harfbuzz/src/hb-ot-layout-gpos-table.hh

2392 lines
74 KiB
C++

/*
* Copyright © 2007,2008,2009,2010 Red Hat, Inc.
* Copyright © 2010,2012,2013 Google, Inc.
*
* This is part of HarfBuzz, a text shaping library.
*
* Permission is hereby granted, without written agreement and without
* license or royalty fees, to use, copy, modify, and distribute this
* software and its documentation for any purpose, provided that the
* above copyright notice and the following two paragraphs appear in
* all copies of this software.
*
* IN NO EVENT SHALL THE COPYRIGHT HOLDER BE LIABLE TO ANY PARTY FOR
* DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES
* ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN
* IF THE COPYRIGHT HOLDER HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
* DAMAGE.
*
* THE COPYRIGHT HOLDER SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING,
* BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
* FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER IS
* ON AN "AS IS" BASIS, AND THE COPYRIGHT HOLDER HAS NO OBLIGATION TO
* PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.
*
* Red Hat Author(s): Behdad Esfahbod
* Google Author(s): Behdad Esfahbod
*/
#ifndef HB_OT_LAYOUT_GPOS_TABLE_HH
#define HB_OT_LAYOUT_GPOS_TABLE_HH
#include "hb-ot-layout-gsubgpos.hh"
namespace OT {
struct MarkArray;
static void Markclass_closure_and_remap_indexes (const Coverage &mark_coverage,
const MarkArray &mark_array,
const hb_set_t &glyphset,
hb_map_t* klass_mapping /* INOUT */);
/* buffer **position** var allocations */
#define attach_chain() var.i16[0] /* glyph to which this attaches to, relative to current glyphs; negative for going back, positive for forward. */
#define attach_type() var.u8[2] /* attachment type */
/* Note! if attach_chain() is zero, the value of attach_type() is irrelevant. */
enum attach_type_t {
ATTACH_TYPE_NONE = 0X00,
/* Each attachment should be either a mark or a cursive; can't be both. */
ATTACH_TYPE_MARK = 0X01,
ATTACH_TYPE_CURSIVE = 0X02,
};
/* Shared Tables: ValueRecord, Anchor Table, and MarkArray */
typedef HBUINT16 Value;
typedef UnsizedArrayOf<Value> ValueRecord;
struct ValueFormat : HBUINT16
{
enum Flags {
xPlacement = 0x0001u, /* Includes horizontal adjustment for placement */
yPlacement = 0x0002u, /* Includes vertical adjustment for placement */
xAdvance = 0x0004u, /* Includes horizontal adjustment for advance */
yAdvance = 0x0008u, /* Includes vertical adjustment for advance */
xPlaDevice = 0x0010u, /* Includes horizontal Device table for placement */
yPlaDevice = 0x0020u, /* Includes vertical Device table for placement */
xAdvDevice = 0x0040u, /* Includes horizontal Device table for advance */
yAdvDevice = 0x0080u, /* Includes vertical Device table for advance */
ignored = 0x0F00u, /* Was used in TrueType Open for MM fonts */
reserved = 0xF000u, /* For future use */
devices = 0x00F0u /* Mask for having any Device table */
};
/* All fields are options. Only those available advance the value pointer. */
#if 0
HBINT16 xPlacement; /* Horizontal adjustment for
* placement--in design units */
HBINT16 yPlacement; /* Vertical adjustment for
* placement--in design units */
HBINT16 xAdvance; /* Horizontal adjustment for
* advance--in design units (only used
* for horizontal writing) */
HBINT16 yAdvance; /* Vertical adjustment for advance--in
* design units (only used for vertical
* writing) */
OffsetTo<Device> xPlaDevice; /* Offset to Device table for
* horizontal placement--measured from
* beginning of PosTable (may be NULL) */
OffsetTo<Device> yPlaDevice; /* Offset to Device table for vertical
* placement--measured from beginning
* of PosTable (may be NULL) */
OffsetTo<Device> xAdvDevice; /* Offset to Device table for
* horizontal advance--measured from
* beginning of PosTable (may be NULL) */
OffsetTo<Device> yAdvDevice; /* Offset to Device table for vertical
* advance--measured from beginning of
* PosTable (may be NULL) */
#endif
unsigned int get_len () const { return hb_popcount ((unsigned int) *this); }
unsigned int get_size () const { return get_len () * Value::static_size; }
bool apply_value (hb_ot_apply_context_t *c,
const void *base,
const Value *values,
hb_glyph_position_t &glyph_pos) const
{
bool ret = false;
unsigned int format = *this;
if (!format) return ret;
hb_font_t *font = c->font;
bool horizontal = HB_DIRECTION_IS_HORIZONTAL (c->direction);
if (format & xPlacement) glyph_pos.x_offset += font->em_scale_x (get_short (values++, &ret));
if (format & yPlacement) glyph_pos.y_offset += font->em_scale_y (get_short (values++, &ret));
if (format & xAdvance) {
if (likely (horizontal)) glyph_pos.x_advance += font->em_scale_x (get_short (values, &ret));
values++;
}
/* y_advance values grow downward but font-space grows upward, hence negation */
if (format & yAdvance) {
if (unlikely (!horizontal)) glyph_pos.y_advance -= font->em_scale_y (get_short (values, &ret));
values++;
}
if (!has_device ()) return ret;
bool use_x_device = font->x_ppem || font->num_coords;
bool use_y_device = font->y_ppem || font->num_coords;
if (!use_x_device && !use_y_device) return ret;
const VariationStore &store = c->var_store;
/* pixel -> fractional pixel */
if (format & xPlaDevice) {
if (use_x_device) glyph_pos.x_offset += (base + get_device (values, &ret)).get_x_delta (font, store);
values++;
}
if (format & yPlaDevice) {
if (use_y_device) glyph_pos.y_offset += (base + get_device (values, &ret)).get_y_delta (font, store);
values++;
}
if (format & xAdvDevice) {
if (horizontal && use_x_device) glyph_pos.x_advance += (base + get_device (values, &ret)).get_x_delta (font, store);
values++;
}
if (format & yAdvDevice) {
/* y_advance values grow downward but font-space grows upward, hence negation */
if (!horizontal && use_y_device) glyph_pos.y_advance -= (base + get_device (values, &ret)).get_y_delta (font, store);
values++;
}
return ret;
}
void serialize_copy (hb_serialize_context_t *c, const void *base, const Value *values) const
{
unsigned int format = *this;
if (!format) return;
if (format & xPlacement) c->copy (*values++);
if (format & yPlacement) c->copy (*values++);
if (format & xAdvance) c->copy (*values++);
if (format & yAdvance) c->copy (*values++);
if (format & xPlaDevice) copy_device (c, base, values++);
if (format & yPlaDevice) copy_device (c, base, values++);
if (format & xAdvDevice) copy_device (c, base, values++);
if (format & yAdvDevice) copy_device (c, base, values++);
}
private:
bool sanitize_value_devices (hb_sanitize_context_t *c, const void *base, const Value *values) const
{
unsigned int format = *this;
if (format & xPlacement) values++;
if (format & yPlacement) values++;
if (format & xAdvance) values++;
if (format & yAdvance) values++;
if ((format & xPlaDevice) && !get_device (values++).sanitize (c, base)) return false;
if ((format & yPlaDevice) && !get_device (values++).sanitize (c, base)) return false;
if ((format & xAdvDevice) && !get_device (values++).sanitize (c, base)) return false;
if ((format & yAdvDevice) && !get_device (values++).sanitize (c, base)) return false;
return true;
}
bool copy_device (hb_serialize_context_t *c, const void *base, const Value *src_value) const
{
Value *dst_value = c->copy (*src_value);
if (!dst_value) return false;
if (*dst_value == 0) return true;
*dst_value = 0;
c->push ();
if ((base + get_device (src_value)).copy (c))
{
c->add_link (*dst_value, c->pop_pack ());
return true;
}
else
{
c->pop_discard ();
return false;
}
}
static inline OffsetTo<Device>& get_device (Value* value)
{
return *static_cast<OffsetTo<Device> *> (value);
}
static inline const OffsetTo<Device>& get_device (const Value* value, bool *worked=nullptr)
{
if (worked) *worked |= bool (*value);
return *static_cast<const OffsetTo<Device> *> (value);
}
static inline const HBINT16& get_short (const Value* value, bool *worked=nullptr)
{
if (worked) *worked |= bool (*value);
return *reinterpret_cast<const HBINT16 *> (value);
}
public:
bool has_device () const
{
unsigned int format = *this;
return (format & devices) != 0;
}
bool sanitize_value (hb_sanitize_context_t *c, const void *base, const Value *values) const
{
TRACE_SANITIZE (this);
return_trace (c->check_range (values, get_size ()) && (!has_device () || sanitize_value_devices (c, base, values)));
}
bool sanitize_values (hb_sanitize_context_t *c, const void *base, const Value *values, unsigned int count) const
