nghttp2/src/shrpx_ssl.cc

999 lines
32 KiB
C++
Raw Normal View History

2012-06-05 18:26:04 +02:00
/*
2014-03-30 12:09:21 +02:00
* nghttp2 - HTTP/2 C Library
2012-06-05 18:26:04 +02:00
*
* Copyright (c) 2012 Tatsuhiro Tsujikawa
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
* LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
* OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
* WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include "shrpx_ssl.h"
#include <sys/socket.h>
#include <netdb.h>
#include <netinet/tcp.h>
2012-06-08 15:41:24 +02:00
#include <pthread.h>
#include <vector>
#include <string>
2012-06-08 15:41:24 +02:00
#include <openssl/crypto.h>
#include <openssl/x509.h>
#include <openssl/x509v3.h>
2012-06-05 18:26:04 +02:00
#include <event2/bufferevent.h>
#include <event2/bufferevent_ssl.h>
2013-07-12 17:19:03 +02:00
#include <nghttp2/nghttp2.h>
2014-04-26 12:36:35 +02:00
#ifdef HAVE_SPDYLAY
#include <spdylay/spdylay.h>
#endif // HAVE_SPDYLAY
2012-06-05 18:26:04 +02:00
#include "shrpx_log.h"
#include "shrpx_client_handler.h"
#include "shrpx_config.h"
#include "shrpx_accesslog.h"
#include "util.h"
2013-07-12 17:19:03 +02:00
using namespace nghttp2;
2012-06-05 18:26:04 +02:00
namespace shrpx {
namespace ssl {
namespace {
int next_proto_cb(SSL *s, const unsigned char **data, unsigned int *len,
void *arg)
{
2014-06-10 16:15:29 +02:00
auto& prefs = get_config()->alpn_prefs;
*data = prefs.data();
*len = prefs.size();
2012-06-05 18:26:04 +02:00
return SSL_TLSEXT_ERR_OK;
}
} // namespace
namespace {
int verify_callback(int preverify_ok, X509_STORE_CTX *ctx)
{
if(!preverify_ok) {
int err = X509_STORE_CTX_get_error(ctx);
int depth = X509_STORE_CTX_get_error_depth(ctx);
LOG(ERROR) << "client certificate verify error:num=" << err << ":"
<< X509_verify_cert_error_string(err)
<< ":depth=" << depth;
}
return preverify_ok;
2012-06-05 18:26:04 +02:00
}
} // namespace
2014-06-10 16:15:29 +02:00
std::vector<unsigned char> set_alpn_prefs(const std::vector<char*>& protos)
{
2014-06-10 16:15:29 +02:00
unsigned char out[256];
auto ptr = out;
auto end = ptr + sizeof(out);
for(auto proto : protos) {
auto plen = strlen(proto);
2014-06-10 16:15:29 +02:00
if(ptr + plen + 1 > end) {
LOG(FATAL) << "Too long alpn list";
DIE();
}
*ptr = plen;
2014-06-10 16:15:29 +02:00
memcpy(ptr + 1, proto, plen);
ptr += plen + 1;
}
2014-06-10 16:15:29 +02:00
return std::vector<unsigned char>(out, ptr);
}
namespace {
int ssl_pem_passwd_cb(char *buf, int size, int rwflag, void *user_data)
{
auto config = static_cast<Config*>(user_data);
int len = (int)strlen(config->private_key_passwd.get());
if (size < len + 1) {
LOG(ERROR) << "ssl_pem_passwd_cb: buf is too small " << size;
return 0;
}
// Copy string including last '\0'.
memcpy(buf, config->private_key_passwd.get(), len + 1);
return len;
}
} // namespace
namespace {
int servername_callback(SSL *ssl, int *al, void *arg)
{
if(get_config()->cert_tree) {
const char *hostname = SSL_get_servername(ssl, TLSEXT_NAMETYPE_host_name);
if(hostname) {
2013-09-23 11:40:17 +02:00
auto ssl_ctx = cert_lookup_tree_lookup(get_config()->cert_tree,
hostname, strlen(hostname));
if(ssl_ctx) {
SSL_set_SSL_CTX(ssl, ssl_ctx);
}
}
}
return SSL_TLSEXT_ERR_OK;
}
} // namespace
2014-01-18 11:53:52 +01:00
namespace {
void info_callback(const SSL *ssl, int where, int ret)
{
// To mitigate possible DOS attack using lots of renegotiations, we
// disable renegotiation. Since OpenSSL does not provide an easy way
// to disable it, we check that renegotiation is started in this
// callback.
if(where & SSL_CB_HANDSHAKE_START) {
auto handler = static_cast<ClientHandler*>(SSL_get_app_data(ssl));
if(handler && handler->get_tls_handshake()) {
handler->set_tls_renegotiation(true);
if(LOG_ENABLED(INFO)) {
CLOG(INFO, handler) << "TLS renegotiation started";
}
}
}
}
} // namespace
#if OPENSSL_VERSION_NUMBER >= 0x10002000L
namespace {
int alpn_select_proto_cb(SSL *ssl,
const unsigned char **out,
unsigned char *outlen,
const unsigned char *in, unsigned int inlen,
void *arg)
{
// We assume that get_config()->npn_list contains ALPN protocol
// identifier sorted by preference order. So we just break when we
// found the first overlap.
