Tutorial: HTTP/2.0 serverΒΆ

In this tutorial, we are going to write single-threaded, event-based HTTP/2.0 web server, which supports HTTPS only. It can handle concurrent multiple requests, but only GET method is supported. The complete source code, libevent-server.c, is attached at the end of this page. It also resides in examples directory in the archive or repository.

This simple server takes 3 arguments, a port number to listen to, a path to SSL/TLS private key file and certificate file. Its synopsis is like this:

$ libevent-server PORT /path/to/server.key /path/to/server.crt

We use libevent in this tutorial to handle networking I/O. Please note that nghttp2 itself does not depend on libevent.

First we do some setup routine for libevent and OpenSSL library in function main() and run(), which is not so relevant to nghttp2 library use. The one thing you should look at is setup NPN callback. The NPN callback is used for the server to advertise the application protocols the server supports to a client. In this example program, when creating SSL_CTX object, we stores the application protocol name in the wire format of NPN in statically allocated buffer. This is safe because we only create 1 SSL_CTX object in the entire program life time:

static unsigned char next_proto_list[256];
static size_t next_proto_list_len;

static int next_proto_cb(SSL *s, const unsigned char **data, unsigned int *len,
                         void *arg)
{
  *data = next_proto_list;
  *len = next_proto_list_len;
  return SSL_TLSEXT_ERR_OK;
}


static SSL_CTX* create_ssl_ctx(const char *key_file, const char *cert_file)
{
  SSL_CTX *ssl_ctx;
  ssl_ctx = SSL_CTX_new(SSLv23_server_method());

  ...

  next_proto_list[0] = NGHTTP2_PROTO_VERSION_ID_LEN;
  memcpy(&next_proto_list[1], NGHTTP2_PROTO_VERSION_ID,
         NGHTTP2_PROTO_VERSION_ID_LEN);
  next_proto_list_len = 1 + NGHTTP2_PROTO_VERSION_ID_LEN;

  SSL_CTX_set_next_protos_advertised_cb(ssl_ctx, next_proto_cb, NULL);
  return ssl_ctx;
}

The wire format of NPN is a sequence of length prefixed string. The exactly one byte is used to specify the length of each protocol identifier. In this tutorial, we advertise the HTTP/2.0 protocol the nghttp2 library supports. The nghttp2 library exports its identifier in NGHTTP2_PROTO_VERSION_ID. The next_proto_cb() function is the server-side NPN callback. In OpenSSL implementation, we just assign the pointer to the NPN buffers we filled earlier. The NPN callback function is set to SSL_CTX object using SSL_CTX_set_next_protos_advertised_cb().

We use app_content structure to store the application-wide data:

struct app_context {
  SSL_CTX *ssl_ctx;
  struct event_base *evbase;
};

We use http2_session_data structure to store the session-level (which corresponds to 1 HTTP/2.0 connection) data:

typedef struct http2_session_data {
  struct http2_stream_data root;
  struct bufferevent *bev;
  app_context *app_ctx;
  nghttp2_session *session;
  char *client_addr;
  size_t handshake_leftlen;
} http2_session_data;

We use http2_stream_data structure to store the stream-level data:

typedef struct http2_stream_data {
  struct http2_stream_data *prev, *next;
  char *request_path;
  int32_t stream_id;
  int fd;
} http2_stream_data;

1 HTTP/2.0 session can have multiple streams. We manage these multiple streams by intrusive doubly linked list to add and remove the object in O(1). The first element of this list is pointed by the root->next in http2_session_data. Initially, root->next is NULL. The handshake_leftlen member of http2_session_data is used to track the number of bytes remaining when receiving first 24 bytes magic value (NGHTTP2_CLIENT_CONNECTION_HEADER) from the client. We use libevent’s bufferevent structure to perform network I/O. Notice that bufferevent object is in http2_session_data and not in http2_stream_data. This is because http2_stream_data is just a logical stream multiplexed over the single connection managed by bufferevent in http2_session_data.

We first create listener object to accept incoming connections. We use libevent’s struct evconnlistener for this purpose:

static void start_listen(struct event_base *evbase, const char *service,
                         app_context *app_ctx)
{
  int rv;
  struct addrinfo hints;
  struct addrinfo *res, *rp;

  memset(&hints, 0, sizeof(hints));
  hints.ai_family = AF_UNSPEC;
  hints.ai_socktype = SOCK_STREAM;
  hints.ai_flags = AI_PASSIVE;
#ifdef AI_ADDRCONFIG
  hints.ai_flags |= AI_ADDRCONFIG;
#endif // AI_ADDRCONFIG

  rv = getaddrinfo(NULL, service, &hints, &res);
  if(rv != 0) {
    errx(1, NULL);
  }
  for(rp = res; rp; rp = rp->ai_next) {
    struct evconnlistener *listener;
    listener = evconnlistener_new_bind(evbase, acceptcb, app_ctx,
                                       LEV_OPT_CLOSE_ON_FREE |
                                       LEV_OPT_REUSEABLE, -1,
                                       rp->ai_addr, rp->ai_addrlen);
    if(listener) {
      return;
    }
  }
  errx(1, "Could not start listener");
}

We specify acceptcb callback which is called when a new connection is accepted:

static void acceptcb(struct evconnlistener *listener, int fd,
                     struct sockaddr *addr, int addrlen, void *arg)
{
  app_context *app_ctx = (app_context*)arg;
  http2_session_data *session_data;

  session_data = create_http2_session_data(app_ctx, fd, addr, addrlen);
  bufferevent_setcb(session_data->bev, handshake_readcb, NULL, eventcb,
                    session_data);
}

Here we create http2_session_data object. The bufferevent for this connection is also initialized at this time. We specify 2 callbacks for the bufferevent: handshake_readcb and eventcb.