{
TRACE_SANITIZE (this);
unsigned int len = get_len ();
if (!c->check_range (values, count, get_size ())) return_trace (false);
if (!has_device ()) return_trace (true);
for (unsigned int i = 0; i < count; i++) {
if (!sanitize_value_devices (c, base, values))
return_trace (false);
values += len;
}
return_trace (true);
}
/* Just sanitize referenced Device tables. Doesn't check the values themselves. */
bool sanitize_values_stride_unsafe (hb_sanitize_context_t *c, const void *base, const Value *values, unsigned int count, unsigned int stride) const
{
TRACE_SANITIZE (this);
if (!has_device ()) return_trace (true);
for (unsigned int i = 0; i < count; i++) {
if (!sanitize_value_devices (c, base, values))
return_trace (false);
values += stride;
}
return_trace (true);
}
};
template<typename Iterator>
static void SinglePos_serialize (hb_serialize_context_t *c,
const void *src,
Iterator it,
ValueFormat valFormat);
struct AnchorFormat1
{
void get_anchor (hb_ot_apply_context_t *c, hb_codepoint_t glyph_id HB_UNUSED,
float *x, float *y) const
{
hb_font_t *font = c->font;
*x = font->em_fscale_x (xCoordinate);
*y = font->em_fscale_y (yCoordinate);
}
bool sanitize (hb_sanitize_context_t *c) const
{
TRACE_SANITIZE (this);
return_trace (c->check_struct (this));
}
AnchorFormat1* copy (hb_serialize_context_t *c) const
{
TRACE_SERIALIZE (this);
return_trace (c->embed<AnchorFormat1> (this));
}
protected:
HBUINT16 format; /* Format identifier--format = 1 */
FWORD xCoordinate; /* Horizontal value--in design units */
FWORD yCoordinate; /* Vertical value--in design units */
public:
DEFINE_SIZE_STATIC (6);
};
struct AnchorFormat2
{
void get_anchor (hb_ot_apply_context_t *c, hb_codepoint_t glyph_id,
float *x, float *y) const
{
hb_font_t *font = c->font;
#ifdef HB_NO_HINTING
*x = font->em_fscale_x (xCoordinate);
*y = font->em_fscale_y (yCoordinate);
return;
#endif
unsigned int x_ppem = font->x_ppem;
unsigned int y_ppem = font->y_ppem;
hb_position_t cx = 0, cy = 0;
bool ret;
ret = (x_ppem || y_ppem) &&
font->get_glyph_contour_point_for_origin (glyph_id, anchorPoint, HB_DIRECTION_LTR, &cx, &cy);
*x = ret && x_ppem ? cx : font->em_fscale_x (xCoordinate);
*y = ret && y_ppem ? cy : font->em_fscale_y (yCoordinate);
}
bool sanitize (hb_sanitize_context_t *c) const
{
TRACE_SANITIZE (this);
return_trace (c->check_struct (this));
}
AnchorFormat2* copy (hb_serialize_context_t *c) const
{
TRACE_SERIALIZE (this);
return_trace (c->embed<AnchorFormat2> (this));
}
protected:
HBUINT16 format; /* Format identifier--format = 2 */
FWORD xCoordinate; /* Horizontal value--in design units */
FWORD yCoordinate; /* Vertical value--in design units */
HBUINT16 anchorPoint; /* Index to glyph contour point */
public:
DEFINE_SIZE_STATIC (8);
};
struct AnchorFormat3
{
void get_anchor (hb_ot_apply_context_t *c, hb_codepoint_t glyph_id HB_UNUSED,
float *x, float *y) const
{
hb_font_t *font = c->font;
*x = font->em_fscale_x (xCoordinate);
*y = font->em_fscale_y (yCoordinate);
if (font->x_ppem || font->num_coords)
*x += (this+xDeviceTable).get_x_delta (font, c->var_store);
if (font->y_ppem || font->num_coords)
*y += (this+yDeviceTable).get_y_delta (font, c->var_store);
}
bool sanitize (hb_sanitize_context_t *c) const
{
TRACE_SANITIZE (this);
return_trace (c->check_struct (this) && xDeviceTable.sanitize (c, this) && yDeviceTable.sanitize (c, this));
}
AnchorFormat3* copy (hb_serialize_context_t *c) const
{
TRACE_SERIALIZE (this);
auto *out = c->embed<AnchorFormat3> (this);
if (unlikely (!out)) return_trace (nullptr);
out->xDeviceTable.serialize_copy (c, xDeviceTable, this);
out->yDeviceTable.serialize_copy (c, yDeviceTable, this);
return_trace (out);
}
protected:
HBUINT16 format; /* Format identifier--format = 3 */
FWORD xCoordinate; /* Horizontal value--in design units */
FWORD yCoordinate; /* Vertical value--in design units */
OffsetTo<Device>
xDeviceTable; /* Offset to Device table for X
* coordinate-- from beginning of
* Anchor table (may be NULL) */
OffsetTo<Device>
yDeviceTable; /* Offset to Device table for Y
* coordinate-- from beginning of
* Anchor table (may be NULL) */
public:
DEFINE_SIZE_STATIC (10);
};
struct Anchor
{
void get_anchor (hb_ot_apply_context_t *c, hb_codepoint_t glyph_id,
float *x, float *y) const
{
*x = *y = 0;
switch (u.format) {
case 1: u.format1.get_anchor (c, glyph_id, x, y); return;
case 2: u.format2.get_anchor (c, glyph_id, x, y); return;
case 3: u.format3.get_anchor (c, glyph_id, x, y); return;
default: return;
}
}
bool sanitize (hb_sanitize_context_t *c) const
{
TRACE_SANITIZE (this);
if (!u.format.sanitize (c)) return_trace (false);
switch (u.format) {
case 1: return_trace (u.format1.sanitize (c));
case 2: return_trace (u.format2.sanitize (c));
case 3: return_trace (u.format3.sanitize (c));
default:return_trace (true);
}
}
Anchor* copy (hb_serialize_context_t *c) const
{
TRACE_SERIALIZE (this);
switch (u.format) {
case 1: return_trace (reinterpret_cast<Anchor *> (u.format1.copy (c)));
case 2: return_trace (reinterpret_cast<Anchor *> (u.format2.copy (c)));
case 3: return_trace (reinterpret_cast<Anchor *> (u.format3.copy (c)));
default:return_trace (nullptr);
}
}
protected:
union {
HBUINT16 format; /* Format identifier */
AnchorFormat1 format1;
AnchorFormat2 format2;
AnchorFormat3 format3;
} u;
public:
DEFINE_SIZE_UNION (2, format);
};
struct AnchorMatrix
{
const Anchor& get_anchor (unsigned int row, unsigned int col,
unsigned int cols, bool *found) const
{
*found = false;
if (unlikely (row >= rows || col >= cols)) return Null (Anchor);
*found = !matrixZ[row * cols + col].is_null ();
return this+matrixZ[row * cols + col];
}
template <typename Iterator,
hb_requires (hb_is_iterator (Iterator))>
bool serialize (hb_serialize_context_t *c,
unsigned num_rows,
AnchorMatrix const *offset_matrix,
Iterator index_iter)
{
TRACE_SERIALIZE (this);
if (!index_iter.len ()) return_trace (false);
if (unlikely (!c->extend_min ((*this)))) return_trace (false);
this->rows = num_rows;
for (const unsigned i : index_iter)
{
auto *offset = c->embed (offset_matrix->matrixZ[i]);
if (!offset) return_trace (false);
offset->serialize_copy (c, offset_matrix->matrixZ[i], offset_matrix, c->to_bias (this));
}
return_trace (true);
}
bool sanitize (hb_sanitize_context_t *c, unsigned int cols) const
{
TRACE_SANITIZE (this);
if (!c->check_struct (this)) return_trace (false);
if (unlikely (hb_unsigned_mul_overflows (rows, cols))) return_trace (false);
unsigned int count = rows * cols;
if (!c->check_array (matrixZ.arrayZ, count)) return_trace (false);
for (unsigned int i = 0; i < count; i++)
if (!matrixZ[i].sanitize (c, this)) return_trace (false);
return_trace (true);
}
HBUINT16 rows; /* Number of rows */
UnsizedArrayOf<OffsetTo<Anchor>>
matrixZ; /* Matrix of offsets to Anchor tables--
* from beginning of AnchorMatrix table */
public:
DEFINE_SIZE_ARRAY (2, matrixZ);
};
struct MarkRecord
{
friend struct MarkArray;
unsigned get_class () const { return (unsigned) klass; }
bool sanitize (hb_sanitize_context_t *c, const void *base) const
{
TRACE_SANITIZE (this);
return_trace (c->check_struct (this) && markAnchor.sanitize (c, base));
}
MarkRecord *copy (hb_serialize_context_t *c, const void *base,
unsigned dst_bias, const hb_map_t *klass_mapping) const
{
TRACE_SERIALIZE (this);
auto *out = c->embed (this);
if (unlikely (!out)) return_trace (nullptr);
out->klass = klass_mapping->get (klass);
out->markAnchor.serialize_copy (c, markAnchor, base, dst_bias);
return_trace (out);
}
protected:
HBUINT16 klass; /* Class defined for this mark */
OffsetTo<Anchor>
markAnchor; /* Offset to Anchor table--from
* beginning of MarkArray table */
public:
DEFINE_SIZE_STATIC (4);
};
struct MarkArray : ArrayOf<MarkRecord> /* Array of MarkRecords--in Coverage order */
{
bool apply (hb_ot_apply_context_t *c,
unsigned int mark_index, unsigned int glyph_index,
const AnchorMatrix &anchors, unsigned int class_count,
unsigned int glyph_pos) const
{
TRACE_APPLY (this);
hb_buffer_t *buffer = c->buffer;
const MarkRecord &record = ArrayOf<MarkRecord>::operator[](mark_index);
unsigned int mark_class = record.klass;
const Anchor& mark_anchor = this + record.markAnchor;
bool found;
const Anchor& glyph_anchor = anchors.get_anchor (glyph_index, mark_class, class_count, &found);
/* If this subtable doesn't have an anchor for this base and this class,
