Tutorial: HTTP/2 serverΒΆ

In this tutorial, we are going to write single-threaded, event-based HTTP/2 web server, which supports HTTPS only. It can handle concurrent multiple requests, but only the GET method is supported. The complete source code, libevent-server.c, is attached at the end of this page. It also resides in examples directory in the archive or repository.

This simple server takes 3 arguments, a port number to listen to, a path to your SSL/TLS private key file and a path to your certificate file. Its synopsis is like this:

$ libevent-server PORT /path/to/server.key /path/to/server.crt

We use libevent in this tutorial to handle networking I/O. Please note that nghttp2 itself does not depend on libevent.

First we create a setup routine for libevent and OpenSSL in the functions main() and run(). One thing in there you should look at, is the setup of the NPN callback. The NPN callback is used for the server to advertise which application protocols the server supports to a client. In this example program, when creating SSL_CTX object, we store the application protocol name in the wire format of NPN in a statically allocated buffer. This is safe because we only create one SSL_CTX object in the program’s entire life time:

static unsigned char next_proto_list[256];
static size_t next_proto_list_len;

static int next_proto_cb(SSL *s, const unsigned char **data, unsigned int *len,
                         void *arg)
{
  *data = next_proto_list;
  *len = (unsigned int)next_proto_list_len;
  return SSL_TLSEXT_ERR_OK;
}

static SSL_CTX* create_ssl_ctx(const char *key_file, const char *cert_file)
{
  SSL_CTX *ssl_ctx;
  ssl_ctx = SSL_CTX_new(SSLv23_server_method());

  ...

  next_proto_list[0] = NGHTTP2_PROTO_VERSION_ID_LEN;
  memcpy(&next_proto_list[1], NGHTTP2_PROTO_VERSION_ID,
         NGHTTP2_PROTO_VERSION_ID_LEN);
  next_proto_list_len = 1 + NGHTTP2_PROTO_VERSION_ID_LEN;

  SSL_CTX_set_next_protos_advertised_cb(ssl_ctx, next_proto_cb, NULL);
  return ssl_ctx;
}

The wire format of NPN is a sequence of length prefixed string. Exactly one byte is used to specify the length of each protocol identifier. In this tutorial, we advertise the specific HTTP/2 protocol version the current nghttp2 library supports. The nghttp2 library exports its identifier in NGHTTP2_PROTO_VERSION_ID. The next_proto_cb() function is the server-side NPN callback. In the OpenSSL implementation, we just assign the pointer to the NPN buffers we filled in earlier. The NPN callback function is set to the SSL_CTX object using SSL_CTX_set_next_protos_advertised_cb().

We use the app_content structure to store application-wide data:

struct app_context {
  SSL_CTX *ssl_ctx;
  struct event_base *evbase;
};

We use the http2_session_data structure to store session-level (which corresponds to one HTTP/2 connection) data:

typedef struct http2_session_data {
  struct http2_stream_data root;
  struct bufferevent *bev;
  app_context *app_ctx;
  nghttp2_session *session;
  char *client_addr;
  size_t handshake_leftlen;
} http2_session_data;

We use the http2_stream_data structure to store stream-level data:

typedef struct http2_stream_data {
  struct http2_stream_data *prev, *next;
  char *request_path;
  int32_t stream_id;
  int fd;
} http2_stream_data;

A single HTTP/2 session can have multiple streams. We manage these multiple streams with a doubly linked list. The first element of this list is pointed to by the root->next in http2_session_data. Initially, root->next is NULL. The handshake_leftlen member of http2_session_data is used to track the number of bytes remaining when receiving the first client connection preface (NGHTTP2_CLIENT_CONNECTION_PREFACE), which is a 24 bytes long magic string from the client. We use libevent’s bufferevent structure to perform network I/O. Note that the bufferevent object is kept in http2_session_data and not in http2_stream_data. This is because http2_stream_data is just a logical stream multiplexed over the single connection managed by bufferevent in http2_session_data.

We first create a listener object to accept incoming connections. We use libevent’s struct evconnlistener for this purpose:

static void start_listen(struct event_base *evbase, const char *service,
                         app_context *app_ctx)
{
  int rv;
  struct addrinfo hints;
  struct addrinfo *res, *rp;

  memset(&hints, 0, sizeof(hints));
  hints.ai_family = AF_UNSPEC;
  hints.ai_socktype = SOCK_STREAM;
  hints.ai_flags = AI_PASSIVE;
#ifdef AI_ADDRCONFIG
  hints.ai_flags |= AI_ADDRCONFIG;
#endif // AI_ADDRCONFIG

  rv = getaddrinfo(NULL, service, &hints, &res);
  if(rv != 0) {
    errx(1, NULL);
  }
  for(rp = res; rp; rp = rp->ai_next) {
    struct evconnlistener *listener;
    listener = evconnlistener_new_bind(evbase, acceptcb, app_ctx,
                                       LEV_OPT_CLOSE_ON_FREE |
                                       LEV_OPT_REUSEABLE, -1,
                                       rp->ai_addr, rp->ai_addrlen);
    if(listener) {
      return;
    }
  }
  errx(1, "Could not start listener");
}

We specify the acceptcb callback which is called when a new connection is accepted:

static void acceptcb(struct evconnlistener *listener, int fd,
                     struct sockaddr *addr, int addrlen, void *arg)
{
  app_context *app_ctx = (app_context*)arg;
  http2_session_data *session_data;

  session_data = create_http2_session_data(app_ctx, fd, addr, addrlen);
  bufferevent_setcb(session_data->bev, handshake_readcb, NULL, eventcb,
                    session_data);
}

Here we create the http2_session_data object. The bufferevent for this connection is also initialized at this time. We specify two callbacks for the bufferevent: handshake_readcb and eventcb.

