/* * Copyright © 2019 Adobe Inc. * Copyright © 2019 Ebrahim Byagowi * * This is part of HarfBuzz, a text shaping library. * * Permission is hereby granted, without written agreement and without * license or royalty fees, to use, copy, modify, and distribute this * software and its documentation for any purpose, provided that the * above copyright notice and the following two paragraphs appear in * all copies of this software. * * IN NO EVENT SHALL THE COPYRIGHT HOLDER BE LIABLE TO ANY PARTY FOR * DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES * ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN * IF THE COPYRIGHT HOLDER HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH * DAMAGE. * * THE COPYRIGHT HOLDER SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, * BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND * FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER IS * ON AN "AS IS" BASIS, AND THE COPYRIGHT HOLDER HAS NO OBLIGATION TO * PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS. * * Adobe Author(s): Michiharu Ariza */ #ifndef HB_OT_VAR_GVAR_TABLE_HH #define HB_OT_VAR_GVAR_TABLE_HH #include "hb-open-type.hh" #include "hb-ot-glyf-table.hh" #include "hb-ot-var-fvar-table.hh" /* * gvar -- Glyph Variation Table * https://docs.microsoft.com/en-us/typography/opentype/spec/gvar */ #define HB_OT_TAG_gvar HB_TAG('g','v','a','r') namespace OT { struct contour_point_t { void init (float x_=0.f, float y_=0.f) { flag = 0; x = x_; y = y_; } void translate (const contour_point_t &p) { x += p.x; y += p.y; } uint8_t flag; float x, y; }; struct contour_point_vector_t : hb_vector_t { void extend (const hb_array_t &a) { unsigned int old_len = length; resize (old_len + a.length); for (unsigned int i = 0; i < a.length; i++) (*this)[old_len + i] = a[i]; } void transform (const float (&matrix)[4]) { for (unsigned int i = 0; i < length; i++) { contour_point_t &p = (*this)[i]; float x_ = p.x * matrix[0] + p.y * matrix[2]; p.y = p.x * matrix[1] + p.y * matrix[3]; p.x = x_; } } void translate (const contour_point_t& delta) { for (unsigned int i = 0; i < length; i++) (*this)[i].translate (delta); } }; struct Tuple : UnsizedArrayOf {}; struct TuppleIndex : HBUINT16 { enum Flags { EmbeddedPeakTuple = 0x8000u, IntermediateRegion = 0x4000u, PrivatePointNumbers = 0x2000u, TupleIndexMask = 0x0FFFu }; DEFINE_SIZE_STATIC (2); }; struct TupleVarHeader { unsigned int get_size (unsigned int axis_count) const { return min_size + (has_peak () ? get_peak_tuple ().get_size (axis_count) : 0) + (has_intermediate () ? (get_start_tuple (axis_count).get_size (axis_count) + get_end_tuple (axis_count).get_size (axis_count)) : 0); } const TupleVarHeader &get_next (unsigned int axis_count) const { return StructAtOffset (this, get_size (axis_count)); } float calculate_scalar (const int *coords, unsigned int coord_count, const hb_array_t shared_tuples) const { const F2DOT14 *peak_tuple; if (has_peak ()) peak_tuple = &(get_peak_tuple ()[0]); else { unsigned int index = get_index (); if (unlikely (index * coord_count >= shared_tuples.length)) return 0.f; peak_tuple = &shared_tuples[coord_count * index]; } const F2DOT14 *start_tuple = nullptr; const F2DOT14 *end_tuple = nullptr; if (has_intermediate ()) { start_tuple = get_start_tuple (coord_count); end_tuple = get_end_tuple (coord_count); } float scalar = 1.f; for (unsigned int i = 0; i < coord_count; i++) { int v = coords[i]; int peak = peak_tuple[i]; if (!peak || v == peak) continue; if (has_intermediate ()) { int start = start_tuple[i]; int end = end_tuple[i]; if (unlikely (start > peak || peak > end || (start < 0 && end > 0 && peak))) continue; if (v < start || v > end) return 0.f; if (v < peak) { if (peak != start) scalar *= (float) (v - start) / (peak - start); } else { if (peak != end) scalar *= (float) (end - v) / (end - peak); } } else if (!v || v < hb_min (0, peak) || v > hb_max (0, peak)) return 0.f; else