/* * nghttp2 - HTTP/2.0 C Library * * Copyright (c) 2012 Tatsuhiro Tsujikawa * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sublicense, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE * LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION * OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ #include "shrpx_spdy_session.h" #include #include #include #include #include #include "shrpx_upstream.h" #include "shrpx_downstream.h" #include "shrpx_config.h" #include "shrpx_error.h" #include "shrpx_spdy_downstream_connection.h" #include "shrpx_client_handler.h" #include "shrpx_ssl.h" #include "util.h" #include "base64.h" using namespace nghttp2; namespace shrpx { SpdySession::SpdySession(event_base *evbase, SSL_CTX *ssl_ctx) : evbase_(evbase), ssl_ctx_(ssl_ctx), ssl_(nullptr), fd_(-1), session_(nullptr), bev_(nullptr), state_(DISCONNECTED), notified_(false), wrbev_(nullptr), rdbev_(nullptr), flow_control_(false), proxy_htp_(0) {} SpdySession::~SpdySession() { disconnect(); } int SpdySession::disconnect() { if(LOG_ENABLED(INFO)) { SSLOG(INFO, this) << "Disconnecting"; } nghttp2_session_del(session_); session_ = 0; if(ssl_) { SSL_shutdown(ssl_); } if(bev_) { int fd = bufferevent_getfd(bev_); bufferevent_disable(bev_, EV_READ | EV_WRITE); bufferevent_free(bev_); bev_ = 0; if(fd != -1) { if(fd_ == -1) { fd_ = fd; } else if(fd != fd_) { SSLOG(WARNING, this) << "fd in bev_ != fd_"; shutdown(fd, SHUT_WR); close(fd); } } } if(ssl_) { SSL_free(ssl_); } ssl_ = 0; if(fd_ != -1) { if(LOG_ENABLED(INFO)) { SSLOG(INFO, this) << "Closing fd=" << fd_; } shutdown(fd_, SHUT_WR); close(fd_); fd_ = -1; } if(proxy_htp_) { delete proxy_htp_; proxy_htp_ = 0; } notified_ = false; state_ = DISCONNECTED; // Delete all client handler associated to Downstream. When deleting // SpdyDownstreamConnection, it calls this object's // remove_downstream_connection(). The multiple // SpdyDownstreamConnection objects belong to the same ClientHandler // object. So first dump ClientHandler objects and delete them once // and for all. std::vector vec(dconns_.begin(), dconns_.end()); std::set handlers; for(size_t i = 0; i < vec.size(); ++i) { handlers.insert(vec[i]->get_client_handler()); } for(std::set::iterator i = handlers.begin(), eoi = handlers.end(); i != eoi; ++i) { delete *i; } dconns_.clear(); for(std::set::iterator i = streams_.begin(), eoi = streams_.end(); i != eoi; ++i) { delete *i; } streams_.clear(); return 0; } namespace { void notify_readcb(bufferevent *bev, void *arg) { int rv; SpdySession *spdy = reinterpret_cast(arg); spdy->clear_notify(); switch(spdy->get_state()) { case SpdySession::DISCONNECTED: rv = spdy->initiate_connection(); if(rv != 0) { SSLOG(FATAL, spdy) << "Could not initiate notification connection"; DIE(); } break; case SpdySession::CONNECTED: rv = spdy->send(); if(rv != 0) { spdy->disconnect(); } break; } } } // namespace namespace { void notify_eventcb(bufferevent *bev, short events, void *arg) { SpdySession *spdy = reinterpret_cast(arg); // TODO should DIE()? if(events & BEV_EVENT_EOF) { SSLOG(ERROR, spdy) << "Notification connection lost: EOF"; } if(events & BEV_EVENT_TIMEOUT) { SSLOG(ERROR, spdy) << "Notification connection lost: timeout"; } if(events & BEV_EVENT_ERROR) { SSLOG(ERROR, spdy) << "Notification connection lost: network error"; } } } // namespace int SpdySession::init_notification() { int rv; int sockpair[2]; rv = socketpair(AF_UNIX, SOCK_STREAM, 0, sockpair); if(rv == -1) { SSLOG(FATAL, this) << "socketpair() failed: errno=" << errno; return -1; } wrbev_ = bufferevent_socket_new(evbase_, sockpair[0], BEV_OPT_CLOSE_ON_FREE| BEV_OPT_DEFER_CALLBACKS); if(!wrbev_) { SSLOG(FATAL, this) << "bufferevent_socket_new() failed"; for(int