// SPDX-License-Identifier: MIT // Copyright 2010, SIL International, All rights reserved. #include "inc/Main.h" #include "inc/debug.h" #include "inc/Endian.h" #include "inc/Pass.h" #include #include #include #include #include "inc/Segment.h" #include "inc/Code.h" #include "inc/Rule.h" #include "inc/Error.h" #include "inc/Collider.h" #include "inc/ShapingContext.hpp" using namespace graphite2; using vm::Machine; typedef Machine::Code Code; enum KernCollison { None = 0, CrossSpace = 1, InWord = 2, reserved = 3 }; #undef DUMP_SLOTS #if defined(DUMP_SLOTS) #include #include namespace { void dump_slotbuffer(SlotBuffer const & buf, SlotBuffer::const_iterator cursor) { std::cout << '['; std::unordered_map map = {{nullptr, -1}}; { auto n = 0; for (auto &s :buf) map[&s] = n++; } for (auto &s :buf) { assert(0 <= map[&s] && size_t(map[&s]) < buf.size()); if (&*cursor == &s) std::cout << "|"; std::cout << s.gid() << (u8"\u02df" + 2*int(!s.deleted())) << "(<" << (s.attachedTo() ? map[s.attachedTo()]-map[&s] : 0) << '@' << s.attachOffset().x <<','<< s.attachOffset().y << ">," << s.before() << ',' << s.after() << "), "; } std::cout << ']' << std::endl; } } #else namespace { void dump_slotbuffer(SlotBuffer const &, SlotBuffer::const_iterator ) {} } #endif Pass::Pass() : m_silf(0), m_cols(0), m_rules(0), m_ruleMap(0), m_startStates(0), m_transitions(0), m_states(0), m_codes(0), m_progs(0), m_numCollRuns(0), m_kernColls(0), m_iMaxLoop(0), m_numGlyphs(0), m_numRules(0), m_numStates(0), m_numTransition(0), m_numSuccess(0), m_successStart(0), m_numColumns(0), m_minPreCtxt(0), m_maxPreCtxt(0), m_colThreshold(0), m_isReverseDir(false) { } Pass::~Pass() { free(m_cols); free(m_startStates); free(m_transitions); free(m_states); free(m_ruleMap); if (m_rules) delete [] m_rules; if (m_codes) delete [] m_codes; free(m_progs); } bool Pass::readPass(const byte * const pass_start, size_t pass_length, size_t subtable_base, GR_MAYBE_UNUSED Face & face, passtype pt, GR_MAYBE_UNUSED uint32_t version, Error &e) { const byte * p = pass_start, * const pass_end = p + pass_length; size_t numRanges; if (e.test(pass_length < 40, E_BADPASSLENGTH)) return face.error(e); // Read in basic values const byte flags = be::read(p); if (e.test((flags & 0x1f) && (pt < PASS_TYPE_POSITIONING || !m_silf->aCollision() || !face.glyphs().hasBoxes() || !(m_silf->flags() & 0x20)), E_BADCOLLISIONPASS)) return face.error(e); m_numCollRuns = flags & 0x7; m_kernColls = (flags >> 3) & 0x3; m_isReverseDir = (flags >> 5) & 0x1; m_iMaxLoop = be::read(p); if (m_iMaxLoop < 1) m_iMaxLoop = 1; be::skip(p,2); // skip maxContext & maxBackup m_numRules = be::read(p); if (e.test(!m_numRules && m_numCollRuns == 0, E_BADEMPTYPASS)) return face.error(e); be::skip(p); // fsmOffset - not sure why we would want this const byte * const pcCode = pass_start + be::read(p) - subtable_base, * const rcCode = pass_start + be::read(p) - subtable_base, * const aCode = pass_start + be::read(p) - subtable_base; be::skip(p); m_numStates = be::read(p); m_numTransition = be::read(p); m_numSuccess = be::read(p); m_numColumns = be::read(p); numRanges = be::read(p); be::skip(p, 3); // skip searchRange, entrySelector & rangeShift. assert(p - pass_start == 40); // Perform some sanity checks. if ( e.test(m_numTransition > m_numStates, E_BADNUMTRANS) || e.test(m_numSuccess > m_numStates, E_BADNUMSUCCESS) || e.test(m_numSuccess + m_numTransition < m_numStates, E_BADNUMSTATES) || e.test(m_numRules && numRanges == 0, E_NORANGES) || e.test(m_numColumns > 0x7FFF, E_BADNUMCOLUMNS)) return face.error(e); m_successStart = m_numStates - m_numSuccess; // test for beyond end - 1 to account for reading uint16_t if (e.test(p + numRanges * 6 - 2 > pass_end, E_BADPASSLENGTH)) return face.error(e); m_numGlyphs = be::peek(p + numRanges * 6 - 4) + 1; // Calculate the start of various arrays. const byte * const ranges = p; be::skip(p, numRanges*3); const byte * const o_rule_map = p; be::skip(p, m_numSuccess + 1); // More sanity checks if (e.test(reinterpret_cast(o_rule_map + m_numSuccess*sizeof(uint16_t)) > pass_end || p > pass_end, E_BADRULEMAPLEN)) return