The eventcb() is invoked by libevent event loop when an event (e.g., connection has been established, timeout, etc) happens on the underlying network socket:

static void eventcb(struct bufferevent *bev, short events, void *ptr)
{
  http2_session_data *session_data = (http2_session_data*)ptr;
  if(events & BEV_EVENT_CONNECTED) {
    fprintf(stderr, "%s connected\n", session_data->client_addr);
    return;
  }
  if(events & BEV_EVENT_EOF) {
    fprintf(stderr, "%s disconnected\n", session_data->client_addr);
  } else if(events & BEV_EVENT_ERROR) {
    fprintf(stderr, "%s network error\n", session_data->client_addr);
  } else if(events & BEV_EVENT_TIMEOUT) {
    fprintf(stderr, "%s timeout\n", session_data->client_addr);
  }
  delete_http2_session_data(session_data);
}

For BEV_EVENT_EOF, BEV_EVENT_ERROR and BEV_EVENT_TIMEOUT event, we just simply tear down the connection. The delete_http2_session_data() function destroys http2_session_data object and thus its bufferevent member. As a result, the underlying connection is closed. The BEV_EVENT_CONNECTED event is invoked when SSL/TLS handshake is finished successfully.

The handshake_readcb() is a callback function to handle 24 bytes magic byte string from a client, since nghttp2 library does not handle it:

static void handshake_readcb(struct bufferevent *bev, void *ptr)
{
  http2_session_data *session_data = (http2_session_data*)ptr;
  uint8_t data[24];
  struct evbuffer *input = bufferevent_get_input(session_data->bev);
  int readlen = evbuffer_remove(input, data, session_data->handshake_leftlen);
  const char *conhead = NGHTTP2_CLIENT_CONNECTION_HEADER;

  if(memcmp(conhead + NGHTTP2_CLIENT_CONNECTION_HEADER_LEN
            - session_data->handshake_leftlen, data, readlen) != 0) {
    delete_http2_session_data(session_data);
    return;
  }
  session_data->handshake_leftlen -= readlen;
  if(session_data->handshake_leftlen == 0) {
    bufferevent_setcb(session_data->bev, readcb, writecb, eventcb, ptr);
    /* Process pending data in buffer since they are not notified
       further */
    initialize_nghttp2_session(session_data);
    if(send_server_connection_header(session_data) != 0) {
      delete_http2_session_data(session_data);
      return;
    }
    if(session_recv(session_data) != 0) {
      delete_http2_session_data(session_data);
      return;
    }
  }
}

We check that the received byte string matches NGHTTP2_CLIENT_CONNECTION_HEADER. When they match, the connection state is ready for starting HTTP/2.0 communication. First we change the callback functions for the bufferevent object. We use same eventcb as before. But we specify new readcb and writecb function to handle HTTP/2.0 communication. We describe these 2 functions later.

We initialize nghttp2 session object which is done in initialize_nghttp2_session():

static void initialize_nghttp2_session(http2_session_data *session_data)
{
  nghttp2_session_callbacks callbacks = {0};

  callbacks.send_callback = send_callback;
  callbacks.on_frame_recv_callback = on_frame_recv_callback;
  callbacks.on_request_recv_callback = on_request_recv_callback;
  callbacks.on_stream_close_callback = on_stream_close_callback;
  nghttp2_session_server_new(&session_data->session, &callbacks, session_data);
}

Since we are creating server, nghttp2 session object is created using nghttp2_session_server_new() function. We registers 4 callbacks to nghttp2 session object. We’ll talk about these callbacks later.

After initialization of nghttp2 session object, we are going to send server connection header in send_server_connection_header():

static int send_server_connection_header(http2_session_data *session_data)
{
  nghttp2_settings_entry iv[1] = {
    { NGHTTP2_SETTINGS_MAX_CONCURRENT_STREAMS, 100 }
  };
  int rv;

  rv = nghttp2_submit_settings(session_data->session, NGHTTP2_FLAG_NONE,
                               iv, ARRLEN(iv));
  if(rv != 0) {
    warnx("Fatal error: %s", nghttp2_strerror(rv));
    return -1;
  }
  return 0;
}

The server connection header is SETTINGS frame. We specify SETTINGS_MAX_CONCURRENT_STREAMS to 100 in SETTINGS frame. To queue the SETTINGS frame for the transmission, we use nghttp2_submit_settings(). Note that nghttp2_submit_settings() function only queues the frame and not actually send it. All nghttp2_submit_*() family functions have this property. To actually send the frame, nghttp2_session_send() is used, which is described about later.

Since bufferevent may buffer more than first 24 bytes from the client, we have to process them here since libevent won’t invoke callback functions for these pending data. To process received data, we call session_recv() function:

static int session_recv(http2_session_data *session_data)
{
  int rv;
  struct evbuffer *input = bufferevent_get_input(session_data->bev);
  size_t datalen = evbuffer_get_length(input);
  unsigned char *data = evbuffer_pullup(input, -1);
  rv = nghttp2_session_mem_recv(session_data->session, data, datalen);
  if(rv < 0) {
    warnx("Fatal error: %s", nghttp2_strerror(rv));
    return -1;
  }
  evbuffer_drain(input, rv);
  if(session_send(session_data) != 0) {
    return -1;
  }
  return 0;
}