i = 0; i < 2; ++i) { close(sockpair[i]); } return -1; } rdbev_ = bufferevent_socket_new(evbase_, sockpair[1], BEV_OPT_CLOSE_ON_FREE| BEV_OPT_DEFER_CALLBACKS); if(!rdbev_) { SSLOG(FATAL, this) << "bufferevent_socket_new() failed"; close(sockpair[1]); return -1; } bufferevent_enable(rdbev_, EV_READ); bufferevent_setcb(rdbev_, notify_readcb, 0, notify_eventcb, this); return 0; } namespace { void readcb(bufferevent *bev, void *ptr) { int rv; SpdySession *spdy = reinterpret_cast(ptr); rv = spdy->on_read(); if(rv != 0) { spdy->disconnect(); } } } // namespace namespace { void writecb(bufferevent *bev, void *ptr) { if(evbuffer_get_length(bufferevent_get_output(bev)) > 0) { return; } int rv; SpdySession *spdy = reinterpret_cast(ptr); rv = spdy->on_write(); if(rv != 0) { spdy->disconnect(); } } } // namespace namespace { void eventcb(bufferevent *bev, short events, void *ptr) { SpdySession *spdy = reinterpret_cast(ptr); if(events & BEV_EVENT_CONNECTED) { if(LOG_ENABLED(INFO)) { SSLOG(INFO, spdy) << "Connection established"; } spdy->set_state(SpdySession::CONNECTED); if((!get_config()->downstream_no_tls && !get_config()->insecure && spdy->check_cert() != 0) || spdy->on_connect() != 0) { spdy->disconnect(); return; } int fd = bufferevent_getfd(bev); int val = 1; if(setsockopt(fd, IPPROTO_TCP, TCP_NODELAY, reinterpret_cast(&val), sizeof(val)) == -1) { SSLOG(WARNING, spdy) << "Setting option TCP_NODELAY failed: errno=" << errno; } } else if(events & BEV_EVENT_EOF) { if(LOG_ENABLED(INFO)) { SSLOG(INFO, spdy) << "EOF"; } spdy->disconnect(); } else if(events & (BEV_EVENT_ERROR | BEV_EVENT_TIMEOUT)) { if(LOG_ENABLED(INFO)) { if(events & BEV_EVENT_ERROR) { SSLOG(INFO, spdy) << "Network error"; } else { SSLOG(INFO, spdy) << "Timeout"; } } spdy->disconnect(); } } } // namespace namespace { void proxy_readcb(bufferevent *bev, void *ptr) { SpdySession *spdy = reinterpret_cast(ptr); if(spdy->on_read_proxy() == 0) { switch(spdy->get_state()) { case SpdySession::PROXY_CONNECTED: // The current bufferevent is no longer necessary, so delete it // here. But we keep fd_ inside it. spdy->unwrap_free_bev(); // Initiate SSL/TLS handshake through established tunnel. if(spdy->initiate_connection() != 0) { spdy->disconnect(); } break; case SpdySession::PROXY_FAILED: spdy->disconnect(); break; } } else { spdy->disconnect(); } } } // namespace namespace { void proxy_eventcb(bufferevent *bev, short events, void *ptr) { SpdySession *spdy = reinterpret_cast(ptr); if(events & BEV_EVENT_CONNECTED) { if(LOG_ENABLED(INFO)) { SSLOG(INFO, spdy) << "Connected to the proxy"; } std::string req = "CONNECT "; req += get_config()->downstream_hostport; req += " HTTP/1.1\r\nHost: "; req += get_config()->downstream_host; req += "\r\n"; if(get_config()->downstream_http_proxy_userinfo) { req += "Proxy-Authorization: Basic "; size_t len = strlen(get_config()->downstream_http_proxy_userinfo); req += base64::encode(get_config()->downstream_http_proxy_userinfo, get_config()->downstream_http_proxy_userinfo+len); req += "\r\n"; } req += "\r\n"; if(LOG_ENABLED(INFO)) { SSLOG(INFO, spdy) << "HTTP proxy request headers\n" << req; } if(bufferevent_write(bev, req.c_str(), req.size()) != 0) { SSLOG(ERROR, spdy) << "bufferevent_write() failed"; spdy->disconnect(); } } else if(events & BEV_EVENT_EOF) { if(LOG_ENABLED(INFO)) { SSLOG(INFO, spdy) << "Proxy EOF"; } spdy->disconnect(); } else if(events & (BEV_EVENT_ERROR | BEV_EVENT_TIMEOUT)) { if(LOG_ENABLED(INFO)) { if(events & BEV_EVENT_ERROR) { SSLOG(INFO, spdy) << "Network error"; } else { SSLOG(INFO, spdy) << "Timeout"; } } spdy->disconnect(); } } } // namespace