face.error(e); const size_t numEntries = be::peek(o_rule_map + m_numSuccess*sizeof(uint16_t)); const byte * const rule_map = p; be::skip(p, numEntries); if (e.test(p + 2*sizeof(uint8_t) > pass_end, E_BADPASSLENGTH)) return face.error(e); m_minPreCtxt = be::read(p); m_maxPreCtxt = be::read(p); if (e.test(m_minPreCtxt > m_maxPreCtxt, E_BADCTXTLENBOUNDS)) return face.error(e); const byte * const start_states = p; be::skip(p, m_maxPreCtxt - m_minPreCtxt + 1); const uint16_t * const sort_keys = reinterpret_cast(p); be::skip(p, m_numRules); const byte * const precontext = p; be::skip(p, m_numRules); if (e.test(p + sizeof(uint16_t) + sizeof(uint8_t) > pass_end, E_BADCTXTLENS)) return face.error(e); m_colThreshold = be::read(p); if (m_colThreshold == 0) m_colThreshold = 10; // A default const size_t pass_constraint_len = be::read(p); const uint16_t * const o_constraint = reinterpret_cast(p); be::skip(p, m_numRules + 1); const uint16_t * const o_actions = reinterpret_cast(p); be::skip(p, m_numRules + 1); const byte * const states = p; if (e.test(2u*m_numTransition*m_numColumns >= (unsigned)(pass_end - p), E_BADPASSLENGTH) || e.test(p >= pass_end, E_BADPASSLENGTH)) return face.error(e); be::skip(p, m_numTransition*m_numColumns); be::skip(p); if (e.test(p != pcCode, E_BADPASSCCODEPTR)) return face.error(e); be::skip(p, pass_constraint_len); if (e.test(p != rcCode, E_BADRULECCODEPTR) || e.test(size_t(rcCode - pcCode) != pass_constraint_len, E_BADCCODELEN)) return face.error(e); be::skip(p, be::peek(o_constraint + m_numRules)); if (e.test(p != aCode, E_BADACTIONCODEPTR)) return face.error(e); be::skip(p, be::peek(o_actions + m_numRules)); // We should be at the end or within the pass if (e.test(p > pass_end, E_BADPASSLENGTH)) return face.error(e); // Load the pass constraint if there is one. if (pass_constraint_len) { face.error_context(face.error_context() + 1); m_cPConstraint = vm::Machine::Code(true, pcCode, pcCode + pass_constraint_len, precontext[0], be::peek(sort_keys), *m_silf, face, PASS_TYPE_UNKNOWN); if (e.test(!m_cPConstraint, E_OUTOFMEM) || e.test(m_cPConstraint.status() != Code::loaded, m_cPConstraint.status() + E_CODEFAILURE)) return face.error(e); face.error_context(face.error_context() - 1); } if (m_numRules) { if (!readRanges(ranges, numRanges, e)) return face.error(e); if (!readRules(rule_map, numEntries, precontext, sort_keys, o_constraint, rcCode, o_actions, aCode, face, pt, e)) return false; } #ifdef GRAPHITE2_TELEMETRY telemetry::category _states_cat(face.tele.states); #endif return m_numRules ? readStates(start_states, states, o_rule_map, face, e) : true; } bool Pass::readRules(const byte * rule_map, const size_t num_entries, const byte *precontext, const uint16_t * sort_key, const uint16_t * o_constraint, const byte *rc_data, const uint16_t * o_action, const byte * ac_data, Face & face, passtype pt, Error &e) { const byte * const ac_data_end = ac_data + be::peek(o_action + m_numRules); const byte * const rc_data_end = rc_data + be::peek(o_constraint + m_numRules); precontext += m_numRules; sort_key += m_numRules; o_constraint += m_numRules; o_action += m_numRules; // Load rules. const byte * ac_begin = 0, * rc_begin = 0, * ac_end = ac_data + be::peek(o_action), * rc_end = rc_data + be::peek(o_constraint); // Allocate pools m_rules = new Rule [m_numRules]; m_codes = new Code [m_numRules*2]; int totalSlots = 0; const uint16_t *tsort = sort_key; for (int i = 0; i < m_numRules; ++i) totalSlots += be::peek(--tsort); const size_t prog_pool_sz = vm::Machine::Code::estimateCodeDataOut(ac_end - ac_data + rc_end - rc_data, 2 * m_numRules, totalSlots); m_progs = gralloc(prog_pool_sz); byte * prog_pool_free = m_progs, * prog_pool_end = m_progs + prog_pool_sz; if (e.test(!