* return false such that the subsequent subtables have a chance at it. */
if (unlikely (!found)) return_trace (false);
float mark_x, mark_y, base_x, base_y;
buffer->unsafe_to_break (glyph_pos, buffer->idx);
mark_anchor.get_anchor (c, buffer->cur().codepoint, &mark_x, &mark_y);
glyph_anchor.get_anchor (c, buffer->info[glyph_pos].codepoint, &base_x, &base_y);
hb_glyph_position_t &o = buffer->cur_pos();
o.x_offset = roundf (base_x - mark_x);
o.y_offset = roundf (base_y - mark_y);
o.attach_type() = ATTACH_TYPE_MARK;
o.attach_chain() = (int) glyph_pos - (int) buffer->idx;
buffer->scratch_flags |= HB_BUFFER_SCRATCH_FLAG_HAS_GPOS_ATTACHMENT;
buffer->idx++;
return_trace (true);
}
template<typename Iterator,
hb_requires (hb_is_source_of (Iterator, MarkRecord))>
bool serialize (hb_serialize_context_t *c,
const hb_map_t *klass_mapping,
const void *base,
Iterator it)
{
TRACE_SERIALIZE (this);
if (unlikely (!c->extend_min (*this))) return_trace (false);
if (unlikely (!c->check_assign (len, it.len ()))) return_trace (false);
c->copy_all (it, base, c->to_bias (this), klass_mapping);
return_trace (true);
}
bool sanitize (hb_sanitize_context_t *c) const
{
TRACE_SANITIZE (this);
return_trace (ArrayOf<MarkRecord>::sanitize (c, this));
}
};
/* Lookups */
struct SinglePosFormat1
{
bool intersects (const hb_set_t *glyphs) const
{ return (this+coverage).intersects (glyphs); }
void closure_lookups (hb_closure_lookups_context_t *c) const {}
void collect_glyphs (hb_collect_glyphs_context_t *c) const
{ if (unlikely (!(this+coverage).collect_coverage (c->input))) return; }
const Coverage &get_coverage () const { return this+coverage; }
bool apply (hb_ot_apply_context_t *c) const
{
TRACE_APPLY (this);
hb_buffer_t *buffer = c->buffer;
unsigned int index = (this+coverage).get_coverage (buffer->cur().codepoint);
if (likely (index == NOT_COVERED)) return_trace (false);
valueFormat.apply_value (c, this, values, buffer->cur_pos());
buffer->idx++;
return_trace (true);
}
template<typename Iterator,
hb_requires (hb_is_iterator (Iterator))>
void serialize (hb_serialize_context_t *c,
const void *src,
Iterator it,
ValueFormat valFormat)
{
auto out = c->extend_min (*this);
if (unlikely (!out)) return;
if (unlikely (!c->check_assign (valueFormat, valFormat))) return;
+ it
| hb_map (hb_second)
| hb_apply ([&] (hb_array_t<const Value> _)
{ valFormat.serialize_copy (c, src, &_); })
;
auto glyphs =
+ it
| hb_map_retains_sorting (hb_first)
;
coverage.serialize (c, this).serialize (c, glyphs);
}
bool subset (hb_subset_context_t *c) const
{
TRACE_SUBSET (this);
const hb_set_t &glyphset = *c->plan->glyphset ();
const hb_map_t &glyph_map = *c->plan->glyph_map;
auto it =
+ hb_iter (this+coverage)
| hb_filter (glyphset)
| hb_map_retains_sorting (glyph_map)
| hb_zip (hb_repeat (values.as_array (valueFormat.get_len ())))
;
bool ret = bool (it);
SinglePos_serialize (c->serializer, this, it, valueFormat);
return_trace (ret);
}
bool sanitize (hb_sanitize_context_t *c) const
{
TRACE_SANITIZE (this);
return_trace (c->check_struct (this) &&
coverage.sanitize (c, this) &&
valueFormat.sanitize_value (c, this, values));
}
protected:
HBUINT16 format; /* Format identifier--format = 1 */
OffsetTo<Coverage>
coverage; /* Offset to Coverage table--from
* beginning of subtable */
ValueFormat valueFormat; /* Defines the types of data in the
* ValueRecord */
ValueRecord values; /* Defines positioning
* value(s)--applied to all glyphs in
* the Coverage table */
public:
DEFINE_SIZE_ARRAY (6, values);
};
struct SinglePosFormat2
{
bool intersects (const hb_set_t *glyphs) const
{ return (this+coverage).intersects (glyphs); }
void closure_lookups (hb_closure_lookups_context_t *c) const {}
void collect_glyphs (hb_collect_glyphs_context_t *c) const
{ if (unlikely (!(this+coverage).collect_coverage (c->input))) return; }
const Coverage &get_coverage () const { return this+coverage; }
bool apply (hb_ot_apply_context_t *c) const
{
TRACE_APPLY (this);
hb_buffer_t *buffer = c->buffer;
unsigned int index = (this+coverage).get_coverage (buffer->cur().codepoint);
if (likely (index == NOT_COVERED)) return_trace (false);
if (likely (index >= valueCount)) return_trace (false);
valueFormat.apply_value (c, this,
&values[index * valueFormat.get_len ()],
buffer->cur_pos());
buffer->idx++;
return_trace (true);
}
template<typename Iterator,
hb_requires (hb_is_iterator (Iterator))>
void serialize (hb_serialize_context_t *c,
const void *src,
Iterator it,
ValueFormat valFormat)
{
auto out = c->extend_min (*this);
if (unlikely (!out)) return;
if (unlikely (!c->check_assign (valueFormat, valFormat))) return;
if (unlikely (!c->check_assign (valueCount, it.len ()))) return;
+ it
| hb_map (hb_second)
| hb_apply ([&] (hb_array_t<const Value> _)
{ valFormat.serialize_copy (c, src, &_); })
;
auto glyphs =
+ it
| hb_map_retains_sorting (hb_first)
;
coverage.serialize (c, this).serialize (c, glyphs);
}
bool subset (hb_subset_context_t *c) const
{
TRACE_SUBSET (this);
const hb_set_t &glyphset = *c->plan->glyphset ();
const hb_map_t &glyph_map = *c->plan->glyph_map;
unsigned sub_length = valueFormat.get_len ();
auto values_array = values.as_array (valueCount * sub_length);
auto it =
+ hb_zip (this+coverage, hb_range ((unsigned) valueCount))
| hb_filter (glyphset, hb_first)
| hb_map_retains_sorting ([&] (const hb_pair_t<hb_codepoint_t, unsigned>& _)
{
return hb_pair (glyph_map[_.first],
values_array.sub_array (_.second * sub_length,
sub_length));
})
;
bool ret = bool (it);
SinglePos_serialize (c->serializer, this, it, valueFormat);
return_trace (ret);
}
bool sanitize (hb_sanitize_context_t *c) const
{
TRACE_SANITIZE (this);
return_trace (c->check_struct (this) &&
coverage.sanitize (c, this) &&
valueFormat.sanitize_values (c, this, values, valueCount));
}
protected:
HBUINT16 format; /* Format identifier--format = 2 */
OffsetTo<Coverage>
coverage; /* Offset to Coverage table--from
* beginning of subtable */
ValueFormat valueFormat; /* Defines the types of data in the
* ValueRecord */
HBUINT16 valueCount; /* Number of ValueRecords */
ValueRecord values; /* Array of ValueRecords--positioning
* values applied to glyphs */
public:
DEFINE_SIZE_ARRAY (8, values);
};
struct SinglePos
{
template<typename Iterator,
hb_requires (hb_is_iterator (Iterator))>
unsigned get_format (Iterator glyph_val_iter_pairs)
{
hb_array_t<const Value> first_val_iter = hb_second (*glyph_val_iter_pairs);
for (const auto iter : glyph_val_iter_pairs)
for (const auto _ : hb_zip (iter.second, first_val_iter))
if (_.first != _.second)
return 2;
return 1;
}
template<typename Iterator,
hb_requires (hb_is_iterator (Iterator))>
void serialize (hb_serialize_context_t *c,
const void *src,
Iterator glyph_val_iter_pairs,
ValueFormat valFormat)
{
if (unlikely (!c->extend_min (u.format))) return;
unsigned format = 2;
if (glyph_val_iter_pairs) format = get_format (glyph_val_iter_pairs);
u.format = format;
switch (u.format) {
case 1: u.format1.serialize (c, src, glyph_val_iter_pairs, valFormat);
return;
case 2: u.format2.serialize (c, src, glyph_val_iter_pairs, valFormat);
return;
default:return;
}
}
template <typename context_t, typename ...Ts>
typename context_t::return_t dispatch (context_t *c, Ts&&... ds) const
{
TRACE_DISPATCH (this, u.format);
if (unlikely (!c->may_dispatch (this, &u.format))) return_trace (c->no_dispatch_return_value ());
switch (u.format) {
case 1: return_trace (c->dispatch (u.format1, hb_forward<Ts> (ds)...));
case 2: return_trace (c->dispatch (u.format2, hb_forward<Ts> (ds)...));
default:return_trace (c->default_return_value ());
}
}
protected:
union {
HBUINT16 format; /* Format identifier */
SinglePosFormat1 format1;
SinglePosFormat2 format2;
} u;
};
template<typename Iterator>
static void
SinglePos_serialize (hb_serialize_context_t *c,
const void *src,
Iterator it,
ValueFormat valFormat)
{ c->start_embed<SinglePos> ()->serialize (c, src, it, valFormat); }
struct PairValueRecord
{
friend struct PairSet;
int cmp (hb_codepoint_t k) const
{ return secondGlyph.cmp (k); }
struct serialize_closure_t
{
const void *base;
const ValueFormat *valueFormats;
unsigned len1; /* valueFormats[0].get_len() */
const hb_map_t *glyph_map;
};
bool serialize (hb_serialize_context_t *c,
serialize_closure_t *closure) const
{
TRACE_SERIALIZE (this);
auto *out = c->start_embed (*this);