int SpdySession::check_cert() { return ssl::check_cert(ssl_); } int SpdySession::initiate_connection() { int rv = 0; if(get_config()->downstream_http_proxy_host && state_ == DISCONNECTED) { if(LOG_ENABLED(INFO)) { SSLOG(INFO, this) << "Connecting to the proxy " << get_config()->downstream_http_proxy_host << ":" << get_config()->downstream_http_proxy_port; } bev_ = bufferevent_socket_new(evbase_, -1, BEV_OPT_DEFER_CALLBACKS); bufferevent_enable(bev_, EV_READ); bufferevent_set_timeouts(bev_, &get_config()->downstream_read_timeout, &get_config()->downstream_write_timeout); // No need to set writecb because we write the request when // connected at once. bufferevent_setcb(bev_, proxy_readcb, 0, proxy_eventcb, this); rv = bufferevent_socket_connect (bev_, const_cast(&get_config()->downstream_http_proxy_addr.sa), get_config()->downstream_http_proxy_addrlen); if(rv != 0) { SSLOG(ERROR, this) << "Failed to connect to the proxy " << get_config()->downstream_http_proxy_host << ":" << get_config()->downstream_http_proxy_port; bufferevent_free(bev_); bev_ = 0; return SHRPX_ERR_NETWORK; } proxy_htp_ = new http_parser(); http_parser_init(proxy_htp_, HTTP_RESPONSE); proxy_htp_->data = this; state_ = PROXY_CONNECTING; } else if(state_ == DISCONNECTED || state_ == PROXY_CONNECTED) { if(LOG_ENABLED(INFO)) { SSLOG(INFO, this) << "Connecting to downstream server"; } if(ssl_ctx_) { // We are establishing TLS connection. ssl_ = SSL_new(ssl_ctx_); if(!ssl_) { SSLOG(ERROR, this) << "SSL_new() failed: " << ERR_error_string(ERR_get_error(), NULL); return -1; } const char *sni_name = 0; if ( get_config()->backend_tls_sni_name ) { sni_name = get_config()->backend_tls_sni_name; } else { sni_name = get_config()->downstream_host; } if(!ssl::numeric_host(sni_name)) { // TLS extensions: SNI. There is no documentation about the return // code for this function (actually this is macro wrapping SSL_ctrl // at the time of this writing). SSL_set_tlsext_host_name(ssl_, sni_name); } // If state_ == PROXY_CONNECTED, we has connected to the proxy // using fd_ and tunnel has been established. bev_ = bufferevent_openssl_socket_new(evbase_, fd_, ssl_, BUFFEREVENT_SSL_CONNECTING, BEV_OPT_DEFER_CALLBACKS); rv = bufferevent_socket_connect (bev_, // TODO maybe not thread-safe? const_cast(&get_config()->downstream_addr.sa), get_config()->downstream_addrlen); } else if(state_ == DISCONNECTED) { // Without TLS and proxy. bev_ = bufferevent_socket_new(evbase_, -1, BEV_OPT_DEFER_CALLBACKS); rv = bufferevent_socket_connect (bev_, const_cast(&get_config()->downstream_addr.sa), get_config()->downstream_addrlen); } else { assert(state_ == PROXY_CONNECTED); // Without TLS but with proxy. bev_ = bufferevent_socket_new(evbase_, fd_, BEV_OPT_DEFER_CALLBACKS); // Connection already established. eventcb(bev_, BEV_EVENT_CONNECTED, this); // eventcb() has no return value. Check state_ to whether it was // failed or not. if(state_ == DISCONNECTED) { return -1; } } if(rv != 0) { bufferevent_free(bev_); bev_ = 0; return SHRPX_ERR_NETWORK; } bufferevent_setwatermark(bev_, EV_READ, 0, SHRPX_READ_WARTER_MARK); bufferevent_enable(bev_, EV_READ); bufferevent_setcb(bev_, readcb, writecb, eventcb, this); // No timeout for SPDY session // We have been already connected when no TLS and proxy is used. if(state_ != CONNECTED) { state_ = CONNECTING; } } else { // Unreachable DIE(); } return 0; } void SpdySession::unwrap_free_bev() { assert(fd_ == -1); fd_ = bufferevent_getfd(bev_); bufferevent_free(bev_); bev_ = 0; } namespace { int htp_hdrs_completecb(http_parser *htp) { SpdySession *spdy; spdy = reinterpret_cast(htp->data); // We just