/* * nghttp2 - HTTP/2 C Library * * Copyright (c) 2012 Tatsuhiro Tsujikawa * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sublicense, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE * LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION * OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ #include "shrpx_http_downstream_connection.h" #include "shrpx_client_handler.h" #include "shrpx_upstream.h" #include "shrpx_downstream.h" #include "shrpx_config.h" #include "shrpx_error.h" #include "shrpx_http.h" #include "shrpx_log_config.h" #include "shrpx_connect_blocker.h" #include "shrpx_downstream_connection_pool.h" #include "shrpx_worker.h" #include "shrpx_http2_session.h" #include "shrpx_tls.h" #include "shrpx_log.h" #include "http2.h" #include "util.h" #include "ssl_compat.h" using namespace nghttp2; namespace shrpx { namespace { void timeoutcb(struct ev_loop *loop, ev_timer *w, int revents) { auto conn = static_cast(w->data); auto dconn = static_cast(conn->data); if (w == &conn->rt && !conn->expired_rt()) { return; } if (LOG_ENABLED(INFO)) { DCLOG(INFO, dconn) << "Time out"; } auto downstream = dconn->get_downstream(); auto upstream = downstream->get_upstream(); auto handler = upstream->get_client_handler(); auto &resp = downstream->response(); // Do this so that dconn is not pooled resp.connection_close = true; if (upstream->downstream_error(dconn, Downstream::EVENT_TIMEOUT) != 0) { delete handler; } } } // namespace namespace { void retry_downstream_connection(Downstream *downstream, unsigned int status_code) { auto upstream = downstream->get_upstream(); auto handler = upstream->get_client_handler(); assert(!downstream->get_request_header_sent()); downstream->add_retry(); if (downstream->no_more_retry()) { delete handler; return; } downstream->pop_downstream_connection(); auto buf = downstream->get_request_buf(); buf->reset(); int rv; for (;;) { auto ndconn = handler->get_downstream_connection(rv, downstream); if (!ndconn) { break; } if (downstream->attach_downstream_connection(std::move(ndconn)) != 0) { continue; } if (downstream->push_request_headers() == 0) { return; } } downstream->set_request_state(DownstreamState::CONNECT_FAIL); if (rv == SHRPX_ERR_TLS_REQUIRED) { rv = upstream->on_downstream_abort_request_with_https_redirect(downstream); } else { rv = upstream->on_downstream_abort_request(downstream, status_code); } if (rv != 0) { delete handler; } } } // namespace namespace { void connect_timeoutcb(struct ev_loop *loop, ev_timer *w, int revents) { auto conn = static_cast(w->data); auto dconn = static_cast(conn->data); auto addr = dconn->get_addr(); auto raddr = dconn->get_raddr(); DCLOG(WARN, dconn) << "Connect time out; addr=" << util::to_numeric_addr(raddr); downstream_failure(addr, raddr); auto downstream = dconn->get_downstream(); retry_downstream_connection(downstream, 504); } } // namespace namespace { void readcb(struct ev_loop *loop, ev_io *w, int revents) { auto conn = static_cast(w->data); auto dconn = static_cast(conn->data); auto downstream = dconn->get_downstream(); auto upstream = downstream->get_upstream(); auto handler = upstream->get_client_handler(); if (upstream->downstream_read(dconn) != 0) { delete handler; } } } // namespace namespace { void backend_retry(Downstream *downstream) { retry_downstream_connection(downstream, 502); } } // namespace namespace { void writecb(struct ev_loop *loop, ev_io *w, int revents) { int rv; auto conn = static_cast(w->data); auto dconn = static_cast(conn->data); auto downstream = dconn->get_downstream(); auto upstream = downstream->get_upstream(); auto handler = upstream->get_client_handler(); rv = upstream->downstream_write(dconn); if (rv == SHRPX_ERR_RETRY) { backend_retry(downstream); return; } if (rv != 0) { delete handler; } } } // namespace namespace { void connectcb(struct