/* * nghttp2 - HTTP/2 C Library * * Copyright (c) 2012 Tatsuhiro Tsujikawa * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sublicense, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE * LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION * OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ #include "util.h" #ifdef HAVE_TIME_H # include #endif // HAVE_TIME_H #include #ifdef HAVE_SYS_SOCKET_H # include #endif // HAVE_SYS_SOCKET_H #ifdef HAVE_NETDB_H # include #endif // HAVE_NETDB_H #include #ifdef HAVE_FCNTL_H # include #endif // HAVE_FCNTL_H #ifdef HAVE_NETINET_IN_H # include #endif // HAVE_NETINET_IN_H #ifdef _WIN32 # include #else // !_WIN32 # include #endif // !_WIN32 #ifdef HAVE_ARPA_INET_H # include #endif // HAVE_ARPA_INET_H #include #include #include #include #include #include #include #include #include #include #include "ssl_compat.h" #include "timegm.h" namespace nghttp2 { namespace util { #ifndef _WIN32 namespace { int nghttp2_inet_pton(int af, const char *src, void *dst) { return inet_pton(af, src, dst); } } // namespace #else // _WIN32 namespace { // inet_pton-wrapper for Windows int nghttp2_inet_pton(int af, const char *src, void *dst) { # if _WIN32_WINNT >= 0x0600 return InetPtonA(af, src, dst); # else // the function takes a 'char*', so we need to make a copy char addr[INET6_ADDRSTRLEN + 1]; strncpy(addr, src, sizeof(addr)); addr[sizeof(addr) - 1] = 0; int size = sizeof(struct in6_addr); if (WSAStringToAddress(addr, af, nullptr, (LPSOCKADDR)dst, &size) == 0) return 1; return 0; # endif } } // namespace #endif // _WIN32 const char UPPER_XDIGITS[] = "0123456789ABCDEF"; bool in_rfc3986_unreserved_chars(const char c) { static constexpr char unreserved[] = {'-', '.', '_', '~'}; return is_alpha(c) || is_digit(c) || std::find(std::begin(unreserved), std::end(unreserved), c) != std::end(unreserved); } bool in_rfc3986_sub_delims(const char c) { static constexpr char sub_delims[] = {'!', '$', '&', '\'', '(', ')', '*', '+', ',', ';', '='}; return std::find(std::begin(sub_delims), std::end(sub_delims), c) != std::end(sub_delims); } std::string percent_encode(const unsigned char *target, size_t len) { std::string dest; for (size_t i = 0; i < len; ++i) { unsigned char c = target[i]; if (in_rfc3986_unreserved_chars(c)) { dest += c; } else { dest += '%'; dest += UPPER_XDIGITS[c >> 4]; dest += UPPER_XDIGITS[(c & 0x0f)]; } } return dest; } std::string percent_encode(const std::string &target) { return percent_encode(reinterpret_cast(target.c_str()), target.size()); } bool in_token(char c) { static constexpr char extra[] = {'!', '#', '$', '%', '&', '\'', '*', '+', '-', '.', '^', '_', '`', '|', '~'}; return is_alpha(c) || is_digit(c) || std::find(std::begin(extra), std::end(extra), c) != std::end(extra); } bool in_attr_char(char c) { static constexpr char bad[] = {'*', '\'', '%'}; return util::in_token(c) && std::find(std::begin(bad), std::end(bad), c) == std::end(bad); } StringRef percent_encode_token(BlockAllocator &balloc, const StringRef &target) { auto iov = make_byte_ref(balloc, target.size() * 3 + 1); auto p = percent_encode_token(iov.base, target); *p = '\0'; return StringRef{iov.base, p}; } size_t percent_encode_tokenlen(const StringRef &target) { size_t n = 0; for (auto first = std::begin(target); first != std::end(target); ++first) { uint8_t c = *first; if (c != '%' && in_token(c)) { ++n; continue; } // percent-encoded character '%ff' n += 3; } return n; } uint32_t hex_to_uint(char c) { if (c <= '9') { return c - '0'; } if (c <= 'Z') { return c - 'A' + 10; } if (c <= 'z') { return c - 'a' + 10; } return 256; } StringRef quote_string(BlockAllocator &balloc, const StringRef &target) { auto cnt = std::count(std::begin(target), std::end(target), '"'); if (cnt == 0) { return make_string_ref(balloc, target); } auto iov = make_byte_ref(balloc, target.size() + cnt + 1); auto p = quote_string(iov.base, target); *p = '\0'; return StringRef{iov.base, p}; } size_t quote_stringlen(const StringRef &target) { size_t n = 0; for (auto c : target) { if (c == '"') { n += 2; } else { ++n; } } return n; } namespace { template Iterator cpydig(Iterator d, uint32_t n, size_t len) { auto p = d + len - 1; do { *p-- = (n % 10) + '0'; n /= 10; } while (p >= d); return d + len; } } // namespace namespace { constexpr const char *MONTH[] = {"Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"}; constexpr const char *DAY_OF_WEEK[] = {"Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat"}; } // namespace std::string http_date(time_t t) { /* Sat, 27 Sep 2014 06:31:15 GMT */ std::string res(29, 0); http_date(&res[0], t); return res; } char *http_date(char *res, time_t t) { struct tm tms; if (gmtime_r(&t, &tms) == nullptr) { return res; } auto p = res; auto s = DAY_OF_WEEK[tms.tm_wday]; p = std::copy_n(s, 3, p); *p++ = ','; *p++ = ' '; p = cpydig(p, tms.tm_mday, 2); *p++ = ' '; s = MONTH[tms.tm_mon]; p = std::copy_n(s, 3, p); *p++ = ' '; p = cpydig(p, tms.tm_year + 1900, 4); *p++ = ' '; p = cpydig(p, tms.tm_hour, 2); *p++ = ':'; p = cpydig(p, tms.tm_min, 2); *p++ = ':'; p = cpydig(p, tms.tm_sec, 2); s = " GMT"; p = std::copy_n(s, 4, p); return p; } std::string common_log_date(time_t t) { // 03/Jul/2014:00:19:38 +0900 std::string res(26, 0); common_log_date(&res[0], t); return res; } char *common_log_date(char *res, time_t t) { struct tm tms; if (localtime_r(&t, &tms) == nullptr) { return res; } auto p = res; p = cpydig(p, tms.tm_mday, 2); *p++ = '/'; auto s = MONTH[tms.tm_mon]; p = std::copy_n(s, 3, p); *p++ = '/'; p = cpydig(p, tms.tm_year + 1900, 4); *p++ = ':'; p = cpydig(p, tms.tm_hour, 2); *p++ = ':'; p = cpydig(p, tms.tm_min, 2); *p++ = ':'; p = cpydig(p, tms.tm_sec, 2); *p++ = ' '; #ifdef HAVE_STRUCT_TM_TM_GMTOFF auto gmtoff = tms.tm_gmtoff; #else // !HAVE_STRUCT_TM_TM_GMTOFF auto gmtoff = nghttp2_timegm(&tms) - t; #endif // !HAVE_STRUCT_TM_TM_GMTOFF if (gmtoff >= 0) { *p++ = '+'; } else { *p++ = '-'; gmtoff = -gmtoff; } p = cpydig(p, gmtoff / 3600, 2); p = cpydig(p, (gmtoff % 3600) / 60, 2); return p; } std::string iso8601_date(int64_t ms) { // 2014-11-15T12:58:24.741Z // 2014-11-15T12:58:24.741+09:00 std::string res(29, 0); auto p = iso8601_date(&res[0], ms); res.resize(p - &res[0]); return res; } char *iso8601_date(char *res, int64_t ms) { time_t sec = ms / 1000; tm tms; if (localtime_r(&sec, &tms) == nullptr) { return res; } auto p = res; p = cpydig(p, tms.tm_year + 1900, 4); *p++ = '-'; p = cpydig(p, tms.tm_mon + 1, 2); *p++ = '-'; p = cpydig(p, tms.tm_mday, 2); *p++ = 'T'; p = cpydig(p, tms.tm_hour, 2); *p++ = ':'; p = cpydig(p, tms.tm_min, 2); *p++ = ':'; p = cpydig(p, tms.tm_sec, 2); *p++ = '.'; p = cpydig(p, ms % 1000, 3); #ifdef HAVE_STRUCT_TM_TM_GMTOFF auto gmtoff = tms.tm_gmtoff; #else // !HAVE_STRUCT_TM_TM_GMTOFF auto gmtoff = nghttp2_timegm(&tms) - sec; #endif // !HAVE_STRUCT_TM_TM_GMTOFF if (gmtoff == 0) { *p++ = 'Z'; } else { if (gmtoff > 0) { *p++ = '+'; } else { *p++ = '-'; gmtoff = -gmtoff; } p = cpydig(p, gmtoff / 3600, 2); *p++ = ':'; p = cpydig(p, (gmtoff % 3600) / 60, 2); } return p; } char *iso8601_basic_date(char *res, int64_t ms) { time_t sec = ms / 1000; tm tms; if (localtime_r(&sec, &tms) == nullptr) { return res; } auto p = res; p = cpydig(p, tms.tm_year + 1900, 4); p = cpydig(p, tms.tm_mon + 1, 2); p = cpydig(p, tms.tm_mday, 2); *p++ = 'T'; p = cpydig(p, tms.tm_hour, 2); p = cpydig(p, tms.tm_min, 2); p = cpydig(p, tms.tm_sec, 2); *p++ = '.'; p = cpydig(p, ms % 1000, 3); #ifdef HAVE_STRUCT_TM_TM_GMTOFF auto gmtoff = tms.tm_gmtoff; #else // !HAVE_STRUCT_TM_TM_GMTOFF auto gmtoff = nghttp2_timegm(&tms) - sec; #endif // !HAVE_STRUCT_TM_TM_GMTOFF if (gmtoff == 0) { *p++ = 'Z'; } else { if (gmtoff > 0) { *p++ = '+'; } else { *p++ = '-'; gmtoff = -gmtoff; } p = cpydig(p, gmtoff / 3600, 2); p = cpydig(p, (gmtoff % 3600) / 60, 2); } return p; } time_t parse_http_date(const StringRef &s) { tm tm{}; #ifdef _WIN32 // there is no strptime - use std::get_time std::stringstream sstr(s.str()); sstr >> std::get_time(&tm, "%a, %d %b %Y %H:%M:%S GMT"); if (sstr.fail()) { return 0; } #else // !_WIN32 char *r = strptime(s.c_str(), "%a, %d %b %Y %H:%M:%S GMT", &tm); if (r == 0) { return 0; } #endif // !_WIN32 return nghttp2_timegm_without_yday(&tm); } time_t parse_openssl_asn1_time_print(const StringRef &s) { tm tm{}; auto r = strptime(s.c_str(), "%b %d %H:%M:%S %Y GMT", &tm); if (r == nullptr) { return 0; } return nghttp2_timegm_without_yday(&tm); } char upcase(char c) { if ('a' <= c && c <= 'z') { return c - 'a' + 'A'; } else { return c; } } std::string format_hex(const unsigned char *s, size_t len) { std::string res; res.resize(len * 2); for (size_t i = 0; i < len; ++i) { unsigned char c = s[i]; res[i * 2] = LOWER_XDIGITS[c >> 4]; res[i * 2 + 1] = LOWER_XDIGITS[c & 0x0f]; } return res; } StringRef format_hex(BlockAllocator &balloc, const StringRef &s) { auto iov = make_byte_ref(balloc, s.size() * 