The eventcb() callback is invoked by the libevent event loop when an event (e.g., connection has been established, timeout, etc) happens on the underlying network socket:

static void eventcb(struct bufferevent *bev, short events, void *ptr)
{
  http2_session_data *session_data = (http2_session_data*)ptr;
  if(events & BEV_EVENT_CONNECTED) {
    fprintf(stderr, "%s connected\n", session_data->client_addr);
    return;
  }
  if(events & BEV_EVENT_EOF) {
    fprintf(stderr, "%s EOF\n", session_data->client_addr);
  } else if(events & BEV_EVENT_ERROR) {
    fprintf(stderr, "%s network error\n", session_data->client_addr);
  } else if(events & BEV_EVENT_TIMEOUT) {
    fprintf(stderr, "%s timeout\n", session_data->client_addr);
  }
  delete_http2_session_data(session_data);
}

For the BEV_EVENT_EOF, BEV_EVENT_ERROR and BEV_EVENT_TIMEOUT events, we just simply tear down the connection. The delete_http2_session_data() function destroys the http2_session_data object and thus also its bufferevent member. As a result, the underlying connection is closed. The BEV_EVENT_CONNECTED event is invoked when SSL/TLS handshake is finished successfully.

handshake_readcb() is a callback function to handle a 24 bytes magic byte string coming from a client, since the nghttp2 library does not handle it:

static void handshake_readcb(struct bufferevent *bev, void *ptr)
{
  http2_session_data *session_data = (http2_session_data*)ptr;
  uint8_t data[24];
  struct evbuffer *input = bufferevent_get_input(session_data->bev);
  int readlen = evbuffer_remove(input, data, session_data->handshake_leftlen);
  const char *conhead = NGHTTP2_CLIENT_CONNECTION_PREFACE;

  if(memcmp(conhead + NGHTTP2_CLIENT_CONNECTION_PREFACE_LEN
            - session_data->handshake_leftlen, data, readlen) != 0) {
    delete_http2_session_data(session_data);
    return;
  }
  session_data->handshake_leftlen -= readlen;
  if(session_data->handshake_leftlen == 0) {
    bufferevent_setcb(session_data->bev, readcb, writecb, eventcb, ptr);
    /* Process pending data in buffer since they are not notified
       further */
    initialize_nghttp2_session(session_data);
    if(send_server_connection_header(session_data) != 0) {
      delete_http2_session_data(session_data);
      return;
    }
    if(session_recv(session_data) != 0) {
      delete_http2_session_data(session_data);
      return;
    }
  }
}

We check that the received byte string matches NGHTTP2_CLIENT_CONNECTION_PREFACE. When they match, the connection state is ready to start the HTTP/2 communication. First we change the callback functions for the bufferevent object. We use the same eventcb callback as before, but we specify new readcb and writecb functions to handle the HTTP/2 communication. These two functions are described later.

We initialize a nghttp2 session object which is done in initialize_nghttp2_session():

static void initialize_nghttp2_session(http2_session_data *session_data)
{
  nghttp2_session_callbacks callbacks = {0};

  callbacks.send_callback = send_callback;
  callbacks.on_frame_recv_callback = on_frame_recv_callback;
  callbacks.on_stream_close_callback = on_stream_close_callback;
  callbacks.on_header_callback = on_header_callback;
  callbacks.on_begin_headers_callback = on_begin_headers_callback;
  nghttp2_session_server_new(&session_data->session, &callbacks, session_data);
}

Since we are creating a server, the nghttp2 session object is created using nghttp2_session_server_new() function. We registers five callbacks for nghttp2 session object. We’ll talk about these callbacks later.

After initialization of the nghttp2 session object, we are going to send a server connection header in send_server_connection_header():

static int send_server_connection_header(http2_session_data *session_data)
{
  nghttp2_settings_entry iv[1] = {
    { NGHTTP2_SETTINGS_MAX_CONCURRENT_STREAMS, 100 }
  };
  int rv;

  rv = nghttp2_submit_settings(session_data->session, NGHTTP2_FLAG_NONE,
                               iv, ARRLEN(iv));
  if(rv != 0) {
    warnx("Fatal error: %s", nghttp2_strerror(rv));
    return -1;
  }
  return 0;
}

The server connection header is a SETTINGS frame. We specify SETTINGS_MAX_CONCURRENT_STREAMS to 100 in the SETTINGS frame. To queue the SETTINGS frame for the transmission, we use nghttp2_submit_settings(). Note that nghttp2_submit_settings() function only queues the frame and it does not actually send it. All functions in the nghttp2_submit_*() family have this property. To actually send the frame, nghttp2_session_send() should be used, as described later.

Since bufferevent may buffer more than the first 24 bytes from the client, we have to process them here since libevent won’t invoke callback functions for this pending data. To process the received data, we call the session_recv() function:

static int session_recv(http2_session_data *session_data)
{
  ssize_t readlen;
  struct evbuffer *input = bufferevent_get_input(session_data->bev);
  size_t datalen = evbuffer_get_length(input);
  unsigned char *data = evbuffer_pullup(input, -1);

  readlen = nghttp2_session_mem_recv(session_data->session, data, datalen);
  if(readlen < 0) {
    warnx("Fatal error: %s", nghttp2_strerror((int)readlen));
    return -1;
  }
  if(evbuffer_drain(input, readlen) != 0) {
    warnx("Fatal error: evbuffer_drain failed");
    return -1;
  }
  if(session_send(session_data) != 0) {
    return -1;
  }
  return 0;
}

In this function, we feed all unprocessed but already received data to the nghttp2 session object using the nghttp2_session_mem_recv() function. The nghttp2_session_mem_recv() function processes the data and may invoke the nghttp2 callbacks and also queue outgoing frames. Since there may be pending outgoing frames, we call session_send() function to send off those frames. The session_send() function is defined as follows:

static int session_send(http2_session_data *session_data)
{
  int rv;
  rv = nghttp2_session_send(session_data->session);
  if(rv != 0) {
    warnx("Fatal error: %s", nghttp2_strerror(rv));
    return -1;
  }
  return 0;
}