ev_loop *loop, ev_io *w, int revents) { auto conn = static_cast(w->data); auto dconn = static_cast(conn->data); auto downstream = dconn->get_downstream(); if (dconn->connected() != 0) { backend_retry(downstream); return; } writecb(loop, w, revents); } } // namespace HttpDownstreamConnection::HttpDownstreamConnection( const std::shared_ptr &group, DownstreamAddr *addr, struct ev_loop *loop, Worker *worker) : conn_(loop, -1, nullptr, worker->get_mcpool(), group->shared_addr->timeout.write, group->shared_addr->timeout.read, {}, {}, connectcb, readcb, connect_timeoutcb, this, get_config()->tls.dyn_rec.warmup_threshold, get_config()->tls.dyn_rec.idle_timeout, Proto::HTTP1), on_read_(&HttpDownstreamConnection::noop), on_write_(&HttpDownstreamConnection::noop), signal_write_(&HttpDownstreamConnection::noop), worker_(worker), ssl_ctx_(worker->get_cl_ssl_ctx()), group_(group), addr_(addr), raddr_(nullptr), ioctrl_(&conn_.rlimit), response_htp_{0}, first_write_done_(false), reusable_(true), request_header_written_(false) {} HttpDownstreamConnection::~HttpDownstreamConnection() { if (LOG_ENABLED(INFO)) { DCLOG(INFO, this) << "Deleted"; } if (dns_query_) { auto dns_tracker = worker_->get_dns_tracker(); dns_tracker->cancel(dns_query_.get()); } } int HttpDownstreamConnection::attach_downstream(Downstream *downstream) { int rv; if (LOG_ENABLED(INFO)) { DCLOG(INFO, this) << "Attaching to DOWNSTREAM:" << downstream; } downstream_ = downstream; rv = initiate_connection(); if (rv != 0) { downstream_ = nullptr; return rv; } return 0; } namespace { int htp_msg_begincb(llhttp_t *htp); int htp_hdr_keycb(llhttp_t *htp, const char *data, size_t len); int htp_hdr_valcb(llhttp_t *htp, const char *data, size_t len); int htp_hdrs_completecb(llhttp_t *htp); int htp_bodycb(llhttp_t *htp, const char *data, size_t len); int htp_msg_completecb(llhttp_t *htp); } // namespace namespace { constexpr llhttp_settings_t htp_hooks = { htp_msg_begincb, // llhttp_cb on_message_begin; nullptr, // llhttp_data_cb on_url; nullptr, // llhttp_data_cb on_status; htp_hdr_keycb, // llhttp_data_cb on_header_field; htp_hdr_valcb, // llhttp_data_cb on_header_value; htp_hdrs_completecb, // llhttp_cb on_headers_complete; htp_bodycb, // llhttp_data_cb on_body; htp_msg_completecb, // llhttp_cb on_message_complete; nullptr, // llhttp_cb on_chunk_header nullptr, // llhttp_cb on_chunk_complete }; } // namespace int HttpDownstreamConnection::initiate_connection() { int rv; auto worker_blocker = worker_->get_connect_blocker(); if (worker_blocker->blocked()) { if (LOG_ENABLED(INFO)) { DCLOG(INFO, this) << "Worker wide backend connection was blocked temporarily"; } return SHRPX_ERR_NETWORK; } auto &downstreamconf = *worker_->get_downstream_config(); if (conn_.fd == -1) { auto check_dns_result = dns_query_.get() != nullptr; if (check_dns_result) { assert(addr_->dns); } auto &connect_blocker = addr_->connect_blocker; if (connect_blocker->blocked()) { if (LOG_ENABLED(INFO)) { DCLOG(INFO, this) << "Backend server " << addr_->host << ":" << addr_->port << " was not available temporarily"; } return SHRPX_ERR_NETWORK; } Address *raddr; if (addr_->dns) { if (!check_dns_result) { auto dns_query = std::make_unique( addr_->host, [this](DNSResolverStatus status, const Address *result) { int rv; if (status == DNSResolverStatus::OK) { *this->resolved_addr_ = *result; } rv = this->initiate_connection(); if (rv != 0) { // This callback destroys |this|. auto downstream = this->downstream_; backend_retry(downstream); } }); auto dns_tracker = worker_->get_dns_tracker(); if (!resolved_addr_) { resolved_addr_ = std::make_unique