check status code here if(htp->status_code == 200) { if(LOG_ENABLED(INFO)) { SSLOG(INFO, spdy) << "Tunneling success"; } spdy->set_state(SpdySession::PROXY_CONNECTED); } else { SSLOG(WARNING, spdy) << "Tunneling failed"; spdy->set_state(SpdySession::PROXY_FAILED); } return 0; } } // namespace namespace { http_parser_settings htp_hooks = { 0, /*http_cb on_message_begin;*/ 0, /*http_data_cb on_url;*/ 0, /*http_cb on_status_complete */ 0, /*http_data_cb on_header_field;*/ 0, /*http_data_cb on_header_value;*/ htp_hdrs_completecb, /*http_cb on_headers_complete;*/ 0, /*http_data_cb on_body;*/ 0 /*http_cb on_message_complete;*/ }; } // namespace int SpdySession::on_read_proxy() { evbuffer *input = bufferevent_get_input(bev_); unsigned char *mem = evbuffer_pullup(input, -1); size_t nread = http_parser_execute(proxy_htp_, &htp_hooks, reinterpret_cast(mem), evbuffer_get_length(input)); evbuffer_drain(input, nread); http_errno htperr = HTTP_PARSER_ERRNO(proxy_htp_); if(htperr == HPE_OK) { return 0; } else { return -1; } } void SpdySession::add_downstream_connection(SpdyDownstreamConnection *dconn) { dconns_.insert(dconn); } void SpdySession::remove_downstream_connection(SpdyDownstreamConnection *dconn) { dconns_.erase(dconn); dconn->detach_stream_data(); } void SpdySession::remove_stream_data(StreamData *sd) { streams_.erase(sd); if(sd->dconn) { sd->dconn->detach_stream_data(); } delete sd; } int SpdySession::submit_request(SpdyDownstreamConnection *dconn, uint8_t pri, const char **nv, const nghttp2_data_provider *data_prd) { assert(state_ == CONNECTED); StreamData *sd = new StreamData(); int rv = nghttp2_submit_request(session_, pri, nv, data_prd, sd); if(rv == 0) { dconn->attach_stream_data(sd); streams_.insert(sd); } else { SSLOG(FATAL, this) << "nghttp2_submit_request() failed: " << nghttp2_strerror(rv); delete sd; return -1; } return 0; } int SpdySession::submit_rst_stream(SpdyDownstreamConnection *dconn, int32_t stream_id, nghttp2_error_code error_code) { assert(state_ == CONNECTED); int rv = nghttp2_submit_rst_stream(session_, stream_id, error_code); if(rv != 0) { SSLOG(FATAL, this) << "nghttp2_submit_rst_stream() failed: " << nghttp2_strerror(rv); return -1; } return 0; } int SpdySession::submit_window_update(SpdyDownstreamConnection *dconn, int32_t amount) { assert(state_ == CONNECTED); int rv; int32_t stream_id; stream_id = dconn->get_downstream()->get_downstream_stream_id(); rv = nghttp2_submit_window_update(session_, NGHTTP2_FLAG_NONE, stream_id, amount); if(rv < NGHTTP2_ERR_FATAL) { SSLOG(FATAL, this) << "nghttp2_submit_window_update() failed: " << nghttp2_strerror(rv); return -1; } return 0; } int32_t SpdySession::get_initial_window_size() const { return (1 << get_config()->spdy_downstream_window_bits) - 1; } bool SpdySession::get_flow_control() const { return flow_control_; } int SpdySession::resume_data(SpdyDownstreamConnection *dconn) { assert(state_ == CONNECTED); Downstream *downstream = dconn->get_downstream(); int rv = nghttp2_session_resume_data(session_, downstream->get_downstream_stream_id()); switch(rv) { case 0: case NGHTTP2_ERR_INVALID_ARGUMENT: return 0; default: SSLOG(FATAL, this) << "nghttp2_resume_session() failed: " << nghttp2_strerror(rv); return -1; } } namespace { void call_downstream_readcb(SpdySession *spdy, Downstream *downstream) { Upstream *upstream = downstream->get_upstream(); if(upstream) { (upstream->get_downstream_readcb()) (spdy->get_bev(), downstream->get_downstream_connection()); } } } // namespace namespace { ssize_t send_callback(nghttp2_session *session, const uint8_t *data, size_t len, int flags, void *user_data) { int rv; SpdySession *spdy = reinterpret_cast(user_data); bufferevent *bev = spdy->get_bev(); evbuffer *output = bufferevent_get_output(bev); // Check buffer length and return WOULDBLOCK if it is large enough. if(evbuffer_get_length(output) > Downstream::OUTPUT_UPPER_THRES) { return NGHTTP2_ERR_WOULDBLOCK; } rv = evbuffer_add(output, data, len); if(rv == -1) { SSLOG(FATAL, spdy) << "evbuffer_add() failed"; return NGHTTP2_ERR_CALLBACK_FAILURE; } else { return len; } } } // namespace namespace { ssize_t recv_callback(nghttp2_session *session, uint8_t *data, size_t len, int flags, void *user_data) { SpdySession *spdy = reinterpret_cast(user_data); bufferevent *bev = spdy->get_bev(); evbuffer *input = bufferevent_get_input(bev); int nread = evbuffer_remove(input, data, len); if(nread == -1) { return NGHTTP2_ERR_CALLBACK_FAILURE; } else if(nread == 0) { return NGHTTP2_ERR_WOULDBLOCK; } else { return nread; } } } // namespace namespace { void on_stream_close_callback (nghttp2_session *session, int32_t stream_id, nghttp2_error_code error_code, void *user_data) { int rv; auto spdy = reinterpret_cast(user_data); if(LOG_ENABLED(INFO)) { SSLOG(INFO, spdy) << "Stream stream_id=" << stream_id << " is being closed"; } auto sd = reinterpret_cast (nghttp2_session_get_stream_user_data(session, stream_id)); if(sd == 0) { // We might get this close callback when pushed streams are // closed. return; } auto dconn = sd->dconn; if(dconn) { auto downstream = dconn->get_downstream(); if(downstream && downstream->get_downstream_stream_id() == stream_id) { auto upstream = downstream->get_upstream(); if(error_code == NGHTTP2_NO_ERROR) { downstream->set_response_state(Downstream::MSG_COMPLETE); rv = upstream->on_downstream_body_complete(downstream); if(rv != 0) { downstream->set_response_state(Downstream::MSG_RESET); } } else { downstream->set_response_state(Downstream::MSG_RESET); } call_downstream_readcb(spdy, downstream); // dconn may be deleted } } // The life time of StreamData ends here spdy->remove_stream_data(sd); } } // namespace namespace { void on_frame_recv_callback (nghttp2_session *session, nghttp2_frame *frame, void *user_data) { int rv; auto spdy = reinterpret_cast(user_data); switch(frame->hd.type) { case NGHTTP2_HEADERS: { if(frame->headers.cat != NGHTTP2_HCAT_RESPONSE) { break; } auto sd = reinterpret_cast (nghttp2_session_get_stream_user_data(session, frame->hd.stream_id)); if(!sd || !sd->dconn) { nghttp2_submit_rst_stream(session, frame->hd.stream_id, NGHTTP2_INTERNAL_ERROR); break; } auto downstream = sd->dconn->get_downstream(); if(!downstream || downstream->get_downstream_stream_id() != frame->hd.stream_id) { nghttp2_submit_rst_stream(session, frame->hd.stream_id, NGHTTP2_INTERNAL_ERROR); break; } auto nva = frame->headers.nva; std::string status, content_length; for(size_t i = 0; i < frame->headers.nvlen; ++i) { if(util::strieq(":status", nva[i].name, nva[i].namelen)) { status.assign(reinterpret_cast(nva[i].value), nva[i].valuelen); auto code = strtoul(status.c_str(), nullptr, 10); downstream->set_response_http_status(code); } else if(nva[i].namelen > 0 && nva[i].name[0] != ':') { if(util::strieq("content-length", nva[i].name, nva[i].namelen)) { content_length.assign(reinterpret_cast(nva[i].value), nva[i].valuelen); } downstream->add_response_header (std::string(reinterpret_cast(nva[i].name), nva[i].namelen), std::string(reinterpret_cast(nva[i].value), nva[i].valuelen)); } } // Just assume it is HTTP/1.1. But we really consider to say 2.0 // here. downstream->set_response_major(1); downstream->set_response_minor(1); if(status.empty()) { nghttp2_submit_rst_stream(session, frame->hd.stream_id, NGHTTP2_PROTOCOL_ERROR); downstream->set_response_state(Downstream::MSG_RESET); call_downstream_readcb(spdy, downstream); return; } if(content_length.empty() && downstream->get_request_method() != "HEAD" && downstream->get_request_method() != "CONNECT") { unsigned int status; status = downstream->get_response_http_status(); if(!