if (unlikely (!c->extend_min (out))) return_trace (false);
out->secondGlyph = (*closure->glyph_map)[secondGlyph];
closure->valueFormats[0].serialize_copy (c, closure->base, &values[0]);
closure->valueFormats[1].serialize_copy (c, closure->base, &values[closure->len1]);
return_trace (true);
}
protected:
HBGlyphID secondGlyph; /* GlyphID of second glyph in the
* pair--first glyph is listed in the
* Coverage table */
ValueRecord values; /* Positioning data for the first glyph
* followed by for second glyph */
public:
DEFINE_SIZE_ARRAY (2, values);
};
struct PairSet
{
friend struct PairPosFormat1;
bool intersects (const hb_set_t *glyphs,
const ValueFormat *valueFormats) const
{
unsigned int len1 = valueFormats[0].get_len ();
unsigned int len2 = valueFormats[1].get_len ();
unsigned int record_size = HBUINT16::static_size * (1 + len1 + len2);
const PairValueRecord *record = &firstPairValueRecord;
unsigned int count = len;
for (unsigned int i = 0; i < count; i++)
{
if (glyphs->has (record->secondGlyph))
return true;
record = &StructAtOffset<const PairValueRecord> (record, record_size);
}
return false;
}
void collect_glyphs (hb_collect_glyphs_context_t *c,
const ValueFormat *valueFormats) const
{
unsigned int len1 = valueFormats[0].get_len ();
unsigned int len2 = valueFormats[1].get_len ();
unsigned int record_size = HBUINT16::static_size * (1 + len1 + len2);
const PairValueRecord *record = &firstPairValueRecord;
c->input->add_array (&record->secondGlyph, len, record_size);
}
bool apply (hb_ot_apply_context_t *c,
const ValueFormat *valueFormats,
unsigned int pos) const
{
TRACE_APPLY (this);
hb_buffer_t *buffer = c->buffer;
unsigned int len1 = valueFormats[0].get_len ();
unsigned int len2 = valueFormats[1].get_len ();
unsigned int record_size = HBUINT16::static_size * (1 + len1 + len2);
const PairValueRecord *record = hb_bsearch (buffer->info[pos].codepoint,
&firstPairValueRecord,
len,
record_size);
if (record)
{
/* Note the intentional use of "|" instead of short-circuit "||". */
if (valueFormats[0].apply_value (c, this, &record->values[0], buffer->cur_pos()) |
valueFormats[1].apply_value (c, this, &record->values[len1], buffer->pos[pos]))
buffer->unsafe_to_break (buffer->idx, pos + 1);
if (len2)
pos++;
buffer->idx = pos;
return_trace (true);
}
return_trace (false);
}
bool subset (hb_subset_context_t *c,
const ValueFormat valueFormats[2]) const
{
TRACE_SUBSET (this);
auto snap = c->serializer->snapshot ();
auto *out = c->serializer->start_embed (*this);
if (unlikely (!c->serializer->extend_min (out))) return_trace (false);
out->len = 0;
const hb_set_t &glyphset = *c->plan->glyphset ();
const hb_map_t &glyph_map = *c->plan->glyph_map;
unsigned len1 = valueFormats[0].get_len ();
unsigned len2 = valueFormats[1].get_len ();
unsigned record_size = HBUINT16::static_size + Value::static_size * (len1 + len2);
PairValueRecord::serialize_closure_t closure =
{
this,
valueFormats,
len1,
&glyph_map
};
const PairValueRecord *record = &firstPairValueRecord;
unsigned count = len, num = 0;
for (unsigned i = 0; i < count; i++)
{
if (glyphset.has (record->secondGlyph)
&& record->serialize (c->serializer, &closure)) num++;
record = &StructAtOffset<const PairValueRecord> (record, record_size);
}
out->len = num;
if (!num) c->serializer->revert (snap);
return_trace (num);
}
struct sanitize_closure_t
{
const ValueFormat *valueFormats;
unsigned int len1; /* valueFormats[0].get_len() */
unsigned int stride; /* 1 + len1 + len2 */
};
bool sanitize (hb_sanitize_context_t *c, const sanitize_closure_t *closure) const
{
TRACE_SANITIZE (this);
if (!(c->check_struct (this)
&& c->check_range (&firstPairValueRecord,
len,
HBUINT16::static_size,
closure->stride))) return_trace (false);
unsigned int count = len;
const PairValueRecord *record = &firstPairValueRecord;
return_trace (closure->valueFormats[0].sanitize_values_stride_unsafe (c, this, &record->values[0], count, closure->stride) &&
closure->valueFormats[1].sanitize_values_stride_unsafe (c, this, &record->values[closure->len1], count, closure->stride));
}
protected:
HBUINT16 len; /* Number of PairValueRecords */
PairValueRecord firstPairValueRecord;
/* Array of PairValueRecords--ordered
* by GlyphID of the second glyph */
public:
DEFINE_SIZE_MIN (2);
};
struct PairPosFormat1
{
bool intersects (const hb_set_t *glyphs) const
{
return
+ hb_zip (this+coverage, pairSet)
| hb_filter (*glyphs, hb_first)
| hb_map (hb_second)
| hb_map ([glyphs, this] (const OffsetTo<PairSet> &_)
{ return (this+_).intersects (glyphs, valueFormat); })
| hb_any
;
}
void closure_lookups (hb_closure_lookups_context_t *c) const {}
void collect_glyphs (hb_collect_glyphs_context_t *c) const
{
if (unlikely (!(this+coverage).collect_coverage (c->input))) return;
unsigned int count = pairSet.len;
for (unsigned int i = 0; i < count; i++)
(this+pairSet[i]).collect_glyphs (c, valueFormat);
}
const Coverage &get_coverage () const { return this+coverage; }
bool apply (hb_ot_apply_context_t *c) const
{
TRACE_APPLY (this);
hb_buffer_t *buffer = c->buffer;
unsigned int index = (this+coverage).get_coverage (buffer->cur().codepoint);
if (likely (index == NOT_COVERED)) return_trace (false);
hb_ot_apply_context_t::skipping_iterator_t &skippy_iter = c->iter_input;
skippy_iter.reset (buffer->idx, 1);
if (!skippy_iter.next ()) return_trace (false);
return_trace ((this+pairSet[index]).apply (c, valueFormat, skippy_iter.idx));
}
bool subset (hb_subset_context_t *c) const
{
TRACE_SUBSET (this);
const hb_set_t &glyphset = *c->plan->glyphset ();
const hb_map_t &glyph_map = *c->plan->glyph_map;
auto *out = c->serializer->start_embed (*this);
if (unlikely (!c->serializer->extend_min (out))) return_trace (false);
out->format = format;
out->valueFormat[0] = valueFormat[0];
out->valueFormat[1] = valueFormat[1];
hb_sorted_vector_t<hb_codepoint_t> new_coverage;
+ hb_zip (this+coverage, pairSet)
| hb_filter (glyphset, hb_first)
| hb_filter ([this, c, out] (const OffsetTo<PairSet>& _)
{
auto *o = out->pairSet.serialize_append (c->serializer);
if (unlikely (!o)) return false;
auto snap = c->serializer->snapshot ();
bool ret = o->serialize_subset (c, _, this, valueFormat);
if (!ret)
{
out->pairSet.pop ();
c->serializer->revert (snap);
}
return ret;
},
hb_second)
| hb_map (hb_first)
| hb_map (glyph_map)
| hb_sink (new_coverage)
;
out->coverage.serialize (c->serializer, out)
.serialize (c->serializer, new_coverage.iter ());
return_trace (bool (new_coverage));
}
bool sanitize (hb_sanitize_context_t *c) const
{
TRACE_SANITIZE (this);
if (!c->check_struct (this)) return_trace (false);
unsigned int len1 = valueFormat[0].get_len ();
unsigned int len2 = valueFormat[1].get_len ();
PairSet::sanitize_closure_t closure =
{
valueFormat,
len1,
1 + len1 + len2
};
return_trace (coverage.sanitize (c, this) && pairSet.sanitize (c, this, &closure));
}
protected:
HBUINT16 format; /* Format identifier--format = 1 */
OffsetTo<Coverage>
coverage; /* Offset to Coverage table--from
* beginning of subtable */
ValueFormat valueFormat[2]; /* [0] Defines the types of data in
* ValueRecord1--for the first glyph
* in the pair--may be zero (0) */
/* [1] Defines the types of data in
* ValueRecord2--for the second glyph
* in the pair--may be zero (0) */
OffsetArrayOf<PairSet>
pairSet; /* Array of PairSet tables
* ordered by Coverage Index */
public:
DEFINE_SIZE_ARRAY (10, pairSet);
};
struct PairPosFormat2
{
bool intersects (const hb_set_t *glyphs) const
{
return (this+coverage).intersects (glyphs) &&
(this+classDef2).intersects (glyphs);
}
void closure_lookups (hb_closure_lookups_context_t *c) const {}
void collect_glyphs (hb_collect_glyphs_context_t *c) const
{
if (unlikely (!(this+coverage).collect_coverage (c->input))) return;
if (unlikely (!(this+classDef2).collect_coverage (c->input))) return;
}
const Coverage &get_coverage () const { return this+coverage; }
bool apply (hb_ot_apply_context_t *c) const
{
TRACE_APPLY (this);
hb_buffer_t *buffer = c->buffer;
unsigned int index = (this+coverage).get_coverage (buffer->cur().codepoint);
if (likely (index == NOT_COVERED)) return_trace (false);
hb_ot_apply_context_t::skipping_iterator_t &skippy_iter = c->iter_input;
skippy_iter.reset (buffer->idx, 1);
if (!skippy_iter.next ()) return_trace (false);
unsigned int len1 = valueFormat1.get_len ();
unsigned int len2 = valueFormat2.get_len ();
unsigned int record_len = len1 + len2;