(); } switch (dns_tracker->resolve(resolved_addr_.get(), dns_query.get())) { case DNSResolverStatus::ERROR: downstream_failure(addr_, nullptr); return SHRPX_ERR_NETWORK; case DNSResolverStatus::RUNNING: dns_query_ = std::move(dns_query); return 0; case DNSResolverStatus::OK: break; default: assert(0); } } else { switch (dns_query_->status) { case DNSResolverStatus::ERROR: dns_query_.reset(); downstream_failure(addr_, nullptr); return SHRPX_ERR_NETWORK; case DNSResolverStatus::OK: dns_query_.reset(); break; default: assert(0); } } raddr = resolved_addr_.get(); util::set_port(*resolved_addr_, addr_->port); } else { raddr = &addr_->addr; } conn_.fd = util::create_nonblock_socket(raddr->su.storage.ss_family); if (conn_.fd == -1) { auto error = errno; DCLOG(WARN, this) << "socket() failed; addr=" << util::to_numeric_addr(raddr) << ", errno=" << error; worker_blocker->on_failure(); return SHRPX_ERR_NETWORK; } worker_blocker->on_success(); rv = connect(conn_.fd, &raddr->su.sa, raddr->len); if (rv != 0 && errno != EINPROGRESS) { auto error = errno; DCLOG(WARN, this) << "connect() failed; addr=" << util::to_numeric_addr(raddr) << ", errno=" << error; downstream_failure(addr_, raddr); return SHRPX_ERR_NETWORK; } if (LOG_ENABLED(INFO)) { DCLOG(INFO, this) << "Connecting to downstream server"; } raddr_ = raddr; if (addr_->tls) { assert(ssl_ctx_); auto ssl = tls::create_ssl(ssl_ctx_); if (!ssl) { return -1; } tls::setup_downstream_http1_alpn(ssl); conn_.set_ssl(ssl); conn_.tls.client_session_cache = &addr_->tls_session_cache; auto sni_name = addr_->sni.empty() ? StringRef{addr_->host} : StringRef{addr_->sni}; if (!util::numeric_host(sni_name.c_str())) { SSL_set_tlsext_host_name(conn_.tls.ssl, sni_name.c_str()); } auto session = tls::reuse_tls_session(addr_->tls_session_cache); if (session) { SSL_set_session(conn_.tls.ssl, session); SSL_SESSION_free(session); } conn_.prepare_client_handshake(); } ev_io_set(&conn_.wev, conn_.fd, EV_WRITE); ev_io_set(&conn_.rev, conn_.fd, EV_READ); conn_.wlimit.startw(); conn_.wt.repeat = downstreamconf.timeout.connect; ev_timer_again(conn_.loop, &conn_.wt); } else { // we may set read timer cb to idle_timeoutcb. Reset again. ev_set_cb(&conn_.rt, timeoutcb); if (conn_.read_timeout < group_->shared_addr->timeout.read) { conn_.read_timeout = group_->shared_addr->timeout.read; conn_.last_read = ev_now(conn_.loop); } else { conn_.again_rt(group_->shared_addr->timeout.read); } ev_set_cb(&conn_.rev, readcb); on_write_ = &HttpDownstreamConnection::write_first; first_write_done_ = false; request_header_written_ = false; } llhttp_init(&response_htp_, HTTP_RESPONSE, &htp_hooks); response_htp_.data = downstream_; return 0; } int HttpDownstreamConnection::push_request_headers() { if (request_header_written_) { signal_write(); return 0; } const auto &downstream_hostport = addr_->hostport; const auto &req = downstream_->request(); auto &balloc = downstream_->get_block_allocator(); auto connect_method = req.regular_connect_method(); auto config = get_config(); auto &httpconf = config->http; request_header_written_ = true; // For HTTP/1.0 request, there is no authority in request. In that // case, we use backend server's host nonetheless. auto authority = StringRef(downstream_hostport); auto no_host_rewrite = httpconf.no_host_rewrite || config->http2_proxy || connect_method; if (no_host_rewrite && !req.authority.empty()) { authority = req.authority; } downstream_->set_request_downstream_host(authority); auto buf = downstream_->get_request_buf(); // Assume that method and request path do not contain \r\n. auto meth = http2::to_method_string( req.connect_proto == ConnectProto::WEBSOCKET ? HTTP_GET : req.method); buf->append(meth); buf->append(' '); if (connect_method) { buf->append(authority); } else if (config->http2_proxy) { // Construct absolute-form request target because we are going to // send a request to a HTTP/1 proxy. assert(!req.scheme.empty()); buf->append(req.scheme); buf->append("://"); buf->append(authority); buf->append(req.path); } else