The nghttp2_session_send() function serializes the frame into wire format and calls nghttp2_session_callbacks.send_callback with it. We set the send_callback() function to nghttp2_session_callbacks.send_callback in initialize_nghttp2_session() function described earlier. It is defined as follows:

static ssize_t send_callback(nghttp2_session *session,
                             const uint8_t *data, size_t length,
                             int flags, void *user_data)
{
  http2_session_data *session_data = (http2_session_data*)user_data;
  struct bufferevent *bev = session_data->bev;
  /* Avoid excessive buffering in server side. */
  if(evbuffer_get_length(bufferevent_get_output(session_data->bev)) >=
     OUTPUT_WOULDBLOCK_THRESHOLD) {
    return NGHTTP2_ERR_WOULDBLOCK;
  }
  bufferevent_write(bev, data, length);
  return length;
}

Since we use bufferevent to abstract network I/O, we just write the data to the bufferevent object. Note that nghttp2_session_send() continues to write all frames queued so far. If we were writing the data to a non-blocking socket directly using write() system call in the nghttp2_session_callbacks.send_callback, we would surely get EAGAIN or EWOULDBLOCK back since the socket has limited send buffer. If that happens, we can return NGHTTP2_ERR_WOULDBLOCK to signal the nghttp2 library to stop sending further data. But when writing to the bufferevent, we have to regulate the amount data to get buffered ourselves to avoid using huge amounts of memory. To achieve this, we check the size of the output buffer and if it reaches more than or equal to OUTPUT_WOULDBLOCK_THRESHOLD bytes, we stop writing data and return NGHTTP2_ERR_WOULDBLOCK to tell the library to stop calling send_callback.

The next bufferevent callback is readcb(), which is invoked when data is available to read in the bufferevent input buffer:

static void readcb(struct bufferevent *bev, void *ptr)
{
  http2_session_data *session_data = (http2_session_data*)ptr;
  if(session_recv(session_data) != 0) {
    delete_http2_session_data(session_data);
    return;
  }
}

In this function, we just call session_recv() to process incoming data.

The third bufferevent callback is writecb(), which is invoked when all data in the bufferevent output buffer has been sent:

static void writecb(struct bufferevent *bev, void *ptr)
{
  http2_session_data *session_data = (http2_session_data*)ptr;
  if(evbuffer_get_length(bufferevent_get_output(bev)) > 0) {
    return;
  }
  if(nghttp2_session_want_read(session_data->session) == 0 &&
     nghttp2_session_want_write(session_data->session) == 0) {
    delete_http2_session_data(session_data);
    return;
  }
  if(session_send(session_data) != 0) {
    delete_http2_session_data(session_data);
    return;
  }
}

First we check whether we should drop the connection or not. The nghttp2 session object keeps track of reception and transmission of GOAWAY frames and other error conditions as well. Using this information, the nghttp2 session object will tell whether the connection should be dropped or not. More specifically, if both nghttp2_session_want_read() and nghttp2_session_want_write() return 0, we have no business left in the connection. But since we are using bufferevent and its deferred callback option, the bufferevent output buffer may contain pending data when the writecb() is called. To handle this, we check whether the output buffer is empty or not. If all these conditions are met, we drop connection.

Otherwise, we call session_send() to process the pending output data. Remember that in send_callback(), we must not write all data to bufferevent to avoid excessive buffering. We continue processing pending data when the output buffer becomes empty.

We have already described the nghttp2 callback send_callback(). Let’s learn about the remaining nghttp2 callbacks we setup in initialize_nghttp2_setup() function.

The on_begin_headers_callback() function is invoked when the reception of a header block in HEADERS or PUSH_PROMISE frame is started:

static int on_begin_headers_callback(nghttp2_session *session,
                                     const nghttp2_frame *frame,
                                     void *user_data)
{
  http2_session_data *session_data = (http2_session_data*)user_data;
  http2_stream_data *stream_data;

  if(frame->hd.type != NGHTTP2_HEADERS ||
     frame->headers.cat != NGHTTP2_HCAT_REQUEST) {
    return 0;
  }
  stream_data = create_http2_stream_data(session_data, frame->hd.stream_id);
  nghttp2_session_set_stream_user_data(session, frame->hd.stream_id,
                                       stream_data);
  return 0;
}

We are only interested in the HEADERS frame in this function. Since the HEADERS frame has several roles in the HTTP/2 protocol, we check that it is a request HEADERS, which opens new stream. If the frame is a request HEADERS, we create a http2_stream_data object to store the stream related data. We associate the created http2_stream_data object with the stream in the nghttp2 session object using nghttp2_set_stream_user_data() to get the object without searching through the doubly linked list.

In this example server, we want to serve files relative to the current working directory in which the program was invoked. Each header name/value pair is emitted via on_header_callback function, which is called after on_begin_headers_callback():

static int on_header_callback(nghttp2_session *session,
                              const nghttp2_frame *frame,
                              const uint8_t *name, size_t namelen,
                              const uint8_t *value, size_t valuelen,
                              void *user_data)
{
  http2_stream_data *stream_data;
  const char PATH[] = ":path";
  switch(frame->hd.type) {
  case NGHTTP2_HEADERS:
    if(frame->headers.cat != NGHTTP2_HCAT_REQUEST) {
      break;
    }
    stream_data = nghttp2_session_get_stream_user_data(session,
                                                       frame->hd.stream_id);
    if(!stream_data || stream_data->request_path) {
      break;
    }
    if(namelen == sizeof(PATH) - 1 && memcmp(PATH, name, namelen) == 0) {
      size_t j;
      for(j = 0; j < valuelen && value[j] != '?'; ++j);
      stream_data->request_path = percent_decode(value, j);
    }
    break;
  }
  return 0;
}

We search for the :path header field among the request headers and store the requested path in the http2_stream_data object. In this example program, we ignore :method header field and always treat the request as a GET request.