In this function, we feed all unprocessed, received data to nghttp2 session object using nghttp2_session_mem_recv() function. The nghttp2_session_mem_recv() processes the received data and may invoke nghttp2 callbacks and also queue outgoing frames. Since there may be pending frames, we call session_send() function to send those frames. The session_send() function is defined as follows:

static int session_send(http2_session_data *session_data)
{
  int rv;
  rv = nghttp2_session_send(session_data->session);
  if(rv != 0) {
    warnx("Fatal error: %s", nghttp2_strerror(rv));
    return -1;
  }
  return 0;
}

The nghttp2_session_send() function serializes the frame into wire format and call nghttp2_session_callbacks.send_callback with it. We set send_callback() function to nghttp2_session_callbacks.send_callback in initialize_nghttp2_session() function described earlier. It is defined as follows:

static ssize_t send_callback(nghttp2_session *session,
                             const uint8_t *data, size_t length,
                             int flags, void *user_data)
{
  http2_session_data *session_data = (http2_session_data*)user_data;
  struct bufferevent *bev = session_data->bev;
  /* Avoid excessive buffering in server side. */
  if(evbuffer_get_length(bufferevent_get_output(session_data->bev)) >=
     OUTPUT_WOULDBLOCK_THRESHOLD) {
    return NGHTTP2_ERR_WOULDBLOCK;
  }
  bufferevent_write(bev, data, length);
  return length;
}

Since we use bufferevent to abstract network I/O, we just write the data to the bufferevent object. Note that nghttp2_session_send() continues to write all frames queued so far. If we were writing the data to the non-blocking socket directly using write() system call in the nghttp2_session_callbacks.send_callback, we will surely get EAGAIN or EWOULDBLOCK since the socket has limited send buffer. If that happens, we can return NGHTTP2_ERR_WOULDBLOCK to signal the nghttp2 library to stop sending further data. But writing to the bufferevent, we have to regulate the amount data to be buffered by ourselves to avoid possible huge memory consumption. To achieve this, we check the size of output buffer and if it is more than or equal to OUTPUT_WOULDBLOCK_THRESHOLD bytes, we stop writing data and return NGHTTP2_ERR_WOULDBLOCK to tell the library to stop calling send_callback.

The next bufferevent callback is readcb(), which is invoked when data is available to read in the bufferevent input buffer:

static void readcb(struct bufferevent *bev, void *ptr)
{
  http2_session_data *session_data = (http2_session_data*)ptr;
  if(session_recv(session_data) != 0) {
    delete_http2_session_data(session_data);
    return;
  }
}

In this function, we just call session_recv() to process incoming data.

The third bufferevent callback is writecb(), which is invoked when all data written in the bufferevent output buffer have been sent:

static void writecb(struct bufferevent *bev, void *ptr)
{
  http2_session_data *session_data = (http2_session_data*)ptr;
  if(evbuffer_get_length(bufferevent_get_output(bev)) > 0) {
    return;
  }
  if(nghttp2_session_want_read(session_data->session) == 0 &&
     nghttp2_session_want_write(session_data->session) == 0) {
    delete_http2_session_data(session_data);
    return;
  }
  if(session_send(session_data) != 0) {
    delete_http2_session_data(session_data);
    return;
  }
}

First we check whether we should drop connection or not. The nghttp2 session object keeps track of reception and transmission of GOAWAY frame and other error conditions as well. Using these information, nghttp2 session object will tell whether the connection should be dropped or not. More specifically, both nghttp2_session_want_read() and nghttp2_session_want_write() return 0, we have no business in the connection. But since we are using bufferevent and its deferred callback option, the bufferevent output buffer may contain the pending data when the writecb() is called. To handle this situation, we also check whether the output buffer is empty or not. If these conditions are met, we drop connection.

Otherwise, we call session_send() to process pending output data. Remember that in send_callback(), we may not write all data to bufferevent to avoid excessive buffering. We continue process pending data when output buffer becomes empty.

We have already described about nghttp2 callback send_callback(). Let’s describe remaining nghttp2 callbacks we setup in initialize_nghttp2_setup() function.

The on_frame_recv_callback() function is invoked when a frame is received from the remote peer:

static int on_frame_recv_callback(nghttp2_session *session,
                                  const nghttp2_frame *frame, void *user_data)
{
  http2_session_data *session_data = (http2_session_data*)user_data;
  http2_stream_data *stream_data;
  size_t i;
  const char PATH[] = ":path";
  switch(frame->hd.type) {
  case NGHTTP2_HEADERS:
    if(frame->headers.cat != NGHTTP2_HCAT_REQUEST) {
      break;
    }
    stream_data = create_http2_stream_data(session_data, frame->hd.stream_id);
    nghttp2_session_set_stream_user_data(session, frame->hd.stream_id,
                                         stream_data);
    for(i = 0; i < frame->headers.nvlen; ++i) {
      nghttp2_nv *nv = &frame->headers.nva[i];
      if(nv->namelen == sizeof(PATH) - 1 &&
         memcmp(PATH, nv->name, nv->namelen) == 0) {
        size_t j;
        for(j = 0; j < nv->valuelen && nv->value[j] != '?'; ++j);
        stream_data->request_path = percent_decode(nv->value, j);
        break;
      }
    }
    break;
  default:
    break;
  }
  return 0;
}

We only interested in HEADERS frame in this function. Since HEADERS frame has several roles in HTTP/2.0 protocol, we check that it is a request HEADERS, which opens new stream. If frame is request HEADERS, then we create http2_stream_data object to store stream related data. We associate created http2_stream_data object to the stream in nghttp2 session object using nghttp2_set_stream_user_data() in order to get the object without searching through doubly linked list.