if (req.method == HTTP_OPTIONS && req.path.empty()) { // Server-wide OPTIONS buf->append("*"); } else { buf->append(req.path); } buf->append(" HTTP/1.1\r\nHost: "); buf->append(authority); buf->append("\r\n"); auto &fwdconf = httpconf.forwarded; auto &xffconf = httpconf.xff; auto &xfpconf = httpconf.xfp; auto &earlydataconf = httpconf.early_data; uint32_t build_flags = (fwdconf.strip_incoming ? http2::HDOP_STRIP_FORWARDED : 0) | (xffconf.strip_incoming ? http2::HDOP_STRIP_X_FORWARDED_FOR : 0) | (xfpconf.strip_incoming ? http2::HDOP_STRIP_X_FORWARDED_PROTO : 0) | (earlydataconf.strip_incoming ? http2::HDOP_STRIP_EARLY_DATA : 0) | (req.http_major == 2 ? http2::HDOP_STRIP_SEC_WEBSOCKET_KEY : 0); http2::build_http1_headers_from_headers(buf, req.fs.headers(), build_flags); auto cookie = downstream_->assemble_request_cookie(); if (!cookie.empty()) { buf->append("Cookie: "); buf->append(cookie); buf->append("\r\n"); } // set transfer-encoding only when content-length is unknown and // request body is expected. if (req.method != HTTP_CONNECT && req.http2_expect_body && req.fs.content_length == -1) { downstream_->set_chunked_request(true); buf->append("Transfer-Encoding: chunked\r\n"); } if (req.connect_proto == ConnectProto::WEBSOCKET) { if (req.http_major == 2) { std::array nonce; util::random_bytes(std::begin(nonce), std::end(nonce), worker_->get_randgen()); auto iov = make_byte_ref(balloc, base64::encode_length(nonce.size()) + 1); auto p = base64::encode(std::begin(nonce), std::end(nonce), iov.base); *p = '\0'; auto key = StringRef{iov.base, p}; downstream_->set_ws_key(key); buf->append("Sec-Websocket-Key: "); buf->append(key); buf->append("\r\n"); } buf->append("Upgrade: websocket\r\nConnection: Upgrade\r\n"); } else if (!connect_method && req.upgrade_request) { auto connection = req.fs.header(http2::HD_CONNECTION); if (connection) { buf->append("Connection: "); buf->append((*connection).value); buf->append("\r\n"); } auto upgrade = req.fs.header(http2::HD_UPGRADE); if (upgrade) { buf->append("Upgrade: "); buf->append((*upgrade).value); buf->append("\r\n"); } } else if (req.connection_close) { buf->append("Connection: close\r\n"); } auto upstream = downstream_->get_upstream(); auto handler = upstream->get_client_handler(); #if OPENSSL_1_1_1_API auto conn = handler->get_connection(); if (conn->tls.ssl && !SSL_is_init_finished(conn->tls.ssl)) { buf->append("Early-Data: 1\r\n"); } #endif // OPENSSL_1_1_1_API auto fwd = fwdconf.strip_incoming ? nullptr : req.fs.header(http2::HD_FORWARDED); if (fwdconf.params) { auto params = fwdconf.params; if (config->http2_proxy || connect_method) { params &= ~FORWARDED_PROTO; } auto value = http::create_forwarded( balloc, params, handler->get_forwarded_by(), handler->get_forwarded_for(), req.authority, req.scheme); if (fwd || !value.empty()) { buf->append("Forwarded: "); if (fwd) { buf->append(fwd->value); if (!value.empty()) { buf->append(", "); } } buf->append(value); buf->append("\r\n"); } } else if (fwd) { buf->append("Forwarded: "); buf->append(fwd->value); buf->append("\r\n"); } auto xff = xffconf.strip_incoming ? nullptr : req.fs.header(http2::HD_X_FORWARDED_FOR); if (xffconf.add) { buf->append("X-Forwarded-For: "); if (xff) { buf->append((*xff).value); buf->append(", "); } buf->append(client_handler_->get_ipaddr()); buf->append("\r\n"); } else if (xff) { buf->append("X-Forwarded-For: "); buf->append((*xff).value); buf->append("\r\n"); } if (!config->http2_proxy && !connect_method) { auto xfp = xfpconf.strip_incoming ? nullptr : req.fs.header(http2::HD_X_FORWARDED_PROTO); if (xfpconf.add) { buf->append("X-Forwarded-Proto: "); if (xfp) { buf->append((*xfp).value); buf->append(", "); } assert(!req.scheme.empty()); buf->append(req.scheme); buf->append("\r\n"); } else if (xfp) { buf->append("X-Forwarded-Proto: "); buf->append((*xfp).value); buf->append("\r\n"); } } auto via = req.fs.header(http2::HD_VIA); if (httpconf.no_via) { if (via) { buf->append("Via: "); buf->append((*via).value); buf->append("\r\n"); } } else { buf->append("Via: "); if (via) { buf->append((*via).value); buf->append(", "); } std::array viabuf; auto end = http::create_via_header_value(viabuf.data(), req.http_major, req.http_minor); buf->append(viabuf.data(), end - viabuf.data()); buf->append("\r\n"); } for (auto &p : httpconf.add_request_headers) { buf->append(p.name); buf->append(": "); buf->append(p.value); buf->append("\r\n"); } buf->append("\r\n"); if (LOG_ENABLED(INFO)) { std::string nhdrs; for (auto chunk = buf->head; chunk; chunk = chunk->next) { nhdrs.append(chunk->pos, chunk->last); } if (log_config()->errorlog_tty) { nhdrs = http::colorizeHeaders(nhdrs.c_str()); } DCLOG(INFO, this) << "HTTP request headers. stream_id=" << downstream_->get_stream_id() << "\n" << nhdrs; } // Don't call signal_write() if we anticipate request body. We call // signal_write() when we received request body chunk, and it // enables us to send headers and data in one writev system call. if (req.method == HTTP_CONNECT || downstream_->get_blocked_request_buf()->rleft() || (!req.http2_expect_body && req.fs.content_length == 0) || downstream_->get_expect_100_continue()) { signal_write(); } return 0; } int HttpDownstreamConnection::process_blocked_request_buf() { auto src = downstream_->get_blocked_request_buf(); if (src->rleft()) { auto dest = downstream_->get_request_buf(); auto chunked = downstream_->get_chunked_request(); if (chunked) { auto chunk_size_hex = util::utox(src->rleft()); dest->append(chunk_size_hex); dest->append("\r\n"); } src->copy(*dest); if (chunked) { dest->append("\r\n"); } } if (downstream_->get_blocked_request_data_eof() && downstream_->get_chunked_request()) { end_upload_data_chunk(); } return 0; } int HttpDownstreamConnection::push_upload_data_chunk(const uint8_t *data, size_t datalen) { if (!downstream_->get_request_header_sent()) { auto output = downstream_->get_blocked_request_buf(); auto &req = downstream_->request(); output->append(data, datalen); req.unconsumed_body_length += datalen; if (request_header_written_) { signal_write(); } return 0; } auto chunked = downstream_->get_chunked_request(); auto output = downstream_->get_request_buf(); if (chunked) { auto chunk_size_hex = util::utox(datalen); output->append(chunk_size_hex); output->append("\r\n"); } output->append(data, datalen); if (chunked) { output->append("\r\n"); } signal_write(); return 0; } int HttpDownstreamConnection::end_upload_data() { if (!downstream_->get_request_header_sent()) { downstream_->set_blocked_request_data_eof(true); if (request_header_written_) { signal_write(); } return 0; } signal_write(); if (!downstream_->get_chunked_request()) { return 0; } end_upload_data_chunk(); return 0; } void HttpDownstreamConnection::end_upload_data_chunk() { const auto &req = downstream_->request(); auto output = downstream_->get_request_buf(); const auto &trailers = req.fs.trailers(); if (trailers.empty()) { output->append("0\r\n\r\n"); } else { output->append("0\r\n"); http2::build_http1_headers_from_headers(output, trailers, http2::HDOP_STRIP_ALL); output->append("\r\n"); } } namespace { void remove_from_pool(HttpDownstreamConnection *dconn) { auto addr = dconn->get_addr(); auto &dconn_pool = addr->dconn_pool; dconn_pool->remove_downstream_connection(dconn); } } // namespace namespace { void idle_readcb(struct ev_loop *loop, ev_io *w, int revents) { auto conn = static_cast(w->data); auto dconn = static_cast(conn->data); if (LOG_ENABLED(INFO)) { DCLOG(INFO, dconn) << "Idle connection EOF"; } remove_from_pool(dconn); // dconn was deleted } } // namespace namespace { void idle_timeoutcb(struct ev_loop *loop, ev_timer *w, int revents) { auto conn = static_cast(w->data); auto dconn = static_cast(conn->data); if (w == &conn->rt && !conn->expired_rt()) { return; } if (LOG_ENABLED(INFO)) { DCLOG(INFO, dconn) << "Idle connection timeout"; } remove_from_pool(dconn); // dconn was deleted } } // namespace void HttpDownstreamConnection::detach_downstream(Downstream *downstream) { if (LOG_ENABLED(INFO)) { DCLOG(INFO, this) << "Detaching from DOWNSTREAM:" << downstream; } downstream_ = nullptr; ev_set_cb(&conn_.rev, idle_readcb); ioctrl_.force_resume_read(); auto &downstreamconf = *worker_->get_downstream_config(); ev_set_cb(&conn_.rt, idle_timeoutcb); if (conn_.read_timeout < downstreamconf.timeout.idle_read) { conn_.read_timeout = downstreamconf.timeout.idle_read; conn_.last_read = ev_now(conn_.loop); } else { conn_.again_rt(downstreamconf.timeout.idle_read); } conn_.wlimit.stopw(); ev_timer_stop(conn_.loop, &conn_.wt); } void HttpDownstreamConnection::pause_read(IOCtrlReason reason) { ioctrl_.pause_read(reason); } int HttpDownstreamConnection::resume_read(IOCtrlReason reason, size_t consumed) { auto &downstreamconf = *worker_->get_downstream_config(); if (downstream_->get_response_buf()->rleft() <= downstreamconf.request_buffer_size / 2) { ioctrl_.resume_read(reason); } return 0; } void HttpDownstreamConnection::force_resume_read() { ioctrl_.force_resume_read(); } namespace { int htp_msg_begincb(llhttp_t *htp) { auto downstream = static_cast(htp->data); if (downstream->get_response_state() != DownstreamState::INITIAL) { llhttp_set_error_reason(htp, "HTTP message started when it shouldn't"); return HPE_USER; } return 0; } } // namespace namespace { int htp_hdrs_completecb(llhttp_t *htp) { auto downstream = static_cast(htp->data); auto upstream = downstream->get_upstream(); auto handler = upstream->get_client_handler(); const auto &req = downstream->request(); auto &resp = downstream->response(); int rv; auto config = get_config(); auto &loggingconf = config->logging; resp.http_status = htp->status_code; resp.http_major = htp->http_major; resp.http_minor = htp->http_minor; if (resp.http_major > 1 || req.http_minor > 1) { resp.http_major = 1; resp.http_minor = 1; return -1; } auto dconn = downstream->get_downstream_connection(); downstream->set_downstream_addr_group(dconn->get_downstream_addr_group()); downstream->set_addr(dconn->get_addr()); // Server MUST NOT send Transfer-Encoding with a status code 1xx or // 204. Also server MUST NOT send Transfer-Encoding with a status // code 2xx to a CONNECT request. Same holds true with // Content-Length. if (resp.http_status == 204) { if (resp.fs.header(http2::HD_TRANSFER_ENCODING)) { return -1; } // Some server send content-length: 0 for 204. Until they get // fixed, we accept, but ignore it. // Calling parse_content_length() detects duplicated // content-length header fields. if (resp.fs.parse_content_length() != 0) { return -1; } if (resp.fs.content_length == 0) { resp.fs.erase_content_length_and_transfer_encoding(); } else if (resp.fs.content_length != -1) { return -1; } } else if (resp.http_status / 100 == 1 || (resp.http_status / 100 == 2 && req.method == HTTP_CONNECT)) { // Server MUST NOT send Content-Length and Transfer-Encoding in // these responses. resp.fs.erase_content_length_and_transfer_encoding(); } else if (resp.fs.parse_content_length() != 0) { downstream->set_response_state(DownstreamState::MSG_BAD_HEADER); return -1; } // Check upgrade before processing non-final response, since if // upgrade succeeded, 101 response is treated as final in nghttpx. downstream->check_upgrade_fulfilled_http1(); if (downstream->get_non_final_response()) { // Reset content-length because we reuse same Downstream for the // next response. resp.fs.content_length = -1; // For non-final response code, we just call // on_downstream_header_complete() without