for(auto target_proto_id : get_config()->npn_list) {
auto target_proto_len =
strlen(reinterpret_cast<const char*>(target_proto_id));
for(auto p = in, end = in + inlen; p < end;) {
auto proto_id = p + 1;
auto proto_len = *p;
if(proto_id + proto_len <= end &&
target_proto_len == proto_len &&
memcmp(target_proto_id, proto_id, proto_len) == 0) {
2014-04-26 12:36:35 +02:00
*out = reinterpret_cast<const unsigned char*>(proto_id);
*outlen = proto_len;
2014-04-26 12:36:35 +02:00
return SSL_TLSEXT_ERR_OK;
}
2014-04-26 12:36:35 +02:00
p += 1 + proto_len;
}
2014-04-26 12:36:35 +02:00
}
return SSL_TLSEXT_ERR_NOACK;
}
} // namespace
#endif // OPENSSL_VERSION_NUMBER >= 0x10002000L
namespace {
const char *tls_names[] = { "TLSv1.2", "TLSv1.1", "TLSv1.0", "SSLv3" };
const size_t tls_namelen = sizeof(tls_names)/sizeof(tls_names[0]);
const long int tls_masks[] = { SSL_OP_NO_TLSv1_2, SSL_OP_NO_TLSv1_1,
SSL_OP_NO_TLSv1, SSL_OP_NO_SSLv3 };
} // namespace
long int create_tls_proto_mask(const std::vector<char*>& tls_proto_list)
{
long int res = 0;
for(size_t i = 0; i < tls_namelen; ++i) {
size_t j;
for(j = 0; j < tls_proto_list.size(); ++j) {
if(util::strieq(tls_names[i], tls_proto_list[j])) {
break;
}
}
if(j == tls_proto_list.size()) {
res |= tls_masks[i];
}
}
return res;
}
SSL_CTX* create_ssl_context(const char *private_key_file,
const char *cert_file)
2012-06-05 18:26:04 +02:00
{
SSL_CTX *ssl_ctx;
ssl_ctx = SSL_CTX_new(SSLv23_server_method());
if(!ssl_ctx) {
2013-09-23 11:49:39 +02:00
LOG(FATAL) << ERR_error_string(ERR_get_error(), nullptr);
2012-06-05 18:26:04 +02:00
DIE();
}
2012-06-05 18:26:04 +02:00
SSL_CTX_set_options(ssl_ctx,
SSL_OP_ALL | SSL_OP_NO_SSLv2 | SSL_OP_NO_COMPRESSION |
SSL_OP_NO_SESSION_RESUMPTION_ON_RENEGOTIATION |
SSL_OP_SINGLE_ECDH_USE | SSL_OP_SINGLE_DH_USE |
SSL_OP_NO_TICKET |
get_config()->tls_proto_mask);
const unsigned char sid_ctx[] = "shrpx";
SSL_CTX_set_session_id_context(ssl_ctx, sid_ctx, sizeof(sid_ctx)-1);
SSL_CTX_set_session_cache_mode(ssl_ctx, SSL_SESS_CACHE_SERVER);
const char *ciphers;
if(get_config()->ciphers) {
ciphers = get_config()->ciphers.get();
} else {
// Recommended general purpose cipher by mozilla.
// https://wiki.mozilla.org/Security/Server_Side_TLS
ciphers = "ECDHE-RSA-AES128-GCM-SHA256:ECDHE-ECDSA-AES128-GCM-SHA256:ECDHE-RSA-AES256-GCM-SHA384:ECDHE-ECDSA-AES256-GCM-SHA384:DHE-RSA-AES128-GCM-SHA256:DHE-DSS-AES128-GCM-SHA256:kEDH+AESGCM:ECDHE-RSA-AES128-SHA256:ECDHE-ECDSA-AES128-SHA256:ECDHE-RSA-AES128-SHA:ECDHE-ECDSA-AES128-SHA:ECDHE-RSA-AES256-SHA384:ECDHE-ECDSA-AES256-SHA384:ECDHE-RSA-AES256-SHA:ECDHE-ECDSA-AES256-SHA:DHE-RSA-AES128-SHA256:DHE-RSA-AES128-SHA:DHE-DSS-AES128-SHA256:DHE-RSA-AES256-SHA256:DHE-DSS-AES256-SHA:DHE-RSA-AES256-SHA:AES128-GCM-SHA256:AES256-GCM-SHA384:ECDHE-RSA-RC4-SHA:ECDHE-ECDSA-RC4-SHA:AES128:AES256:RC4-SHA:HIGH:!aNULL:!eNULL:!EXPORT:!DES:!3DES:!MD5:!PSK";
}
SSL_CTX_set_options(ssl_ctx, SSL_OP_CIPHER_SERVER_PREFERENCE);
if(SSL_CTX_set_cipher_list(ssl_ctx, ciphers) == 0) {
LOG(FATAL) << "SSL_CTX_set_cipher_list " << ciphers << " failed: "
<< ERR_error_string(ERR_get_error(), nullptr);
DIE();
}
#ifndef OPENSSL_NO_EC
// Disabled SSL_CTX_set_ecdh_auto, because computational cost of
// chosen curve is much higher than P-256.