(m_rules && m_codes && m_progs), E_OUTOFMEM)) return face.error(e); Rule * r = m_rules + m_numRules - 1; for (size_t n = m_numRules; r >= m_rules; --n, --r, ac_end = ac_begin, rc_end = rc_begin) { face.error_context((face.error_context() & 0xFFFF00) + EC_ARULE + int((n - 1) << 24)); r->preContext = *--precontext; r->sort = be::peek(--sort_key); #ifndef NDEBUG r->rule_idx = uint16_t(n - 1); #endif if (r->sort > 63 || r->preContext >= r->sort || r->preContext > m_maxPreCtxt || r->preContext < m_minPreCtxt) return false; ac_begin = ac_data + be::peek(--o_action); --o_constraint; rc_begin = be::peek(o_constraint) ? rc_data + be::peek(o_constraint) : rc_end; if (ac_begin > ac_end || ac_begin > ac_data_end || ac_end > ac_data_end || rc_begin > rc_end || rc_begin > rc_data_end || rc_end > rc_data_end || vm::Machine::Code::estimateCodeDataOut(ac_end - ac_begin + rc_end - rc_begin, 2, r->sort) > size_t(prog_pool_end - prog_pool_free)) return false; r->action = new (m_codes+n*2-2) vm::Machine::Code(false, ac_begin, ac_end, r->preContext, r->sort, *m_silf, face, pt, &prog_pool_free); r->constraint = new (m_codes+n*2-1) vm::Machine::Code(true, rc_begin, rc_end, r->preContext, r->sort, *m_silf, face, pt, &prog_pool_free); if (e.test(!r->action || !r->constraint, E_OUTOFMEM) || e.test(r->action->status() != Code::loaded, r->action->status() + E_CODEFAILURE) || e.test(r->constraint->status() != Code::loaded, r->constraint->status() + E_CODEFAILURE) || e.test(!r->constraint->immutable(), E_MUTABLECCODE)) return face.error(e); } byte * const moved_progs = prog_pool_free > m_progs ? static_cast(realloc(m_progs, prog_pool_free - m_progs)) : 0; if (e.test(!moved_progs, E_OUTOFMEM)) { free(m_progs); m_progs = 0; return face.error(e); } if (moved_progs != m_progs) { for (Code * c = m_codes, * const ce = c + m_numRules*2; c != ce; ++c) { c->externalProgramMoved(moved_progs - m_progs); } m_progs = moved_progs; } // Load the rule entries map face.error_context((face.error_context() & 0xFFFF00) + EC_APASS); //TODO: Coverity: 1315804: FORWARD_NULL auto * re = m_ruleMap = gralloc(num_entries); if (e.test(!re, E_OUTOFMEM)) return face.error(e); for (size_t n = num_entries; n; --n, ++re) { const ptrdiff_t rn = be::read(rule_map); if (e.test(rn >= m_numRules, E_BADRULENUM)) return face.error(e); re->rule = m_rules + rn; } return true; } static int cmpRuleEntry(const void *a, const void *b) { return (*(Rules::Entry *)a < *(Rules::Entry *)b ? -1 : (*(Rules::Entry *)b < *(Rules::Entry *)a ? 1 : 0)); } bool Pass::readStates(const byte * starts, const byte *states, const byte * o_rule_map, GR_MAYBE_UNUSED Face & face, Error &e) { #ifdef GRAPHITE2_TELEMETRY telemetry::category _states_cat(face.tele.starts); #endif m_startStates = gralloc(m_maxPreCtxt - m_minPreCtxt + 1); #ifdef GRAPHITE2_TELEMETRY telemetry::set_category(face.tele.states); #endif m_states = gralloc(m_numStates); #ifdef GRAPHITE2_TELEMETRY telemetry::set_category(face.tele.transitions); #endif m_transitions = gralloc(m_numTransition * m_numColumns); if (e.test(!m_startStates || !m_states || !m_transitions, E_OUTOFMEM)) return face.error(e); // load start states for (uint16_t * s = m_startStates, * const s_end = s + m_maxPreCtxt - m_minPreCtxt + 1; s != s_end; ++s) { *s = be::read(starts); if (e.test(*s >= m_numStates, E_BADSTATE)) { face.error_context((face.error_context() & 0xFFFF00) + EC_ASTARTS + int((s - m_startStates) << 24)); return face.error(e); // true; } } // load state transition table. for (uint16_t * t = m_transitions, * const t_end = t + m_numTransition*m_numColumns; t != t_end; ++t) { *t = be::read(states); if (e.test(*t >= m_numStates, E_BADSTATE)) { face.error_context((face.error_context() & 0xFFFF00) + EC_ATRANS + int(((t - m_transitions) / m_numColumns) << 8)); return face.error(e); } } State * s = m_states, * const success_begin = m_states + m_numStates - m_numSuccess; const Rules::Entry * rule_map_end = m_ruleMap + be::peek(o_rule_map + m_numSuccess*sizeof(uint16_t)); for (size_t n = m_numStates; n; --n, ++s) { Rules::Entry * const begin = s < success_begin ? 0 : m_ruleMap + be::read(o_rule_map), * const end = s < success_begin ? 