In this example server, we want to serve files relative to the current working directory the program was invoked. We search :path header field in request headers and keep the requested path in http2_stream_data object. In this example program, we ignore :method header field and always treat the request as GET request.

It is ok for the server to start sending response in this callback. In this example, we defer it to on_request_recv_callback() function.

The on_request_recv_callback() function is invoked when all HTTP request, including entity body, was received:

static int on_request_recv_callback(nghttp2_session *session,
                                    int32_t stream_id, void *user_data)
{
  int fd;
  http2_session_data *session_data = (http2_session_data*)user_data;
  http2_stream_data *stream_data;
  nghttp2_nv hdrs[] = {
    MAKE_NV(":status", "200")
  };
  char *rel_path;

  stream_data = (http2_stream_data*)nghttp2_session_get_stream_user_data
    (session, stream_id);
  if(!stream_data->request_path) {
    if(error_reply(session, stream_data) != 0) {
      return NGHTTP2_ERR_CALLBACK_FAILURE;
    }
    return 0;
  }
  fprintf(stderr, "%s GET %s\n", session_data->client_addr,
          stream_data->request_path);
  if(!check_path(stream_data->request_path)) {
    if(error_reply(session, stream_data) != 0) {
      return NGHTTP2_ERR_CALLBACK_FAILURE;
    }
    return 0;
  }
  for(rel_path = stream_data->request_path; *rel_path == '/'; ++rel_path);
  fd = open(rel_path, O_RDONLY);
  if(fd == -1) {
    if(error_reply(session, stream_data) != 0) {
      return NGHTTP2_ERR_CALLBACK_FAILURE;
    }
    return 0;
  }
  stream_data->fd = fd;

  if(send_response(session, stream_id, hdrs, ARRLEN(hdrs), fd) != 0) {
    close(fd);
    return NGHTTP2_ERR_CALLBACK_FAILURE;
  }
  return 0;
}

First we retrieve http2_stream_data object associated to the stream in on_frame_recv_callback(). It is done using nghttp2_session_get_stream_user_data(). If the requested path cannot be served for some reasons (e.g., file is not found), we send 404 response, which is done in error_reply(). Otherwise, we open requested file and send its content. We send 1 header field :status as a response header.

Sending content of a file is done in send_response() function:

static int send_response(nghttp2_session *session, int32_t stream_id,
                         nghttp2_nv *nva, size_t nvlen, int fd)
{
  int rv;
  nghttp2_data_provider data_prd;
  data_prd.source.fd = fd;
  data_prd.read_callback = file_read_callback;

  rv = nghttp2_submit_response(session, stream_id, nva, nvlen, &data_prd);
  if(rv != 0) {
    warnx("Fatal error: %s", nghttp2_strerror(rv));
    return -1;
  }
  return 0;
}

The nghttp2 library uses nghttp2_data_provider structure to send entity body to the remote peer. The source member of this structure is a union and it can be either void pointer or int which is intended to be used as file descriptor. In this example server, we use file descriptor. We also set file_read_callback() callback function to read content of the file:

static ssize_t file_read_callback
(nghttp2_session *session, int32_t stream_id,
 uint8_t *buf, size_t length, int *eof,
 nghttp2_data_source *source, void *user_data)
{
  int fd = source->fd;
  ssize_t r;
  while((r = read(fd, buf, length)) == -1 && errno == EINTR);
  if(r == -1) {
    return NGHTTP2_ERR_TEMPORAL_CALLBACK_FAILURE;
  }
  if(r == 0) {
    *eof = 1;
  }
  return r;
}

If error happens while reading file, we return NGHTTP2_ERR_TEMPORAL_CALLBACK_FAILURE. This tells the library to send RST_STREAM to the stream. When all data is read, set 1 to *eof to tell the nghttp2 library that we have finished reading file.

The nghttp2_submit_response() is used to send response to the remote peer.

The on_stream_close_callback() function is invoked when the stream is about to close:

static int on_stream_close_callback(nghttp2_session *session,
                                    int32_t stream_id,
                                    nghttp2_error_code error_code,
                                    void *user_data)
{
  http2_session_data *session_data = (http2_session_data*)user_data;
  http2_stream_data *stream_data;

  stream_data = nghttp2_session_get_stream_user_data(session, stream_id);
  remove_stream(session_data, stream_data);
  delete_http2_stream_data(stream_data);
  return 0;
}

We destroy http2_stream_data object in this function since the stream is about to close and we no longer use that object.

libevent-server.cΒΆ

/*
 * nghttp2 - HTTP/2.0 C Library
 *
 * Copyright (c) 2013 Tatsuhiro Tsujikawa
 *
 * Permission is hereby granted, free of charge, to any person obtaining
 * a copy of this software and associated documentation files (the
 * "Software"), to deal in the Software without restriction, including
 * without limitation the rights to use, copy, modify, merge, publish,
 * distribute, sublicense, and/or sell copies of the Software, and to
 * permit persons to whom the Software is furnished to do so, subject to
 * the following conditions:
 *
 * The above copyright notice and this permission notice shall be
 * included in all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
 * LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
 * OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
 * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
 */
#include <sys/types.h>
#include <sys/socket.h>
#include <netdb.h>
#include <signal.h>
#include <unistd.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <ctype.h>
#include <netinet/in.h>
#include <netinet/tcp.h>
#include <err.h>

#include <openssl/ssl.h>
#include <openssl/err.h>

#include <event.h>
#include <event2/event.h>
#include <event2/bufferevent_ssl.h>
#include <event2/listener.h>

#include <nghttp2/nghttp2.h>

#define OUTPUT_WOULDBLOCK_THRESHOLD (1 << 16)