// #if OPENSSL_VERSION_NUMBER >= 0x10002000L
// SSL_CTX_set_ecdh_auto(ssl_ctx, 1);
// #else // OPENSSL_VERSION_NUBMER < 0x10002000L
// Use P-256, which is sufficiently secure at the time of this
// writing.
auto ecdh = EC_KEY_new_by_curve_name(NID_X9_62_prime256v1);
if(ecdh == nullptr) {
LOG(FATAL) << "EC_KEY_new_by_curv_name failed: "
<< ERR_error_string(ERR_get_error(), nullptr);
DIE();
}
SSL_CTX_set_tmp_ecdh(ssl_ctx, ecdh);
EC_KEY_free(ecdh);
// #endif // OPENSSL_VERSION_NUBMER < 0x10002000L
#endif // OPENSSL_NO_EC
if(get_config()->dh_param_file) {
// Read DH parameters from file
auto bio = BIO_new_file(get_config()->dh_param_file.get(), "r");
if(bio == nullptr) {
LOG(FATAL) << "BIO_new_file() failed: "
<< ERR_error_string(ERR_get_error(), nullptr);
DIE();
}
auto dh = PEM_read_bio_DHparams(bio, nullptr, nullptr, nullptr);
if(dh == nullptr) {
LOG(FATAL) << "PEM_read_bio_DHparams() failed: "
<< ERR_error_string(ERR_get_error(), nullptr);
DIE();
}
SSL_CTX_set_tmp_dh(ssl_ctx, dh);
DH_free(dh);
BIO_free(bio);
}
2012-06-06 14:10:13 +02:00
SSL_CTX_set_mode(ssl_ctx, SSL_MODE_ENABLE_PARTIAL_WRITE);
2012-06-05 18:26:04 +02:00
SSL_CTX_set_mode(ssl_ctx, SSL_MODE_AUTO_RETRY);
SSL_CTX_set_mode(ssl_ctx, SSL_MODE_RELEASE_BUFFERS);
if (get_config()->private_key_passwd) {
SSL_CTX_set_default_passwd_cb(ssl_ctx, ssl_pem_passwd_cb);
SSL_CTX_set_default_passwd_cb_userdata(ssl_ctx, (void *)get_config());
}
if(SSL_CTX_use_PrivateKey_file(ssl_ctx, private_key_file,
2012-06-05 18:26:04 +02:00
SSL_FILETYPE_PEM) != 1) {
LOG(FATAL) << "SSL_CTX_use_PrivateKey_file failed: "
2013-09-23 11:49:39 +02:00
<< ERR_error_string(ERR_get_error(), nullptr);
2012-06-05 18:26:04 +02:00
DIE();
}
if(SSL_CTX_use_certificate_chain_file(ssl_ctx, cert_file) != 1) {
LOG(FATAL) << "SSL_CTX_use_certificate_file failed: "
2013-09-23 11:49:39 +02:00
<< ERR_error_string(ERR_get_error(), nullptr);
2012-06-05 18:26:04 +02:00
DIE();
}
if(SSL_CTX_check_private_key(ssl_ctx) != 1) {
LOG(FATAL) << "SSL_CTX_check_private_key failed: "
2013-09-23 11:49:39 +02:00
<< ERR_error_string(ERR_get_error(), nullptr);
2012-06-05 18:26:04 +02:00
DIE();
}
if(get_config()->verify_client) {
if(get_config()->verify_client_cacert) {
if(SSL_CTX_load_verify_locations
(ssl_ctx, get_config()->verify_client_cacert.get(), nullptr) != 1) {
LOG(FATAL) << "Could not load trusted ca certificates from "
<< get_config()->verify_client_cacert.get() << ": "
<< ERR_error_string(ERR_get_error(), nullptr);
DIE();
}
// It is heard that SSL_CTX_load_verify_locations() may leave
// error even though it returns success. See
// http://forum.nginx.org/read.php?29,242540
ERR_clear_error();
auto list = SSL_load_client_CA_file
(get_config()->verify_client_cacert.get());
if(!list) {
LOG(FATAL) << "Could not load ca certificates from "
<< get_config()->verify_client_cacert.get() << ": "
<< ERR_error_string(ERR_get_error(), nullptr);
DIE();
}
SSL_CTX_set_client_CA_list(ssl_ctx, list);
}
2012-06-05 18:26:04 +02:00
SSL_CTX_set_verify(ssl_ctx,
SSL_VERIFY_PEER | SSL_VERIFY_CLIENT_ONCE |
SSL_VERIFY_FAIL_IF_NO_PEER_CERT,
verify_callback);
}
SSL_CTX_set_tlsext_servername_callback(ssl_ctx, servername_callback);
2014-01-18 11:53:52 +01:00
SSL_CTX_set_info_callback(ssl_ctx, info_callback);
// NPN advertisement
2014-06-10 16:15:29 +02:00
SSL_CTX_set_next_protos_advertised_cb(ssl_ctx, next_proto_cb, nullptr);
#if OPENSSL_VERSION_NUMBER >= 0x10002000L
// ALPN selection callback
SSL_CTX_set_alpn_select_cb(ssl_ctx, alpn_select_proto_cb, nullptr);
#endif // OPENSSL_VERSION_NUMBER >= 0x10002000L
2012-06-05 18:26:04 +02:00
return ssl_ctx;
}
namespace {
int select_next_proto_cb(SSL* ssl,
unsigned char **out, unsigned char *outlen,