The on_frame_recv_callback() function is invoked when a frame is fully received:

static int on_frame_recv_callback(nghttp2_session *session,
                                  const nghttp2_frame *frame, void *user_data)
{
  http2_session_data *session_data = (http2_session_data*)user_data;
  http2_stream_data *stream_data;
  switch(frame->hd.type) {
  case NGHTTP2_DATA:
  case NGHTTP2_HEADERS:
    /* Check that the client request has finished */
    if(frame->hd.flags & NGHTTP2_FLAG_END_STREAM) {
      stream_data = nghttp2_session_get_stream_user_data(session,
                                                         frame->hd.stream_id);
      /* For DATA and HEADERS frame, this callback may be called after
         on_stream_close_callback. Check that stream still alive. */
      if(!stream_data) {
        return 0;
      }
      return on_request_recv(session, session_data, stream_data);
    }
    break;
  default:
    break;
  }
  return 0;
}

First we retrieve the http2_stream_data object associated with the stream in on_begin_headers_callback(). It is done using nghttp2_session_get_stream_user_data(). If the requested path cannot be served for some reason (e.g., file is not found), we send a 404 response, which is done in error_reply(). Otherwise, we open the requested file and send its content. We send the header field :status as a single response header.

Sending the content of the file is done in send_response() function:

static int send_response(nghttp2_session *session, int32_t stream_id,
                         nghttp2_nv *nva, size_t nvlen, int fd)
{
  int rv;
  nghttp2_data_provider data_prd;
  data_prd.source.fd = fd;
  data_prd.read_callback = file_read_callback;

  rv = nghttp2_submit_response(session, stream_id, nva, nvlen, &data_prd);
  if(rv != 0) {
    warnx("Fatal error: %s", nghttp2_strerror(rv));
    return -1;
  }
  return 0;
}

The nghttp2 library uses the nghttp2_data_provider structure to send entity body to the remote peer. The source member of this structure is a union and it can be either void pointer or int which is intended to be used as file descriptor. In this example server, we use the file descriptor. We also set the file_read_callback() callback function to read the contents of the file:

static ssize_t file_read_callback
(nghttp2_session *session, int32_t stream_id,
 uint8_t *buf, size_t length, uint32_t *data_flags,
 nghttp2_data_source *source, void *user_data)
{
  int fd = source->fd;
  ssize_t r;
  while((r = read(fd, buf, length)) == -1 && errno == EINTR);
  if(r == -1) {
    return NGHTTP2_ERR_TEMPORAL_CALLBACK_FAILURE;
  }
  if(r == 0) {
    *data_flags |= NGHTTP2_DATA_FLAG_EOF;
  }
  return r;
}

If an error happens while reading the file, we return NGHTTP2_ERR_TEMPORAL_CALLBACK_FAILURE. This tells the library to send RST_STREAM to the stream. When all data has been read, set the NGHTTP2_DATA_FLAG_EOF flag to *data_flags to tell the nghttp2 library that we have finished reading the file.

The nghttp2_submit_response() function is used to send the response to the remote peer.

The on_stream_close_callback() function is invoked when the stream is about to close:

static int on_stream_close_callback(nghttp2_session *session,
                                    int32_t stream_id,
                                    nghttp2_error_code error_code,
                                    void *user_data)
{
  http2_session_data *session_data = (http2_session_data*)user_data;
  http2_stream_data *stream_data;

  stream_data = nghttp2_session_get_stream_user_data(session, stream_id);
  if(!stream_data) {
    return 0;
  }
  remove_stream(session_data, stream_data);
  delete_http2_stream_data(stream_data);
  return 0;
}

We destroy the http2_stream_data object in this function since the stream is about to close and we no longer use that object.

libevent-server.cΒΆ

/*
 * nghttp2 - HTTP/2 C Library
 *
 * Copyright (c) 2013 Tatsuhiro Tsujikawa
 *
 * Permission is hereby granted, free of charge, to any person obtaining
 * a copy of this software and associated documentation files (the
 * "Software"), to deal in the Software without restriction, including
 * without limitation the rights to use, copy, modify, merge, publish,
 * distribute, sublicense, and/or sell copies of the Software, and to
 * permit persons to whom the Software is furnished to do so, subject to
 * the following conditions:
 *
 * The above copyright notice and this permission notice shall be
 * included in all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
 * LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
 * OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
 * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
 */
#include <sys/types.h>
#include <sys/socket.h>
#include <netdb.h>
#include <signal.h>
#include <unistd.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <ctype.h>
#include <netinet/in.h>
#include <netinet/tcp.h>
#include <err.h>

#include <openssl/ssl.h>
#include <openssl/err.h>

#include <event.h>
#include <event2/event.h>
#include <event2/bufferevent_ssl.h>
#include <event2/listener.h>

#include <nghttp2/nghttp2.h>

#define OUTPUT_WOULDBLOCK_THRESHOLD (1 << 16)

#define ARRLEN(x) (sizeof(x)/sizeof(x[0]))

#define MAKE_NV(NAME, VALUE)                                            \
  { (uint8_t*)NAME, (uint8_t*)VALUE, sizeof(NAME) - 1, sizeof(VALUE) - 1, \
      NGHTTP2_NV_FLAG_NONE }

struct app_context;
typedef struct app_context app_context;

typedef struct http2_stream_data {
  struct http2_stream_data *prev, *next;
  char *request_path;
  int32_t stream_id;
  int fd;
} http2_stream_data;

typedef struct http2_session_data {
  struct http2_stream_data root;
  struct bufferevent *bev;
  app_context *app_ctx;
  nghttp2_session *session;
  char *client_addr;
  size_t handshake_leftlen;
} http2_session_data;

struct app_context {
  SSL_CTX *ssl_ctx;
  struct event_base *evbase;
};

static unsigned char next_proto_list[256];
static size_t next_proto_list_len;

static int next_proto_cb(SSL *s, const unsigned char **data, unsigned int *len,
                         void *arg)
{
  *data = next_proto_list;
  *len = (unsigned int)next_proto_list_len;
  return SSL_TLSEXT_ERR_OK;
}