0 : m_ruleMap + be::peek(o_rule_map); if (e.test(begin >= rule_map_end || end > rule_map_end || begin > end, E_BADRULEMAPPING)) { face.error_context((face.error_context() & 0xFFFF00) + EC_ARULEMAP + int(n << 24)); return face.error(e); } s->rules = begin; s->rules_end = (size_t(end - begin) <= Rules::MAX_RULES)? end : begin + Rules::MAX_RULES; if (begin) // keep UBSan happy can't call qsort with null begin qsort(begin, end - begin, sizeof(Rules::Entry), &cmpRuleEntry); } return true; } bool Pass::readRanges(const byte * ranges, size_t num_ranges, Error &e) { m_cols = gralloc(m_numGlyphs); if (e.test(!m_cols, E_OUTOFMEM)) return false; memset(m_cols, 0xFF, m_numGlyphs * sizeof(uint16_t)); for (size_t n = num_ranges; n; --n) { uint16_t * ci = m_cols + be::read(ranges), * ci_end = m_cols + be::read(ranges) + 1, col = be::read(ranges); if (e.test(ci >= ci_end || ci_end > m_cols+m_numGlyphs || col >= m_numColumns, E_BADRANGE)) return false; // A glyph must only belong to one column at a time while (ci != ci_end && *ci == 0xffff) *ci++ = col; if (e.test(ci != ci_end, E_BADRANGE)) return false; } return true; } bool Pass::runGraphite(vm::Machine & m, ShapingContext & ctxt, bool reverse) const { auto & segment = ctxt.segment; if (segment.slots().empty() || !testPassConstraint(m)) return true; if (reverse) segment.reverseSlots(); if (m_numRules) { #if !defined GRAPHITE2_NTRACING if (ctxt.dbgout) *ctxt.dbgout << "rules" << json::array; json::closer rules_array_closer(ctxt.dbgout); #endif segment.slots().reserve(segment.slots().size()*10); auto slot = segment.slots().begin(); ctxt.highwater(std::next(slot)); int lc = m_iMaxLoop; dump_slotbuffer(ctxt.segment.slots(), slot); do { findNDoRule(m, ctxt, slot); dump_slotbuffer(ctxt.segment.slots(), slot); if (m.status() != Machine::finished) return false; if (slot != segment.slots().end() && (slot == ctxt.highwater() || ctxt.highpassed() || --lc == 0)) { if (!lc) slot = ctxt.highwater(); lc = m_iMaxLoop; if (slot != segment.slots().end()) { ctxt.highwater(std::next(slot)); } } } while (slot != segment.slots().end()); } //TODO: Use enums for flags const bool collisions = m_numCollRuns || m_kernColls; if (!collisions || !segment.hasCollisionInfo()) return true; if (m_numCollRuns) { if (!(segment.flags() & Segment::SEG_INITCOLLISIONS)) { segment.positionSlots( nullptr, segment.slots().begin(), segment.slots().end(), ctxt.dir); // segment.flags(segment.flags() | Segment::SEG_INITCOLLISIONS); } if (!collisionShift(segment, ctxt.dir, ctxt.dbgout)) return false; } if ((m_kernColls) && !collisionKern(segment, ctxt.dir, ctxt.dbgout)) return false; if (collisions && !collisionFinish(segment, ctxt.dbgout)) return false; return true; } bool Pass::runFSM(ShapingContext& ctxt, vm::const_slotref slot, Rules & rules) const { ctxt.reset(slot, m_maxPreCtxt); if (m_maxPreCtxt < m_minPreCtxt) return false; uint16_t state = m_startStates[m_maxPreCtxt - ctxt.context()]; uint8_t free_slots = ShapingContext::MAX_SLOTS; do { assert(!slot->deleted()); ctxt.pushSlot(slot); auto const gid = slot->gid(); if (gid >= m_numGlyphs || m_cols[gid] == 0xffffU || --free_slots == 0 || state >= m_numTransition) return free_slots != 0; const uint16_t * transitions = &m_transitions[state*m_numColumns]; state = transitions[m_cols[gid]]; if (state >= m_successStart) rules.accumulate_rules(m_states[state]); ++slot; } while (state != 0 && slot != ctxt.segment.slots().end()); ctxt.pushSlot(slot); return true; } #if !defined(GRAPHITE2_NTRACING) inline SlotBuffer::iterator input_slot(const ShapingContext & ctxt, const int n) { auto s = ctxt.map[int(ctxt.context()) + n]; if (!s->copied()) return s; return s != ctxt.segment.slots().begin() ? std::next(std::prev(s)) : std::prev(std::next(s) != ctxt.segment.slots().end() ? std::next(s) : ctxt.segment.slots().end()); } #endif //!defined GRAPHITE2_NTRACING void Pass::findNDoRule(Machine &m, ShapingContext & ctxt, vm::const_slotref &slot) const { Rules rules; assert(slot.is_valid()); if (runFSM(ctxt, slot, rules)) { // Search for the first rule which passes the constraint auto r = rules.begin(); for (;r != rules.end() && !testConstraint(*r->rule, m); ++r) { if (m.status() != Machine::finished) return; } #if !defined GRAPHITE2_NTRACING if (ctxt.dbgout) { if (!rules.empty()) { *ctxt.dbgout << json::item << json::object; dumpRuleEventConsidered(ctxt, rules.begin(), r); if (r != rules.end()) { // We need to record the slot preceeding