const unsigned char *in, unsigned int inlen,
void *arg)
{
2013-07-12 17:19:03 +02:00
if(nghttp2_select_next_protocol(out, outlen, in, inlen) <= 0) {
*out = (unsigned char*)NGHTTP2_PROTO_VERSION_ID;
*outlen = NGHTTP2_PROTO_VERSION_ID_LEN;
}
return SSL_TLSEXT_ERR_OK;
}
} // namespace
SSL_CTX* create_ssl_client_context()
{
SSL_CTX *ssl_ctx;
ssl_ctx = SSL_CTX_new(SSLv23_client_method());
if(!ssl_ctx) {
2013-09-23 11:49:39 +02:00
LOG(FATAL) << ERR_error_string(ERR_get_error(), nullptr);
DIE();
}
SSL_CTX_set_options(ssl_ctx,
SSL_OP_ALL | SSL_OP_NO_SSLv2 | SSL_OP_NO_COMPRESSION |
SSL_OP_NO_SESSION_RESUMPTION_ON_RENEGOTIATION |
get_config()->tls_proto_mask);
const char *ciphers;
if(get_config()->ciphers) {
ciphers = get_config()->ciphers.get();
} else {
ciphers = "HIGH:!aNULL:!eNULL";
}
if(SSL_CTX_set_cipher_list(ssl_ctx, ciphers) == 0) {
LOG(FATAL) << "SSL_CTX_set_cipher_list " << ciphers << " failed: "
<< ERR_error_string(ERR_get_error(), nullptr);
DIE();
}
SSL_CTX_set_mode(ssl_ctx, SSL_MODE_ENABLE_PARTIAL_WRITE);
SSL_CTX_set_mode(ssl_ctx, SSL_MODE_AUTO_RETRY);
SSL_CTX_set_mode(ssl_ctx, SSL_MODE_RELEASE_BUFFERS);
if(SSL_CTX_set_default_verify_paths(ssl_ctx) != 1) {
LOG(WARNING) << "Could not load system trusted ca certificates: "
2013-09-23 11:49:39 +02:00
<< ERR_error_string(ERR_get_error(), nullptr);
}
if(get_config()->cacert) {
if(SSL_CTX_load_verify_locations
(ssl_ctx, get_config()->cacert.get(), nullptr) != 1) {
LOG(FATAL) << "Could not load trusted ca certificates from "
<< get_config()->cacert.get() << ": "
2013-09-23 11:49:39 +02:00
<< ERR_error_string(ERR_get_error(), nullptr);
DIE();
}
}
if(get_config()->client_private_key_file) {
if(SSL_CTX_use_PrivateKey_file(ssl_ctx,
get_config()->client_private_key_file.get(),
SSL_FILETYPE_PEM) != 1) {
LOG(FATAL) << "Could not load client private key from "
<< get_config()->client_private_key_file.get() << ": "
<< ERR_error_string(ERR_get_error(), nullptr);
DIE();
}
}
if(get_config()->client_cert_file) {
if(SSL_CTX_use_certificate_chain_file
(ssl_ctx, get_config()->client_cert_file.get()) != 1) {
LOG(FATAL) << "Could not load client certificate from "
<< get_config()->client_cert_file.get() << ": "
<< ERR_error_string(ERR_get_error(), nullptr);
DIE();
}
}
// NPN selection callback
2013-09-23 11:49:39 +02:00
SSL_CTX_set_next_proto_select_cb(ssl_ctx, select_next_proto_cb, nullptr);
#if OPENSSL_VERSION_NUMBER >= 0x10002000L
2014-06-10 16:15:29 +02:00
// ALPN advertisement; We only advertise HTTP/2
unsigned char proto_list[256];
proto_list[0] = NGHTTP2_PROTO_VERSION_ID_LEN;
memcpy(proto_list + 1, NGHTTP2_PROTO_VERSION_ID,
NGHTTP2_PROTO_VERSION_ID_LEN);
auto proto_list_len = 1 + NGHTTP2_PROTO_VERSION_ID_LEN;
2014-06-10 16:15:29 +02:00
SSL_CTX_set_alpn_protos(ssl_ctx, proto_list, proto_list_len);
#endif // OPENSSL_VERSION_NUMBER >= 0x10002000L
return ssl_ctx;
}
ClientHandler* accept_connection
(event_base *evbase,
bufferevent_rate_limit_group *rate_limit_group,
SSL_CTX *ssl_ctx,
evutil_socket_t fd,
sockaddr *addr, int addrlen)
2012-06-05 18:26:04 +02:00
{
char host[NI_MAXHOST];
int rv;
2013-09-23 11:49:39 +02:00
rv = getnameinfo(addr, addrlen, host, sizeof(host), nullptr, 0,
NI_NUMERICHOST);
2012-06-05 18:26:04 +02:00
if(rv == 0) {
if(get_config()->accesslog) {
upstream_connect(host);
}
int val = 1;
rv = setsockopt(fd, IPPROTO_TCP, TCP_NODELAY,
reinterpret_cast<char *>(&val), sizeof(val));
if(rv == -1) {
LOG(WARNING) << "Setting option TCP_NODELAY failed: errno="
<< errno;
}
2013-09-23 11:40:17 +02:00
SSL *ssl = nullptr;
bufferevent *bev;
if(ssl_ctx) {
ssl = SSL_new(ssl_ctx);
if(!ssl) {
LOG(ERROR) << "SSL_new() failed: "
2013-09-23 11:49:39 +02:00