#define ARRLEN(x) (sizeof(x)/sizeof(x[0]))

#define MAKE_NV(NAME, VALUE)                                            \
  { (uint8_t*)NAME, (uint8_t*)VALUE, sizeof(NAME) - 1, sizeof(VALUE) - 1 }

struct app_context;
typedef struct app_context app_context;

typedef struct http2_stream_data {
  struct http2_stream_data *prev, *next;
  char *request_path;
  int32_t stream_id;
  int fd;
} http2_stream_data;

typedef struct http2_session_data {
  struct http2_stream_data root;
  struct bufferevent *bev;
  app_context *app_ctx;
  nghttp2_session *session;
  char *client_addr;
  size_t handshake_leftlen;
} http2_session_data;

struct app_context {
  SSL_CTX *ssl_ctx;
  struct event_base *evbase;
};

static unsigned char next_proto_list[256];
static size_t next_proto_list_len;

static int next_proto_cb(SSL *s, const unsigned char **data, unsigned int *len,
                         void *arg)
{
  *data = next_proto_list;
  *len = next_proto_list_len;
  return SSL_TLSEXT_ERR_OK;
}

/* Create SSL_CTX. */
static SSL_CTX* create_ssl_ctx(const char *key_file, const char *cert_file)
{
  SSL_CTX *ssl_ctx;
  ssl_ctx = SSL_CTX_new(SSLv23_server_method());
  if(!ssl_ctx) {
    errx(1, "Could not create SSL/TLS context: %s",
         ERR_error_string(ERR_get_error(), NULL));
  }
  SSL_CTX_set_options(ssl_ctx,
                      SSL_OP_ALL | SSL_OP_NO_SSLv2 | SSL_OP_NO_COMPRESSION |
                      SSL_OP_NO_SESSION_RESUMPTION_ON_RENEGOTIATION);

  if(SSL_CTX_use_PrivateKey_file(ssl_ctx, key_file,
                                 SSL_FILETYPE_PEM) != 1) {
    errx(1, "Could not read private key file %s", key_file);
  }
  if(SSL_CTX_use_certificate_chain_file(ssl_ctx, cert_file) != 1) {
    errx(1, "Could not read certificate file %s", cert_file);
  }

  next_proto_list[0] = NGHTTP2_PROTO_VERSION_ID_LEN;
  memcpy(&next_proto_list[1], NGHTTP2_PROTO_VERSION_ID,
         NGHTTP2_PROTO_VERSION_ID_LEN);
  next_proto_list_len = 1 + NGHTTP2_PROTO_VERSION_ID_LEN;

  SSL_CTX_set_next_protos_advertised_cb(ssl_ctx, next_proto_cb, NULL);
  return ssl_ctx;
}

/* Create SSL object */
static SSL* create_ssl(SSL_CTX *ssl_ctx)
{
  SSL *ssl;
  ssl = SSL_new(ssl_ctx);
  if(!ssl) {
    errx(1, "Could not create SSL/TLS session object: %s",
         ERR_error_string(ERR_get_error(), NULL));
  }
  return ssl;
}

static void add_stream(http2_session_data *session_data,
                       http2_stream_data *stream_data)
{
  stream_data->next = session_data->root.next;
  session_data->root.next = stream_data;
  stream_data->prev = &session_data->root;
  if(stream_data->next) {
    stream_data->next->prev = stream_data;
  }
}

static void remove_stream(http2_session_data *session_data,
                          http2_stream_data *stream_data)
{
  stream_data->prev->next = stream_data->next;
  if(stream_data->next) {
    stream_data->next->prev = stream_data->prev;
  }
}

static http2_stream_data* create_http2_stream_data
(http2_session_data *session_data, int32_t stream_id)
{
  http2_stream_data *stream_data;
  stream_data = malloc(sizeof(http2_stream_data));
  memset(stream_data, 0, sizeof(http2_stream_data));
  stream_data->stream_id = stream_id;
  stream_data->fd = -1;

  add_stream(session_data, stream_data);
  return stream_data;
}

static void delete_http2_stream_data(http2_stream_data *stream_data)
{
  if(stream_data->fd != -1) {
    close(stream_data->fd);
  }
  free(stream_data->request_path);
  free(stream_data);
}

static http2_session_data* create_http2_session_data(app_context *app_ctx,
                                                     int fd,
                                                     struct sockaddr *addr,
                                                     int addrlen)
{
  int rv;
  http2_session_data *session_data;
  SSL *ssl;
  char host[NI_MAXHOST];
  int val = 1;

  ssl = create_ssl(app_ctx->ssl_ctx);
  session_data = malloc(sizeof(http2_session_data));
  memset(session_data, 0, sizeof(http2_session_data));
  session_data->app_ctx = app_ctx;
  setsockopt(fd, IPPROTO_TCP, TCP_NODELAY, (char *)&val, sizeof(val));
  session_data->bev = bufferevent_openssl_socket_new
    (app_ctx->evbase, fd, ssl,
     BUFFEREVENT_SSL_ACCEPTING,
     BEV_OPT_CLOSE_ON_FREE | BEV_OPT_DEFER_CALLBACKS);
  session_data->handshake_leftlen = NGHTTP2_CLIENT_CONNECTION_HEADER_LEN;
  rv = getnameinfo(addr, addrlen, host, sizeof(host), NULL, 0, NI_NUMERICHOST);
  if(rv != 0) {
    session_data->client_addr = strdup("(unknown)");
  } else {
    session_data->client_addr = strdup(host);
  }

  return session_data;
}

static void delete_http2_session_data(http2_session_data *session_data)
{
  http2_stream_data *stream_data;
  SSL *ssl = bufferevent_openssl_get_ssl(session_data->bev);

  if(ssl) {
    SSL_shutdown(ssl);
  }
  bufferevent_free(session_data->bev);
  nghttp2_session_del(session_data->session);
  for(stream_data = session_data->root.next; stream_data;) {
    http2_stream_data *next = stream_data->next;
    delete_http2_stream_data(stream_data);
    stream_data = next;
  }
  free(session_data->client_addr);
  free(session_data);
}