2 + 1); auto p = iov.base; for (auto cc : s) { uint8_t c = cc; *p++ = LOWER_XDIGITS[c >> 4]; *p++ = LOWER_XDIGITS[c & 0xf]; } *p = '\0'; return StringRef{iov.base, p}; } void to_token68(std::string &base64str) { std::transform(std::begin(base64str), std::end(base64str), std::begin(base64str), [](char c) { switch (c) { case '+': return '-'; case '/': return '_'; default: return c; } }); base64str.erase(std::find(std::begin(base64str), std::end(base64str), '='), std::end(base64str)); } StringRef to_base64(BlockAllocator &balloc, const StringRef &token68str) { // At most 3 padding '=' auto len = token68str.size() + 3; auto iov = make_byte_ref(balloc, len + 1); auto p = iov.base; p = std::transform(std::begin(token68str), std::end(token68str), p, [](char c) { switch (c) { case '-': return '+'; case '_': return '/'; default: return c; } }); auto rem = token68str.size() & 0x3; if (rem) { p = std::fill_n(p, 4 - rem, '='); } *p = '\0'; return StringRef{iov.base, p}; } namespace { // Calculates Damerau–Levenshtein distance between c-string a and b // with given costs. swapcost, subcost, addcost and delcost are cost // to swap 2 adjacent characters, substitute characters, add character // and delete character respectively. int levenshtein(const char *a, int alen, const char *b, int blen, int swapcost, int subcost, int addcost, int delcost) { auto dp = std::vector>(3, std::vector(blen + 1)); for (int i = 0; i <= blen; ++i) { dp[1][i] = i; } for (int i = 1; i <= alen; ++i) { dp[0][0] = i; for (int j = 1; j <= blen; ++j) { dp[0][j] = dp[1][j - 1] + (a[i - 1] == b[j - 1] ? 0 : subcost); if (i >= 2 && j >= 2 && a[i - 1] != b[j - 1] && a[i - 2] == b[j - 1] && a[i - 1] == b[j - 2]) { dp[0][j] = std::min(dp[0][j], dp[2][j - 2] + swapcost); } dp[0][j] = std::min(dp[0][j], std::min(dp[1][j] + delcost, dp[0][j - 1] + addcost)); } std::rotate(std::begin(dp), std::begin(dp) + 2, std::end(dp)); } return dp[1][blen]; } } // namespace void show_candidates(const char *unkopt, const option *options) { for (; *unkopt == '-'; ++unkopt) ; if (*unkopt == '\0') { return; } auto unkoptend = unkopt; for (; *unkoptend && *unkoptend != '='; ++unkoptend) ; auto unkoptlen = unkoptend - unkopt; if (unkoptlen == 0) { return; } int prefix_match = 0; auto cands = std::vector>(); for (size_t i = 0; options[i].name != nullptr; ++i) { auto optnamelen = strlen(options[i].name); // Use cost 0 for prefix match if (istarts_with(options[i].name, options[i].name + optnamelen, unkopt, unkopt + unkoptlen)) { if (optnamelen == static_cast(unkoptlen)) { // Exact match, then we don't show any condidates. return; } ++prefix_match; cands.emplace_back(0, options[i].name); continue; } // Use cost 0 for suffix match, but match at least 3 characters if (unkoptlen >= 3 && iends_with(options[i].name, options[i].name + optnamelen, unkopt, unkopt + unkoptlen)) { cands.emplace_back(0, options[i].name); continue; } // cost values are borrowed from git, help.c. int sim = levenshtein(unkopt, unkoptlen, options[i].name, optnamelen, 0, 2, 1, 3); cands.emplace_back(sim, options[i].name); } if (prefix_match == 1 || cands.empty()) { return; } std::sort(std::begin(cands), std::end(cands)); int threshold = cands[0].first; // threshold value is a magic value. if (threshold > 6) { return; } std::cerr << "\nDid you mean:\n"; for (auto &item : cands) { if (item.first > threshold) { break; } std::cerr << "\t--" << item.second << "\n"; } } bool has_uri_field(const http_parser_url &u, http_parser_url_fields field) { return u.field_set & (1 << field); } bool fieldeq(const char *uri1, const http_parser_url &u1, const char *uri2, const http_parser_url &u2, http_parser_url_fields field) { if (!has_uri_field(u1, field)) { if (!has_uri_field(u2, field)) { return true; } else { return false; } } else if (!has_uri_field(u2, field)) { return false; } if (u1.field_data[field].len != u2.field_data[field].len) { return false; } return memcmp(uri1 + u1.field_data[field].off, uri2 + u2.field_data[field].off, u1.field_data[field].len) == 0; } bool fieldeq(const char *uri, const http_parser_url &u, http_parser_url_fields field, const char *t) { return fieldeq(uri, u, field, StringRef{t}); } bool fieldeq(const char *uri, const http_parser_url &u, http_parser_url_fields field, const StringRef &t) { if (!has_uri_field(u, field)) { return t.empty(); } auto &f = u.field_data[field]; return StringRef{uri + f.off, f.len} == t; } StringRef get_uri_field(const