var_metrics (hb_codepoint_t glyph, const int *coords, unsigned int coord_count, hb_array_t phantoms /* OUT */) const { hb_vector_t points; hb_vector_t end_points; if (unlikely (!get_contour_points (glyph, points, end_points, true/*phantom_only*/))) return false; hb_array_t phantoms_array = points.sub_array (points.length-PHANTOM_COUNT, PHANTOM_COUNT); init_phantom_points (glyph, phantoms_array); if (unlikely (!gvar_accel.apply_deltas_to_points (glyph, coords, coord_count, points.as_array (), end_points.as_array ()))) return false; for (unsigned int i = 0; i < PHANTOM_COUNT; i++) phantoms[i] = points[points.length - PHANTOM_COUNT + i]; CompositeGlyphHeader::Iterator composite; if (!get_composite (glyph, &composite)) return true; /* simple glyph */ do { if (composite.current->flags & CompositeGlyphHeader::USE_MY_METRICS) { if (unlikely (!get_var_metrics (composite.current->glyphIndex, coords, coord_count, phantoms.sub_array (0, 2)))) return false; for (unsigned int j = 0; j < phantoms.length; j++) composite.current->transform_point (phantoms[j].x, phantoms[j].y); } } while (composite.move_to_next()); return true; } struct contour_bounds_t { contour_bounds_t () { min.x = min.y = FLT_MAX; max.x = max.y = FLT_MIN; } void add (const contour_point_t &p) { min.x = MIN (min.x, p.x); min.y = MIN (min.y, p.y); max.x = MAX (max.x, p.x); max.y = MAX (max.y, p.y); } void offset (const contour_point_t &p) { min.offset (p); max.offset (p); } void merge (const contour_bounds_t &b) { if (empty ()) { *this = b; return; } add (b.min); add (b.max); } bool empty () const { return (min.x >= max.x) || (min.y >= max.y); } contour_point_t min; contour_point_t max; }; /* Note: Recursively calls itself. Who's checking recursively nested composite glyph BTW? */ bool get_bounds_var (hb_codepoint_t glyph, const int *coords, unsigned int coord_count, contour_bounds_t &bounds) const { hb_vector_t points; hb_vector_t end_points; if (unlikely (!get_contour_points (glyph, points, end_points))) return false; hb_array_t phantoms_array = points.sub_array (points.length-PHANTOM_COUNT, PHANTOM_COUNT); init_phantom_points (glyph, phantoms_array); if (unlikely (!gvar_accel.apply_deltas_to_points (glyph, coords, coord_count, points.as_array (), end_points.as_array ()))) return false; unsigned int comp_index = 0; CompositeGlyphHeader::Iterator composite; if (!get_composite (glyph, &composite)) { /* simple glyph */ for (unsigned int i = 0; i + PHANTOM_COUNT < points.length; i++) bounds.add (points[i]); /* TODO: need to check ON_CURVE or flatten? */ } else { /* composite glyph */ do { contour_bounds_t comp_bounds; if (unlikely (!get_bounds_var (composite.current->glyphIndex, coords, coord_count, comp_bounds))) return false; /* Apply offset & scaling */ composite.current->transform_point (comp_bounds.min.x, comp_bounds.min.y); composite.current->transform_point (comp_bounds.max.x, comp_bounds.max.y); /* Apply offset adjustments from gvar */ comp_bounds.offset (points[comp_index]); bounds.merge (comp_bounds); comp_index++; } while (composite.move_to_next()); } /* Shift bounds by the updated left side bearing (vertically too?) */ { float x_delta = points[points.length - PHANTOM_COUNT + PHANTOM_LEFT].x; bounds.min.x -= x_delta; bounds.max.x -= x_delta; } return true; } bool get_extents_var (hb_codepoint_t glyph, const int *coords, unsigned int coord_count, hb_glyph_extents_t *extents) const { contour_bounds_t bounds; if (unlikely (!get_bounds_var (glyph, coords, coord_count, bounds))) return false; if (bounds.min.x >= bounds.max.x) { extents->width = 0; extents->x_bearing = 0; } else { extents->x_bearing = (int32_t)floorf (bounds.min.x); extents->width = (int32_t)ceilf (bounds.max.x) - extents->x_bearing; } if (bounds.min.y >= bounds.max.y) { extents->height = 0; extents->y_bearing = 0; } else { extents->y_bearing = (int32_t)ceilf (bounds.max.y); extents->height = (int32_t)floorf (bounds.min.y) - extents->y_bearing; } return true; } public: /* based on FontTools _g_l_y_f.py::trim */ bool remove_padding (unsigned int start_offset, unsigned int *end_offset) const { if (*end_offset - start_offset < GlyphHeader::static_size) return true; const char *glyph = ((const char *) glyf_table) + start_offset; const char * const glyph_end = glyph + (*end_offset - start_offset); const GlyphHeader &glyph_header = StructAtOffset (glyph, 0); int16_t num_contours = (int16_t) glyph_header.numberOfContours; if (num_contours < 0) /* Trimming for composites not implemented. * If removing hints it falls out of that. */ return true; else if (num_contours > 0) { /* simple glyph w/contours, possibly trimmable */ glyph += GlyphHeader::static_size + 2 * num_contours; if (unlikely (glyph + 2 >= glyph_end)) return false; uint16_t nCoordinates = (uint16_t) StructAtOffset (glyph - 2, 0) + 1; uint16_t nInstructions = (uint16_t) StructAtOffset (glyph, 0); glyph += 2 + nInstructions; if (unlikely (glyph + 2 >= glyph_end)) return false; unsigned int coordBytes = 0; unsigned int coordsWithFlags = 0; while (glyph < glyph_end) { uint8_t flag = (uint8_t) *glyph; glyph++; unsigned int repeat = 1; if (flag & FLAG_REPEAT) { if (glyph >= glyph_end) { DEBUG_MSG(SUBSET, nullptr, "Bad flag"); return false; } repeat = ((uint8_t) *glyph) + 1; glyph++; } unsigned int xBytes, yBytes; xBytes = yBytes = 0; if (flag & FLAG_X_SHORT) xBytes = 1; else if ((flag & FLAG_X_SAME) == 0) xBytes = 2; if (flag & FLAG_Y_SHORT) yBytes = 1; else if ((flag & FLAG_Y_SAME) == 0) yBytes = 2; coordBytes += (xBytes + yBytes) * repeat; coordsWithFlags += repeat; if (coordsWithFlags >= nCoordinates) break; } if (coordsWithFlags != nCoordinates) { DEBUG_MSG(SUBSET, nullptr, "Expect %d coords to have flags, got flags for %d", nCoordinates, coordsWithFlags); return false; } glyph += coordBytes; if (glyph < glyph_end) *end_offset -= glyph_end - glyph; } return true; } bool get_offsets (hb_codepoint_t glyph, unsigned int *start_offset /* OUT */, unsigned int *end_offset /* OUT */) const { if (unlikely (glyph >= num_glyphs)) return false; if (short_offset) { const HBUINT16 *offsets = (const HBUINT16 *) loca_table->dataZ.arrayZ; *start_offset = 2 * offsets[glyph]; *end_offset = 2 * offsets[glyph + 1]; } else { const HBUINT32 *offsets = (const HBUINT32 *) loca_table->dataZ.arrayZ; *start_offset = offsets[glyph]; *end_offset = offsets[glyph + 1]; } if (*start_offset > *end_offset || *end_offset > glyf_table.get_length ()) return false; return true; } bool get_instruction_offsets (unsigned int start_offset, unsigned int end_offset, unsigned int *instruction_start /* OUT */, unsigned int *instruction_end /* OUT */) const { if (end_offset - start_offset < GlyphHeader::static_size) { *instruction_start = 0; *instruction_end = 0; return true; /* Empty glyph; no instructions. */ } const GlyphHeader &glyph_header = StructAtOffset (glyf_table, start_offset); int16_t num_contours = (int16_t) glyph_header.numberOfContours; if (num_contours < 0) { CompositeGlyphHeader::Iterator composite_it; if (unlikely (!CompositeGlyphHeader::get_iterator ( (const char*) this->glyf_table + start_offset, end_offset - start_offset, &composite_it))) return false; const CompositeGlyphHeader *last; do { last = composite_it.current; } while (composite_it.move_to_next ()); if ((uint16_t) last->flags & CompositeGlyphHeader::WE_HAVE_INSTRUCTIONS) *instruction_start = ((char *) last - (char *) glyf_table->dataZ.arrayZ) + last->get_size (); else *instruction_start = end_offset; *instruction_end = end_offset; if (unlikely (*instruction_start > *instruction_end)) { DEBUG_MSG(SUBSET, nullptr, "Invalid instruction offset, %d is outside [%d, %d]", *instruction_start, start_offset, end_offset); return false; } } else { unsigned int instruction_length_offset = start_offset + GlyphHeader::static_size + 2 * num_contours; if (unlikely (instruction_length_offset + 2 > end_offset)) { DEBUG_MSG(SUBSET, nullptr, "Glyph size is too short, missing field instructionLength."); return false; } const HBUINT16 &instruction_length = StructAtOffset (glyf_table, instruction_length_offset); unsigned int start = instruction_length_offset + 2; unsigned int end = start + (uint16_t) instruction_length; if (unlikely (end > end_offset)) // Out of bounds of the current glyph { DEBUG_MSG(SUBSET, nullptr, "The instructions array overruns the glyph's boundaries."); return false; } *instruction_start = start; *instruction_end = end; } return true; } unsigned int get_advance_var (hb_codepoint_t glyph, const int *coords, unsigned int coord_count, bool vertical) const { bool success = false; hb_vector_t phantoms; phantoms.resize (PHANTOM_COUNT); if (likely (coord_count == gvar_accel.get_axis_count ())) success = get_var_metrics (glyph, coords, coord_count, phantoms.as_array ()); if (unlikely (!success)) return vertical? vmtx_accel.get_advance (glyph): hmtx_accel.get_advance (glyph); if (vertical) return (unsigned int)roundf (phantoms[PHANTOM_TOP].y - phantoms[PHANTOM_BOTTOM].y); else return (unsigned int)roundf (phantoms[PHANTOM_RIGHT].x - phantoms[PHANTOM_LEFT].x); } int get_side_bearing_var (hb_codepoint_t glyph, const int *coords, unsigned int coord_count, bool vertical) const { hb_vector_t phantoms; phantoms.resize (PHANTOM_COUNT); if (unlikely (!get_var_metrics (glyph, coords, coord_count, phantoms))) return vertical? vmtx_accel.get_side_bearing (glyph): hmtx_accel.get_side_bearing (glyph); return (int)(vertical? -ceilf (phantoms[PHANTOM_TOP].y): floorf (phantoms[PHANTOM_LEFT].x)); } bool get_extents (hb_font_t *font, hb_codepoint_t glyph, hb_glyph_extents_t *extents) const { unsigned int coord_count; const int *coords = hb_font_get_var_coords_normalized (font, &coord_count); if (coords && coord_count > 0 && coord_count == gvar_accel.get_axis_count ()) return get_extents_var (glyph, coords, coord_count, extents); unsigned int start_offset, end_offset; if (!get_offsets (glyph, &start_offset, &end_offset)) return false; if (end_offset - start_offset < GlyphHeader::static_size) return true; /* Empty glyph; zero extents. */ const GlyphHeader &glyph_header = StructAtOffset (glyf_table, start_offset); extents->x_bearing = MIN (glyph_header.xMin, glyph_header.xMax); extents->y_bearing = MAX (glyph_header.yMin, glyph_header.yMax); extents->width = MAX (glyph_header.xMin, glyph_header.xMax) - extents->x_bearing; extents->height = MIN (glyph_header.yMin, glyph_header.yMax) - extents->y_bearing; return true; } private: bool short_offset; unsigned int num_glyphs; hb_blob_ptr_t loca_table; hb_blob_ptr_t glyf_table; /* variable font support */ gvar::accelerator_t gvar_accel; hmtx::accelerator_t hmtx_accel; vmtx::accelerator_t vmtx_accel; }; protected: UnsizedArrayOf dataZ; /* Glyphs data. */ public: DEFINE_SIZE_MIN (0); /* In reality, this is UNBOUNDED() type; but since we always * check the size externally, allow Null() object of it by * defining it MIN() instead. */ }; struct glyf_accelerator_t : glyf::accelerator_t {}; } /* namespace OT */ #endif /* HB_OT_GLYF_TABLE_HH */