scalar *= (float) v / peak; } return scalar; } unsigned int get_data_size () const { return varDataSize; } bool has_peak () const { return (tupleIndex & TuppleIndex::EmbeddedPeakTuple); } bool has_intermediate () const { return (tupleIndex & TuppleIndex::IntermediateRegion); } bool has_private_points () const { return (tupleIndex & TuppleIndex::PrivatePointNumbers); } unsigned int get_index () const { return (tupleIndex & TuppleIndex::TupleIndexMask); } protected: const Tuple &get_peak_tuple () const { return StructAfter (tupleIndex); } const Tuple &get_start_tuple (unsigned int axis_count) const { return *(const Tuple *) &get_peak_tuple ()[has_peak () ? axis_count : 0]; } const Tuple &get_end_tuple (unsigned int axis_count) const { return *(const Tuple *) &get_peak_tuple ()[has_peak () ? (axis_count * 2) : axis_count]; } HBUINT16 varDataSize; TuppleIndex tupleIndex; /* UnsizedArrayOf peakTuple - optional */ /* UnsizedArrayOf intermediateStartTuple - optional */ /* UnsizedArrayOf intermediateEndTuple - optional */ public: DEFINE_SIZE_MIN (4); }; struct TupleVarCount : HBUINT16 { bool has_shared_point_numbers () const { return ((*this) & SharedPointNumbers); } unsigned int get_count () const { return (*this) & CountMask; } protected: enum Flags { SharedPointNumbers = 0x8000u, CountMask = 0x0FFFu }; public: DEFINE_SIZE_STATIC (2); }; struct GlyphVarData { const TupleVarHeader &get_tuple_var_header (void) const { return StructAfter (data); } struct tuple_iterator_t { void init (const GlyphVarData *var_data_, unsigned int length_, unsigned int axis_count_) { var_data = var_data_; length = length_; index = 0; axis_count = axis_count_; current_tuple = &var_data->get_tuple_var_header (); data_offset = 0; } bool get_shared_indices (hb_vector_t &shared_indices /* OUT */) { if (var_data->has_shared_point_numbers ()) { hb_bytes_t bytes ((const char *) var_data, length); const HBUINT8 *base = &(var_data+var_data->data); const HBUINT8 *p = base; if (!unpack_points (p, shared_indices, bytes)) return false; data_offset = p - base; } return true; } bool is_valid () const { return (index < var_data->tupleVarCount.get_count ()) && in_range (current_tuple) && current_tuple->get_size (axis_count); } bool move_to_next () { data_offset += current_tuple->get_data_size (); current_tuple = ¤t_tuple->get_next (axis_count); index++; return is_valid (); } bool in_range (const void *p, unsigned int l) const { return (const char*) p >= (const char*) var_data && (const char*) p+l <= (const char*) var_data + length; } template bool in_range (const T *p) const { return in_range (p, sizeof (*p)); } const HBUINT8 *get_serialized_data () const { return &(var_data+var_data->data) + data_offset; } private: const GlyphVarData *var_data; unsigned int length; unsigned int index; unsigned int axis_count; unsigned int data_offset; public: const TupleVarHeader *current_tuple; }; static bool get_tuple_iterator (const GlyphVarData *var_data, unsigned int length, unsigned int axis_count, hb_vector_t &shared_indices /* OUT */, tuple_iterator_t *iterator /* OUT */) { iterator->init (var_data, length, axis_count); if (!iterator->get_shared_indices (shared_indices)) return false; return iterator->is_valid (); } bool has_shared_point_numbers () const { return tupleVarCount.has_shared_point_numbers (); } static bool unpack_points (const HBUINT8 *&p /* IN/OUT */, hb_vector_t &points /* OUT */, const hb_bytes_t &bytes) { enum packed_point_flag_t { POINTS_ARE_WORDS = 0x80, POINT_RUN_COUNT_MASK = 0x7F }; if (unlikely (!bytes.check_range (p))) return false; uint16_t count = *p++; if (count & POINTS_ARE_WORDS) { if (unlikely (!bytes.check_range (p))) return false; count = ((count & POINT_RUN_COUNT_MASK) << 8) | *p++; } points.resize (count); unsigned int n = 0; uint16_t i = 0; while (i < count) { if (unlikely (!bytes.check_range (p))) return false; uint16_t j; uint8_t control = *p++; uint16_t run_count = (control & POINT_RUN_COUNT_MASK) + 1; if (control & POINTS_ARE_WORDS) { for (j = 0; j < run_count && i < count; j++, i++) { if (unlikely (!bytes.check_range ((const HBUINT16 *) p))) return false; n += *(const HBUINT16 *)p; points[i] = n; p += HBUINT16::static_size; } } else { for (j = 0; j < run_count && i < count; j++, i++) { if (unlikely (!bytes.check_range (p))) return false; n += *p++; points[i] = n; } } if (j < run_count) return false; } return true; } static bool unpack_deltas (const HBUINT8 *&p /* IN/OUT */, hb_vector_t &deltas /* IN/OUT */, const hb_bytes_t &bytes) { enum packed_delta_flag_t { DELTAS_ARE_ZERO = 0x80, DELTAS_ARE_WORDS = 0x40, DELTA_RUN_COUNT_MASK = 0x3F }; unsigned int i = 0; unsigned int count = deltas.length; while (i < count) { if (unlikely (!bytes.check_range (p))) return false; uint8_t control = *p++; unsigned int run_count = (control & DELTA_RUN_COUNT_MASK) + 1; unsigned int j; if (control & DELTAS_ARE_ZERO) for (j = 0; j < run_count && i < count; j++, i++) deltas[i] = 0; else if (control & DELTAS_ARE_WORDS) for (j = 0; j < run_count && i < count; j++, i++) { if (unlikely (!bytes.check_range ((const HBUINT16 *) p))) return false; deltas[i] = *(const HBINT16 *) p; p += HBUINT16::static_size; } else for (j = 0; j < run_count && i < count; j++, i++) { if (unlikely (!bytes.check_range (p))) return false; deltas[i] = *(const HBINT8 *) p++; } if (j < run_count) return false; } return true; } protected: TupleVarCount tupleVarCount; OffsetTo data; /* TupleVarHeader tupleVarHeaders[] */ public: DEFINE_SIZE_MIN (4); }; struct gvar { static constexpr hb_tag_t tableTag = HB_OT_TAG_gvar; bool sanitize_shallow (hb_sanitize_context_t *c) const { TRACE_SANITIZE (this); return_trace (c->check_struct (this) && (version.major == 1) && (glyphCount == c->get_num_glyphs ()) && c->check_array (&(this+sharedTuples), axisCount * sharedTupleCount) && (is_long_offset () ? c->check_array (get_long_offset_array (), glyphCount+1) : c->check_array (get_short_offset_array (), glyphCount+1)) && c->check_array (((const HBUINT8*)&(this+dataZ)) + get_offset (0), get_offset (glyphCount) - get_offset (0))); } /* GlyphVarData not sanitized here; must be checked while accessing each glyph varation data */ bool sanitize (hb_sanitize_context_t *c) const { return sanitize_shallow (c); } bool subset (hb_subset_context_t *c) const { TRACE_SUBSET (this); gvar *out = c->serializer->allocate_min (); if (unlikely (!out)) return_trace (false); out->version.major = 1; out->version.minor = 0; out->axisCount = axisCount; out->sharedTupleCount = sharedTupleCount; unsigned int num_glyphs = c->plan->num_output_glyphs (); out->glyphCount = num_glyphs; unsigned int subset_data_size = 0; for (hb_codepoint_t gid = 0; gid < num_glyphs; gid++) { hb_codepoint_t old_gid; if (!c->plan->old_gid_for_new_gid (gid, &old_gid)) continue; subset_data_size += get_glyph_var_data_length (old_gid); } bool long_offset = subset_data_size & ~0xFFFFu; out->flags = long_offset ? 1 : 0; HBUINT8 *subset_offsets = c->serializer->allocate_size ((long_offset ? 4 : 2) * (num_glyphs + 1)); if (!subset_offsets) return_trace (false); /* shared tuples */ if (!sharedTupleCount || !sharedTuples) out->sharedTuples = 0; else { unsigned int shared_tuple_size = F2DOT14::static_size * axisCount * sharedTupleCount; F2DOT14 *tuples = c->serializer->allocate_size (shared_tuple_size); if (!tuples) return_trace (false); out->sharedTuples = (char *) tuples - (char *) out; memcpy (tuples, &(this+sharedTuples), shared_tuple_size); } char *subset_data = c->serializer->allocate_size (subset_data_size); if (!subset_data) return_trace (false); out->dataZ = subset_data - (char *)out; unsigned int glyph_offset = 0; for (hb_codepoint_t gid = 0; gid < num_glyphs; gid++) { hb_codepoint_t old_gid; unsigned int length = c->plan->old_gid_for_new_gid (gid, &old_gid) ? get_glyph_var_data_length (old_gid) : 0; if (long_offset) ((HBUINT32 *) subset_offsets)[gid] = glyph_offset; else ((HBUINT16 *) subset_offsets)[gid] = glyph_offset / 2; if (length > 0) memcpy (subset_data, get_glyph_var_data (old_gid), length); subset_data += length; glyph_offset += length; } if (long_offset) ((HBUINT32 *) subset_offsets)[num_glyphs] = glyph_offset; else ((HBUINT16 *) subset_offsets)[num_glyphs] = glyph_offset / 2; return_trace (true); } protected: const GlyphVarData *get_glyph_var_data (hb_codepoint_t glyph) const { unsigned int start_offset = get_offset (glyph); unsigned int end_offset = get_offset (glyph+1); if ((start_offset == end_offset) || unlikely ((start_offset > get_offset (glyphCount)) || (start_offset + GlyphVarData::min_size > end_offset))) return &Null (GlyphVarData); return &(((unsigned char *) this + start_offset) + dataZ); } bool is_long_offset () const { return (flags & 1) != 0; } unsigned int get_offset (unsigned int i) const { if (is_long_offset ()) return get_long_offset_array ()[i]; else return get_short_offset_array ()[i] * 2; } unsigned int get_glyph_var_data_length (unsigned int glyph) const { unsigned int end_offset = get_offset (glyph + 1); unsigned int start_offset = get_offset (glyph); if (unlikely (start_offset > end_offset || end_offset > get_offset (glyphCount))) return 0; return end_offset - start_offset; } const HBUINT32 * get_long_offset_array () const { return (const HBUINT32 *) &offsetZ; } const HBUINT16 *get_short_offset_array () const { return (const HBUINT16 *) &offsetZ; } public: struct accelerator_t { void init (hb_face_t *face) { gvar_table = hb_sanitize_context_t ().reference_table (face); hb_blob_ptr_t fvar_table = hb_sanitize_context_t ().reference_table (face); unsigned int axis_count = fvar_table->get_axis_count (); fvar_table.destroy (); if (unlikely ((gvar_table->glyphCount != face->get_num_glyphs ()) || (gvar_table->axisCount != axis_count))) fini (); unsigned int num_shared_coord = gvar_table->sharedTupleCount * gvar_table->axisCount; shared_tuples.resize (num_shared_coord); for (unsigned int i = 0; i < num_shared_coord; i++) shared_tuples[i] = (&(gvar_table + gvar_table->sharedTuples))[i]; } void fini () { gvar_table.destroy (); shared_tuples.fini (); } private: struct x_getter { static float get (const contour_point_t &p) { return p.x; } }; struct y_getter { static float get (const contour_point_t &p) { return p.y; } }; template static float infer_delta (const hb_array_t points, const hb_array_t deltas, unsigned int target, unsigned int prev, unsigned int next) { float target_val = T::get (points[target]); float prev_val = T::get (points[prev]); float next_val = T::get (points[next]); float prev_delta = T::get (deltas[prev]); float next_delta = T::get (deltas[next]); if (prev_val == next_val) return (prev_delta == next_delta) ? prev_delta : 0.f; else if (target_val <= hb_min (prev_val, next_val)) return (prev_val < next_val) ? prev_delta : next_delta; else if (target_val >= hb_max (prev_val, next_val)) return (prev_val > next_val) ? prev_delta : next_delta; /* linear interpolation */ float r = (target_val - prev_val) / (next_val - prev_val); return (1.f - r) * prev_delta + r * next_delta; } static unsigned int next_index (unsigned int i, unsigned int start, unsigned int end) { return (i >= end) ? start : (i + 1); } public: bool apply_deltas_to_points (hb_codepoint_t glyph, const int *coords, unsigned int coord_count, const hb_array_t points, const hb_array_t end_points) const { if (unlikely (coord_count != gvar_table->axisCount)) return false; const GlyphVarData *var_data = gvar_table->get_glyph_var_data (glyph); if (var_data == &Null (GlyphVarData)) return true; hb_vector_t shared_indices; GlyphVarData::tuple_iterator_t iterator; if (!GlyphVarData::get_tuple_iterator (var_data, gvar_table->get_glyph_var_data_length (glyph), gvar_table->axisCount, shared_indices, &iterator)) return false; /* Save original points for inferred delta calculation */ contour_point_vector_t