/* Create SSL_CTX. */
static SSL_CTX* create_ssl_ctx(const char *key_file, const char *cert_file)
{
  SSL_CTX *ssl_ctx;
  ssl_ctx = SSL_CTX_new(SSLv23_server_method());
  if(!ssl_ctx) {
    errx(1, "Could not create SSL/TLS context: %s",
         ERR_error_string(ERR_get_error(), NULL));
  }
  SSL_CTX_set_options(ssl_ctx,
                      SSL_OP_ALL | SSL_OP_NO_SSLv2 | SSL_OP_NO_COMPRESSION |
                      SSL_OP_NO_SESSION_RESUMPTION_ON_RENEGOTIATION);

  if(SSL_CTX_use_PrivateKey_file(ssl_ctx, key_file,
                                 SSL_FILETYPE_PEM) != 1) {
    errx(1, "Could not read private key file %s", key_file);
  }
  if(SSL_CTX_use_certificate_chain_file(ssl_ctx, cert_file) != 1) {
    errx(1, "Could not read certificate file %s", cert_file);
  }

  next_proto_list[0] = NGHTTP2_PROTO_VERSION_ID_LEN;
  memcpy(&next_proto_list[1], NGHTTP2_PROTO_VERSION_ID,
         NGHTTP2_PROTO_VERSION_ID_LEN);
  next_proto_list_len = 1 + NGHTTP2_PROTO_VERSION_ID_LEN;

  SSL_CTX_set_next_protos_advertised_cb(ssl_ctx, next_proto_cb, NULL);
  return ssl_ctx;
}

/* Create SSL object */
static SSL* create_ssl(SSL_CTX *ssl_ctx)
{
  SSL *ssl;
  ssl = SSL_new(ssl_ctx);
  if(!ssl) {
    errx(1, "Could not create SSL/TLS session object: %s",
         ERR_error_string(ERR_get_error(), NULL));
  }
  return ssl;
}

static void add_stream(http2_session_data *session_data,
                       http2_stream_data *stream_data)
{
  stream_data->next = session_data->root.next;
  session_data->root.next = stream_data;
  stream_data->prev = &session_data->root;
  if(stream_data->next) {
    stream_data->next->prev = stream_data;
  }
}

static void remove_stream(http2_session_data *session_data,
                          http2_stream_data *stream_data)
{
  stream_data->prev->next = stream_data->next;
  if(stream_data->next) {
    stream_data->next->prev = stream_data->prev;
  }
}

static http2_stream_data* create_http2_stream_data
(http2_session_data *session_data, int32_t stream_id)
{
  http2_stream_data *stream_data;
  stream_data = malloc(sizeof(http2_stream_data));
  memset(stream_data, 0, sizeof(http2_stream_data));
  stream_data->stream_id = stream_id;
  stream_data->fd = -1;

  add_stream(session_data, stream_data);
  return stream_data;
}

static void delete_http2_stream_data(http2_stream_data *stream_data)
{
  if(stream_data->fd != -1) {
    close(stream_data->fd);
  }
  free(stream_data->request_path);
  free(stream_data);
}

static http2_session_data* create_http2_session_data(app_context *app_ctx,
                                                     int fd,
                                                     struct sockaddr *addr,
                                                     int addrlen)
{
  int rv;
  http2_session_data *session_data;
  SSL *ssl;
  char host[NI_MAXHOST];
  int val = 1;

  ssl = create_ssl(app_ctx->ssl_ctx);
  session_data = malloc(sizeof(http2_session_data));
  memset(session_data, 0, sizeof(http2_session_data));
  session_data->app_ctx = app_ctx;
  setsockopt(fd, IPPROTO_TCP, TCP_NODELAY, (char *)&val, sizeof(val));
  session_data->bev = bufferevent_openssl_socket_new
    (app_ctx->evbase, fd, ssl,
     BUFFEREVENT_SSL_ACCEPTING,
     BEV_OPT_CLOSE_ON_FREE | BEV_OPT_DEFER_CALLBACKS);
  session_data->handshake_leftlen = NGHTTP2_CLIENT_CONNECTION_PREFACE_LEN;
  rv = getnameinfo(addr, addrlen, host, sizeof(host), NULL, 0, NI_NUMERICHOST);
  if(rv != 0) {
    session_data->client_addr = strdup("(unknown)");
  } else {
    session_data->client_addr = strdup(host);
  }

  return session_data;
}

static void delete_http2_session_data(http2_session_data *session_data)
{
  http2_stream_data *stream_data;
  SSL *ssl = bufferevent_openssl_get_ssl(session_data->bev);
  fprintf(stderr, "%s disconnected\n", session_data->client_addr);
  if(ssl) {
    SSL_shutdown(ssl);
  }
  bufferevent_free(session_data->bev);
  nghttp2_session_del(session_data->session);
  for(stream_data = session_data->root.next; stream_data;) {
    http2_stream_data *next = stream_data->next;
    delete_http2_stream_data(stream_data);
    stream_data = next;
  }
  free(session_data->client_addr);
  free(session_data);
}

/* Serialize the frame and send (or buffer) the data to
   bufferevent. */
static int session_send(http2_session_data *session_data)
{
  int rv;
  rv = nghttp2_session_send(session_data->session);
  if(rv != 0) {
    warnx("Fatal error: %s", nghttp2_strerror(rv));
    return -1;
  }
  return 0;
}