/* Serialize the frame and send (or buffer) the data to
   bufferevent. */
static int session_send(http2_session_data *session_data)
{
  int rv;
  rv = nghttp2_session_send(session_data->session);
  if(rv != 0) {
    warnx("Fatal error: %s", nghttp2_strerror(rv));
    return -1;
  }
  return 0;
}

/* Read the data in the bufferevent and feed them into nghttp2 library
   function. Invocation of nghttp2_session_mem_recv() may make
   additional pending frames, so call session_send() at the end of the
   function. */
static int session_recv(http2_session_data *session_data)
{
  int rv;
  struct evbuffer *input = bufferevent_get_input(session_data->bev);
  size_t datalen = evbuffer_get_length(input);
  unsigned char *data = evbuffer_pullup(input, -1);
  rv = nghttp2_session_mem_recv(session_data->session, data, datalen);
  if(rv < 0) {
    warnx("Fatal error: %s", nghttp2_strerror(rv));
    return -1;
  }
  evbuffer_drain(input, rv);
  if(session_send(session_data) != 0) {
    return -1;
  }
  return 0;
}

static ssize_t send_callback(nghttp2_session *session,
                             const uint8_t *data, size_t length,
                             int flags, void *user_data)
{
  http2_session_data *session_data = (http2_session_data*)user_data;
  struct bufferevent *bev = session_data->bev;
  /* Avoid excessive buffering in server side. */
  if(evbuffer_get_length(bufferevent_get_output(session_data->bev)) >=
     OUTPUT_WOULDBLOCK_THRESHOLD) {
    return NGHTTP2_ERR_WOULDBLOCK;
  }
  bufferevent_write(bev, data, length);
  return length;
}

/* Returns nonzero if the string |s| ends with the substring |sub| */
static int ends_with(const char *s, const char *sub)
{
  size_t slen = strlen(s);
  size_t sublen = strlen(sub);
  if(slen < sublen) {
    return 0;
  }
  return memcmp(s + slen - sublen, sub, sublen) == 0;
}

/* Returns int value of hex string character |c| */
static uint8_t hex_to_uint(uint8_t c)
{
  if('0' <= c && c <= '9') {
    return c - '0';
  }
  if('A' <= c && c <= 'F') {
    return c - 'A' + 10;
  }
  if('a' <= c && c <= 'f') {
    return c - 'a' + 10;
  }
  return 0;
}

/* Decodes percent-encoded byte string |value| with length |valuelen|
   and returns the decoded byte string in allocated buffer. The return
   value is NULL terminated. The caller must free the returned
   string. */
static char* percent_decode(const uint8_t *value, size_t valuelen)
{
  char *res;

  res = malloc(valuelen + 1);
  if(valuelen > 3) {
    size_t i, j;
    for(i = 0, j = 0; i < valuelen - 2;) {
      if(value[i] != '%' ||
         !isxdigit(value[i + 1]) || !isxdigit(value[i + 2])) {
        res[j++] = value[i++];
        continue;
      }
      res[j++] = (hex_to_uint(value[i + 1]) << 4) + hex_to_uint(value[i + 2]);
      i += 3;
    }
    memcpy(&res[j], &value[i], 2);
    res[j + 2] = '\0';
  } else {
    memcpy(res, value, valuelen);
    res[valuelen] = '\0';
  }
  return res;
}

static int on_frame_recv_callback(nghttp2_session *session,
                                  const nghttp2_frame *frame, void *user_data)
{
  http2_session_data *session_data = (http2_session_data*)user_data;
  http2_stream_data *stream_data;
  size_t i;
  const char PATH[] = ":path";
  switch(frame->hd.type) {
  case NGHTTP2_HEADERS:
    if(frame->headers.cat != NGHTTP2_HCAT_REQUEST) {
      break;
    }
    stream_data = create_http2_stream_data(session_data, frame->hd.stream_id);
    nghttp2_session_set_stream_user_data(session, frame->hd.stream_id,
                                         stream_data);
    for(i = 0; i < frame->headers.nvlen; ++i) {
      nghttp2_nv *nv = &frame->headers.nva[i];
      if(nv->namelen == sizeof(PATH) - 1 &&
         memcmp(PATH, nv->name, nv->namelen) == 0) {
        size_t j;
        for(j = 0; j < nv->valuelen && nv->value[j] != '?'; ++j);
        stream_data->request_path = percent_decode(nv->value, j);
        break;
      }
    }
    break;
  default:
    break;
  }
  return 0;
}

static ssize_t file_read_callback
(nghttp2_session *session, int32_t stream_id,
 uint8_t *buf, size_t length, int *eof,
 nghttp2_data_source *source, void *user_data)
{
  int fd = source->fd;
  ssize_t r;
  while((r = read(fd, buf, length)) == -1 && errno == EINTR);
  if(r == -1) {
    return NGHTTP2_ERR_TEMPORAL_CALLBACK_FAILURE;
  }
  if(r == 0) {
    *eof = 1;
  }
  return r;
}