<< ERR_error_string(ERR_get_error(), nullptr);
return nullptr;
}
2014-06-12 16:39:58 +02:00
if(SSL_set_fd(ssl, fd) == 0) {
LOG(ERROR) << "SSL_set_fd() failed: "
<< ERR_error_string(ERR_get_error(), nullptr);
SSL_free(ssl);
return nullptr;
}
bev = bufferevent_openssl_socket_new(evbase, fd, ssl,
BUFFEREVENT_SSL_ACCEPTING,
BEV_OPT_DEFER_CALLBACKS);
} else {
bev = bufferevent_socket_new(evbase, fd, BEV_OPT_DEFER_CALLBACKS);
}
if(!bev) {
LOG(ERROR) << "bufferevent_socket_new() failed";
if(ssl) {
SSL_free(ssl);
}
return nullptr;
}
return new ClientHandler(bev, rate_limit_group, fd, ssl, host);
2012-06-05 18:26:04 +02:00
} else {
LOG(ERROR) << "getnameinfo() failed: " << gai_strerror(rv);
return nullptr;
2012-06-05 18:26:04 +02:00
}
}
namespace {
bool tls_hostname_match(const char *pattern, const char *hostname)
{
const char *ptWildcard = strchr(pattern, '*');
2013-09-23 11:40:17 +02:00
if(ptWildcard == nullptr) {
return util::strieq(pattern, hostname);
}
const char *ptLeftLabelEnd = strchr(pattern, '.');
bool wildcardEnabled = true;
// Do case-insensitive match. At least 2 dots are required to enable
// wildcard match. Also wildcard must be in the left-most label.
// Don't attempt to match a presented identifier where the wildcard
// character is embedded within an A-label.
if(ptLeftLabelEnd == 0 || strchr(ptLeftLabelEnd+1, '.') == 0 ||
ptLeftLabelEnd < ptWildcard || util::istartsWith(pattern, "xn--")) {
wildcardEnabled = false;
}
if(!wildcardEnabled) {
return util::strieq(pattern, hostname);
}
const char *hnLeftLabelEnd = strchr(hostname, '.');
if(hnLeftLabelEnd == 0 || !util::strieq(ptLeftLabelEnd, hnLeftLabelEnd)) {
return false;
}
// Perform wildcard match. Here '*' must match at least one
// character.
if(hnLeftLabelEnd - hostname < ptLeftLabelEnd - pattern) {
return false;
}
return util::istartsWith(hostname, hnLeftLabelEnd, pattern, ptWildcard) &&
util::iendsWith(hostname, hnLeftLabelEnd, ptWildcard+1, ptLeftLabelEnd);
}
} // namespace
namespace {
int verify_hostname(const char *hostname,
const sockaddr_union *su,
size_t salen,
const std::vector<std::string>& dns_names,
const std::vector<std::string>& ip_addrs,
const std::string& common_name)
{
if(util::numeric_host(hostname)) {
if(ip_addrs.empty()) {
return util::strieq(common_name.c_str(), hostname) ? 0 : -1;
}
const void *saddr;
switch(su->storage.ss_family) {
case AF_INET:
saddr = &su->in.sin_addr;
break;
case AF_INET6:
saddr = &su->in6.sin6_addr;
break;
default:
return -1;
}
for(size_t i = 0; i < ip_addrs.size(); ++i) {
if(salen == ip_addrs[i].size() &&
memcmp(saddr, ip_addrs[i].c_str(), salen) == 0) {
return 0;
}
}
} else {
if(dns_names.empty()) {
return tls_hostname_match(common_name.c_str(), hostname) ? 0 : -1;
}
for(size_t i = 0; i < dns_names.size(); ++i) {
if(tls_hostname_match(dns_names[i].c_str(), hostname)) {
return 0;
}
}
}
return -1;
}
} // namespace
void get_altnames(X509 *cert,
std::vector<std::string>& dns_names,
std::vector<std::string>& ip_addrs,
std::string& common_name)
{
GENERAL_NAMES *altnames =
static_cast<GENERAL_NAMES*>
2013-09-23 11:49:39 +02:00
(X509_get_ext_d2i(cert, NID_subject_alt_name, nullptr, nullptr));
if(altnames) {
util::auto_delete<GENERAL_NAMES*> altnames_deleter(altnames,
GENERAL_NAMES_free);
size_t n = sk_GENERAL_NAME_num(altnames);
for(size_t i = 0; i < n; ++i) {
const GENERAL_NAME *altname = sk_GENERAL_NAME_value(altnames, i);
if(altname->type == GEN_DNS) {
const char *name;
name = reinterpret_cast<char*>(ASN1_STRING_data(altname->d.ia5));
if(!name) {
continue;
}
size_t len = ASN1_STRING_length(altname->d.ia5);
if(std::find(name, name+len, '\0') != name+len) {
// Embedded NULL is not permitted.