/* Read the data in the bufferevent and feed them into nghttp2 library
   function. Invocation of nghttp2_session_mem_recv() may make
   additional pending frames, so call session_send() at the end of the
   function. */
static int session_recv(http2_session_data *session_data)
{
  ssize_t readlen;
  struct evbuffer *input = bufferevent_get_input(session_data->bev);
  size_t datalen = evbuffer_get_length(input);
  unsigned char *data = evbuffer_pullup(input, -1);

  readlen = nghttp2_session_mem_recv(session_data->session, data, datalen);
  if(readlen < 0) {
    warnx("Fatal error: %s", nghttp2_strerror((int)readlen));
    return -1;
  }
  if(evbuffer_drain(input, readlen) != 0) {
    warnx("Fatal error: evbuffer_drain failed");
    return -1;
  }
  if(session_send(session_data) != 0) {
    return -1;
  }
  return 0;
}

static ssize_t send_callback(nghttp2_session *session,
                             const uint8_t *data, size_t length,
                             int flags, void *user_data)
{
  http2_session_data *session_data = (http2_session_data*)user_data;
  struct bufferevent *bev = session_data->bev;
  /* Avoid excessive buffering in server side. */
  if(evbuffer_get_length(bufferevent_get_output(session_data->bev)) >=
     OUTPUT_WOULDBLOCK_THRESHOLD) {
    return NGHTTP2_ERR_WOULDBLOCK;
  }
  bufferevent_write(bev, data, length);
  return length;
}

/* Returns nonzero if the string |s| ends with the substring |sub| */
static int ends_with(const char *s, const char *sub)
{
  size_t slen = strlen(s);
  size_t sublen = strlen(sub);
  if(slen < sublen) {
    return 0;
  }
  return memcmp(s + slen - sublen, sub, sublen) == 0;
}

/* Returns int value of hex string character |c| */
static uint8_t hex_to_uint(uint8_t c)
{
  if('0' <= c && c <= '9') {
    return c - '0';
  }
  if('A' <= c && c <= 'F') {
    return c - 'A' + 10;
  }
  if('a' <= c && c <= 'f') {
    return c - 'a' + 10;
  }
  return 0;
}

/* Decodes percent-encoded byte string |value| with length |valuelen|
   and returns the decoded byte string in allocated buffer. The return
   value is NULL terminated. The caller must free the returned
   string. */
static char* percent_decode(const uint8_t *value, size_t valuelen)
{
  char *res;

  res = malloc(valuelen + 1);
  if(valuelen > 3) {
    size_t i, j;
    for(i = 0, j = 0; i < valuelen - 2;) {
      if(value[i] != '%' ||
         !isxdigit(value[i + 1]) || !isxdigit(value[i + 2])) {
        res[j++] = value[i++];
        continue;
      }
      res[j++] = (hex_to_uint(value[i + 1]) << 4) + hex_to_uint(value[i + 2]);
      i += 3;
    }
    memcpy(&res[j], &value[i], 2);
    res[j + 2] = '\0';
  } else {
    memcpy(res, value, valuelen);
    res[valuelen] = '\0';
  }
  return res;
}

static ssize_t file_read_callback
(nghttp2_session *session, int32_t stream_id,
 uint8_t *buf, size_t length, uint32_t *data_flags,
 nghttp2_data_source *source, void *user_data)
{
  int fd = source->fd;
  ssize_t r;
  while((r = read(fd, buf, length)) == -1 && errno == EINTR);
  if(r == -1) {
    return NGHTTP2_ERR_TEMPORAL_CALLBACK_FAILURE;
  }
  if(r == 0) {
    *data_flags |= NGHTTP2_DATA_FLAG_EOF;
  }
  return r;
}

static int send_response(nghttp2_session *session, int32_t stream_id,
                         nghttp2_nv *nva, size_t nvlen, int fd)
{
  int rv;
  nghttp2_data_provider data_prd;
  data_prd.source.fd = fd;
  data_prd.read_callback = file_read_callback;

  rv = nghttp2_submit_response(session, stream_id, nva, nvlen, &data_prd);
  if(rv != 0) {
    warnx("Fatal error: %s", nghttp2_strerror(rv));
    return -1;
  }
  return 0;
}

const char ERROR_HTML[] = "<html><head><title>404</title></head>"
  "<body><h1>404 Not Found</h1></body></html>";

static int error_reply(nghttp2_session *session,
                       http2_stream_data *stream_data)
{
  int rv;
  ssize_t writelen;
  int pipefd[2];
  nghttp2_nv hdrs[] = {
    MAKE_NV(":status", "404")
  };

  rv = pipe(pipefd);
  if(rv != 0) {
    warn("Could not create pipe");
    rv = nghttp2_submit_rst_stream(session, NGHTTP2_FLAG_NONE,
                                   stream_data->stream_id,
                                   NGHTTP2_INTERNAL_ERROR);
    if(rv != 0) {
      warnx("Fatal error: %s", nghttp2_strerror(rv));
      return -1;
    }
    return 0;
  }

  writelen = write(pipefd[1], ERROR_HTML, sizeof(ERROR_HTML) - 1);
  close(pipefd[1]);

  if(writelen != sizeof(ERROR_HTML) - 1) {
    close(pipefd[0]);
    return -1;
  }

  stream_data->fd = pipefd[0];

  if(send_response(session, stream_data->stream_id, hdrs, ARRLEN(hdrs),
                   pipefd[0]) != 0) {
    close(pipefd[0]);
    return -1;
  }
  return 0;
}

