//---------------------------------------------------------------------------- // Anti-Grain Geometry (AGG) - Version 2.5 // A high quality rendering engine for C++ // Copyright (C) 2002-2006 Maxim Shemanarev // Contact: mcseem@antigrain.com // mcseemagg@yahoo.com // http://antigrain.com // // AGG is free software; you can redistribute it and/or // modify it under the terms of the GNU General Public License // as published by the Free Software Foundation; either version 2 // of the License, or (at your option) any later version. // // AGG is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with AGG; if not, write to the Free Software // Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, // MA 02110-1301, USA. //---------------------------------------------------------------------------- #ifndef AGG_PIXFMT_BGRA32_LCD_INCLUDED #define AGG_PIXFMT_BGRA32_LCD_INCLUDED #include #include "agg_basics.h" #include "agg_color_rgba.h" #include "agg_rendering_buffer.h" namespace agg { //=====================================================lcd_distribution_lut class lcd_distribution_lut { public: lcd_distribution_lut(double prim, double second, double tert) { double norm = 1.0 / (prim + second*2 + tert*2); prim *= norm; second *= norm; tert *= norm; for(unsigned i = 0; i < 256; i++) { unsigned b = (i << 8); unsigned s = round(second * b); unsigned t = round(tert * b); unsigned p = b - (2*s + 2*t); m_data[3*i + 1] = s; /* secondary */ m_data[3*i + 2] = t; /* tertiary */ m_data[3*i ] = p; /* primary */ } } unsigned convolution(const int8u* covers, int i0, int i_min, int i_max) const { unsigned sum = 0; int k_min = (i0 >= i_min + 2 ? -2 : i_min - i0); int k_max = (i0 <= i_max - 2 ? 2 : i_max - i0); for (int k = k_min; k <= k_max; k++) { /* select the primary, secondary or tertiary channel */ int channel = abs(k) % 3; int8u c = covers[i0 + k]; sum += m_data[3*c + channel]; } return (sum + 128) >> 8; } private: unsigned short m_data[256*3]; }; //========================================================pixfmt_bgra32_lcd class pixfmt_bgra32_lcd { public: typedef rgba8 color_type; typedef rendering_buffer::row_data row_data; typedef color_type::value_type value_type; typedef color_type::calc_type calc_type; //-------------------------------------------------------------------- pixfmt_bgra32_lcd(rendering_buffer& rb, const lcd_distribution_lut& lut) : m_rbuf(&rb), m_lut(&lut) { } //-------------------------------------------------------------------- unsigned width() const { return m_rbuf->width() * 3; } unsigned height() const { return m_rbuf->height(); } // This method should never be called when using the scanline_u8. // The use of scanline_p8 should be avoided because if does not works // properly for rendering fonts because single hspan are split in many // hline/hspan elements and pixel whitening happens. void blend_hline(int x, int y, unsigned len, const color_type& c, int8u cover) { } void copy_hline(int x, int y, unsigned len, const color_type& c) { int8u* p = m_rbuf->row_ptr(y) + (x / 3) * 4; for (int ilen = len; ilen > 0; p += 4, ilen -= 3) { p[0] = c.b; p[1] = c.g; p[2] = c.r; p[3] = 0xff; } } //-------------------------------------------------------------------- void blend_solid_hspan(int x, int y, unsigned len, const color_type& c, const int8u* covers) { unsigned rowlen = width(); int cx = (x - 2 >= 0 ? -2 : -x); int cx_max = (len + 2 <= rowlen ? len + 1 : rowlen - 1); int i = (x + cx) % 3; const int8u rgb[3] = { c.r, c.g, c.b }; int8u* p = m_rbuf->row_ptr(y) + (x + cx); const int pixel_index[3] = {2, 