continue;
}
dns_names.push_back(std::string(name, len));
} else if(altname->type == GEN_IPADD) {
const unsigned char *ip_addr = altname->d.iPAddress->data;
if(!ip_addr) {
continue;
}
size_t len = altname->d.iPAddress->length;
ip_addrs.push_back(std::string(reinterpret_cast<const char*>(ip_addr),
len));
}
}
}
X509_NAME *subjectname = X509_get_subject_name(cert);
if(!subjectname) {
LOG(WARNING) << "Could not get X509 name object from the certificate.";
return;
}
int lastpos = -1;
while(1) {
lastpos = X509_NAME_get_index_by_NID(subjectname, NID_commonName,
lastpos);
if(lastpos == -1) {
break;
}
X509_NAME_ENTRY *entry = X509_NAME_get_entry(subjectname, lastpos);
unsigned char *out;
int outlen = ASN1_STRING_to_UTF8(&out, X509_NAME_ENTRY_get_data(entry));
if(outlen < 0) {
continue;
}
if(std::find(out, out+outlen, '\0') != out+outlen) {
// Embedded NULL is not permitted.
continue;
}
common_name.assign(&out[0], &out[outlen]);
OPENSSL_free(out);
break;
}
}
int check_cert(SSL *ssl)
{
2013-09-23 11:40:17 +02:00
auto cert = SSL_get_peer_certificate(ssl);
if(!cert) {
LOG(ERROR) << "No certificate found";
return -1;
}
util::auto_delete<X509*> cert_deleter(cert, X509_free);
long verify_res = SSL_get_verify_result(ssl);
if(verify_res != X509_V_OK) {
LOG(ERROR) << "Certificate verification failed: "
<< X509_verify_cert_error_string(verify_res);
return -1;
}
std::string common_name;
std::vector<std::string> dns_names;
std::vector<std::string> ip_addrs;
get_altnames(cert, dns_names, ip_addrs, common_name);
if(verify_hostname(get_config()->downstream_host.get(),
&get_config()->downstream_addr,
get_config()->downstream_addrlen,
dns_names, ip_addrs, common_name) != 0) {
LOG(ERROR) << "Certificate verification failed: hostname does not match";
return -1;
}
return 0;
}
CertLookupTree* cert_lookup_tree_new()
{
2013-09-23 11:40:17 +02:00
auto tree = new CertLookupTree();
auto root = new CertNode();
root->ssl_ctx = 0;
root->str = 0;
root->first = root->last = 0;
tree->root = root;
return tree;
}
namespace {
void cert_node_del(CertNode *node)
{
2013-09-23 11:40:17 +02:00
for(auto& a : node->next) {
cert_node_del(a);
}
delete node;
}
} // namespace
void cert_lookup_tree_del(CertLookupTree *lt)
{
cert_node_del(lt->root);
2013-09-23 11:40:17 +02:00
for(auto& s : lt->hosts) {
delete [] s;
}
delete lt;
}
namespace {
// The |offset| is the index in the hostname we are examining. We are
// going to scan from |offset| in backwards.
void cert_lookup_tree_add_cert(CertLookupTree *lt, CertNode *node,
SSL_CTX *ssl_ctx,
char *hostname, size_t len, int offset)
{
int i, next_len = node->next.size();
char c = hostname[offset];
2013-09-23 11:40:17 +02:00
CertNode *cn = nullptr;
for(i = 0; i < next_len; ++i) {
cn = node->next[i];
if(cn->str[cn->first] == c) {
break;
}
}
if(i == next_len) {
if(c == '*') {
// We assume hostname as wildcard hostname when first '*' is
// encountered. Note that as per RFC 6125 (6.4.3), there are
// some restrictions for wildcard hostname. We just ignore
// these rules here but do the proper check when we do the
// match.
node->wildcard_certs.push_back(std::make_pair(hostname, ssl_ctx));
} else {
int j;
2013-09-23 11:40:17 +02:00
auto new_node = new CertNode();
new_node->str = hostname;
new_node->first = offset;
// If wildcard is found, set the region before it because we
// don't include it in [first, last).
for(j = offset; j >= 0 && hostname[j] != '*'; --j);
new_node->last = j;
if(j == -1) {
new_node->ssl_ctx = ssl_ctx;
} else {
2013-09-23 11:40:17 +02:00
new_node->ssl_ctx = nullptr;
new_node->wildcard_certs.push_back(std::make_pair(hostname, ssl_ctx));
}
node->next.push_back(new_node);
}
} else {
int j;
for(i = cn->first, j = offset; i > cn->last && j >= 0 &&
cn->str[i] == hostname[j]; --i, --j);
if(i == cn->last) {
if(j == -1) {
if(cn->ssl_ctx) {
// same hostname, we don't overwrite exiting ssl_ctx
} else {
cn->ssl_ctx = ssl_ctx;
}
} else {
// The existing hostname is a suffix of this hostname.
