#ifndef OT_GLYF_SIMPLEGLYPH_HH #define OT_GLYF_SIMPLEGLYPH_HH #include "../../hb-open-type.hh" namespace OT { namespace glyf_impl { struct SimpleGlyph { enum simple_glyph_flag_t { FLAG_ON_CURVE = 0x01, FLAG_X_SHORT = 0x02, FLAG_Y_SHORT = 0x04, FLAG_REPEAT = 0x08, FLAG_X_SAME = 0x10, FLAG_Y_SAME = 0x20, FLAG_OVERLAP_SIMPLE = 0x40, FLAG_RESERVED2 = 0x80 }; const GlyphHeader &header; hb_bytes_t bytes; SimpleGlyph (const GlyphHeader &header_, hb_bytes_t bytes_) : header (header_), bytes (bytes_) {} unsigned int instruction_len_offset () const { return GlyphHeader::static_size + 2 * header.numberOfContours; } unsigned int length (unsigned int instruction_len) const { return instruction_len_offset () + 2 + instruction_len; } unsigned int instructions_length () const { unsigned int instruction_length_offset = instruction_len_offset (); if (unlikely (instruction_length_offset + 2 > bytes.length)) return 0; const HBUINT16 &instructionLength = StructAtOffset (&bytes, instruction_length_offset); /* Out of bounds of the current glyph */ if (unlikely (length (instructionLength) > bytes.length)) return 0; return instructionLength; } const hb_bytes_t trim_padding () const { /* based on FontTools _g_l_y_f.py::trim */ const uint8_t *glyph = (uint8_t*) bytes.arrayZ; const uint8_t *glyph_end = glyph + bytes.length; /* simple glyph w/contours, possibly trimmable */ glyph += instruction_len_offset (); if (unlikely (glyph + 2 >= glyph_end)) return hb_bytes_t (); unsigned int num_coordinates = StructAtOffset (glyph - 2, 0) + 1; unsigned int num_instructions = StructAtOffset (glyph, 0); glyph += 2 + num_instructions; unsigned int coord_bytes = 0; unsigned int coords_with_flags = 0; while (glyph < glyph_end) { uint8_t flag = *glyph; glyph++; unsigned int repeat = 1; if (flag & FLAG_REPEAT) { if (unlikely (glyph >= glyph_end)) return hb_bytes_t (); repeat = *glyph + 1; glyph++; } unsigned int xBytes, yBytes; xBytes = yBytes = 0; if (flag & FLAG_X_SHORT) xBytes = 1; else if ((flag & FLAG_X_SAME) == 0) xBytes = 2; if (flag & FLAG_Y_SHORT) yBytes = 1; else if ((flag & FLAG_Y_SAME) == 0) yBytes = 2; coord_bytes += (xBytes + yBytes) * repeat; coords_with_flags += repeat; if (coords_with_flags >= num_coordinates) break; } if (unlikely (coords_with_flags != num_coordinates)) return hb_bytes_t (); return bytes.sub_array (0, bytes.length + coord_bytes - (glyph_end - glyph)); } /* zero instruction length */ void drop_hints () { GlyphHeader &glyph_header = const_cast (header); (HBUINT16 &) StructAtOffset (&glyph_header, instruction_len_offset ()) = 0; } void drop_hints_bytes (hb_bytes_t &dest_start, hb_bytes_t &dest_end) const { unsigned int instructions_len = instructions_length (); unsigned int glyph_length = length (instructions_len); dest_start = bytes.sub_array (0, glyph_length - instructions_len); dest_end = bytes.sub_array (glyph_length, bytes.length - glyph_length); } void set_overlaps_flag () { if (unlikely (!header.numberOfContours)) return; unsigned flags_offset = length (instructions_length ()); if (unlikely (flags_offset + 1 > bytes.length)) return; HBUINT8 &first_flag = (HBUINT8 &) StructAtOffset (&bytes, flags_offset); first_flag = (uint8_t) first_flag | FLAG_OVERLAP_SIMPLE; } static bool read_points (const HBUINT8 *&p /* IN/OUT */, contour_point_vector_t &points_ /* IN/OUT */, const hb_bytes_t &bytes, float contour_point_t::*m, const simple_glyph_flag_t short_flag, const simple_glyph_flag_t same_flag) { float v = 0; unsigned count = points_.length; for (unsigned i = 0; i < count; i++) { uint8_t flag = points_[i].flag; if (flag & short_flag) { if (unlikely (!bytes.check_range (p))) return false; if (flag & same_flag) v += *p++; else v -= *p++; } else { if (!(flag & same_flag)) { if (unlikely (!bytes.check_range ((const HBUINT16 *) p))) return false; v += *(const HBINT16 *) p; p += HBINT16::static_size; } } points_.arrayZ[i].*m = v; } return true; } bool get_contour_points (contour_point_vector_t &points_ /* OUT */, bool phantom_only = false) const { const HBUINT16 *endPtsOfContours = &StructAfter (header); int num_contours = header.numberOfContours; if (unlikely (!bytes.check_range (&endPtsOfContours[num_contours - 1]))) return false; unsigned int num_points = endPtsOfContours[num_contours - 1] + 1; points_.alloc (num_points + 4); // Allocate for phantom points, to avoid a possible copy if (!points_.resize (num_points)) return false; if (phantom_only) return true; for (int i = 0; i < num_contours; i++) points_[endPtsOfContours[i]].is_end_point = true; /* Skip instructions */ const HBUINT8 *p = &StructAtOffset (&endPtsOfContours[num_contours + 1], endPtsOfContours[num_contours]); /* Read flags */ for (unsigned int i = 0; i < num_points;) { if (unlikely (!bytes.check_range (p))) return false; uint8_t flag = *p++; points_[i++].flag = flag; if (flag & FLAG_REPEAT) { if (unlikely (!bytes.check_range (p))) return false; unsigned int repeat_count = *p++; unsigned stop = hb_min (i + repeat_count, num_points); for (; i < stop;) points_.arrayZ[i++].flag = flag; } } /* Read x & y coordinates */ return read_points (p, points_, bytes, &contour_point_t::x, FLAG_X_SHORT, FLAG_X_SAME) && read_points (p, points_, bytes, &contour_point_t::y, FLAG_Y_SHORT, FLAG_Y_SAME); } }; } /* namespace glyf_impl */ } /* namespace OT */ #endif /* OT_GLYF_SIMPLEGLYPH_HH */