static int send_response(nghttp2_session *session, int32_t stream_id,
                         nghttp2_nv *nva, size_t nvlen, int fd)
{
  int rv;
  nghttp2_data_provider data_prd;
  data_prd.source.fd = fd;
  data_prd.read_callback = file_read_callback;

  rv = nghttp2_submit_response(session, stream_id, nva, nvlen, &data_prd);
  if(rv != 0) {
    warnx("Fatal error: %s", nghttp2_strerror(rv));
    return -1;
  }
  return 0;
}

const char ERROR_HTML[] = "<html><head><title>404</title></head>"
  "<body><h1>404 Not Found</h1></body></html>";

static int error_reply(nghttp2_session *session,
                       http2_stream_data *stream_data)
{
  int rv;
  int pipefd[2];
  nghttp2_nv hdrs[] = {
    MAKE_NV(":status", "404")
  };

  rv = pipe(pipefd);
  if(rv != 0) {
    warn("Could not create pipe");
    rv = nghttp2_submit_rst_stream(session, NGHTTP2_FLAG_NONE,
                                   stream_data->stream_id,
                                   NGHTTP2_INTERNAL_ERROR);
    if(rv != 0) {
      warnx("Fatal error: %s", nghttp2_strerror(rv));
      return -1;
    }
    return 0;
  }
  write(pipefd[1], ERROR_HTML, sizeof(ERROR_HTML) - 1);
  close(pipefd[1]);
  stream_data->fd = pipefd[0];
  if(send_response(session, stream_data->stream_id, hdrs, ARRLEN(hdrs),
                   pipefd[0]) != 0) {
    close(pipefd[0]);
    return -1;
  }
  return 0;
}

/* Minimum check for directory traversal. Returns nonzero if it is
   safe. */
static int check_path(const char *path)
{
  /* We don't like '\' in url. */
  return path[0] && path[0] == '/' &&
    strchr(path, '\\') == NULL &&
    strstr(path, "/../") == NULL &&
    strstr(path, "/./") == NULL &&
    !ends_with(path, "/..") && !ends_with(path, "/.");
}

static int on_request_recv_callback(nghttp2_session *session,
                                    int32_t stream_id, void *user_data)
{
  int fd;
  http2_session_data *session_data = (http2_session_data*)user_data;
  http2_stream_data *stream_data;
  nghttp2_nv hdrs[] = {
    MAKE_NV(":status", "200")
  };
  char *rel_path;

  stream_data = (http2_stream_data*)nghttp2_session_get_stream_user_data
    (session, stream_id);
  if(!stream_data->request_path) {
    if(error_reply(session, stream_data) != 0) {
      return NGHTTP2_ERR_CALLBACK_FAILURE;
    }
    return 0;
  }
  fprintf(stderr, "%s GET %s\n", session_data->client_addr,
          stream_data->request_path);
  if(!check_path(stream_data->request_path)) {
    if(error_reply(session, stream_data) != 0) {
      return NGHTTP2_ERR_CALLBACK_FAILURE;
    }
    return 0;
  }
  for(rel_path = stream_data->request_path; *rel_path == '/'; ++rel_path);
  fd = open(rel_path, O_RDONLY);
  if(fd == -1) {
    if(error_reply(session, stream_data) != 0) {
      return NGHTTP2_ERR_CALLBACK_FAILURE;
    }
    return 0;
  }
  stream_data->fd = fd;

  if(send_response(session, stream_id, hdrs, ARRLEN(hdrs), fd) != 0) {
    close(fd);
    return NGHTTP2_ERR_CALLBACK_FAILURE;
  }
  return 0;
}

static int on_stream_close_callback(nghttp2_session *session,
                                    int32_t stream_id,
                                    nghttp2_error_code error_code,
                                    void *user_data)
{
  http2_session_data *session_data = (http2_session_data*)user_data;
  http2_stream_data *stream_data;

  stream_data = nghttp2_session_get_stream_user_data(session, stream_id);
  remove_stream(session_data, stream_data);
  delete_http2_stream_data(stream_data);
  return 0;
}

static void initialize_nghttp2_session(http2_session_data *session_data)
{
  nghttp2_session_callbacks callbacks = {0};

  callbacks.send_callback = send_callback;
  callbacks.on_frame_recv_callback = on_frame_recv_callback;
  callbacks.on_request_recv_callback = on_request_recv_callback;
  callbacks.on_stream_close_callback = on_stream_close_callback;
  nghttp2_session_server_new(&session_data->session, &callbacks, session_data);
}

/* Send HTTP/2.0 client connection header, which includes 24 bytes
   magic octets and SETTINGS frame */
static int send_server_connection_header(http2_session_data *session_data)
{
  nghttp2_settings_entry iv[1] = {
    { NGHTTP2_SETTINGS_MAX_CONCURRENT_STREAMS, 100 }
  };
  int rv;

  rv = nghttp2_submit_settings(session_data->session, NGHTTP2_FLAG_NONE,
                               iv, ARRLEN(iv));
  if(rv != 0) {
    warnx("Fatal error: %s", nghttp2_strerror(rv));
    return -1;
  }
  return 0;
}

/* readcb for bufferevent after client connection header was
   checked. */
static void readcb(struct bufferevent *bev, void *ptr)
{
  http2_session_data *session_data = (http2_session_data*)ptr;
  if(session_recv(session_data) != 0) {
    delete_http2_session_data(session_data);
    return;
  }
}