// Continue matching at potion j.
cert_lookup_tree_add_cert(lt, cn, ssl_ctx, hostname, len, j);
}
} else {
2013-09-23 11:40:17 +02:00
auto new_node = new CertNode();
new_node->ssl_ctx = cn->ssl_ctx;
new_node->str = cn->str;
new_node->first = i;
new_node->last = cn->last;
new_node->wildcard_certs.swap(cn->wildcard_certs);
2013-02-15 18:33:16 +01:00
new_node->next.swap(cn->next);
cn->next.push_back(new_node);
cn->last = i;
if(j == -1) {
// This hostname is a suffix of the existing hostname.
cn->ssl_ctx = ssl_ctx;
} else {
// This hostname and existing one share suffix.
2013-09-23 11:40:17 +02:00
cn->ssl_ctx = nullptr;
cert_lookup_tree_add_cert(lt, cn, ssl_ctx, hostname, len, j);
}
}
}
}
} // namespace
void cert_lookup_tree_add_cert(CertLookupTree *lt, SSL_CTX *ssl_ctx,
const char *hostname, size_t len)
{
if(len == 0) {
return;
}
// Copy hostname including terminal NULL
char *host_copy = new char[len + 1];
for(size_t i = 0; i < len; ++i) {
host_copy[i] = util::lowcase(hostname[i]);
}
host_copy[len] = '\0';
lt->hosts.push_back(host_copy);
cert_lookup_tree_add_cert(lt, lt->root, ssl_ctx, host_copy, len, len-1);
}
namespace {
SSL_CTX* cert_lookup_tree_lookup(CertLookupTree *lt, CertNode *node,
const char *hostname, size_t len, int offset)
{
int i, j;
for(i = node->first, j = offset; i > node->last && j >= 0 &&
node->str[i] == util::lowcase(hostname[j]); --i, --j);
2013-09-23 11:40:17 +02:00
if(i != node->last) {
return nullptr;
}
if(j == -1) {
if(node->ssl_ctx) {
// exact match
return node->ssl_ctx;
} else {
2013-09-23 11:40:17 +02:00
// Do not perform wildcard-match because '*' must match at least
// one character.
return nullptr;
}
}
for(auto& wildcert : node->wildcard_certs) {
if(tls_hostname_match(wildcert.first, hostname)) {
return wildcert.second;
}
}
char c = util::lowcase(hostname[j]);
for(auto& next_node : node->next) {
if(next_node->str[next_node->first] == c) {
return cert_lookup_tree_lookup(lt, next_node, hostname, len, j);
}
}
2013-09-23 11:40:17 +02:00
return nullptr;
}
} // namespace
SSL_CTX* cert_lookup_tree_lookup(CertLookupTree *lt,
const char *hostname, size_t len)
{
return cert_lookup_tree_lookup(lt, lt->root, hostname, len, len-1);
}
int cert_lookup_tree_add_cert_from_file(CertLookupTree *lt, SSL_CTX *ssl_ctx,
const char *certfile)
{
2013-09-23 11:40:17 +02:00
auto bio = BIO_new(BIO_s_file());
if(!bio) {
LOG(ERROR) << "BIO_new failed";
return -1;
}
util::auto_delete<BIO*> bio_deleter(bio, BIO_vfree);
if(!BIO_read_filename(bio, certfile)) {
LOG(ERROR) << "Could not read certificate file '" << certfile << "'";
return -1;
}
2013-09-23 11:40:17 +02:00
auto cert = PEM_read_bio_X509(bio, nullptr, nullptr, nullptr);
if(!cert) {
LOG(ERROR) << "Could not read X509 structure from file '"
<< certfile << "'";
return -1;
}
util::auto_delete<X509*> cert_deleter(cert, X509_free);
std::string common_name;
std::vector<std::string> dns_names;
std::vector<std::string> ip_addrs;
get_altnames(cert, dns_names, ip_addrs, common_name);
2013-09-23 11:40:17 +02:00
for(auto& dns_name : dns_names) {
cert_lookup_tree_add_cert(lt, ssl_ctx, dns_name.c_str(), dns_name.size());
}
cert_lookup_tree_add_cert(lt, ssl_ctx, common_name.c_str(),
common_name.size());
return 0;
}
bool in_proto_list(const std::vector<char*>& protos,
const unsigned char *needle, size_t len)
{
for(auto proto : protos) {
if(strlen(proto) == len && memcmp(proto, needle, len) == 0) {
return true;
}
}
return false;
}
// This enum was generated by mkcipherlist.py
enum {
TLS_DHE_RSA_WITH_AES_128_GCM_SHA256 = 0x009Eu,
