nghttp2 library itself now accept octet header/value pairs,
completely not restricted by HTTP/1 header name/value rule.
The applications may impose restriction about them using
validators.
Now, in nghttp2_on_frame_recv_callback, nva and nvlen in
HEADERS and PUSH_PROMISE frames are always NULL and 0 respectively.
The header name/value pairs are emitted successive
nghttp2_on_header_callback functions. The end of header fields are
signaled with nghttp2_on_end_headers_callback function.
Since NGHTTP2_ERR_PAUSE for nghttp2_on_frame_recv_callback is
introduced to handle header block, it is now deprecated.
Instead, nghttp2_on_header_callback can be paused using
NGHTTP2_ERR_PAUSE.
We thought that this kind of rewrite can be achieved by the configuration
of the backend severs, but in some configuration, however, it may get
complicated. So we decided to implement at least location rewrite in
nghttpx.
This commit also contains a fix to the bug which prevents the http2
backend request from concatenating header fields with the same value.
This commit also changes SPDY's flow control size. Previously,
the size for SPDY is the same amount of bytes with HTTP/2.
For example, --frontend-http2-upstream-window-bits=N,
the window size is 2**N - 1. Now SPDY code uses 2**N.
spdy_data_read_callback in SpdyDownstreamConnection calls
SpdyUpstream::resume_read() which submits WINDOW_UPDATE, but after
that they are not call SpdyUpstream::send(). This means that if no
pending outgoing data in upstream, then WINDOW_UPDATE is blocked until
SpdyUpstream::send() from somewhere. This change adds
SpdyUpstream::send() to resume_read() so that WINDOW_UPDATE is not
blocked.
This change fixes upstream RST_STREAM is blocked until
SpdyUpstream::send() is called. Now downstream REFUSED_STREAM is
propagated to upstream client so that client can reset request. The
RST_STREAM error code when downstream went wrong is changed from
CANCEL to INTERNAL_ERROR.
With --spdy-bridge option, it listens SPDY/HTTPS connections from
front end and forwards them to the backend in SPDY. The usage will be
written later. This change fixes the crash when more than 2
outstanding SpdyDownstreamConnection objects are added to SpdySession
and establishing connection to SPDY backend is failed.
INFO log and its surrounding code are now guarded by
LOG_ENABLED(SEVERITY) macro so that they don't run if log level
threshold is higher. This increases performance because log formatting
is somewhat expensive.
Added macros which log messages from the following components are
prefixed with their component name + object pointer address:
ListenHandler: LISTEN
ThreadEventReceiver: THREAD_RECV
Upstream: UPSTREAM
Downstream: DOWNSTREAM
DownstreamConnection: DCONN
SpdySession: DSPDY
In client mode, now SPDY connection to the backend server is
established per thread. The frontend connections which belong to the
same thread share the SPDY connection.
With --client-mode option, shrpx now accepts unencrypted HTTP
connections and communicates with backend server in SPDY. In short,
this is the "reversed" operation mode against normal mode. This may
be useful for testing purpose because it can sit between HTTP client
and shrpx "normal" mode.
The on_ctrl_not_send_callback, on_ctrl_recv_parse_error_callback and
on_unknown_ctrl_recv_callback were added. The latter 2 callbacks are
purely debugging purpose. In on_ctrl_not_send_callback, If sending
SYN_REPLY failed, issue RST_STREAM to avoid a stream hanging around.
To distinguish the to-be-installed programs and non-installable
example source code, the former programs, spdycat, spdydyd and shrpx,
were moved to src directory. spdynative was removed from Makefile
because it does not appeal to any users much.