unsigned int klass1 = (this+classDef1).get_class (buffer->cur().codepoint);
unsigned int klass2 = (this+classDef2).get_class (buffer->info[skippy_iter.idx].codepoint);
if (unlikely (klass1 >= class1Count || klass2 >= class2Count)) return_trace (false);
const Value *v = &values[record_len * (klass1 * class2Count + klass2)];
/* Note the intentional use of "|" instead of short-circuit "||". */
if (valueFormat1.apply_value (c, this, v, buffer->cur_pos()) |
valueFormat2.apply_value (c, this, v + len1, buffer->pos[skippy_iter.idx]))
buffer->unsafe_to_break (buffer->idx, skippy_iter.idx + 1);
buffer->idx = skippy_iter.idx;
if (len2)
buffer->idx++;
return_trace (true);
}
bool subset (hb_subset_context_t *c) const
{
TRACE_SUBSET (this);
auto *out = c->serializer->start_embed (*this);
if (unlikely (!c->serializer->extend_min (out))) return_trace (false);
out->format = format;
out->valueFormat1 = valueFormat1;
out->valueFormat2 = valueFormat2;
hb_map_t klass1_map;
out->classDef1.serialize_subset (c, classDef1, this, &klass1_map);
out->class1Count = klass1_map.get_population ();
hb_map_t klass2_map;
out->classDef2.serialize_subset (c, classDef2, this, &klass2_map);
out->class2Count = klass2_map.get_population ();
unsigned len1 = valueFormat1.get_len ();
unsigned len2 = valueFormat2.get_len ();
+ hb_range ((unsigned) class1Count)
| hb_filter (klass1_map)
| hb_apply ([&] (const unsigned class1_idx)
{
+ hb_range ((unsigned) class2Count)
| hb_filter (klass2_map)
| hb_apply ([&] (const unsigned class2_idx)
{
unsigned idx = (class1_idx * (unsigned) class2Count + class2_idx) * (len1 + len2);
valueFormat1.serialize_copy (c->serializer, this, &values[idx]);
valueFormat2.serialize_copy (c->serializer, this, &values[idx + len1]);
})
;
})
;
const hb_set_t &glyphset = *c->plan->_glyphset_gsub;
const hb_map_t &glyph_map = *c->plan->glyph_map;
auto it =
+ hb_iter (this+coverage)
| hb_filter (glyphset)
| hb_map_retains_sorting (glyph_map)
;
out->coverage.serialize (c->serializer, out).serialize (c->serializer, it);
return_trace (out->class1Count && out->class2Count && bool (it));
}
bool sanitize (hb_sanitize_context_t *c) const
{
TRACE_SANITIZE (this);
if (!(c->check_struct (this)
&& coverage.sanitize (c, this)
&& classDef1.sanitize (c, this)
&& classDef2.sanitize (c, this))) return_trace (false);
unsigned int len1 = valueFormat1.get_len ();
unsigned int len2 = valueFormat2.get_len ();
unsigned int stride = len1 + len2;
unsigned int record_size = valueFormat1.get_size () + valueFormat2.get_size ();
unsigned int count = (unsigned int) class1Count * (unsigned int) class2Count;
return_trace (c->check_range ((const void *) values,
count,
record_size) &&
valueFormat1.sanitize_values_stride_unsafe (c, this, &values[0], count, stride) &&
valueFormat2.sanitize_values_stride_unsafe (c, this, &values[len1], count, stride));
}
protected:
HBUINT16 format; /* Format identifier--format = 2 */
OffsetTo<Coverage>
coverage; /* Offset to Coverage table--from
* beginning of subtable */
ValueFormat valueFormat1; /* ValueRecord definition--for the
* first glyph of the pair--may be zero
* (0) */
ValueFormat valueFormat2; /* ValueRecord definition--for the
* second glyph of the pair--may be
* zero (0) */
OffsetTo<ClassDef>
classDef1; /* Offset to ClassDef table--from
* beginning of PairPos subtable--for
* the first glyph of the pair */
OffsetTo<ClassDef>
classDef2; /* Offset to ClassDef table--from
* beginning of PairPos subtable--for
* the second glyph of the pair */
HBUINT16 class1Count; /* Number of classes in ClassDef1
* table--includes Class0 */
HBUINT16 class2Count; /* Number of classes in ClassDef2
* table--includes Class0 */
ValueRecord values; /* Matrix of value pairs:
* class1-major, class2-minor,
* Each entry has value1 and value2 */
public:
DEFINE_SIZE_ARRAY (16, values);
};
struct PairPos
{
template <typename context_t, typename ...Ts>
typename context_t::return_t dispatch (context_t *c, Ts&&... ds) const
{
TRACE_DISPATCH (this, u.format);
if (unlikely (!c->may_dispatch (this, &u.format))) return_trace (c->no_dispatch_return_value ());
switch (u.format) {
case 1: return_trace (c->dispatch (u.format1, hb_forward<Ts> (ds)...));
case 2: return_trace (c->dispatch (u.format2, hb_forward<Ts> (ds)...));
default:return_trace (c->default_return_value ());
}
}
protected:
union {
HBUINT16 format; /* Format identifier */
PairPosFormat1 format1;
PairPosFormat2 format2;
} u;
};
struct EntryExitRecord
{
friend struct CursivePosFormat1;
bool sanitize (hb_sanitize_context_t *c, const void *base) const
{
TRACE_SANITIZE (this);
return_trace (entryAnchor.sanitize (c, base) && exitAnchor.sanitize (c, base));
}
EntryExitRecord* copy (hb_serialize_context_t *c, const void *base) const
{
TRACE_SERIALIZE (this);
auto *out = c->embed (this);
if (unlikely (!out)) return_trace (nullptr);
out->entryAnchor.serialize_copy (c, entryAnchor, base);
out->exitAnchor.serialize_copy (c, exitAnchor, base);
return_trace (out);
}
protected:
OffsetTo<Anchor>
entryAnchor; /* Offset to EntryAnchor table--from
* beginning of CursivePos
* subtable--may be NULL */
OffsetTo<Anchor>
exitAnchor; /* Offset to ExitAnchor table--from
* beginning of CursivePos
* subtable--may be NULL */
public:
DEFINE_SIZE_STATIC (4);
};
static void
reverse_cursive_minor_offset (hb_glyph_position_t *pos, unsigned int i, hb_direction_t direction, unsigned int new_parent);
struct CursivePosFormat1
{
bool intersects (const hb_set_t *glyphs) const
{ return (this+coverage).intersects (glyphs); }
void closure_lookups (hb_closure_lookups_context_t *c) const {}
void collect_glyphs (hb_collect_glyphs_context_t *c) const
{ if (unlikely (!(this+coverage).collect_coverage (c->input))) return; }
const Coverage &get_coverage () const { return this+coverage; }
bool apply (hb_ot_apply_context_t *c) const
{
TRACE_APPLY (this);
hb_buffer_t *buffer = c->buffer;
const EntryExitRecord &this_record = entryExitRecord[(this+coverage).get_coverage (buffer->cur().codepoint)];
if (!this_record.entryAnchor) return_trace (false);
hb_ot_apply_context_t::skipping_iterator_t &skippy_iter = c->iter_input;
skippy_iter.reset (buffer->idx, 1);
if (!skippy_iter.prev ()) return_trace (false);
const EntryExitRecord &prev_record = entryExitRecord[(this+coverage).get_coverage (buffer->info[skippy_iter.idx].codepoint)];
if (!prev_record.exitAnchor) return_trace (false);
unsigned int i = skippy_iter.idx;
unsigned int j = buffer->idx;
buffer->unsafe_to_break (i, j);
float entry_x, entry_y, exit_x, exit_y;
(this+prev_record.exitAnchor).get_anchor (c, buffer->info[i].codepoint, &exit_x, &exit_y);
(this+this_record.entryAnchor).get_anchor (c, buffer->info[j].codepoint, &entry_x, &entry_y);
hb_glyph_position_t *pos = buffer->pos;
hb_position_t d;
/* Main-direction adjustment */
switch (c->direction) {
case HB_DIRECTION_LTR:
pos[i].x_advance = roundf (exit_x) + pos[i].x_offset;
d = roundf (entry_x) + pos[j].x_offset;
pos[j].x_advance -= d;
pos[j].x_offset -= d;
break;
case HB_DIRECTION_RTL:
d = roundf (exit_x) + pos[i].x_offset;
pos[i].x_advance -= d;
pos[i].x_offset -= d;
pos[j].x_advance = roundf (entry_x) + pos[j].x_offset;
break;
case HB_DIRECTION_TTB:
pos[i].y_advance = roundf (exit_y) + pos[i].y_offset;
d = roundf (entry_y) + pos[j].y_offset;
pos[j].y_advance -= d;
pos[j].y_offset -= d;
break;
case HB_DIRECTION_BTT:
d = roundf (exit_y) + pos[i].y_offset;
pos[i].y_advance -= d;
pos[i].y_offset -= d;
pos[j].y_advance = roundf (entry_y);
break;
case HB_DIRECTION_INVALID:
default:
break;
}
/* Cross-direction adjustment */
/* We attach child to parent (think graph theory and rooted trees whereas
* the root stays on baseline and each node aligns itself against its
* parent.
*
* Optimize things for the case of RightToLeft, as that's most common in
* Arabic. */
unsigned int child = i;
unsigned int parent = j;
hb_position_t x_offset = entry_x - exit_x;
hb_position_t y_offset = entry_y - exit_y;
if (!(c->lookup_props & LookupFlag::RightToLeft))
{
unsigned int k = child;
child = parent;
parent = k;
x_offset = -x_offset;
y_offset = -y_offset;
}
/* If child was already connected to someone else, walk through its old
* chain and reverse the link direction, such that the whole tree of its
* previous connection now attaches to new parent. Watch out for case
* where new parent is on the path from old chain...
