/* * Copyright © 2012 Google, Inc. * * This is part of HarfBuzz, a text shaping library. * * Permission is hereby granted, without written agreement and without * license or royalty fees, to use, copy, modify, and distribute this * software and its documentation for any purpose, provided that the * above copyright notice and the following two paragraphs appear in * all copies of this software. * * IN NO EVENT SHALL THE COPYRIGHT HOLDER BE LIABLE TO ANY PARTY FOR * DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES * ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN * IF THE COPYRIGHT HOLDER HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH * DAMAGE. * * THE COPYRIGHT HOLDER SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, * BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND * FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER IS * ON AN "AS IS" BASIS, AND THE COPYRIGHT HOLDER HAS NO OBLIGATION TO * PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS. * * Google Author(s): Behdad Esfahbod */ #ifndef HB_SET_DIGEST_HH #define HB_SET_DIGEST_HH #include "hb.hh" /* * The set-digests here implement various "filters" that support * "approximate member query". Conceptually these are like Bloom * Filter and Quotient Filter, however, much smaller, faster, and * designed to fit the requirements of our uses for glyph coverage * queries. * * Our filters are highly accurate if the lookup covers fairly local * set of glyphs, but fully flooded and ineffective if coverage is * all over the place. * * The way these are used is that the filter is first populated by * a lookup's or subtable's Coverage table(s), and then when we * want to apply the lookup or subtable to a glyph, before trying * to apply, we ask the filter if the glyph may be covered. If it's * not, we return early. * * We use these filters both at the lookup-level, and then again, * at the subtable-level. Both have performance win. * * The main filter we use is a combination of three bits-pattern * filters. A bits-pattern filter checks a number of bits (5 or 6) * of the input number (glyph-id in this case) and checks whether * its pattern is amongst the patterns of any of the accepted values. * The accepted patterns are represented as a "long" integer. The * check is done using four bitwise operations only. */ template struct hb_set_digest_bits_pattern_t { static constexpr unsigned mask_bytes = sizeof (mask_t); static constexpr unsigned mask_bits = sizeof (mask_t) * 8; static constexpr unsigned num_bits = 0 + (mask_bytes >= 1 ? 3 : 0) + (mask_bytes >= 2 ? 1 : 0) + (mask_bytes >= 4 ? 1 : 0) + (mask_bytes >= 8 ? 1 : 0) + (mask_bytes >= 16? 1 : 0) + 0; static_assert ((shift < sizeof (hb_codepoint_t) * 8), ""); static_assert ((shift + num_bits <= sizeof (hb_codepoint_t) * 8), ""); void init () { mask = 0; } void add (hb_codepoint_t g) { mask |= mask_for (g); } bool add_range (hb_codepoint_t a, hb_codepoint_t b) { if ((b >> shift) - (a >> shift) >= mask_bits - 1) mask = (mask_t) -1; else { mask_t ma = mask_for (a); mask_t mb = mask_for (b); mask |= mb + (mb - ma) - (mb < ma); } return true; } template void add_array (const T *array, unsigned int count, unsigned int stride=sizeof(T)) { for (unsigned int i = 0; i < count; i++) { add (*array); array = (const T *) (stride + (const char *) array); } } template void add_array (const hb_array_t& arr) { add_array (&arr, arr.len ()); } template bool add_sorted_array (const T *array, unsigned int count, unsigned int stride=sizeof(T)) { add_array (array, count, stride); return true; } template bool add_sorted_array (const hb_sorted_array_t& arr) { return add_sorted_array (&arr, arr.len ()); } bool may_have (hb_codepoint_t g) const { return mask & mask_for (g); } private: static mask_t mask_for (hb_codepoint_t g) { return ((mask_t) 1) << ((g >> shift) & (mask_bits - 1)); } mask_t mask; }; template struct hb_set_digest_combiner_t { void init () { head.init (); tail.init (); } void add (hb_codepoint_t g) { head.add (g); tail.add (g); } bool add_range (hb_codepoint_t a, hb_codepoint_t b) { head.add_range (a, b); tail.add_range (a, b); return true; } template void add_array (const T *array, unsigned int count, unsigned int stride=sizeof(T)) { head.add_array (array, count, stride); tail.add_array (array, count, stride); } template void add_array (const hb_array_t& arr) { add_array (&arr, arr.len ()); } template bool add_sorted_array (const T *array, unsigned int count, unsigned int stride=sizeof(T)) { head.add_sorted_array (array, count, stride); tail.add_sorted_array (array, count, stride); return true; } template bool add_sorted_array (const hb_sorted_array_t& arr) { return add_sorted_array (&arr, arr.len ()); } bool may_have (hb_codepoint_t g) const { return head.may_have (g) && tail.may_have (g); } private: head_t head; tail_t tail; }; /* * hb_set_digest_t * * This is a combination of digests that performs "best". * There is not much science to this: it's a result of intuition * and testing. */ using hb_set_digest_t = hb_set_digest_combiner_t < hb_set_digest_bits_pattern_t, hb_set_digest_combiner_t < hb_set_digest_bits_pattern_t, hb_set_digest_bits_pattern_t > > ; #endif /* HB_SET_DIGEST_HH */