Now it returns only stream's available remote window size, without
considering connection level window size. For connection-level window
size, nghttp2_session_get_remote_window_size() is added by this
commit. To get old behavior of
nghttp2_session_get_stream_remote_window_size() is use
min(nghttp2_session_get_stream_remote_window_size(),
nghttp2_session_get_remote_window_size()). The reason of this change
is that it is desirable to know just stream level window size without
taking into connection level window size. This is useful for
debugging purpose.
Motivation:
The send window size is currently fixed by a macro at compile time.
In order for users of the library to impact the send window size they
would have to change a macro at compile time. The window size may be dynamic
depending on the environment and deployment scheme. The library users
currently have no way to change this parameter.
Modifications:
Add a new optional callback method which is called before data is sent to
obtain the desired send window size. The callback return value will be
subject to a range check for the current session, stream, and settings
limits defined by flow control.
Result:
Library users have control over their send sizes.
Previously returning NGHTTP2_ERR_TEMPORAL_CALLBACK_FAILURE from
on_header_callback moves input offset badly and it causes header
decompression error on the subsequent frames. This commit fix this
bug.
This commit makes handling of outgoing HEADERS and PUSH_PROMISE in the
same priority of other frames on the stream, so these frames are
processed in the order they are submitted. This allows application to
submit frames to a stream returned by nghttp2_submit_{request,
headers, push_promise} immediately. The only exception is
WINDOW_UPDATA frame, which requires nghttp2_stream object, which is
not created yet.
Reworked no automatic WINDOW_UPDATE feature. We added new API
nghttp2_session_consume() which tells the library how many bytes are
consumed by the application. Instead of submitting WINDOW_UPDATE by
the application, the library is now responsible to submit
WINDOW_UPDATE based on consumed bytes. This is more reliable method,
since it enables us to properly send WINDOW_UPDATE for stream and
connection individually. The previous implementation of nghttpx had
broken connection window management.
Previously we just assumed that if same settings ID is found in
SETTINGS, it is enough to process last seen entry. But it turns out
it is not enough for SETTINGS_HEADER_TABLE_SIZE. If we have 0 and
4096 for SETTINGS_HEADER_TABLE_SIZE in one SETTINGS, we must first
shrink dynamic table to 0 and then enlarge it to 4096. This means
that we have to remember the minimum value and last value.
Add last_stream_id parameter to nghttp2_submit_goaway(). To terminate
connection immediately with application chosen last stream ID,
nghttp2_session_terminate_session2() was added.
ALTSVC and BLOCKED frames are now extension frames. To add new
extension frame without modifying nghttp2_frame union, which causes so
name bump, we separated extension frames from core frames.
nghttp2_frame includes generic nghttp2_extension. The payload member
of nghttp2_extension will point to the structure of extension frame
payload. The frame types of extension frames are defined in
nghttp2_ext_frame_type.
Previously we use 2 separate buffer for each name and value. The
problem is we would waste buffer space for name because it is usually
small. Also tuning buffer size for each buffer separately is not
elegant and current HTTP server practice is that one buffer for 1
name/value pair. This commit unifies 2 buffers into 1.
We simulate resource sharing by decreasing weight. The thing is if
weight is wrapped, that item continues to send DATA until its weight
gets lowered under the other items. This commits fix this issue.
Previously stream ID was assigned just before HEADERS or PUSH_PROMISE
was serialized and nghttp2_submit_{request, headers, push_promise} did
not return stream ID. The application has to check assigned stream ID
using before_frame_send_callback. Now it is apparent that priority is
meant to DATA transfer only. Also application can reorder the
requests if it wants. Therefore we can assign stream ID in
nghttp2_submit_* functions and return stream ID from them. With this
change, now application does not have to check stream ID using
before_frame_send_callback and its code will be simplified.
The library interface supports compressed DATA. The library does not
deflate nor inflate data payload. When sending data, an application
has to compress data and set NGHTTP2_DATA_FLAG_COMPRESSED to
data_flags parameter in nghttp2_data_source_read_callback. On
receiving, flags parameter in nghttp2_on_data_chunk_recv_callback
includes NGHTTP2_FLAG_COMPRESSED. An application should check the
flags and inflate data as necessary. Since compression context is per
frame, when DATA is seen in nghttp2_on_frame_recv_callback, an
application should reset compression context.
If stream with dpri value of no_data, we check any its descendant has
stream with dpri value of top. If so, we have to distribute of its
portion of weight to its descendants.
nghttp2_submit_{headers,request}: Return NGHTTP2_ERR_INVAILD_ARGUMENT
if pri_spec->type is invalid.
nghttp2_submit_push_promise: Return NGHTTP2_ERR_PROTO if issued by
client.
nghttp2_submit_altsvc: Return NGHTTP2_ERR_PROTO instead of
NGHTTP2_ERR_INVALID_STATE if issued by client.