char *uri, const http_parser_url &u, http_parser_url_fields field) { if (!util::has_uri_field(u, field)) { return StringRef{}; } return StringRef{uri + u.field_data[field].off, u.field_data[field].len}; } uint16_t get_default_port(const char *uri, const http_parser_url &u) { if (util::fieldeq(uri, u, UF_SCHEMA, "https")) { return 443; } else if (util::fieldeq(uri, u, UF_SCHEMA, "http")) { return 80; } else { return 443; } } bool porteq(const char *uri1, const http_parser_url &u1, const char *uri2, const http_parser_url &u2) { uint16_t port1, port2; port1 = util::has_uri_field(u1, UF_PORT) ? u1.port : get_default_port(uri1, u1); port2 = util::has_uri_field(u2, UF_PORT) ? u2.port : get_default_port(uri2, u2); return port1 == port2; } void write_uri_field(std::ostream &o, const char *uri, const http_parser_url &u, http_parser_url_fields field) { if (util::has_uri_field(u, field)) { o.write(uri + u.field_data[field].off, u.field_data[field].len); } } bool numeric_host(const char *hostname) { return numeric_host(hostname, AF_INET) || numeric_host(hostname, AF_INET6); } bool numeric_host(const char *hostname, int family) { int rv; std::array dst; rv = nghttp2_inet_pton(family, hostname, dst.data()); return rv == 1; } std::string numeric_name(const struct sockaddr *sa, socklen_t salen) { std::array host; auto rv = getnameinfo(sa, salen, host.data(), host.size(), nullptr, 0, NI_NUMERICHOST); if (rv != 0) { return "unknown"; } return host.data(); } std::string to_numeric_addr(const Address *addr) { return to_numeric_addr(&addr->su.sa, addr->len); } std::string to_numeric_addr(const struct sockaddr *sa, socklen_t salen) { auto family = sa->sa_family; #ifndef _WIN32 if (family == AF_UNIX) { return reinterpret_cast(sa)->sun_path; } #endif // !_WIN32 std::array host; std::array serv; auto rv = getnameinfo(sa, salen, host.data(), host.size(), serv.data(), serv.size(), NI_NUMERICHOST | NI_NUMERICSERV); if (rv != 0) { return "unknown"; } auto hostlen = strlen(host.data()); auto servlen = strlen(serv.data()); std::string s; char *p; if (family == AF_INET6) { s.resize(hostlen + servlen + 2 + 1); p = &s[0]; *p++ = '['; p = std::copy_n(host.data(), hostlen, p); *p++ = ']'; } else { s.resize(hostlen + servlen + 1); p = &s[0]; p = std::copy_n(host.data(), hostlen, p); } *p++ = ':'; std::copy_n(serv.data(), servlen, p); return s; } void set_port(Address &addr, uint16_t port) { switch (addr.su.storage.ss_family) { case AF_INET: addr.su.in.sin_port = htons(port); break; case AF_INET6: addr.su.in6.sin6_port = htons(port); break; } } std::string ascii_dump(const uint8_t *data, size_t len) { std::string res; for (size_t i = 0; i < len; ++i) { auto c = data[i]; if (c >= 0x20 && c < 0x7f) { res += c; } else { res += '.'; } } return res; } char *get_exec_path(int argc, char **const argv, const char *cwd) { if (argc == 0 || cwd == nullptr) { return nullptr; } auto argv0 = argv[0]; auto len = strlen(argv0); char *path; if (argv0[0] == '/') { path = static_cast(malloc(len + 1)); if (path == nullptr) { return nullptr; } memcpy(path, argv0, len + 1); } else { auto cwdlen = strlen(cwd); path = static_cast(malloc(len + 1 + cwdlen + 1)); if (path == nullptr) { return nullptr; } memcpy(path, cwd, cwdlen); path[cwdlen] = '/'; memcpy(path + cwdlen + 1, argv0, len + 1); } return path; } bool check_path(const std::string &path) { // We don't like '\' in path. return !path.empty() && path[0] == '/' && path.find('\\') == std::string::npos && path.find("/../") == std::string::npos && path.find("/./") == std::string::npos && !util::ends_with_l(path, "/..") && !util::ends_with_l(path, "/."); } int64_t to_time64(const timeval &tv) { return tv.tv_sec * 1000000 + tv.tv_usec; } bool check_h2_is_selected(const StringRef &proto) { return streq(NGHTTP2_H2, proto) || streq(NGHTTP2_H2_16, proto) || streq(NGHTTP2_H2_14, proto); } namespace { bool select_proto(const unsigned char **out, unsigned char *outlen, const unsigned char *in, unsigned int inlen, const StringRef &key) { for (auto p = in, end = in + inlen; p + key.size() <= end; p += *p + 1) { if (std::equal(std::begin(key), std::end(key), p)) { *out = p + 1; *outlen = *p; return true; } } return false; } } // namespace bool select_h2(const unsigned char **out, unsigned char *outlen, const unsigned char *in, unsigned int inlen) { return select_proto(out, outlen, in, inlen, NGHTTP2_H2_ALPN) || select_proto(out, outlen, in, inlen, NGHTTP2_H2_16_ALPN) || select_proto(out, outlen, in, inlen, NGHTTP2_H2_14_ALPN); } bool