1, 0}; for (/* */; cx <= cx_max; cx += 3) { unsigned c_conv, alpha, dst_col, src_col; c_conv = m_lut->convolution(covers, cx, 0, len - 1); alpha = (c_conv + 1) * (c.a + 1); dst_col = rgb[i]; src_col = *(p + pixel_index[i]); *(p + pixel_index[i]) = (int8u)((((dst_col - src_col) * alpha) + (src_col << 16)) >> 16); i = (i + 1) % 3; c_conv = m_lut->convolution(covers, cx + 1, 0, len - 1); alpha = (c_conv + 1) * (c.a + 1); dst_col = rgb[i]; src_col = *(p + pixel_index[i]); *(p + pixel_index[i]) = (int8u)((((dst_col - src_col) * alpha) + (src_col << 16)) >> 16); i = (i + 1) % 3; c_conv = m_lut->convolution(covers, cx + 2, 0, len - 1); alpha = (c_conv + 1) * (c.a + 1); dst_col = rgb[i]; src_col = *(p + pixel_index[i]); *(p + pixel_index[i]) = (int8u)((((dst_col - src_col) * alpha) + (src_col << 16)) >> 16); i = (i + 1) % 3; p[3] = 0xff; p += 4; } } private: rendering_buffer* m_rbuf; const lcd_distribution_lut* m_lut; }; template class pixfmt_bgra32_lcd_gamma { public: typedef rgba8 color_type; typedef rendering_buffer::row_data row_data; typedef color_type::value_type value_type; typedef color_type::calc_type calc_type; //-------------------------------------------------------------------- pixfmt_bgra32_lcd_gamma(rendering_buffer& rb, const lcd_distribution_lut& lut, const Gamma& gamma) : m_rbuf(&rb), m_lut(&lut), m_gamma(gamma) { } //-------------------------------------------------------------------- unsigned width() const { return m_rbuf->width() * 3; } unsigned height() const { return m_rbuf->height(); } // This method should never be called when using the scanline_u8. // The use of scanline_p8 should be avoided because if does not works // properly for rendering fonts because single hspan are split in many // hline/hspan elements and pixel whitening happens. void blend_hline(int x, int y, unsigned len, const color_type& c, int8u cover) { } void copy_hline(int x, int y, unsigned len, const color_type& c) { int8u* p = m_rbuf->row_ptr(y) + (x / 3) * 4; for (int ilen = len; ilen > 0; p += 4, ilen -= 3) { p[0] = c.r; p[1] = c.g; p[2] = c.b; p[3] = 0xff; } } //-------------------------------------------------------------------- void blend_solid_hspan(int x, int y, unsigned len, const color_type& c, const int8u* covers) { unsigned rowlen = width(); int cx = (x - 2 >= 0 ? -2 : -x); int cx_max = (len + 2 <= rowlen ? len + 1 : rowlen - 1); int i = (x + cx) % 3; const int8u rgb[3] = { c.r, c.g, c.b }; int8u* p = m_rbuf->row_ptr(y) + (x + cx); const int pixel_index[3] = {2, 1, 0}; for (/* */; cx <= cx_max; cx += 3) { unsigned c_conv, alpha, dst_col, src_col; c_conv = m_lut->convolution(covers, cx, 0, len - 1); alpha = (c_conv + 1) * (c.a + 1); dst_col = m_gamma.dir(rgb[i]); src_col = m_gamma.dir(*(p + pixel_index[i])); *(p + pixel_index[i]) = m_gamma.inv((((dst_col - src_col) * alpha) + (src_col << 16)) >> 16); i = (i + 1) % 3; c_conv = m_lut->convolution(covers, cx + 1, 0, len - 1); alpha = (c_conv + 1) * (c.a + 1); dst_col = m_gamma.dir(rgb[i]); src_col = m_gamma.dir(*(p + pixel_index[i])); *(p + pixel_index[i]) = m_gamma.inv((((dst_col - src_col) * alpha) + (src_col << 16)) >> 16); i = (i + 1) % 3; c_conv = m_lut->convolution(covers, cx + 2, 0, len - 1); alpha = (c_conv + 1) * (c.a + 1); dst_col = m_gamma.dir(rgb[i]); src_col = m_gamma.dir(*(p + pixel_index[i])); *(p + pixel_index[i]) = m_gamma.inv((((dst_col - src_col) * alpha) + (src_col << 16)) >> 16); i = (i + 1) % 3; p[3] = 0xff; p += 4; } } private: rendering_buffer* m_rbuf; const lcd_distribution_lut* m_lut; const Gamma& m_gamma; }; } #endif