#ifndef OT_GLYF_COMPOSITEGLYPH_HH #define OT_GLYF_COMPOSITEGLYPH_HH #include "../../hb-open-type.hh" namespace OT { namespace glyf_impl { struct CompositeGlyphRecord { protected: enum composite_glyph_flag_t { ARG_1_AND_2_ARE_WORDS = 0x0001, ARGS_ARE_XY_VALUES = 0x0002, ROUND_XY_TO_GRID = 0x0004, WE_HAVE_A_SCALE = 0x0008, MORE_COMPONENTS = 0x0020, WE_HAVE_AN_X_AND_Y_SCALE = 0x0040, WE_HAVE_A_TWO_BY_TWO = 0x0080, WE_HAVE_INSTRUCTIONS = 0x0100, USE_MY_METRICS = 0x0200, OVERLAP_COMPOUND = 0x0400, SCALED_COMPONENT_OFFSET = 0x0800, UNSCALED_COMPONENT_OFFSET = 0x1000 }; public: unsigned int get_size () const { unsigned int size = min_size; /* arg1 and 2 are int16 */ if (flags & ARG_1_AND_2_ARE_WORDS) size += 4; /* arg1 and 2 are int8 */ else size += 2; /* One x 16 bit (scale) */ if (flags & WE_HAVE_A_SCALE) size += 2; /* Two x 16 bit (xscale, yscale) */ else if (flags & WE_HAVE_AN_X_AND_Y_SCALE) size += 4; /* Four x 16 bit (xscale, scale01, scale10, yscale) */ else if (flags & WE_HAVE_A_TWO_BY_TWO) size += 8; return size; } void drop_instructions_flag () { flags = (uint16_t) flags & ~WE_HAVE_INSTRUCTIONS; } void set_overlaps_flag () { flags = (uint16_t) flags | OVERLAP_COMPOUND; } bool has_instructions () const { return flags & WE_HAVE_INSTRUCTIONS; } bool has_more () const { return flags & MORE_COMPONENTS; } bool is_use_my_metrics () const { return flags & USE_MY_METRICS; } bool is_anchored () const { return !(flags & ARGS_ARE_XY_VALUES); } void get_anchor_points (unsigned int &point1, unsigned int &point2) const { const HBUINT8 *p = &StructAfter (glyphIndex); if (flags & ARG_1_AND_2_ARE_WORDS) { point1 = ((const HBUINT16 *) p)[0]; point2 = ((const HBUINT16 *) p)[1]; } else { point1 = p[0]; point2 = p[1]; } } void transform_points (contour_point_vector_t &points) const { float matrix[4]; contour_point_t trans; if (get_transformation (matrix, trans)) { if (scaled_offsets ()) { points.translate (trans); points.transform (matrix); } else { points.transform (matrix); points.translate (trans); } } } protected: bool scaled_offsets () const { return (flags & (SCALED_COMPONENT_OFFSET | UNSCALED_COMPONENT_OFFSET)) == SCALED_COMPONENT_OFFSET; } bool get_transformation (float (&matrix)[4], contour_point_t &trans) const { matrix[0] = matrix[3] = 1.f; matrix[1] = matrix[2] = 0.f; int tx, ty; const HBINT8 *p = &StructAfter (glyphIndex); if (flags & ARG_1_AND_2_ARE_WORDS) { tx = *(const HBINT16 *) p; p += HBINT16::static_size; ty = *(const HBINT16 *) p; p += HBINT16::static_size; } else { tx = *p++; ty = *p++; } if (is_anchored ()) tx = ty = 0; trans.init ((float) tx, (float) ty); { const F2DOT14 *points = (const F2DOT14 *) p; if (flags & WE_HAVE_A_SCALE) { matrix[0] = matrix[3] = points[0].to_float (); return true; } else if (flags & WE_HAVE_AN_X_AND_Y_SCALE) { matrix[0] = points[0].to_float (); matrix[3] = points[1].to_float (); return true; } else if (flags & WE_HAVE_A_TWO_BY_TWO) { matrix[0] = points[0].to_float (); matrix[1] = points[1].to_float (); matrix[2] = points[2].to_float (); matrix[3] = points[3].to_float (); return true; } } return tx || ty; } public: HBUINT16 flags; HBGlyphID16 glyphIndex; public: DEFINE_SIZE_MIN (4); }; struct composite_iter_t : hb_iter_with_fallback_t { typedef const CompositeGlyphRecord *__item_t__; composite_iter_t (hb_bytes_t glyph_, __item_t__ current_) : glyph (glyph_), current (nullptr), current_size (0) { set_current (current_); } composite_iter_t () : glyph (hb_bytes_t ()), current (nullptr), current_size (0) {} item_t __item__ () const { return *current; } bool __more__ () const { return current; } void __next__ () { if (!current->has_more ()) { current = nullptr; return; } set_current (&StructAtOffset (current, current_size)); } composite_iter_t __end__ () const { return composite_iter_t (); } bool operator != (const composite_iter_t& o) const { return current != o.current; } void set_current (__item_t__ current_) { if (!glyph.check_range (current_, CompositeGlyphRecord::min_size)) { current = nullptr; current_size = 0; return; } unsigned size = current_->get_size (); if (!glyph.check_range (current_, size)) { current = nullptr; current_size = 0; return; } current = current_; current_size = size; } private: hb_bytes_t glyph; __item_t__ current; unsigned current_size; }; struct CompositeGlyph { const GlyphHeader &header; hb_bytes_t bytes; CompositeGlyph (const GlyphHeader &header_, hb_bytes_t bytes_) : header (header_), bytes (bytes_) {} composite_iter_t iter () const { return composite_iter_t (bytes, &StructAfter (header)); } unsigned int instructions_length (hb_bytes_t bytes) const { unsigned int start = bytes.length; unsigned int end = bytes.length; const CompositeGlyphRecord *last = nullptr; for (auto &item : iter ()) last = &item; if (unlikely (!last)) return 0; if (last->has_instructions ()) start = (char *) last - &bytes + last->get_size (); if (unlikely (start > end)) return 0; return end - start; } /* Trimming for composites not implemented. * If removing hints it falls out of that. */ const hb_bytes_t trim_padding () const { return bytes; } void drop_hints () { for (const auto &_ : iter ()) const_cast (_).drop_instructions_flag (); } /* Chop instructions off the end */ void drop_hints_bytes (hb_bytes_t &dest_start) const { dest_start = bytes.sub_array (0, bytes.length - instructions_length (bytes)); } void set_overlaps_flag () { CompositeGlyphRecord& glyph_chain = const_cast ( StructAfter (header)); if (!bytes.check_range(&glyph_chain, CompositeGlyphRecord::min_size)) return; glyph_chain.set_overlaps_flag (); } }; } /* namespace glyf_impl */ } /* namespace OT */ #endif /* OT_GLYF_COMPOSITEGLYPH_HH */