select_protocol(const unsigned char **out, unsigned char *outlen, const unsigned char *in, unsigned int inlen, std::vector proto_list) { for (const auto &proto : proto_list) { if (select_proto(out, outlen, in, inlen, StringRef{proto})) { return true; } } return false; } std::vector get_default_alpn() { auto res = std::vector(NGHTTP2_H2_ALPN.size() + NGHTTP2_H2_16_ALPN.size() + NGHTTP2_H2_14_ALPN.size()); auto p = std::begin(res); p = std::copy_n(std::begin(NGHTTP2_H2_ALPN), NGHTTP2_H2_ALPN.size(), p); p = std::copy_n(std::begin(NGHTTP2_H2_16_ALPN), NGHTTP2_H2_16_ALPN.size(), p); p = std::copy_n(std::begin(NGHTTP2_H2_14_ALPN), NGHTTP2_H2_14_ALPN.size(), p); return res; } std::vector split_str(const StringRef &s, char delim) { size_t len = 1; auto last = std::end(s); StringRef::const_iterator d; for (auto first = std::begin(s); (d = std::find(first, last, delim)) != last; ++len, first = d + 1) ; auto list = std::vector(len); len = 0; for (auto first = std::begin(s);; ++len) { auto stop = std::find(first, last, delim); list[len] = StringRef{first, stop}; if (stop == last) { break; } first = stop + 1; } return list; } std::vector split_str(const StringRef &s, char delim, size_t n) { if (n == 0) { return split_str(s, delim); } if (n == 1) { return {s}; } size_t len = 1; auto last = std::end(s); StringRef::const_iterator d; for (auto first = std::begin(s); len < n && (d = std::find(first, last, delim)) != last; ++len, first = d + 1) ; auto list = std::vector(len); len = 0; for (auto first = std::begin(s);; ++len) { if (len == n - 1) { list[len] = StringRef{first, last}; break; } auto stop = std::find(first, last, delim); list[len] = StringRef{first, stop}; if (stop == last) { break; } first = stop + 1; } return list; } std::vector parse_config_str_list(const StringRef &s, char delim) { auto sublist = split_str(s, delim); auto res = std::vector(); res.reserve(sublist.size()); for (const auto &s : sublist) { res.emplace_back(std::begin(s), std::end(s)); } return res; } int make_socket_closeonexec(int fd) { #ifdef _WIN32 (void)fd; return 0; #else // !_WIN32 int flags; int rv; while ((flags = fcntl(fd, F_GETFD)) == -1 && errno == EINTR) ; while ((rv = fcntl(fd, F_SETFD, flags | FD_CLOEXEC)) == -1 && errno == EINTR) ; return rv; #endif // !_WIN32 } int make_socket_nonblocking(int fd) { int rv; #ifdef _WIN32 u_long mode = 1; rv = ioctlsocket(fd, FIONBIO, &mode); #else // !_WIN32 int flags; while ((flags = fcntl(fd, F_GETFL, 0)) == -1 && errno == EINTR) ; while ((rv = fcntl(fd, F_SETFL, flags | O_NONBLOCK)) == -1 && errno == EINTR) ; #endif // !_WIN32 return rv; } int make_socket_nodelay(int fd) { int val = 1; if (setsockopt(fd, IPPROTO_TCP, TCP_NODELAY, reinterpret_cast(&val), sizeof(val)) == -1) { return -1; } return 0; } int create_nonblock_socket(int family) { #ifdef SOCK_NONBLOCK auto fd = socket(family, SOCK_STREAM | SOCK_NONBLOCK | SOCK_CLOEXEC, 0); if (fd == -1) { return -1; } #else // !SOCK_NONBLOCK auto fd = socket(family, SOCK_STREAM, 0); if (fd == -1) { return -1; } make_socket_nonblocking(fd); make_socket_closeonexec(fd); #endif // !SOCK_NONBLOCK if (family == AF_INET || family == AF_INET6) { make_socket_nodelay(fd); } return fd; } int create_nonblock_udp_socket(int family) { #ifdef SOCK_NONBLOCK auto fd = socket(family, SOCK_DGRAM | SOCK_NONBLOCK | SOCK_CLOEXEC, 0); if (fd == -1) { return -1; } #else // !SOCK_NONBLOCK auto fd = socket(family, SOCK_DGRAM, 0); if (fd == -1) { return -1; } make_socket_nonblocking(fd); make_socket_closeonexec(fd); #endif // !SOCK_NONBLOCK return fd; } int bind_any_addr_udp(int fd, int family) { addrinfo hints{}; addrinfo *res, *rp; int rv; hints.ai_family = family; hints.ai_socktype = SOCK_DGRAM; hints.ai_flags = AI_PASSIVE; rv = getaddrinfo(nullptr, "0", &hints, &res); if (rv != 0) { return -1; } for (rp = res; rp; rp = rp->ai_next) { if (bind(fd, rp->ai_addr, rp->ai_addrlen) != -1) { break; } } freeaddrinfo(res); if (!rp) { return -1; } return 0; } bool check_socket_connected(int fd) { int error; socklen_t len = sizeof(error); if (getsockopt(fd, SOL_SOCKET, SO_ERROR, (char *)&error, &len) != 0) { return false; } return error == 0; } int get_socket_error(int fd) { int error; socklen_t len = sizeof(error); if (getsockopt(fd, SOL_SOCKET, SO_ERROR, (char *)&error, &len) != 0) { return -1; } return error; } bool ipv6_numeric_addr(const char *host) { uint8_t