*/
reverse_cursive_minor_offset (pos, child, c->direction, parent);
pos[child].attach_type() = ATTACH_TYPE_CURSIVE;
pos[child].attach_chain() = (int) parent - (int) child;
buffer->scratch_flags |= HB_BUFFER_SCRATCH_FLAG_HAS_GPOS_ATTACHMENT;
if (likely (HB_DIRECTION_IS_HORIZONTAL (c->direction)))
pos[child].y_offset = y_offset;
else
pos[child].x_offset = x_offset;
buffer->idx++;
return_trace (true);
}
template <typename Iterator,
hb_requires (hb_is_iterator (Iterator))>
void serialize (hb_serialize_context_t *c, Iterator it, const void *base)
{
if (unlikely (!c->extend_min ((*this)))) return;
this->format = 1;
this->entryExitRecord.len = it.len ();
for (const EntryExitRecord& entry_record : + it
| hb_map (hb_second))
c->copy (entry_record, base);
auto glyphs =
+ it
| hb_map_retains_sorting (hb_first)
;
coverage.serialize (c, this).serialize (c, glyphs);
}
bool subset (hb_subset_context_t *c) const
{
TRACE_SUBSET (this);
const hb_set_t &glyphset = *c->plan->glyphset ();
const hb_map_t &glyph_map = *c->plan->glyph_map;
auto *out = c->serializer->start_embed (*this);
if (unlikely (!out)) return_trace (false);
auto it =
+ hb_zip (this+coverage, entryExitRecord)
| hb_filter (glyphset, hb_first)
| hb_map_retains_sorting ([&] (hb_pair_t<hb_codepoint_t, const EntryExitRecord&> p) -> hb_pair_t<hb_codepoint_t, const EntryExitRecord&>
{ return hb_pair (glyph_map[p.first], p.second);})
;
bool ret = bool (it);
out->serialize (c->serializer, it, this);
return_trace (ret);
}
bool sanitize (hb_sanitize_context_t *c) const
{
TRACE_SANITIZE (this);
return_trace (coverage.sanitize (c, this) && entryExitRecord.sanitize (c, this));
}
protected:
HBUINT16 format; /* Format identifier--format = 1 */
OffsetTo<Coverage>
coverage; /* Offset to Coverage table--from
* beginning of subtable */
ArrayOf<EntryExitRecord>
entryExitRecord; /* Array of EntryExit records--in
* Coverage Index order */
public:
DEFINE_SIZE_ARRAY (6, entryExitRecord);
};
struct CursivePos
{
template <typename context_t, typename ...Ts>
typename context_t::return_t dispatch (context_t *c, Ts&&... ds) const
{
TRACE_DISPATCH (this, u.format);
if (unlikely (!c->may_dispatch (this, &u.format))) return_trace (c->no_dispatch_return_value ());
switch (u.format) {
case 1: return_trace (c->dispatch (u.format1, hb_forward<Ts> (ds)...));
default:return_trace (c->default_return_value ());
}
}
protected:
union {
HBUINT16 format; /* Format identifier */
CursivePosFormat1 format1;
} u;
};
typedef AnchorMatrix BaseArray; /* base-major--
* in order of BaseCoverage Index--,
* mark-minor--
* ordered by class--zero-based. */
static void Markclass_closure_and_remap_indexes (const Coverage &mark_coverage,
const MarkArray &mark_array,
const hb_set_t &glyphset,
hb_map_t* klass_mapping /* INOUT */)
{
hb_set_t orig_classes;
+ hb_zip (mark_coverage, mark_array)
| hb_filter (glyphset, hb_first)
| hb_map (hb_second)
| hb_map (&MarkRecord::get_class)
| hb_sink (orig_classes)
;
unsigned idx = 0;
for (auto klass : orig_classes.iter ())
{
if (klass_mapping->has (klass)) continue;
klass_mapping->set (klass, idx);
idx++;
}
}
struct MarkBasePosFormat1
{
bool intersects (const hb_set_t *glyphs) const
{ return (this+markCoverage).intersects (glyphs) &&
(this+baseCoverage).intersects (glyphs); }
void closure_lookups (hb_closure_lookups_context_t *c) const {}
void collect_glyphs (hb_collect_glyphs_context_t *c) const
{
if (unlikely (!(this+markCoverage).collect_coverage (c->input))) return;
if (unlikely (!(this+baseCoverage).collect_coverage (c->input))) return;
}
const Coverage &get_coverage () const { return this+markCoverage; }
bool apply (hb_ot_apply_context_t *c) const
{
TRACE_APPLY (this);
hb_buffer_t *buffer = c->buffer;
unsigned int mark_index = (this+markCoverage).get_coverage (buffer->cur().codepoint);
if (likely (mark_index == NOT_COVERED)) return_trace (false);
/* Now we search backwards for a non-mark glyph */
hb_ot_apply_context_t::skipping_iterator_t &skippy_iter = c->iter_input;
skippy_iter.reset (buffer->idx, 1);
skippy_iter.set_lookup_props (LookupFlag::IgnoreMarks);
do {
if (!skippy_iter.prev ()) return_trace (false);
/* We only want to attach to the first of a MultipleSubst sequence.
* https://github.com/harfbuzz/harfbuzz/issues/740
* Reject others...
* ...but stop if we find a mark in the MultipleSubst sequence:
* https://github.com/harfbuzz/harfbuzz/issues/1020 */
if (!_hb_glyph_info_multiplied (&buffer->info[skippy_iter.idx]) ||
0 == _hb_glyph_info_get_lig_comp (&buffer->info[skippy_iter.idx]) ||
(skippy_iter.idx == 0 ||
_hb_glyph_info_is_mark (&buffer->info[skippy_iter.idx - 1]) ||
_hb_glyph_info_get_lig_id (&buffer->info[skippy_iter.idx]) !=
_hb_glyph_info_get_lig_id (&buffer->info[skippy_iter.idx - 1]) ||
_hb_glyph_info_get_lig_comp (&buffer->info[skippy_iter.idx]) !=
_hb_glyph_info_get_lig_comp (&buffer->info[skippy_iter.idx - 1]) + 1
))
break;
skippy_iter.reject ();
} while (true);
/* Checking that matched glyph is actually a base glyph by GDEF is too strong; disabled */
//if (!_hb_glyph_info_is_base_glyph (&buffer->info[skippy_iter.idx])) { return_trace (false); }
unsigned int base_index = (this+baseCoverage).get_coverage (buffer->info[skippy_iter.idx].codepoint);
if (base_index == NOT_COVERED) return_trace (false);
return_trace ((this+markArray).apply (c, mark_index, base_index, this+baseArray, classCount, skippy_iter.idx));
}
bool subset (hb_subset_context_t *c) const
{
TRACE_SUBSET (this);
const hb_set_t &glyphset = *c->plan->glyphset ();
const hb_map_t &glyph_map = *c->plan->glyph_map;
auto *out = c->serializer->start_embed (*this);
if (unlikely (!c->serializer->extend_min (out))) return_trace (false);
out->format = format;
hb_map_t klass_mapping;
Markclass_closure_and_remap_indexes (this+markCoverage, this+markArray, glyphset, &klass_mapping);
if (!klass_mapping.get_population ()) return_trace (false);
out->classCount = klass_mapping.get_population ();
auto mark_iter =
+ hb_zip (this+markCoverage, this+markArray)
| hb_filter (glyphset, hb_first)
;
hb_sorted_vector_t<hb_codepoint_t> new_coverage;
+ mark_iter
| hb_map (hb_first)
| hb_map (glyph_map)
| hb_sink (new_coverage)
;
if (!out->markCoverage.serialize (c->serializer, out)
.serialize (c->serializer, new_coverage.iter ()))
return_trace (false);
out->markArray.serialize (c->serializer, out)
.serialize (c->serializer, &klass_mapping, &(this+markArray), + mark_iter
| hb_map (hb_second));
unsigned basecount = (this+baseArray).rows;
auto base_iter =
+ hb_zip (this+baseCoverage, hb_range (basecount))
| hb_filter (glyphset, hb_first)
;
new_coverage.reset ();
+ base_iter
| hb_map (hb_first)
| hb_map (glyph_map)
| hb_sink (new_coverage)
;
if (!out->baseCoverage.serialize (c->serializer, out)
.serialize (c->serializer, new_coverage.iter ()))
return_trace (false);
hb_sorted_vector_t<unsigned> base_indexes;
for (const unsigned row : + base_iter
| hb_map (hb_second))
{
+ hb_range ((unsigned) classCount)
| hb_filter (klass_mapping)
| hb_map ([&] (const unsigned col) { return row * (unsigned) classCount + col; })
| hb_sink (base_indexes)
;
}
out->baseArray.serialize (c->serializer, out)
.serialize (c->serializer, base_iter.len (), &(this+baseArray), base_indexes.iter ());
return_trace (true);
}
bool sanitize (hb_sanitize_context_t *c) const
{
TRACE_SANITIZE (this);
return_trace (c->check_struct (this) &&
markCoverage.sanitize (c, this) &&
baseCoverage.sanitize (c, this) &&
markArray.sanitize (c, this) &&
baseArray.sanitize (c, this, (unsigned int) classCount));
}
protected:
HBUINT16 format; /* Format identifier--format = 1 */
OffsetTo<Coverage>
markCoverage; /* Offset to MarkCoverage table--from
* beginning of MarkBasePos subtable */
OffsetTo<Coverage>
baseCoverage; /* Offset to BaseCoverage table--from
* beginning of MarkBasePos subtable */
HBUINT16 classCount; /* Number of classes defined for marks */
OffsetTo<MarkArray>
markArray; /* Offset to MarkArray table--from
* beginning of MarkBasePos subtable */
OffsetTo<BaseArray>
baseArray; /* Offset to BaseArray table--from
* beginning of MarkBasePos subtable */
public:
DEFINE_SIZE_STATIC (12);
};
struct MarkBasePos
{
template <typename context_t, typename ...Ts>
typename context_t::return_t dispatch (context_t *c, Ts&&... ds) const
{
TRACE_DISPATCH (this, u.format);
if (unlikely (!c->may_dispatch (this, &u.format))) return_trace (c->no_dispatch_return_value ());
switch (u.format) {
case 1: return_trace (c->dispatch (u.format1, hb_forward<Ts> (ds)...));
default:return_trace (c->default_return_value ());
}
}
protected:
union {
HBUINT16 format; /* Format identifier */
MarkBasePosFormat1 format1;
} u;
};
typedef AnchorMatrix LigatureAttach; /* component-major--
* in order of writing direction--,
* mark-minor--
* ordered by class--zero-based. */
typedef OffsetListOf<LigatureAttach> LigatureArray;
/* Array of LigatureAttach
* tables ordered by
* LigatureCoverage Index */
struct MarkLigPosFormat1
{
bool intersects (const hb_set_t *glyphs) const