((100 <= status && status <= 199) || status == 204 || status == 304)) { // Here we have response body but Content-Length is not known // in advance. if(downstream->get_request_major() <= 0 || downstream->get_request_minor() <= 0) { // We simply close connection for pre-HTTP/1.1 in this case. downstream->set_response_connection_close(true); } else { // Otherwise, use chunked encoding to keep upstream // connection open. In SPDY, we are supporsed not to // receive transfer-encoding. downstream->add_response_header("transfer-encoding", "chunked"); } } } if(LOG_ENABLED(INFO)) { std::stringstream ss; for(size_t i = 0; i < frame->headers.nvlen; ++i) { ss << TTY_HTTP_HD; ss.write(reinterpret_cast(nva[i].name), nva[i].namelen); ss << TTY_RST << ": "; ss.write(reinterpret_cast(nva[i].value), nva[i].valuelen); ss << "\n"; } SSLOG(INFO, spdy) << "HTTP response headers. stream_id=" << frame->hd.stream_id << "\n" << ss.str(); } auto upstream = downstream->get_upstream(); downstream->set_response_state(Downstream::HEADER_COMPLETE); downstream->check_upgrade_fulfilled(); if(downstream->get_upgraded()) { downstream->set_response_connection_close(true); // On upgrade sucess, both ends can send data if(upstream->resume_read(SHRPX_MSG_BLOCK, downstream) != 0) { // If resume_read fails, just drop connection. Not ideal. delete upstream->get_client_handler(); return; } downstream->set_request_state(Downstream::HEADER_COMPLETE); if(LOG_ENABLED(INFO)) { SSLOG(INFO, spdy) << "HTTP upgrade success. stream_id=" << frame->hd.stream_id; } } rv = upstream->on_downstream_header_complete(downstream); if(rv != 0) { nghttp2_submit_rst_stream(session, frame->hd.stream_id, NGHTTP2_PROTOCOL_ERROR); downstream->set_response_state(Downstream::MSG_RESET); } call_downstream_readcb(spdy, downstream); break; } case NGHTTP2_RST_STREAM: { auto sd = reinterpret_cast (nghttp2_session_get_stream_user_data(session, frame->hd.stream_id)); if(sd && sd->dconn) { auto downstream = sd->dconn->get_downstream(); if(downstream && downstream->get_downstream_stream_id() == frame->hd.stream_id) { if(downstream->get_upgraded() && downstream->get_response_state() == Downstream::HEADER_COMPLETE) { // For tunneled connection, we has to submit RST_STREAM to // upstream *after* whole response body is sent. We just set // MSG_COMPLETE here. Upstream will take care of that. if(LOG_ENABLED(INFO)) { SSLOG(INFO, spdy) << "RST_STREAM against tunneled stream " << "stream_id=" << frame->hd.stream_id; } downstream->get_upstream()->on_downstream_body_complete(downstream); downstream->set_response_state(Downstream::MSG_COMPLETE); } else { // If we got RST_STREAM, just flag MSG_RESET to indicate // upstream connection must be terminated. downstream->set_response_state(Downstream::MSG_RESET); } downstream->set_response_rst_stream_error_code (frame->rst_stream.error_code); call_downstream_readcb(spdy, downstream); } } break; } case NGHTTP2_PUSH_PROMISE: if(LOG_ENABLED(INFO)) { SSLOG(INFO, spdy) << "Received downstream PUSH_PROMISE stream_id=" << frame->hd.stream_id; } // We just respond with RST_STREAM. nghttp2_submit_rst_stream(session, frame->hd.stream_id, NGHTTP2_REFUSED_STREAM); break; default: break; } } } // namespace namespace { void on_data_chunk_recv_callback(nghttp2_session *session, uint8_t flags, int32_t stream_id, const uint8_t *data, size_t