/* nghttp2_on_header_callback: Called when nghttp2 library emits
   single header name/value pair. */
static int on_header_callback(nghttp2_session *session,
                              const nghttp2_frame *frame,
                              const uint8_t *name, size_t namelen,
                              const uint8_t *value, size_t valuelen,
                              uint8_t flags,
                              void *user_data)
{
  http2_stream_data *stream_data;
  const char PATH[] = ":path";
  switch(frame->hd.type) {
  case NGHTTP2_HEADERS:
    if(frame->headers.cat != NGHTTP2_HCAT_REQUEST) {
      break;
    }
    stream_data = nghttp2_session_get_stream_user_data(session,
                                                       frame->hd.stream_id);
    if(!stream_data || stream_data->request_path) {
      break;
    }
    if(namelen == sizeof(PATH) - 1 && memcmp(PATH, name, namelen) == 0) {
      size_t j;
      for(j = 0; j < valuelen && value[j] != '?'; ++j);
      stream_data->request_path = percent_decode(value, j);
    }
    break;
  }
  return 0;
}

static int on_begin_headers_callback(nghttp2_session *session,
                                     const nghttp2_frame *frame,
                                     void *user_data)
{
  http2_session_data *session_data = (http2_session_data*)user_data;
  http2_stream_data *stream_data;

  if(frame->hd.type != NGHTTP2_HEADERS ||
     frame->headers.cat != NGHTTP2_HCAT_REQUEST) {
    return 0;
  }
  stream_data = create_http2_stream_data(session_data, frame->hd.stream_id);
  nghttp2_session_set_stream_user_data(session, frame->hd.stream_id,
                                       stream_data);
  return 0;
}

/* Minimum check for directory traversal. Returns nonzero if it is
   safe. */
static int check_path(const char *path)
{
  /* We don't like '\' in url. */
  return path[0] && path[0] == '/' &&
    strchr(path, '\\') == NULL &&
    strstr(path, "/../") == NULL &&
    strstr(path, "/./") == NULL &&
    !ends_with(path, "/..") && !ends_with(path, "/.");
}

static int on_request_recv(nghttp2_session *session,
                           http2_session_data *session_data,
                           http2_stream_data *stream_data)
{
  int fd;
  nghttp2_nv hdrs[] = {
    MAKE_NV(":status", "200")
  };
  char *rel_path;

  if(!stream_data->request_path) {
    if(error_reply(session, stream_data) != 0) {
      return NGHTTP2_ERR_CALLBACK_FAILURE;
    }
    return 0;
  }
  fprintf(stderr, "%s GET %s\n", session_data->client_addr,
          stream_data->request_path);
  if(!check_path(stream_data->request_path)) {
    if(error_reply(session, stream_data) != 0) {
      return NGHTTP2_ERR_CALLBACK_FAILURE;
    }
    return 0;
  }
  for(rel_path = stream_data->request_path; *rel_path == '/'; ++rel_path);
  fd = open(rel_path, O_RDONLY);
  if(fd == -1) {
    if(error_reply(session, stream_data) != 0) {
      return NGHTTP2_ERR_CALLBACK_FAILURE;
    }
    return 0;
  }
  stream_data->fd = fd;

  if(send_response(session, stream_data->stream_id, hdrs,
                   ARRLEN(hdrs), fd) != 0) {
    close(fd);
    return NGHTTP2_ERR_CALLBACK_FAILURE;
  }
  return 0;
}

static int on_frame_recv_callback(nghttp2_session *session,
                                  const nghttp2_frame *frame, void *user_data)
{
  http2_session_data *session_data = (http2_session_data*)user_data;
  http2_stream_data *stream_data;
  switch(frame->hd.type) {
  case NGHTTP2_DATA:
  case NGHTTP2_HEADERS:
    /* Check that the client request has finished */
    if(frame->hd.flags & NGHTTP2_FLAG_END_STREAM) {
      stream_data = nghttp2_session_get_stream_user_data(session,
                                                         frame->hd.stream_id);
      /* For DATA and HEADERS frame, this callback may be called after
         on_stream_close_callback. Check that stream still alive. */
      if(!stream_data) {
        return 0;
      }
      return on_request_recv(session, session_data, stream_data);
    }
    break;
  default:
    break;
  }
  return 0;
}

static int on_stream_close_callback(nghttp2_session *session,
                                    int32_t stream_id,
                                    nghttp2_error_code error_code,
                                    void *user_data)
{
  http2_session_data *session_data = (http2_session_data*)user_data;
  http2_stream_data *stream_data;

  stream_data = nghttp2_session_get_stream_user_data(session, stream_id);
  if(!stream_data) {
    return 0;
  }
  remove_stream(session_data, stream_data);
  delete_http2_stream_data(stream_data);
  return 0;
}

static void initialize_nghttp2_session(http2_session_data *session_data)
{
  nghttp2_session_callbacks callbacks;

  memset(&callbacks, 0, sizeof(callbacks));

  callbacks.send_callback = send_callback;
  callbacks.on_frame_recv_callback = on_frame_recv_callback;
  callbacks.on_stream_close_callback = on_stream_close_callback;
  callbacks.on_header_callback = on_header_callback;
  callbacks.on_begin_headers_callback = on_begin_headers_callback;
  nghttp2_session_server_new(&session_data->session, &callbacks, session_data);
}

/* Send HTTP/2 client connection header, which includes 24 bytes
   magic octets and SETTINGS frame */
static int send_server_connection_header(http2_session_data *session_data)
{
  nghttp2_settings_entry iv[1] = {
    { NGHTTP2_SETTINGS_MAX_CONCURRENT_STREAMS, 100 }
  };
  int rv;

  rv = nghttp2_submit_settings(session_data->session, NGHTTP2_FLAG_NONE,
                               iv, ARRLEN(iv));
  if(rv != 0) {
    warnx("Fatal error: %s", nghttp2_strerror(rv));
    return -1;
  }
  return 0;
}

/* readcb for bufferevent after client connection header was
   checked. */
static void readcb(struct bufferevent *bev, void *ptr)
{
  http2_session_data *session_data = (http2_session_data*)ptr;
  if(session_recv(session_data) != 0) {
    delete_http2_session_data(session_data);
    return;
  }
}