{ return (this+markCoverage).intersects (glyphs) &&
(this+ligatureCoverage).intersects (glyphs); }
void closure_lookups (hb_closure_lookups_context_t *c) const {}
void collect_glyphs (hb_collect_glyphs_context_t *c) const
{
if (unlikely (!(this+markCoverage).collect_coverage (c->input))) return;
if (unlikely (!(this+ligatureCoverage).collect_coverage (c->input))) return;
}
const Coverage &get_coverage () const { return this+markCoverage; }
bool apply (hb_ot_apply_context_t *c) const
{
TRACE_APPLY (this);
hb_buffer_t *buffer = c->buffer;
unsigned int mark_index = (this+markCoverage).get_coverage (buffer->cur().codepoint);
if (likely (mark_index == NOT_COVERED)) return_trace (false);
/* Now we search backwards for a non-mark glyph */
hb_ot_apply_context_t::skipping_iterator_t &skippy_iter = c->iter_input;
skippy_iter.reset (buffer->idx, 1);
skippy_iter.set_lookup_props (LookupFlag::IgnoreMarks);
if (!skippy_iter.prev ()) return_trace (false);
/* Checking that matched glyph is actually a ligature by GDEF is too strong; disabled */
//if (!_hb_glyph_info_is_ligature (&buffer->info[skippy_iter.idx])) { return_trace (false); }
unsigned int j = skippy_iter.idx;
unsigned int lig_index = (this+ligatureCoverage).get_coverage (buffer->info[j].codepoint);
if (lig_index == NOT_COVERED) return_trace (false);
const LigatureArray& lig_array = this+ligatureArray;
const LigatureAttach& lig_attach = lig_array[lig_index];
/* Find component to attach to */
unsigned int comp_count = lig_attach.rows;
if (unlikely (!comp_count)) return_trace (false);
/* We must now check whether the ligature ID of the current mark glyph
* is identical to the ligature ID of the found ligature. If yes, we
* can directly use the component index. If not, we attach the mark
* glyph to the last component of the ligature. */
unsigned int comp_index;
unsigned int lig_id = _hb_glyph_info_get_lig_id (&buffer->info[j]);
unsigned int mark_id = _hb_glyph_info_get_lig_id (&buffer->cur());
unsigned int mark_comp = _hb_glyph_info_get_lig_comp (&buffer->cur());
if (lig_id && lig_id == mark_id && mark_comp > 0)
comp_index = hb_min (comp_count, _hb_glyph_info_get_lig_comp (&buffer->cur())) - 1;
else
comp_index = comp_count - 1;
return_trace ((this+markArray).apply (c, mark_index, comp_index, lig_attach, classCount, j));
}
bool subset (hb_subset_context_t *c) const
{
TRACE_SUBSET (this);
// TODO(subset)
return_trace (false);
}
bool sanitize (hb_sanitize_context_t *c) const
{
TRACE_SANITIZE (this);
return_trace (c->check_struct (this) &&
markCoverage.sanitize (c, this) &&
ligatureCoverage.sanitize (c, this) &&
markArray.sanitize (c, this) &&
ligatureArray.sanitize (c, this, (unsigned int) classCount));
}
protected:
HBUINT16 format; /* Format identifier--format = 1 */
OffsetTo<Coverage>
markCoverage; /* Offset to Mark Coverage table--from
* beginning of MarkLigPos subtable */
OffsetTo<Coverage>
ligatureCoverage; /* Offset to Ligature Coverage
* table--from beginning of MarkLigPos
* subtable */
HBUINT16 classCount; /* Number of defined mark classes */
OffsetTo<MarkArray>
markArray; /* Offset to MarkArray table--from
* beginning of MarkLigPos subtable */
OffsetTo<LigatureArray>
ligatureArray; /* Offset to LigatureArray table--from
* beginning of MarkLigPos subtable */
public:
DEFINE_SIZE_STATIC (12);
};
struct MarkLigPos
{
template <typename context_t, typename ...Ts>
typename context_t::return_t dispatch (context_t *c, Ts&&... ds) const
{
TRACE_DISPATCH (this, u.format);
if (unlikely (!c->may_dispatch (this, &u.format))) return_trace (c->no_dispatch_return_value ());
switch (u.format) {
case 1: return_trace (c->dispatch (u.format1, hb_forward<Ts> (ds)...));
default:return_trace (c->default_return_value ());
}
}
protected:
union {
HBUINT16 format; /* Format identifier */
MarkLigPosFormat1 format1;
} u;
};
typedef AnchorMatrix Mark2Array; /* mark2-major--
* in order of Mark2Coverage Index--,
* mark1-minor--
* ordered by class--zero-based. */
struct MarkMarkPosFormat1
{
bool intersects (const hb_set_t *glyphs) const
{ return (this+mark1Coverage).intersects (glyphs) &&
(this+mark2Coverage).intersects (glyphs); }
void closure_lookups (hb_closure_lookups_context_t *c) const {}
void collect_glyphs (hb_collect_glyphs_context_t *c) const
{
if (unlikely (!(this+mark1Coverage).collect_coverage (c->input))) return;
if (unlikely (!(this+mark2Coverage).collect_coverage (c->input))) return;
}
const Coverage &get_coverage () const { return this+mark1Coverage; }
bool apply (hb_ot_apply_context_t *c) const
{
TRACE_APPLY (this);
hb_buffer_t *buffer = c->buffer;
unsigned int mark1_index = (this+mark1Coverage).get_coverage (buffer->cur().codepoint);
if (likely (mark1_index == NOT_COVERED)) return_trace (false);
/* now we search backwards for a suitable mark glyph until a non-mark glyph */
hb_ot_apply_context_t::skipping_iterator_t &skippy_iter = c->iter_input;
skippy_iter.reset (buffer->idx, 1);
skippy_iter.set_lookup_props (c->lookup_props & ~LookupFlag::IgnoreFlags);
if (!skippy_iter.prev ()) return_trace (false);
if (!_hb_glyph_info_is_mark (&buffer->info[skippy_iter.idx])) { return_trace (false); }
unsigned int j = skippy_iter.idx;
unsigned int id1 = _hb_glyph_info_get_lig_id (&buffer->cur());
unsigned int id2 = _hb_glyph_info_get_lig_id (&buffer->info[j]);
unsigned int comp1 = _hb_glyph_info_get_lig_comp (&buffer->cur());
unsigned int comp2 = _hb_glyph_info_get_lig_comp (&buffer->info[j]);
if (likely (id1 == id2)) {
if (id1 == 0) /* Marks belonging to the same base. */
goto good;
else if (comp1 == comp2) /* Marks belonging to the same ligature component. */
goto good;
} else {
/* If ligature ids don't match, it may be the case that one of the marks
* itself is a ligature. In which case match. */
if ((id1 > 0 && !comp1) || (id2 > 0 && !comp2))
goto good;
}
/* Didn't match. */
return_trace (false);
good:
unsigned int mark2_index = (this+mark2Coverage).get_coverage (buffer->info[j].codepoint);
if (mark2_index == NOT_COVERED) return_trace (false);
return_trace ((this+mark1Array).apply (c, mark1_index, mark2_index, this+mark2Array, classCount, j));
}
bool subset (hb_subset_context_t *c) const
{
TRACE_SUBSET (this);
const hb_set_t &glyphset = *c->plan->glyphset ();
const hb_map_t &glyph_map = *c->plan->glyph_map;
auto *out = c->serializer->start_embed (*this);
if (unlikely (!c->serializer->extend_min (out))) return_trace (false);
out->format = format;
hb_map_t klass_mapping;
Markclass_closure_and_remap_indexes (this+mark1Coverage, this+mark1Array, glyphset, &klass_mapping);
if (!klass_mapping.get_population ()) return_trace (false);
out->classCount = klass_mapping.get_population ();
auto mark1_iter =
+ hb_zip (this+mark1Coverage, this+mark1Array)
| hb_filter (glyphset, hb_first)
;
hb_sorted_vector_t<hb_codepoint_t> new_coverage;
+ mark1_iter
| hb_map (hb_first)
| hb_map (glyph_map)
| hb_sink (new_coverage)
;
if (!out->mark1Coverage.serialize (c->serializer, out)
.serialize (c->serializer, new_coverage.iter ()))
return_trace (false);
out->mark1Array.serialize (c->serializer, out)
.serialize (c->serializer, &klass_mapping, &(this+mark1Array), + mark1_iter
| hb_map (hb_second));
//////
unsigned mark2count = (this+mark2Array).rows;
auto mark2_iter =
+ hb_zip (this+mark2Coverage, hb_range (mark2count))
| hb_filter (glyphset, hb_first)
;
new_coverage.reset ();
+ mark2_iter
| hb_map (hb_first)
| hb_map (glyph_map)
| hb_sink (new_coverage)
;
if (!out->mark2Coverage.serialize (c->serializer, out)
.serialize (c->serializer, new_coverage.iter ()))
return_trace (false);
hb_sorted_vector_t<unsigned> mark2_indexes;
for (const unsigned row : + mark2_iter
| hb_map (hb_second))
{
+ hb_range ((unsigned) classCount)
| hb_filter (klass_mapping)
| hb_map ([&] (const unsigned col) { return row * (unsigned) classCount + col; })
| hb_sink (mark2_indexes)
;
}
out->mark2Array.serialize (c->serializer, out)
.serialize (c->serializer, mark2_iter.len (), &(this+mark2Array), mark2_indexes.iter ());
return_trace (true);
}
bool sanitize (hb_sanitize_context_t *c) const
{
TRACE_SANITIZE (this);
return_trace (c->check_struct (this) &&
mark1Coverage.sanitize (c, this) &&
mark2Coverage.sanitize (c, this) &&
mark1Array.sanitize (c, this) &&
mark2Array.sanitize (c, this, (unsigned int) classCount));
}
protected:
HBUINT16 format; /* Format identifier--format = 1 */
OffsetTo<Coverage>
mark1Coverage; /* Offset to Combining Mark1 Coverage
* table--from beginning of MarkMarkPos
* subtable */
OffsetTo<Coverage>
mark2Coverage; /* Offset to Combining Mark2 Coverage
* table--from beginning of MarkMarkPos
* subtable */
HBUINT16 classCount; /* Number of defined mark classes */
OffsetTo<MarkArray>
mark1Array; /* Offset to Mark1Array table--from
* beginning of MarkMarkPos subtable */
OffsetTo<Mark2Array>
mark2Array; /* Offset to Mark2Array table--from
* beginning of MarkMarkPos subtable */
public:
DEFINE_SIZE_STATIC (12);
};
struct MarkMarkPos
{
template <typename context_t, typename ...Ts>