this one as the // current slot could be inserted before, deleted or // replaced during action code execution. auto last_context_index = std::distance(ctxt.segment.slots().begin(), slot); const int adv = doAction(r->rule->action, slot, m); dumpRuleEventOutput( ctxt, *r->rule, std::next(ctxt.segment.slots().begin(), last_context_index), slot); if (r->rule->action->deletes()) ctxt.collectGarbage(slot); adjustSlot(adv, slot, ctxt); *ctxt.dbgout << "cursor" << objectid(slot) << json::close; // Close RuelEvent object return; } else { *ctxt.dbgout << json::close // close "considered" array << "output" << json::null << "cursor" << objectid(std::next(slot)) << json::close; } } } else #endif { if (r != rules.end()) { const int adv = doAction(r->rule->action, slot, m); if (m.status() != Machine::finished) return; if (r->rule->action->deletes()) ctxt.collectGarbage(slot); adjustSlot(adv, slot, ctxt); return; } } } ++slot; return; } #if !defined GRAPHITE2_NTRACING void Pass::dumpRuleEventConsidered( ShapingContext const & ctxt, Rules::const_iterator first, Rules::const_iterator const & last) const { *ctxt.dbgout << "considered" << json::array; for (const Rules::Entry *r = first; r != last; ++r) { if (r->rule->preContext > ctxt.context()) continue; *ctxt.dbgout << json::flat << json::object << "id" << r->rule - m_rules << "failed" << true << "input" << json::flat << json::object << "start" << objectid(input_slot(ctxt, -r->rule->preContext)) << "length" << r->rule->sort << json::close // close "input" << json::close; // close Rule object } } void Pass::dumpRuleEventOutput( ShapingContext const & ctxt, Rule const & r, SlotBuffer::const_iterator const out_first, SlotBuffer::const_iterator const out_last) const { auto & segment = ctxt.segment; *ctxt.dbgout << json::item << json::flat << json::object << "id" << &r - m_rules << "failed" << false << "input" << json::flat << json::object << "start" << objectid(input_slot(ctxt, 0)) << "length" << r.sort - r.preContext << json::close // close "input" << json::close // close Rule object << json::close // close considered array << "output" << json::object << "range" << json::flat << json::object << "start" << objectid(input_slot(ctxt, 0)) << "end" << objectid(out_last) << json::close // close "input" << "slots" << json::array; const Position rsb_prepos = out_last != segment.slots().end() ? out_last->origin() : segment.advance(); segment.positionSlots(nullptr, segment.slots().begin(), segment.slots().end(), segment.currdir()); for(auto slot = out_first; slot != out_last; ++slot) *ctxt.dbgout << dslot(&segment, &*slot); *ctxt.dbgout << json::close // close "slots" << "postshift" << (out_last != segment.slots().end() ? out_last->origin() : segment.advance()) - rsb_prepos << json::close; // close "output" object } #endif inline bool Pass::testPassConstraint(Machine & m) const { if (!m_cPConstraint) return true; assert(m_cPConstraint.constraint()); auto & ctxt = m.shaping_context(); auto dummy = ctxt.segment.slots().begin(); ctxt.reset(dummy, 0); ctxt.pushSlot(ctxt.segment.slots().begin()); auto map = ctxt.map.begin(); const uint32_t ret = m_cPConstraint.run(m, map, dummy); #if !defined GRAPHITE2_NTRACING json * const dbgout = ctxt.segment.getFace()->logger(); if (dbgout) *dbgout << "constraint" << (ret && m.status() == Machine::finished); #endif return ret && m.status() == Machine::finished; } bool Pass::testConstraint(const Rule & r, Machine & m) const { auto & ctxt = m.shaping_context(); ptrdiff_t const curr_context = ctxt.context(); if (unsigned(r.sort + curr_context - r.preContext) > ctxt.map.size() || curr_context - r.preContext < 0) return false; auto map = ctxt.map.begin() + curr_context - r.preContext; if (!map[r.sort - 1].is_valid()) return false; if (!*r.constraint) return true; assert(r.constraint->constraint()); for (int n = r.sort; n && map; --n, ++map) { if (!map[0].is_valid()) continue; auto slot_out = *map; const int32_t ret = r.constraint->run(m, map, slot_out); if (!ret || m.status() != Machine::finished) return false; } return true; } int Pass::doAction(const Code *codeptr, SlotBuffer::iterator & slot_out, vm::Machine & m) const { assert(codeptr); if (!