TLS_DHE_RSA_WITH_AES_256_GCM_SHA384 = 0x009Fu,
TLS_DHE_DSS_WITH_AES_128_GCM_SHA256 = 0x00A2u,
TLS_DHE_DSS_WITH_AES_256_GCM_SHA384 = 0x00A3u,
TLS_DHE_PSK_WITH_AES_128_GCM_SHA256 = 0x00AAu,
TLS_DHE_PSK_WITH_AES_256_GCM_SHA384 = 0x00ABu,
TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 = 0xC02Bu,
TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 = 0xC02Cu,
TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 = 0xC02Fu,
TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 = 0xC030u,
TLS_DHE_RSA_WITH_ARIA_128_GCM_SHA256 = 0xC052u,
TLS_DHE_RSA_WITH_ARIA_256_GCM_SHA384 = 0xC053u,
TLS_DHE_DSS_WITH_ARIA_128_GCM_SHA256 = 0xC056u,
TLS_DHE_DSS_WITH_ARIA_256_GCM_SHA384 = 0xC057u,
TLS_ECDHE_ECDSA_WITH_ARIA_128_GCM_SHA256 = 0xC05Cu,
TLS_ECDHE_ECDSA_WITH_ARIA_256_GCM_SHA384 = 0xC05Du,
TLS_ECDHE_RSA_WITH_ARIA_128_GCM_SHA256 = 0xC060u,
TLS_ECDHE_RSA_WITH_ARIA_256_GCM_SHA384 = 0xC061u,
TLS_DHE_PSK_WITH_ARIA_128_GCM_SHA256 = 0xC06Cu,
TLS_DHE_PSK_WITH_ARIA_256_GCM_SHA384 = 0xC06Du,
TLS_DHE_RSA_WITH_CAMELLIA_128_GCM_SHA256 = 0xC07Cu,
TLS_DHE_RSA_WITH_CAMELLIA_256_GCM_SHA384 = 0xC07Du,
TLS_DHE_DSS_WITH_CAMELLIA_128_GCM_SHA256 = 0xC080u,
TLS_DHE_DSS_WITH_CAMELLIA_256_GCM_SHA384 = 0xC081u,
TLS_ECDHE_ECDSA_WITH_CAMELLIA_128_GCM_SHA256 = 0xC086u,
TLS_ECDHE_ECDSA_WITH_CAMELLIA_256_GCM_SHA384 = 0xC087u,
TLS_ECDHE_RSA_WITH_CAMELLIA_128_GCM_SHA256 = 0xC08Au,
TLS_ECDHE_RSA_WITH_CAMELLIA_256_GCM_SHA384 = 0xC08Bu,
TLS_DHE_PSK_WITH_CAMELLIA_128_GCM_SHA256 = 0xC090u,
TLS_DHE_PSK_WITH_CAMELLIA_256_GCM_SHA384 = 0xC091u,
};
bool check_http2_requirement(SSL *ssl)
{
auto tls_ver = SSL_version(ssl);
switch(tls_ver) {
case TLS1_1_VERSION:
case TLS1_2_VERSION:
break;
default:
LOG(INFO) << "TLSv1.2 or TLSv1.1 was not negotiated. "
<< "HTTP/2 must not be negotiated.";
return false;
}
auto cipher = SSL_get_current_cipher(ssl);
switch(SSL_CIPHER_get_id(cipher) & 0xffffu) {
// This case labels were generated by mkcipherlist.py
case TLS_DHE_RSA_WITH_AES_128_GCM_SHA256:
case TLS_DHE_RSA_WITH_AES_256_GCM_SHA384:
case TLS_DHE_DSS_WITH_AES_128_GCM_SHA256:
case TLS_DHE_DSS_WITH_AES_256_GCM_SHA384:
case TLS_DHE_PSK_WITH_AES_128_GCM_SHA256:
case TLS_DHE_PSK_WITH_AES_256_GCM_SHA384:
case TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256:
case TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384:
case TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256:
case TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384:
case TLS_DHE_RSA_WITH_ARIA_128_GCM_SHA256:
case TLS_DHE_RSA_WITH_ARIA_256_GCM_SHA384:
case TLS_DHE_DSS_WITH_ARIA_128_GCM_SHA256:
case TLS_DHE_DSS_WITH_ARIA_256_GCM_SHA384:
case TLS_ECDHE_ECDSA_WITH_ARIA_128_GCM_SHA256:
case TLS_ECDHE_ECDSA_WITH_ARIA_256_GCM_SHA384:
case TLS_ECDHE_RSA_WITH_ARIA_128_GCM_SHA256:
case TLS_ECDHE_RSA_WITH_ARIA_256_GCM_SHA384:
case TLS_DHE_PSK_WITH_ARIA_128_GCM_SHA256:
case TLS_DHE_PSK_WITH_ARIA_256_GCM_SHA384:
case TLS_DHE_RSA_WITH_CAMELLIA_128_GCM_SHA256:
case TLS_DHE_RSA_WITH_CAMELLIA_256_GCM_SHA384:
case TLS_DHE_DSS_WITH_CAMELLIA_128_GCM_SHA256:
case TLS_DHE_DSS_WITH_CAMELLIA_256_GCM_SHA384:
case TLS_ECDHE_ECDSA_WITH_CAMELLIA_128_GCM_SHA256:
case TLS_ECDHE_ECDSA_WITH_CAMELLIA_256_GCM_SHA384:
case TLS_ECDHE_RSA_WITH_CAMELLIA_128_GCM_SHA256:
case TLS_ECDHE_RSA_WITH_CAMELLIA_256_GCM_SHA384:
case TLS_DHE_PSK_WITH_CAMELLIA_128_GCM_SHA256:
case TLS_DHE_PSK_WITH_CAMELLIA_256_GCM_SHA384:
break;
default:
return false;
}
// TODO Check number of bits
return true;
}
2012-06-05 18:26:04 +02:00
} // namespace ssl
} // namespace shrpx