/* writecb for bufferevent. To greaceful shutdown after sending or
   receiving GOAWAY, we check the some conditions on the nghttp2
   library and output buffer of bufferevent. If it indicates we have
   no business to this session, tear down the connection. If the
   connection is not going to shutdown, we call session_send() to
   process pending data in the output buffer. This is necessary
   because we have a threshold on the buffer size to avoid too much
   buffering. See send_callback(). */
static void writecb(struct bufferevent *bev, void *ptr)
{
  http2_session_data *session_data = (http2_session_data*)ptr;
  if(evbuffer_get_length(bufferevent_get_output(bev)) > 0) {
    return;
  }
  if(nghttp2_session_want_read(session_data->session) == 0 &&
     nghttp2_session_want_write(session_data->session) == 0) {
    delete_http2_session_data(session_data);
    return;
  }
  if(session_send(session_data) != 0) {
    delete_http2_session_data(session_data);
    return;
  }
}

/* eventcb for bufferevent */
static void eventcb(struct bufferevent *bev, short events, void *ptr)
{
  http2_session_data *session_data = (http2_session_data*)ptr;
  if(events & BEV_EVENT_CONNECTED) {
    fprintf(stderr, "%s connected\n", session_data->client_addr);
    return;
  }
  if(events & BEV_EVENT_EOF) {
    fprintf(stderr, "%s disconnected\n", session_data->client_addr);
  } else if(events & BEV_EVENT_ERROR) {
    fprintf(stderr, "%s network error\n", session_data->client_addr);
  } else if(events & BEV_EVENT_TIMEOUT) {
    fprintf(stderr, "%s timeout\n", session_data->client_addr);
  }
  delete_http2_session_data(session_data);
}

/* readcb for bufferevent to check first 24 bytes client connection
   header. */
static void handshake_readcb(struct bufferevent *bev, void *ptr)
{
  http2_session_data *session_data = (http2_session_data*)ptr;
  uint8_t data[24];
  struct evbuffer *input = bufferevent_get_input(session_data->bev);
  int readlen = evbuffer_remove(input, data, session_data->handshake_leftlen);
  const char *conhead = NGHTTP2_CLIENT_CONNECTION_HEADER;

  if(memcmp(conhead + NGHTTP2_CLIENT_CONNECTION_HEADER_LEN
            - session_data->handshake_leftlen, data, readlen) != 0) {
    delete_http2_session_data(session_data);
    return;
  }
  session_data->handshake_leftlen -= readlen;
  if(session_data->handshake_leftlen == 0) {
    bufferevent_setcb(session_data->bev, readcb, writecb, eventcb, ptr);
    /* Process pending data in buffer since they are not notified
       further */
    initialize_nghttp2_session(session_data);
    if(send_server_connection_header(session_data) != 0) {
      delete_http2_session_data(session_data);
      return;
    }
    if(session_recv(session_data) != 0) {
      delete_http2_session_data(session_data);
      return;
    }
  }
}

/* callback for evconnlistener */
static void acceptcb(struct evconnlistener *listener, int fd,
                     struct sockaddr *addr, int addrlen, void *arg)
{
  app_context *app_ctx = (app_context*)arg;
  http2_session_data *session_data;

  session_data = create_http2_session_data(app_ctx, fd, addr, addrlen);
  bufferevent_setcb(session_data->bev, handshake_readcb, NULL, eventcb,
                    session_data);
}

static void start_listen(struct event_base *evbase, const char *service,
                         app_context *app_ctx)
{
  int rv;
  struct addrinfo hints;
  struct addrinfo *res, *rp;

  memset(&hints, 0, sizeof(hints));
  hints.ai_family = AF_UNSPEC;
  hints.ai_socktype = SOCK_STREAM;
  hints.ai_flags = AI_PASSIVE;
#ifdef AI_ADDRCONFIG
  hints.ai_flags |= AI_ADDRCONFIG;
#endif // AI_ADDRCONFIG

  rv = getaddrinfo(NULL, service, &hints, &res);
  if(rv != 0) {
    errx(1, NULL);
  }
  for(rp = res; rp; rp = rp->ai_next) {
    struct evconnlistener *listener;
    listener = evconnlistener_new_bind(evbase, acceptcb, app_ctx,
                                       LEV_OPT_CLOSE_ON_FREE |
                                       LEV_OPT_REUSEABLE, 16,
                                       rp->ai_addr, rp->ai_addrlen);
    if(listener) {
      return;
    }
  }
  errx(1, "Could not start listener");
}

static void initialize_app_context(app_context *app_ctx, SSL_CTX *ssl_ctx,
                                   struct event_base *evbase)
{
  memset(app_ctx, 0, sizeof(app_context));
  app_ctx->ssl_ctx = ssl_ctx;
  app_ctx->evbase = evbase;
}

static void run(const char *service,
                const char *key_file, const char *cert_file)
{
  SSL_CTX *ssl_ctx;
  app_context app_ctx;
  struct event_base *evbase;

  ssl_ctx = create_ssl_ctx(key_file, cert_file);
  evbase = event_base_new();
  initialize_app_context(&app_ctx, ssl_ctx, evbase);
  start_listen(evbase, service, &app_ctx);

  event_base_loop(evbase, 0);

  event_base_free(evbase);
  SSL_CTX_free(ssl_ctx);
}

int main(int argc, char **argv)
{
  struct sigaction act;

  if(argc < 4) {
    fprintf(stderr, "Usage: libevent-server PORT KEY_FILE CERT_FILE\n");
    exit(EXIT_FAILURE);
  }

  memset(&act, 0, sizeof(struct sigaction));
  act.sa_handler = SIG_IGN;
  sigaction(SIGPIPE, &act, NULL);

  SSL_load_error_strings();
  SSL_library_init();

  run(argv[1], argv[2], argv[3]);
  return 0;
}