*codeptr) return 0; ShapingContext & ctxt = m.shaping_context(); auto map = &ctxt.map[ctxt.context()]; slot_out = *map; ctxt.highpassed(false); int32_t ret = codeptr->run(m, map, slot_out); if (m.status() != Machine::finished) { slot_out = ctxt.segment.slots().end(); ctxt.highwater(slot_out); return 0; } return ret; } void Pass::adjustSlot(int delta, vm::const_slotref & slot, ShapingContext & smap) const { if (delta < 0) { while (++delta <= 0 && slot != smap.segment.slots().begin()) { --slot; if (smap.highpassed() && smap.highwater() == slot) smap.highpassed(false); } } else if (delta > 0) { while (--delta >= 0 && slot != smap.segment.slots().end()) { if (slot == smap.highwater() && slot != smap.segment.slots().end()) smap.highpassed(true); ++slot; } } } bool Pass::collisionShift(Segment & seg, int dir, json * const dbgout) const { ShiftCollider shiftcoll(dbgout); // bool isfirst = true; bool hasCollisions = false; SlotBuffer::iterator start = seg.slots().begin(); // turn on collision fixing for the first slot SlotBuffer::iterator end = seg.slots().end(); bool moved = false; #if !defined GRAPHITE2_NTRACING if (dbgout) *dbgout << "collisions" << json::array << json::flat << json::object << "num-loops" << m_numCollRuns << json::close; #endif while (start != seg.slots().end()) { #if !defined GRAPHITE2_NTRACING if (dbgout) *dbgout << json::object << "phase" << "1" << "moves" << json::array; #endif hasCollisions = false; end = seg.slots().end(); // phase 1 : position shiftable glyphs, ignoring kernable glyphs for (auto s = start; s != seg.slots().end(); ++s) { const SlotCollision * c = seg.collisionInfo(*s); if (start != seg.slots().end() && (c->flags() & (SlotCollision::COLL_FIX | SlotCollision::COLL_KERN)) == SlotCollision::COLL_FIX && !resolveCollisions(seg, s, start, shiftcoll, false, dir, moved, hasCollisions, dbgout)) return false; if (s != start && (c->flags() & SlotCollision::COLL_END)) { end = std::next(s); break; } } #if !defined GRAPHITE2_NTRACING if (dbgout) *dbgout << json::close << json::close; // phase-1 #endif // phase 2 : loop until happy. for (int i = 0; i < m_numCollRuns - 1; ++i) { if (hasCollisions || moved) { #if !defined GRAPHITE2_NTRACING if (dbgout) *dbgout << json::object << "phase" << "2a" << "loop" << i << "moves" << json::array; #endif // phase 2a : if any shiftable glyphs are in collision, iterate backwards, // fixing them and ignoring other non-collided glyphs. Note that this handles ONLY // glyphs that are actually in collision from phases 1 or 2b, and working backwards // has the intended effect of breaking logjams. if (hasCollisions) { hasCollisions = false; #if 0 moved = true; for (auto s = start; s != end; ++s) { SlotCollision * c = seg.collisionInfo(s); c->setShift(Position(0, 0)); } #endif SlotBuffer::iterator lend = std::prev(end); SlotBuffer::iterator lstart = std::prev(start); for (auto s = lend; s != lstart; --s) { SlotCollision * c = seg.collisionInfo(*s); if (start != seg.slots().end() && (c->flags() & (SlotCollision::COLL_FIX | SlotCollision::COLL_KERN | SlotCollision::COLL_ISCOL)) == (SlotCollision::COLL_FIX | SlotCollision::COLL_ISCOL)) // ONLY if this glyph is still colliding { if (!resolveCollisions(seg, s, lend, shiftcoll, true, dir, moved, hasCollisions, dbgout)) return false; c->setFlags(c->flags() | SlotCollision::COLL_TEMPLOCK); } } } #if !defined GRAPHITE2_NTRACING if (dbgout) *dbgout << json::close << json::close // phase 2a << json::object << "phase" << "2b" << "loop" << i << "moves" << json::array; #endif // phase 2b : redo basic diacritic positioning pass for ALL glyphs. Each successive loop adjusts // glyphs from their current adjusted position, which has the effect of gradually minimizing the // resulting adjustment; ie, the final result will be gradually closer to the original location. // Also it allows more flexibility in the final adjustment, since it is moving along the // possible 8 vectors from successively different starting locations. if (moved) { moved = false; for (auto s = start; s != end; ++s) { SlotCollision * c = seg.collisionInfo(*s); if (start != seg.slots().end() && (c->flags() & (SlotCollision::COLL_FIX | SlotCollision::COLL_TEMPLOCK | SlotCollision::COLL_KERN)) == SlotCollision::COLL_FIX && !resolveCollisions(seg, s, start, shiftcoll, false, dir, moved, hasCollisions, dbgout)) return false; else if (c->flags() & SlotCollision::COLL_TEMPLOCK) c->setFlags(c->flags() & ~SlotCollision::COLL_TEMPLOCK); } } // if (!hasCollisions) // no, don't leave yet because phase 2b will continue to improve things // break; #if !defined GRAPHITE2_NTRACING if (dbgout) *dbgout << json::close << json::close; // phase 2 #endif } } if (end == seg.slots().end()) break; start = seg.slots().end(); for (auto s = std::prev(end); s != seg.slots().end(); ++s) { if (seg.collisionInfo(*s)->flags() & SlotCollision::COLL_START) { start = s; break; } } } return true; } bool Pass::collisionKern(Segment & seg, int dir, json * const dbgout) const { auto start = seg.slots().begin(); float ymin = 1e38f; float ymax = -1e38f; const GlyphCache &gc = seg.getFace()->glyphs(); // phase 3 : handle kerning of clusters #if !defined GRAPHITE2_NTRACING if (dbgout) *dbgout << json::object << "phase" << "3" << "moves" << json::array; #endif for (auto s = seg.slots().begin(), end = seg.slots().end(); s != end; ++s) { if (!gc.check(s->gid())) return false; const SlotCollision * c = seg.collisionInfo(*s); const Rect &bbox = seg.theGlyphBBoxTemporary(s->gid()); float y = s->origin().y + c->shift().y; if (!(c->flags() & SlotCollision::COLL_ISSPACE)) { ymax = max(y + bbox.tr.y, ymax); ymin = min(y + bbox.bl.y, ymin); } if (start != end && (c->flags() & (SlotCollision::COLL_KERN | SlotCollision::COLL_FIX)) == (SlotCollision::COLL_KERN | SlotCollision::COLL_FIX)) resolveKern(seg, s, start, dir, ymin, ymax, dbgout); if (c->flags() & SlotCollision::COLL_END) start = end; if (c->flags() & SlotCollision::COLL_START) start = s; } #if !defined GRAPHITE2_NTRACING if (dbgout) *dbgout << json::close << json::close; // phase 3 #endif return true; } bool Pass::collisionFinish(Segment & seg, GR_MAYBE_UNUSED json * const dbgout) const { for (auto & s: seg.slots()) { SlotCollision *c = seg.collisionInfo(s); if (c->shift().x != 0 || c->shift().y != 0) { const Position newOffset = c->shift(); const Position nullPosition(0, 0); c->setOffset(newOffset + c->offset()); c->setShift(nullPosition); } } // seg.positionSlots(); #if !defined GRAPHITE2_NTRACING if (dbgout) *dbgout << json::close; #endif return true; } // Can slot s be kerned, or is it attached to something that can be kerned? static bool inKernCluster(Segment & seg, Slot const &s) { SlotCollision *c = seg.collisionInfo(s); if (c->flags() & SlotCollision::COLL_KERN /** && c->flags() & SlotCollision::COLL_FIX **/ ) return true; Slot const * p = &s; while (p->attachedTo()) { p = p->attachedTo(); c = seg.collisionInfo(*p); if (c->flags() & SlotCollision::COLL_KERN /** && c->flags() & SlotCollision::COLL_FIX **/ ) return true; } return false; } // Fix collisions for the given slot. // Return true if everything was fixed, false if there are still collisions remaining. // isRev means be we are processing backwards. bool Pass::resolveCollisions(Segment & seg, SlotBuffer::iterator const & slotFix, SlotBuffer::iterator start, ShiftCollider &coll, GR_MAYBE_UNUSED bool isRev, int dir, bool &moved, bool &hasCol, json * const dbgout) const { SlotCollision *cFix = seg.collisionInfo(*slotFix); if (!coll.initSlot(seg, *slotFix, cFix->limit(), cFix->margin(), cFix->marginWt(), cFix->shift(), cFix->offset(), dir, dbgout)) return false; bool collides = false; // When we're processing forward, ignore kernable glyphs that preceed the target glyph. // When processing backward, don't ignore these until we pass slotFix. bool ignoreForKern = !isRev; bool rtl = dir & 1; auto base = slotFix; base.to_base(); Position zero(0., 0.); // Look for collisions with the neighboring glyphs. auto const last = isRev ? std::prev(seg.slots().cbegin()) : seg.slots().cend(); for (auto nbor = start; nbor != last; isRev ? --nbor : ++nbor) { SlotCollision *cNbor = seg.collisionInfo(*nbor); bool sameCluster = nbor->has_base(&*base); if (nbor != slotFix // don't process if this is the slot of interest && !