dst[16]; return nghttp2_inet_pton(AF_INET6, host, dst) == 1; } namespace { std::pair parse_uint_digits(const void *ss, size_t len) { const uint8_t *s = static_cast(ss); int64_t n = 0; size_t i; if (len == 0) { return {-1, 0}; } constexpr int64_t max = std::numeric_limits::max(); for (i = 0; i < len; ++i) { if ('0' <= s[i] && s[i] <= '9') { if (n > max / 10) { return {-1, 0}; } n *= 10; if (n > max - (s[i] - '0')) { return {-1, 0}; } n += s[i] - '0'; continue; } break; } if (i == 0) { return {-1, 0}; } return {n, i}; } } // namespace int64_t parse_uint_with_unit(const char *s) { return parse_uint_with_unit(reinterpret_cast(s), strlen(s)); } int64_t parse_uint_with_unit(const StringRef &s) { return parse_uint_with_unit(s.byte(), s.size()); } int64_t parse_uint_with_unit(const uint8_t *s, size_t len) { int64_t n; size_t i; std::tie(n, i) = parse_uint_digits(s, len); if (n == -1) { return -1; } if (i == len) { return n; } if (i + 1 != len) { return -1; } int mul = 1; switch (s[i]) { case 'K': case 'k': mul = 1 << 10; break; case 'M': case 'm': mul = 1 << 20; break; case 'G': case 'g': mul = 1 << 30; break; default: return -1; } constexpr int64_t max = std::numeric_limits::max(); if (n > max / mul) { return -1; } return n * mul; } int64_t parse_uint(const char *s) { return parse_uint(reinterpret_cast(s), strlen(s)); } int64_t parse_uint(const std::string &s) { return parse_uint(reinterpret_cast(s.c_str()), s.size()); } int64_t parse_uint(const StringRef &s) { return parse_uint(s.byte(), s.size()); } int64_t parse_uint(const uint8_t *s, size_t len) { int64_t n; size_t i; std::tie(n, i) = parse_uint_digits(s, len); if (n == -1 || i != len) { return -1; } return n; } double parse_duration_with_unit(const char *s) { return parse_duration_with_unit(reinterpret_cast(s), strlen(s)); } double parse_duration_with_unit(const StringRef &s) { return parse_duration_with_unit(s.byte(), s.size()); } double parse_duration_with_unit(const uint8_t *s, size_t len) { constexpr auto max = std::numeric_limits::max(); int64_t n; size_t i; std::tie(n, i) = parse_uint_digits(s, len); if (n == -1) { goto fail; } if (i == len) { return static_cast(n); } switch (s[i]) { case 'S': case 's': // seconds if (i + 1 != len) { goto fail; } return static_cast(n); case 'M': case 'm': if (i + 1 == len) { // minutes if (n > max / 60) { goto fail; } return static_cast(n) * 60; } if (i + 2 != len || (s[i + 1] != 's' && s[i + 1] != 'S')) { goto fail; } // milliseconds return static_cast(n) / 1000.; case 'H': case 'h': // hours if (i + 1 != len) { goto fail; } if (n > max / 3600) { goto fail; } return static_cast(n) * 3600; } fail: return std::numeric_limits::infinity(); } std::string duration_str(double t) { if (t == 0.) { return "0"; } auto frac = static_cast(t * 1000) % 1000; if (frac > 0) { return utos(static_cast(t * 1000)) + "ms"; } auto v = static_cast(t); if (v % 60) { return utos(v) + "s"; } v /= 60; if (v % 60) { return utos(v) + "m"; } v /= 60; return utos(v) + "h"; } std::string format_duration(const std::chrono::microseconds &u) { const char *unit = "us"; int d = 0; auto t = u.count(); if (t >= 1000000) { d = 1000000; unit = "s"; } else if (t >= 1000) { d = 1000; unit = "ms"; } else { return utos(t) + unit; } return dtos(static_cast(t) / d) + unit; } std::string format_duration(double t) { const char *unit = "us"; if (t >= 1.) { unit = "s"; } else if (t >= 0.001) { t *= 1000.; unit = "ms"; } else { t *= 1000000.; return utos(static_cast(t)) + unit; } return dtos(t) + unit; } std::string dtos(double n) { auto m = llround(100. * n); auto f = utos(m % 100); return utos(m / 100) + "." + (f.size() == 1 ? "0" : "") + f; } StringRef make_http_hostport(BlockAllocator &balloc, const StringRef &host, uint16_t port) { auto iov = make_byte_ref(balloc, host.size() + 2 + 1 + 5 + 1); return make_http_hostport(iov.base, host, port); } StringRef make_hostport(BlockAllocator &balloc, const StringRef &host, uint16_t port) { auto iov = make_byte_ref(balloc, host.size() + 2 + 1 + 5 + 1); return make_hostport(iov.base, host, port); } namespace { void hexdump8(FILE *out, const uint8_t *first, const uint8_t *last) { auto stop = std::min(first + 8, last); for (auto k = first; k != stop; ++k) { fprintf(out, "%02x ", *k); } // each byte needs 3 spaces (2 hex value and space) for (; stop != first + 8; ++stop) { fputs(" ", out); } // we have extra space after 8 bytes fputc(' ', out); } } // namespace void hexdump(FILE *out, const uint8_t *src, size_t len) { if (len == 0) { return; } size_t buflen = 0; auto repeated = false; std::array buf{}; auto end = src + len; auto i = src; for (;;) { auto nextlen = std::min(static_cast(16), static_cast(end - i)); if (nextlen == buflen && std::equal(std::begin(buf), std::begin(buf) + buflen, i)) { // as long as adjacent 16 bytes block are the same, we just // print single '*'. if (!repeated) { repeated = true; fputs("*\n", out); } i += nextlen; continue; } repeated = false; fprintf(out, "%08lx", static_cast(i - src)); if (i == end) { fputc('\n', out); break; } fputs(" ", out); hexdump8(out, i, end); hexdump8(out, i + 8, std::max(i + 8, end)); fputc('|', out); auto stop = std::min(i + 16, end); buflen = stop - i; auto p = buf.data(); for (; i != stop; ++i) { *p++ = *i; if (0x20 <= *i && *i <= 0x7e) { fputc(*i, out); } else { fputc('.', out); } } fputs("|\n", out); } } void put_uint16be(uint8_t *buf, uint16_t n) { uint16_t x = htons(n); memcpy(buf, &x, sizeof(uint16_t)); } void put_uint32be(uint8_t *buf, uint32_t n) { uint32_t x = htonl(n); memcpy(buf, &x, sizeof(uint32_t)); } uint16_t get_uint16(const uint8_t *data) { uint16_t n; memcpy(&n, data, sizeof(uint16_t)); return ntohs(n); } uint32_t get_uint32(const uint8_t *data) { uint32_t n; memcpy(&n, data, sizeof(uint32_t)); return ntohl(n); } uint64_t get_uint64(const uint8_t *data) { uint64_t n = 0; n += static_cast(data[0]) << 56; n += static_cast(data[1]) << 48; n += static_cast(data[2]) << 40; n += static_cast(data[3]) << 32; n += static_cast(data[4]) << 24; n += data[5] << 16; n += data[6] << 8; n += data[7]; return n; } int read_mime_types(std::map &res, const char *filename) { std::ifstream infile(filename); if (!infile) { return -1; } auto delim_pred = [](char c) { return c == ' ' || c == '\t'; }; std::string line; while (std::getline(infile, line)) { if (line.empty() || line[0] == '#') { continue; } auto type_end = std::find_if(std::begin(line), std::end(line), delim_pred); if (type_end == std::begin(line)) { continue; } auto ext_end = type_end; for (;;) { auto ext_start = std::find_if_not(ext_end, std::end(line), delim_pred); if (ext_start == std::end(line)) { break; } ext_end = std::find_if(ext_start, std::end(line), delim_pred); #ifdef HAVE_STD_MAP_EMPLACE res.emplace(std::string(ext_start, ext_end), std::string(std::begin(line), type_end)); #else // !HAVE_STD_MAP_EMPLACE res.insert(std::make_pair(std::string(ext_start, ext_end), std::string(std::begin(line), type_end))); #endif // !HAVE_STD_MAP_EMPLACE } } return 0; } StringRef percent_decode(BlockAllocator &balloc, const StringRef &src) { auto iov = make_byte_ref(balloc, src.size() * 3 + 1); auto p = iov.base; for (auto first = std::begin(src); first != std::end(src); ++first) { if (*first != '%') { *p++ = *first; continue; } if (first + 1 != std::end(src) && first + 2 != std::end(src) && is_hex_digit(*(first + 1)) && is_hex_digit(*(first + 2))) { *p++ = (hex_to_uint(*(first + 1)) << 4) + hex_to_uint(*(first + 2)); first += 2; continue; } *p++ = *first; } *p = '\0'; return StringRef{iov.base, p}; } // Returns x**y double int_pow(double x, size_t y) { auto res = 1.; for (; y; --y) { res *= x; } return res; } uint32_t hash32(const StringRef &s) { /* 32 bit FNV-1a: http://isthe.com/chongo/tech/comp/fnv/ */ uint32_t h = 2166136261u; size_t i; for (i = 0; i < s.size(); ++i) { h ^= s[i]; h += (h << 1) + (h << 4) + (h << 7) + (h << 8) + (h << 24); } return h; } #if !OPENSSL_1_1_API namespace { EVP_MD_CTX *EVP_MD_CTX_new(void) { return EVP_MD_CTX_create(); } } // namespace namespace { void EVP_MD_CTX_free(EVP_MD_CTX *ctx) { EVP_MD_CTX_destroy(ctx); } } // namespace #endif // !OPENSSL_1_1_API namespace { int message_digest(uint8_t *res, const EVP_MD *meth, const StringRef &s) { int rv; auto ctx = EVP_MD_CTX_new(); if (ctx == nullptr) { return -1; } auto ctx_deleter = defer(EVP_MD_CTX_free, ctx); rv = EVP_DigestInit_ex(ctx, meth, nullptr); if (rv != 1) { return -1; } rv = EVP_DigestUpdate(ctx, s.c_str(), s.size()); if (rv != 1) { return -1; } unsigned int mdlen = EVP_MD_size(meth); rv = EVP_DigestFinal_ex(ctx, res, &mdlen); if (rv != 1) { return -1; } return 0; } } // namespace int sha256(uint8_t *res, const StringRef &s) { return message_digest(res, EVP_sha256(), s); } int sha1(uint8_t *res, const StringRef &s) { return message_digest(res, EVP_sha1(), s); } bool is_hex_string(const StringRef &s) { if (s.size() % 2) { return false; } for (auto c : s) { if (!is_hex_digit(c)) { return false; } } return true; } StringRef decode_hex(BlockAllocator &balloc, const StringRef &s) { auto iov = make_byte_ref(balloc, s.size() + 1); auto p = decode_hex(iov.base, s); *p = '\0'; return StringRef{iov.base, p}; } StringRef extract_host(const StringRef &hostport) { if (hostport[0] == '[') { // assume this is IPv6 numeric address auto p = std::find(std::begin(hostport), std::end(hostport), ']'); if (p == std::end(hostport)) { return StringRef{}; } if (p + 1 < std::end(hostport) && *(p + 1) != ':') { return StringRef{}; } return StringRef{std::begin(hostport), p + 1}; } auto p = std::find(std::begin(hostport), std::end(hostport), ':'); if (p == std::begin(hostport)) { return StringRef{}; } return StringRef{std::begin(hostport), p}; } std::pair split_hostport(const StringRef &hostport) { if (hostport.empty()) { return {}; } if (hostport[0] == '[') { // assume this is IPv6 numeric address auto p = std::find(std::begin(hostport), std::end(hostport), ']'); if (p == std::end(hostport)) { return {}; } if (p + 1 == std::end(hostport)) { return {StringRef{std::begin(hostport) + 1, p}, {}}; } if (*(p + 1) != ':' || p + 2 == std::end(hostport)) { return {}; } return {StringRef{std::begin(hostport) + 1, p}, StringRef{p + 2, std::end(hostport)}}; } auto p = std::find(std::begin(hostport), std::end(hostport), ':'); if (p == std::begin(hostport)) { return {}; } if (p == std::end(hostport)) { return {StringRef{std::begin(hostport), p}, {}}; } if (p + 1 == std::end(hostport)) { return {}; } return {StringRef{std::begin(hostport), p}, StringRef{p + 1, std::end(hostport)}}; } std::mt19937 make_mt19937() { std::random_device rd; return std::mt19937(rd()); } int daemonize(int nochdir, int noclose) { #ifdef __APPLE__ pid_t pid; pid = fork(); if (pid == -1) { return -1; } else if (pid > 0) { _exit(EXIT_SUCCESS); } if (setsid() == -1) { return -1; } pid = fork(); if (pid == -1) { return -1; } else if (pid > 0) { _exit(EXIT_SUCCESS); } if (nochdir == 0) { if (chdir("/") == -1) { return -1; } } if (noclose == 0) { if (freopen("/dev/null", "r", stdin) == nullptr) { return -1; } if (freopen("/dev/null", "w", stdout) == nullptr) { return -1; } if (freopen("/dev/null", "w", stderr) == nullptr) { return -1; } } return 0; #else // !__APPLE__ return daemon(nochdir, noclose); #endif // !__APPLE__ } StringRef rstrip(BlockAllocator &balloc, const StringRef &s) { auto it = std::rbegin(s); for (; it != std::rend(s) && (*it == ' ' || *it == '\t'); ++it) ; auto len = it - std::rbegin(s); if (len == 0) { return s; } return make_string_ref(balloc, StringRef{s.c_str(), s.size() - len}); } #ifdef ENABLE_HTTP3 int msghdr_get_local_addr(Address &dest, msghdr *msg, int family) { switch (family) { case AF_INET: for (auto cmsg = CMSG_FIRSTHDR(msg); cmsg; cmsg = CMSG_NXTHDR(msg, cmsg)) { if (cmsg->cmsg_level == IPPROTO_IP && cmsg->cmsg_type == IP_PKTINFO) { auto pktinfo = reinterpret_cast(CMSG_DATA(cmsg)); dest.len = sizeof(dest.su.in); auto &sa = dest.su.in; sa.sin_family = AF_INET; sa.sin_addr = pktinfo->ipi_addr; return 0; } } return -1; case AF_INET6: for (auto cmsg = CMSG_FIRSTHDR(msg); cmsg; cmsg = CMSG_NXTHDR(msg, cmsg)) { if (cmsg->cmsg_level == IPPROTO_IPV6 && cmsg->cmsg_type == IPV6_PKTINFO) { auto pktinfo = reinterpret_cast(CMSG_DATA(cmsg)); dest.len = sizeof(dest.su.in6); auto &sa = dest.su.in6; sa.sin6_family = AF_INET6; sa.sin6_addr = pktinfo->ipi6_addr; return 0; } } return -1; } return -1; } unsigned int msghdr_get_ecn(msghdr *msg, int family) { switch (family) { case AF_INET: for (auto cmsg = CMSG_FIRSTHDR(msg); cmsg; cmsg = CMSG_NXTHDR(msg, cmsg)) { if (cmsg->cmsg_level == IPPROTO_IP && cmsg->cmsg_type == IP_TOS && cmsg->cmsg_len) { return *reinterpret_cast(CMSG_DATA(cmsg)); } } return 0; case AF_INET6: for (auto cmsg = CMSG_FIRSTHDR(msg); cmsg; cmsg = CMSG_NXTHDR(msg, cmsg)) { if (cmsg->cmsg_level == IPPROTO_IPV6 && cmsg->cmsg_type == IPV6_TCLASS && cmsg->cmsg_len) { return *reinterpret_cast(CMSG_DATA(cmsg)); } } return 0; } return 0; } int fd_set_send_ecn(int fd, int family, unsigned int ecn) { switch (family) { case AF_INET: if (setsockopt(fd, IPPROTO_IP, IP_TOS, &ecn, static_cast(sizeof(ecn))) == -1) { return -1; } return 0; case AF_INET6: if (setsockopt(fd, IPPROTO_IPV6, IPV6_TCLASS, &ecn, static_cast(sizeof(ecn))) == -1) { return -1; } return 0; } return -1; } #endif // ENABLE_HTTP3 } // namespace util } // namespace nghttp2