/* writecb for bufferevent. To greaceful shutdown after sending or
   receiving GOAWAY, we check the some conditions on the nghttp2
   library and output buffer of bufferevent. If it indicates we have
   no business to this session, tear down the connection. If the
   connection is not going to shutdown, we call session_send() to
   process pending data in the output buffer. This is necessary
   because we have a threshold on the buffer size to avoid too much
   buffering. See send_callback(). */
static void writecb(struct bufferevent *bev, void *ptr)
{
  http2_session_data *session_data = (http2_session_data*)ptr;
  if(evbuffer_get_length(bufferevent_get_output(bev)) > 0) {
    return;
  }
  if(nghttp2_session_want_read(session_data->session) == 0 &&
     nghttp2_session_want_write(session_data->session) == 0) {
    delete_http2_session_data(session_data);
    return;
  }
  if(session_send(session_data) != 0) {
    delete_http2_session_data(session_data);
    return;
  }
}

/* eventcb for bufferevent */
static void eventcb(struct bufferevent *bev, short events, void *ptr)
{
  http2_session_data *session_data = (http2_session_data*)ptr;
  if(events & BEV_EVENT_CONNECTED) {
    fprintf(stderr, "%s connected\n", session_data->client_addr);
    return;
  }
  if(events & BEV_EVENT_EOF) {
    fprintf(stderr, "%s EOF\n", session_data->client_addr);
  } else if(events & BEV_EVENT_ERROR) {
    fprintf(stderr, "%s network error\n", session_data->client_addr);
  } else if(events & BEV_EVENT_TIMEOUT) {
    fprintf(stderr, "%s timeout\n", session_data->client_addr);
  }
  delete_http2_session_data(session_data);
}

/* readcb for bufferevent to check first 24 bytes client connection
   header. */
static void handshake_readcb(struct bufferevent *bev, void *ptr)
{
  http2_session_data *session_data = (http2_session_data*)ptr;
  uint8_t data[24];
  struct evbuffer *input = bufferevent_get_input(session_data->bev);
  int readlen = evbuffer_remove(input, data, session_data->handshake_leftlen);
  const char *conhead = NGHTTP2_CLIENT_CONNECTION_PREFACE;

  if(memcmp(conhead + NGHTTP2_CLIENT_CONNECTION_PREFACE_LEN
            - session_data->handshake_leftlen, data, readlen) != 0) {
    delete_http2_session_data(session_data);
    return;
  }
  session_data->handshake_leftlen -= readlen;
  if(session_data->handshake_leftlen == 0) {
    bufferevent_setcb(session_data->bev, readcb, writecb, eventcb, ptr);
    /* Process pending data in buffer since they are not notified
       further */
    initialize_nghttp2_session(session_data);
    if(send_server_connection_header(session_data) != 0) {
      delete_http2_session_data(session_data);
      return;
    }
    if(session_recv(session_data) != 0) {
      delete_http2_session_data(session_data);
      return;
    }
  }
}

/* callback for evconnlistener */
static void acceptcb(struct evconnlistener *listener, int fd,
                     struct sockaddr *addr, int addrlen, void *arg)
{
  app_context *app_ctx = (app_context*)arg;
  http2_session_data *session_data;

  session_data = create_http2_session_data(app_ctx, fd, addr, addrlen);
  bufferevent_setcb(session_data->bev, handshake_readcb, NULL, eventcb,
                    session_data);
}

static void start_listen(struct event_base *evbase, const char *service,
                         app_context *app_ctx)
{
  int rv;
  struct addrinfo hints;
  struct addrinfo *res, *rp;

  memset(&hints, 0, sizeof(hints));
  hints.ai_family = AF_UNSPEC;
  hints.ai_socktype = SOCK_STREAM;
  hints.ai_flags = AI_PASSIVE;
#ifdef AI_ADDRCONFIG
  hints.ai_flags |= AI_ADDRCONFIG;
#endif /* AI_ADDRCONFIG */

  rv = getaddrinfo(NULL, service, &hints, &res);
  if(rv != 0) {
    errx(1, NULL);
  }
  for(rp = res; rp; rp = rp->ai_next) {
    struct evconnlistener *listener;
    listener = evconnlistener_new_bind(evbase, acceptcb, app_ctx,
                                       LEV_OPT_CLOSE_ON_FREE |
                                       LEV_OPT_REUSEABLE, 16,
                                       rp->ai_addr, rp->ai_addrlen);
    if(listener) {
      freeaddrinfo(res);

      return;
    }
  }
  errx(1, "Could not start listener");
}

static void initialize_app_context(app_context *app_ctx, SSL_CTX *ssl_ctx,
                                   struct event_base *evbase)
{
  memset(app_ctx, 0, sizeof(app_context));
  app_ctx->ssl_ctx = ssl_ctx;
  app_ctx->evbase = evbase;
}

static void run(const char *service,
                const char *key_file, const char *cert_file)
{
  SSL_CTX *ssl_ctx;
  app_context app_ctx;
  struct event_base *evbase;

  ssl_ctx = create_ssl_ctx(key_file, cert_file);
  evbase = event_base_new();
  initialize_app_context(&app_ctx, ssl_ctx, evbase);
  start_listen(evbase, service, &app_ctx);

  event_base_loop(evbase, 0);

  event_base_free(evbase);
  SSL_CTX_free(ssl_ctx);
}

int main(int argc, char **argv)
{
  struct sigaction act;

  if(argc < 4) {
    fprintf(stderr, "Usage: libevent-server PORT KEY_FILE CERT_FILE\n");
    exit(EXIT_FAILURE);
  }

  memset(&act, 0, sizeof(struct sigaction));
  act.sa_handler = SIG_IGN;
  sigaction(SIGPIPE, &act, NULL);

  SSL_load_error_strings();
  SSL_library_init();

  run(argv[1], argv[2], argv[3]);
  return 0;
}