(cNbor->ignore()) // don't process if ignoring && (nbor == base || sameCluster // process if in the same cluster as slotFix || !inKernCluster(seg, *nbor)) // or this cluster is not to be kerned // || (rtl ^ ignoreForKern)) // or it comes before(ltr) or after(rtl) && (!isRev // if processing forwards then good to merge otherwise only: || !(cNbor->flags() & SlotCollision::COLL_FIX) // merge in immovable stuff || ((cNbor->flags() & SlotCollision::COLL_KERN) && !sameCluster) // ignore other kernable clusters || (cNbor->flags() & SlotCollision::COLL_ISCOL)) // test against other collided glyphs && !coll.mergeSlot(seg, *nbor, cNbor, cNbor->shift(), !ignoreForKern, sameCluster, collides, false, dbgout)) return false; else if (nbor == slotFix) // Switching sides of this glyph - if we were ignoring kernable stuff before, don't anymore. ignoreForKern = !ignoreForKern; if (nbor != start && (cNbor->flags() & (isRev ? SlotCollision::COLL_START : SlotCollision::COLL_END))) break; } bool isCol = false; if (collides || cFix->shift().x != 0.f || cFix->shift().y != 0.f) { Position shift = coll.resolve(seg, isCol, dbgout); // isCol has been set to true if a collision remains. if (std::fabs(shift.x) < 1e38f && std::fabs(shift.y) < 1e38f) { if (sqr(shift.x-cFix->shift().x) + sqr(shift.y-cFix->shift().y) >= m_colThreshold * m_colThreshold) moved = true; cFix->setShift(shift); if (slotFix->isParent()) { Rect bbox; Position here = slotFix->origin() + shift; float clusterMin = here.x; slotFix->children()->finalise(seg, nullptr, here, bbox, 0, clusterMin, rtl, false); } } } else { // This glyph is not colliding with anything. #if !defined GRAPHITE2_NTRACING if (dbgout) { *dbgout << json::object << "missed" << objectid(slotFix); coll.outputJsonDbg(dbgout, seg, -1); *dbgout << json::close; } #endif } // Set the is-collision flag bit. if (isCol) { cFix->setFlags(cFix->flags() | SlotCollision::COLL_ISCOL | SlotCollision::COLL_KNOWN); } else { cFix->setFlags((cFix->flags() & ~SlotCollision::COLL_ISCOL) | SlotCollision::COLL_KNOWN); } hasCol |= isCol; return true; } float Pass::resolveKern(Segment & seg, SlotBuffer::iterator const slotFix, GR_MAYBE_UNUSED SlotBuffer::iterator start, int dir, float &ymin, float &ymax, json *const dbgout) const { float currSpace = 0.; bool collides = false; unsigned int space_count = 0; auto base = slotFix; base.to_base(); SlotCollision *cFix = seg.collisionInfo(*base); const GlyphCache &gc = seg.getFace()->glyphs(); const Rect &bbb = seg.theGlyphBBoxTemporary(slotFix->gid()); const float by = slotFix->origin().y + cFix->shift().y; if (base != slotFix) { cFix->setFlags(cFix->flags() | SlotCollision::COLL_KERN | SlotCollision::COLL_FIX); return 0; } bool seenEnd = (cFix->flags() & SlotCollision::COLL_END) != 0; bool isInit = false; KernCollider coll(dbgout); ymax = max(by + bbb.tr.y, ymax); ymin = min(by + bbb.bl.y, ymin); for (auto nbor = std::next(slotFix); nbor != seg.slots().end(); ++nbor) { if (nbor->has_base(&*base)) continue; if (!gc.check(nbor->gid())) return 0.; const Rect &bb = seg.theGlyphBBoxTemporary(nbor->gid()); SlotCollision *cNbor = seg.collisionInfo(*nbor); if ((bb.bl.y == 0.f && bb.tr.y == 0.f) || (cNbor->flags() & SlotCollision::COLL_ISSPACE)) { if (m_kernColls == InWord) break; // Add space for a space glyph. currSpace += nbor->advance(); ++space_count; } else { space_count = 0; if (nbor != slotFix && !cNbor->ignore()) { seenEnd = true; if (!isInit) { if (!coll.initSlot(seg, *slotFix, cFix->limit(), cFix->margin(), cFix->shift(), cFix->offset(), dir, ymin, ymax, dbgout)) return 0.; isInit = true; } collides |= coll.mergeSlot(seg, *nbor, cNbor->shift(), currSpace, dir, dbgout); } } if (cNbor->flags() & SlotCollision::COLL_END) { if (seenEnd && space_count < 2) break; else seenEnd = true; } } if (collides) { Position mv = coll.resolve(seg, *slotFix, dir, dbgout); coll.shift(mv, dir); Position delta = slotFix->advancePos() + mv - cFix->shift(); slotFix->advance(delta); cFix->setShift(mv); return mv.x; } return 0.; }