typename context_t::return_t dispatch (context_t *c, Ts&&... ds) const
{
TRACE_DISPATCH (this, u.format);
if (unlikely (!c->may_dispatch (this, &u.format))) return_trace (c->no_dispatch_return_value ());
switch (u.format) {
case 1: return_trace (c->dispatch (u.format1, hb_forward<Ts> (ds)...));
default:return_trace (c->default_return_value ());
}
}
protected:
union {
HBUINT16 format; /* Format identifier */
MarkMarkPosFormat1 format1;
} u;
};
struct ContextPos : Context {};
struct ChainContextPos : ChainContext {};
struct ExtensionPos : Extension<ExtensionPos>
{
typedef struct PosLookupSubTable SubTable;
};
/*
* PosLookup
*/
struct PosLookupSubTable
{
friend struct Lookup;
friend struct PosLookup;
enum Type {
Single = 1,
Pair = 2,
Cursive = 3,
MarkBase = 4,
MarkLig = 5,
MarkMark = 6,
Context = 7,
ChainContext = 8,
Extension = 9
};
template <typename context_t, typename ...Ts>
typename context_t::return_t dispatch (context_t *c, unsigned int lookup_type, Ts&&... ds) const
{
TRACE_DISPATCH (this, lookup_type);
switch (lookup_type) {
case Single: return_trace (u.single.dispatch (c, hb_forward<Ts> (ds)...));
case Pair: return_trace (u.pair.dispatch (c, hb_forward<Ts> (ds)...));
case Cursive: return_trace (u.cursive.dispatch (c, hb_forward<Ts> (ds)...));
case MarkBase: return_trace (u.markBase.dispatch (c, hb_forward<Ts> (ds)...));
case MarkLig: return_trace (u.markLig.dispatch (c, hb_forward<Ts> (ds)...));
case MarkMark: return_trace (u.markMark.dispatch (c, hb_forward<Ts> (ds)...));
case Context: return_trace (u.context.dispatch (c, hb_forward<Ts> (ds)...));
case ChainContext: return_trace (u.chainContext.dispatch (c, hb_forward<Ts> (ds)...));
case Extension: return_trace (u.extension.dispatch (c, hb_forward<Ts> (ds)...));
default: return_trace (c->default_return_value ());
}
}
bool intersects (const hb_set_t *glyphs, unsigned int lookup_type) const
{
hb_intersects_context_t c (glyphs);
return dispatch (&c, lookup_type);
}
protected:
union {
SinglePos single;
PairPos pair;
CursivePos cursive;
MarkBasePos markBase;
MarkLigPos markLig;
MarkMarkPos markMark;
ContextPos context;
ChainContextPos chainContext;
ExtensionPos extension;
} u;
public:
DEFINE_SIZE_MIN (0);
};
struct PosLookup : Lookup
{
typedef struct PosLookupSubTable SubTable;
const SubTable& get_subtable (unsigned int i) const
{ return Lookup::get_subtable<SubTable> (i); }
bool is_reverse () const
{
return false;
}
bool apply (hb_ot_apply_context_t *c) const
{
TRACE_APPLY (this);
return_trace (dispatch (c));
}
bool intersects (const hb_set_t *glyphs) const
{
hb_intersects_context_t c (glyphs);
return dispatch (&c);
}
hb_collect_glyphs_context_t::return_t collect_glyphs (hb_collect_glyphs_context_t *c) const
{ return dispatch (c); }
hb_closure_lookups_context_t::return_t closure_lookups (hb_closure_lookups_context_t *c, unsigned this_index) const
{
if (c->is_lookup_visited (this_index))
return hb_closure_lookups_context_t::default_return_value ();
c->set_lookup_visited (this_index);
if (!intersects (c->glyphs))
{
c->set_lookup_inactive (this_index);
return hb_closure_lookups_context_t::default_return_value ();
}
c->set_recurse_func (dispatch_closure_lookups_recurse_func);
hb_closure_lookups_context_t::return_t ret = dispatch (c);
return ret;
}
template <typename set_t>
void collect_coverage (set_t *glyphs) const
{
hb_collect_coverage_context_t<set_t> c (glyphs);
dispatch (&c);
}
static inline bool apply_recurse_func (hb_ot_apply_context_t *c, unsigned int lookup_index);
template <typename context_t>
static typename context_t::return_t dispatch_recurse_func (context_t *c, unsigned int lookup_index);
HB_INTERNAL static hb_closure_lookups_context_t::return_t dispatch_closure_lookups_recurse_func (hb_closure_lookups_context_t *c, unsigned this_index);
template <typename context_t, typename ...Ts>
typename context_t::return_t dispatch (context_t *c, Ts&&... ds) const
{ return Lookup::dispatch<SubTable> (c, hb_forward<Ts> (ds)...); }
bool subset (hb_subset_context_t *c) const
{ return Lookup::subset<SubTable> (c); }
bool sanitize (hb_sanitize_context_t *c) const
{ return Lookup::sanitize<SubTable> (c); }
};
/*
* GPOS -- Glyph Positioning
* https://docs.microsoft.com/en-us/typography/opentype/spec/gpos
*/
struct GPOS : GSUBGPOS
{
static constexpr hb_tag_t tableTag = HB_OT_TAG_GPOS;
const PosLookup& get_lookup (unsigned int i) const
{ return static_cast<const PosLookup &> (GSUBGPOS::get_lookup (i)); }
static inline void position_start (hb_font_t *font, hb_buffer_t *buffer);
static inline void position_finish_advances (hb_font_t *font, hb_buffer_t *buffer);
static inline void position_finish_offsets (hb_font_t *font, hb_buffer_t *buffer);
bool subset (hb_subset_context_t *c) const
{
hb_subset_layout_context_t l (c, tableTag, c->plan->gpos_lookups, c->plan->gpos_features);
return GSUBGPOS::subset<PosLookup> (&l);
}
bool sanitize (hb_sanitize_context_t *c) const
{ return GSUBGPOS::sanitize<PosLookup> (c); }
HB_INTERNAL bool is_blacklisted (hb_blob_t *blob,
hb_face_t *face) const;
typedef GSUBGPOS::accelerator_t<GPOS> accelerator_t;
};
static void
reverse_cursive_minor_offset (hb_glyph_position_t *pos, unsigned int i, hb_direction_t direction, unsigned int new_parent)
{
int chain = pos[i].attach_chain(), type = pos[i].attach_type();
if (likely (!chain || 0 == (type & ATTACH_TYPE_CURSIVE)))
return;
pos[i].attach_chain() = 0;
unsigned int j = (int) i + chain;
/* Stop if we see new parent in the chain. */
if (j == new_parent)
return;
reverse_cursive_minor_offset (pos, j, direction, new_parent);
if (HB_DIRECTION_IS_HORIZONTAL (direction))
pos[j].y_offset = -pos[i].y_offset;
else
pos[j].x_offset = -pos[i].x_offset;
pos[j].attach_chain() = -chain;
pos[j].attach_type() = type;
}
static void
propagate_attachment_offsets (hb_glyph_position_t *pos,
unsigned int len,
unsigned int i,
hb_direction_t direction)
{
/* Adjusts offsets of attached glyphs (both cursive and mark) to accumulate
* offset of glyph they are attached to. */
int chain = pos[i].attach_chain(), type = pos[i].attach_type();
if (likely (!chain))
return;
pos[i].attach_chain() = 0;
unsigned int j = (int) i + chain;
if (unlikely (j >= len))
return;
propagate_attachment_offsets (pos, len, j, direction);
assert (!!(type & ATTACH_TYPE_MARK) ^ !!(type & ATTACH_TYPE_CURSIVE));
if (type & ATTACH_TYPE_CURSIVE)
{
if (HB_DIRECTION_IS_HORIZONTAL (direction))
pos[i].y_offset += pos[j].y_offset;
else
pos[i].x_offset += pos[j].x_offset;
}
else /*if (type & ATTACH_TYPE_MARK)*/
{
pos[i].x_offset += pos[j].x_offset;
pos[i].y_offset += pos[j].y_offset;
assert (j < i);
if (HB_DIRECTION_IS_FORWARD (direction))
for (unsigned int k = j; k < i; k++) {
pos[i].x_offset -= pos[k].x_advance;
pos[i].y_offset -= pos[k].y_advance;
}
else
for (unsigned int k = j + 1; k < i + 1; k++) {
pos[i].x_offset += pos[k].x_advance;
pos[i].y_offset += pos[k].y_advance;
}
}
}
void
GPOS::position_start (hb_font_t *font HB_UNUSED, hb_buffer_t *buffer)
{
unsigned int count = buffer->len;
for (unsigned int i = 0; i < count; i++)
buffer->pos[i].attach_chain() = buffer->pos[i].attach_type() = 0;
}
void
GPOS::position_finish_advances (hb_font_t *font HB_UNUSED, hb_buffer_t *buffer HB_UNUSED)
{
//_hb_buffer_assert_gsubgpos_vars (buffer);
}
void
GPOS::position_finish_offsets (hb_font_t *font HB_UNUSED, hb_buffer_t *buffer)
{
_hb_buffer_assert_gsubgpos_vars (buffer);
unsigned int len;
hb_glyph_position_t *pos = hb_buffer_get_glyph_positions (buffer, &len);
hb_direction_t direction = buffer->props.direction;
/* Handle attachments */
if (buffer->scratch_flags & HB_BUFFER_SCRATCH_FLAG_HAS_GPOS_ATTACHMENT)
for (unsigned int i = 0; i < len; i++)
propagate_attachment_offsets (pos, len, i, direction);
}
struct GPOS_accelerator_t : GPOS::accelerator_t {};
/* Out-of-class implementation for methods recursing */
#ifndef HB_NO_OT_LAYOUT
template <typename context_t>
/*static*/ typename context_t::return_t PosLookup::dispatch_recurse_func (context_t *c, unsigned int lookup_index)
{
const PosLookup &l = c->face->table.GPOS.get_relaxed ()->table->get_lookup (lookup_index);
return l.dispatch (c);
}
/*static*/ inline hb_closure_lookups_context_t::return_t PosLookup::dispatch_closure_lookups_recurse_func (hb_closure_lookups_context_t *c, unsigned this_index)
{
const PosLookup &l = c->face->table.GPOS.get_relaxed ()->table->get_lookup (this_index);
return l.closure_lookups (c, this_index);
}
/*static*/ bool PosLookup::apply_recurse_func (hb_ot_apply_context_t *c, unsigned int lookup_index)
{
const PosLookup &l = c->face->table.GPOS.get_relaxed ()->table->get_lookup (lookup_index);
unsigned int saved_lookup_props = c->lookup_props;
unsigned int saved_lookup_index = c->lookup_index;
c->set_lookup_index (lookup_index);
c->set_lookup_props (l.get_props ());
bool ret = l.dispatch (c);
c->set_lookup_index (saved_lookup_index);
c->set_lookup_props (saved_lookup_props);
return ret;
}
#endif
} /* namespace OT */
#endif /* HB_OT_LAYOUT_GPOS_TABLE_HH */