orig_points; orig_points.resize (points.length); for (unsigned int i = 0; i < orig_points.length; i++) orig_points[i] = points[i]; contour_point_vector_t deltas; /* flag is used to indicate referenced point */ deltas.resize (points.length); do { float scalar = iterator.current_tuple->calculate_scalar (coords, coord_count, shared_tuples.as_array ()); if (scalar == 0.f) continue; const HBUINT8 *p = iterator.get_serialized_data (); unsigned int length = iterator.current_tuple->get_data_size (); if (unlikely (!iterator.in_range (p, length))) return false; hb_bytes_t bytes ((const char *) p, length); hb_vector_t private_indices; if (iterator.current_tuple->has_private_points () && !GlyphVarData::unpack_points (p, private_indices, bytes)) return false; const hb_array_t &indices = private_indices.length ? private_indices : shared_indices; bool apply_to_all = (indices.length == 0); unsigned int num_deltas = apply_to_all ? points.length : indices.length; hb_vector_t x_deltas; x_deltas.resize (num_deltas); if (!GlyphVarData::unpack_deltas (p, x_deltas, bytes)) return false; hb_vector_t y_deltas; y_deltas.resize (num_deltas); if (!GlyphVarData::unpack_deltas (p, y_deltas, bytes)) return false; for (unsigned int i = 0; i < deltas.length; i++) deltas[i].init (); for (unsigned int i = 0; i < num_deltas; i++) { unsigned int pt_index = apply_to_all ? i : indices[i]; deltas[pt_index].flag = 1; /* this point is referenced, i.e., explicit deltas specified */ deltas[pt_index].x += x_deltas[i] * scalar; deltas[pt_index].y += y_deltas[i] * scalar; } /* infer deltas for unreferenced points */ unsigned int start_point = 0; for (unsigned int c = 0; c < end_points.length; c++) { unsigned int end_point = end_points[c]; unsigned int i, j; /* Check the number of unreferenced points in a contour. If no unref points or no ref points, nothing to do. */ unsigned int unref_count = 0; for (i = start_point; i <= end_point; i++) if (!deltas[i].flag) unref_count++; if (unref_count == 0 || unref_count > end_point - start_point) goto no_more_gaps; j = start_point; for (;;) { /* Locate the next gap of unreferenced points between two referenced points prev and next. * Note that a gap may wrap around at left (start_point) and/or at right (end_point). */ unsigned int prev, next; for (;;) { i = j; j = next_index (i, start_point, end_point); if (deltas[i].flag && !deltas[j].flag) break; } prev = j = i; for (;;) { i = j; j = next_index (i, start_point, end_point); if (!deltas[i].flag && deltas[j].flag) break; } next = j; /* Infer deltas for all unref points in the gap between prev and next */ i = prev; for (;;) { i = next_index (i, start_point, end_point); if (i == next) break; deltas[i].x = infer_delta (orig_points.as_array (), deltas.as_array (), i, prev, next); deltas[i].y = infer_delta (orig_points.as_array (), deltas.as_array (), i, prev, next); if (--unref_count == 0) goto no_more_gaps; } } no_more_gaps: start_point = end_point + 1; } /* apply specified / inferred deltas to points */ for (unsigned int i = 0; i < points.length; i++) { points[i].x += (float) roundf (deltas[i].x); points[i].y += (float) roundf (deltas[i].y); } } while (iterator.move_to_next ()); return true; } unsigned int get_axis_count () const { return gvar_table->axisCount; } protected: const GlyphVarData *get_glyph_var_data (hb_codepoint_t glyph) const { return gvar_table->get_glyph_var_data (glyph); } private: hb_blob_ptr_t gvar_table; hb_vector_t shared_tuples; }; protected: FixedVersion<>version; /* Version of gvar table. Set to 0x00010000u. */ HBUINT16 axisCount; HBUINT16 sharedTupleCount; LOffsetTo sharedTuples; /* LOffsetTo> */ HBUINT16 glyphCount; HBUINT16 flags; LOffsetTo dataZ; /* Array of GlyphVarData */ UnsizedArrayOf offsetZ; /* Array of 16-bit or 32-bit (glyphCount+1) offsets */ public: DEFINE_SIZE_MIN (20); }; struct gvar_accelerator_t : gvar::accelerator_t {}; } /* namespace OT */ #endif /* HB_OT_VAR_GVAR_TABLE_HH */