len, void *user_data) { int rv; auto spdy = reinterpret_cast(user_data); auto sd = reinterpret_cast (nghttp2_session_get_stream_user_data(session, stream_id)); if(!sd || !sd->dconn) { nghttp2_submit_rst_stream(session, stream_id, NGHTTP2_INTERNAL_ERROR); return; } auto downstream = sd->dconn->get_downstream(); if(!downstream || downstream->get_downstream_stream_id() != stream_id) { nghttp2_submit_rst_stream(session, stream_id, NGHTTP2_INTERNAL_ERROR); return; } if(spdy->get_flow_control()) { sd->dconn->inc_recv_window_size(len); if(sd->dconn->get_recv_window_size() > spdy->get_initial_window_size()) { if(LOG_ENABLED(INFO)) { SSLOG(INFO, spdy) << "Flow control error: recv_window_size=" << sd->dconn->get_recv_window_size() << ", initial_window_size=" << spdy->get_initial_window_size(); } nghttp2_submit_rst_stream(session, stream_id, NGHTTP2_FLOW_CONTROL_ERROR); downstream->set_response_state(Downstream::MSG_RESET); call_downstream_readcb(spdy, downstream); return; } } auto upstream = downstream->get_upstream(); rv = upstream->on_downstream_body(downstream, data, len); if(rv != 0) { nghttp2_submit_rst_stream(session, stream_id, NGHTTP2_INTERNAL_ERROR); downstream->set_response_state(Downstream::MSG_RESET); } call_downstream_readcb(spdy, downstream); } } // namespace namespace { void before_frame_send_callback(nghttp2_session *session, nghttp2_frame *frame, void *user_data) { if(frame->hd.type == NGHTTP2_HEADERS && frame->headers.cat == NGHTTP2_HCAT_REQUEST) { auto sd = reinterpret_cast (nghttp2_session_get_stream_user_data(session, frame->hd.stream_id)); if(!sd || !sd->dconn) { nghttp2_submit_rst_stream(session, frame->hd.stream_id, NGHTTP2_CANCEL); return; } auto downstream = sd->dconn->get_downstream(); if(downstream) { downstream->set_downstream_stream_id(frame->hd.stream_id); } else { nghttp2_submit_rst_stream(session, frame->hd.stream_id, NGHTTP2_CANCEL); } } } } // namespace namespace { void on_frame_not_send_callback(nghttp2_session *session, nghttp2_frame *frame, int lib_error_code, void *user_data) { auto spdy = reinterpret_cast(user_data); SSLOG(WARNING, spdy) << "Failed to send control frame type=" << frame->hd.type << ", " << "lib_error_code=" << lib_error_code << ":" << nghttp2_strerror(lib_error_code); if(frame->hd.type == NGHTTP2_HEADERS && frame->headers.cat == NGHTTP2_HCAT_REQUEST) { // To avoid stream hanging around, flag Downstream::MSG_RESET and // terminate the upstream and downstream connections. auto sd = reinterpret_cast (nghttp2_session_get_stream_user_data(session, frame->hd.stream_id)); if(!sd) { return; } if(sd->dconn) { auto downstream = sd->dconn->get_downstream(); if(!downstream || downstream->get_downstream_stream_id() != frame->hd.stream_id) { return; } downstream->set_response_state(Downstream::MSG_RESET); call_downstream_readcb(spdy, downstream); } spdy->remove_stream_data(sd); } } } // namespace namespace { void on_frame_recv_parse_error_callback(nghttp2_session *session, nghttp2_frame_type type, const uint8_t *head, size_t headlen, const uint8_t *payload, size_t payloadlen, int lib_error_code, void *user_data) { auto spdy = reinterpret_cast(user_data); if(LOG_ENABLED(INFO)) { SSLOG(INFO, spdy) << "Failed to parse received control frame. type=" << type << ", lib_error_code=" << lib_error_code << ":" << nghttp2_strerror(lib_error_code); } } } // namespace namespace { void on_unknown_frame_recv_callback(nghttp2_session *session, const uint8_t *head, size_t headlen, const uint8_t *payload, size_t payloadlen, void *user_data) { auto spdy = reinterpret_cast(user_data); if(LOG_ENABLED(INFO)) { SSLOG(INFO, spdy) << "Received unknown control frame"; } } } // namespace int SpdySession::on_connect() { int rv; const unsigned char *next_proto = 0; unsigned int next_proto_len; if(ssl_ctx_) { SSL_get0_next_proto_negotiated(ssl_, &next_proto, &next_proto_len); std::string proto(next_proto, next_proto+next_proto_len); if(LOG_ENABLED(INFO)) { SSLOG(INFO, this) << "Negotiated next protocol: " << proto; } if(proto != NGHTTP2_PROTO_VERSION_ID) { return -1; } } nghttp2_session_callbacks callbacks; memset(&callbacks, 0, sizeof(callbacks)); callbacks.send_callback = send_callback; callbacks.recv_callback = recv_callback; callbacks.on_stream_close_callback = on_stream_close_callback; callbacks.on_frame_recv_callback = on_frame_recv_callback; callbacks.on_data_chunk_recv_callback = on_data_chunk_recv_callback; callbacks.before_frame_send_callback = before_frame_send_callback; callbacks.on_frame_not_send_callback = on_frame_not_send_callback; callbacks.on_frame_recv_parse_error_callback = on_frame_recv_parse_error_callback; callbacks.on_unknown_frame_recv_callback = on_unknown_frame_recv_callback; rv = nghttp2_session_client_new(&session_, &callbacks, this); if(rv != 0) { return -1; } int val = 1; flow_control_ = true; rv = nghttp2_session_set_option(session_, NGHTTP2_OPT_NO_AUTO_WINDOW_UPDATE, &val, sizeof(val)); assert(rv == 0); nghttp2_settings_entry entry[2]; entry[0].settings_id = NGHTTP2_SETTINGS_MAX_CONCURRENT_STREAMS; entry[0].value = get_config()->spdy_max_concurrent_streams; entry[1].settings_id = NGHTTP2_SETTINGS_INITIAL_WINDOW_SIZE; entry[1].value = get_initial_window_size(); rv = nghttp2_submit_settings (session_, entry, sizeof(entry)/sizeof(nghttp2_settings_entry)); if(rv != 0) { return -1; } // Disable connection-level flow control rv = nghttp2_submit_window_update(session_, NGHTTP2_FLAG_END_FLOW_CONTROL, 0, 0); if(rv != 0) { return -1; } bufferevent_write(bev_, NGHTTP2_CLIENT_CONNECTION_HEADER, NGHTTP2_CLIENT_CONNECTION_HEADER_LEN); rv = send(); if(rv != 0) { return -1; } // submit pending request for(auto dconn : dconns_) { if(dconn->push_request_headers() != 0) { return -1; } } return 0; } int SpdySession::on_read() { int rv = 0; if((rv = nghttp2_session_recv(session_)) < 0) { if(rv != NGHTTP2_ERR_EOF) { SSLOG(ERROR, this) << "nghttp2_session_recv() returned error: " << nghttp2_strerror(rv); } } else if((rv = nghttp2_session_send(session_)) < 0) { SSLOG(ERROR, this) << "nghttp2_session_send() returned error: " << nghttp2_strerror(rv); } if(rv == 0) { if(nghttp2_session_want_read(session_) == 0 && nghttp2_session_want_write(session_) == 0 && evbuffer_get_length(bufferevent_get_output(bev_)) == 0) { if(LOG_ENABLED(INFO)) { SSLOG(INFO, this) << "No more read/write for this session"; } rv = -1; } } return rv; } int SpdySession::on_write() { return send(); } int SpdySession::send() { int rv = 0; if((rv = nghttp2_session_send(session_)) < 0) { SSLOG(ERROR, this) << "nghttp2_session_send() returned error: " << nghttp2_strerror(rv); } if(rv == 0) { if(nghttp2_session_want_read(session_) == 0 && nghttp2_session_want_write(session_) == 0 && evbuffer_get_length(bufferevent_get_output(bev_)) == 0) { if(LOG_ENABLED(INFO)) { SSLOG(INFO, this) << "No more read/write for this session"; } rv = -1; } } return rv; } void SpdySession::clear_notify() { evbuffer *input = bufferevent_get_output(rdbev_); evbuffer_drain(input, evbuffer_get_length(input)); notified_ = false; } void SpdySession::notify() { if(!notified_) { bufferevent_write(wrbev_, "1", 1); notified_ = true; } } bufferevent* SpdySession::get_bev() const { return bev_; } int SpdySession::get_state() const { return state_; } void SpdySession::set_state(int state) { state_ = state; } } // namespace shrpx