changing response // state. rv = upstream->on_downstream_header_complete(downstream); if (rv != 0) { return -1; } // Ignore response body for non-final response. return 1; } resp.connection_close = !llhttp_should_keep_alive(htp); downstream->set_response_state(DownstreamState::HEADER_COMPLETE); downstream->inspect_http1_response(); if (downstream->get_upgraded()) { // content-length must be ignored for upgraded connection. resp.fs.content_length = -1; resp.connection_close = true; // transfer-encoding not applied to upgraded connection downstream->set_chunked_response(false); } else if (http2::legacy_http1(req.http_major, req.http_minor)) { if (resp.fs.content_length == -1) { resp.connection_close = true; } downstream->set_chunked_response(false); } else if (!downstream->expect_response_body()) { downstream->set_chunked_response(false); } if (loggingconf.access.write_early && downstream->accesslog_ready()) { handler->write_accesslog(downstream); downstream->set_accesslog_written(true); } if (upstream->on_downstream_header_complete(downstream) != 0) { return -1; } if (downstream->get_upgraded()) { // Upgrade complete, read until EOF in both ends if (upstream->resume_read(SHRPX_NO_BUFFER, downstream, 0) != 0) { return -1; } downstream->set_request_state(DownstreamState::HEADER_COMPLETE); if (LOG_ENABLED(INFO)) { LOG(INFO) << "HTTP upgrade success. stream_id=" << downstream->get_stream_id(); } } // Ignore the response body. HEAD response may contain // Content-Length or Transfer-Encoding: chunked. Some server send // 304 status code with nonzero Content-Length, but without response // body. See // https://tools.ietf.org/html/rfc7230#section-3.3 // TODO It seems that the cases other than HEAD are handled by // llhttp. Need test. return !http2::expect_response_body(req.method, resp.http_status); } } // namespace namespace { int ensure_header_field_buffer(const Downstream *downstream, const HttpConfig &httpconf, size_t len) { auto &resp = downstream->response(); if (resp.fs.buffer_size() + len > httpconf.response_header_field_buffer) { if (LOG_ENABLED(INFO)) { DLOG(INFO, downstream) << "Too large header header field size=" << resp.fs.buffer_size() + len; } return -1; } return 0; } } // namespace namespace { int ensure_max_header_fields(const Downstream *downstream, const HttpConfig &httpconf) { auto &resp = downstream->response(); if (resp.fs.num_fields() >= httpconf.max_response_header_fields) { if (LOG_ENABLED(INFO)) { DLOG(INFO, downstream) << "Too many header field num=" << resp.fs.num_fields() + 1; } return -1; } return 0; } } // namespace namespace { int htp_hdr_keycb(llhttp_t *htp, const char *data, size_t len) { auto downstream = static_cast(htp->data); auto &resp = downstream->response(); auto &httpconf = get_config()->http; if (ensure_header_field_buffer(downstream, httpconf, len) != 0) { return -1; } if (downstream->get_response_state() == DownstreamState::INITIAL) { if (resp.fs.header_key_prev()) { resp.fs.append_last_header_key(data, len); } else { if (ensure_max_header_fields(downstream, httpconf) != 0) { return -1; } resp.fs.alloc_add_header_name(StringRef{data, len}); } } else { // trailer part if (resp.fs.trailer_key_prev()) { resp.fs.append_last_trailer_key(data, len); } else { if (ensure_max_header_fields(downstream, httpconf) != 0) { // Could not ignore this trailer field easily, since we may // get its value in htp_hdr_valcb, and it will be added to // wrong place or crash if trailer fields are currently empty. return -1; } resp.fs.alloc_add_trailer_name(StringRef{data, len}); } } return 0; } } // namespace namespace { int htp_hdr_valcb(llhttp_t *htp, const char *data, size_t len) { auto downstream = static_cast(htp->data); auto &resp = downstream->response(); auto &httpconf = get_config()->http; if (ensure_header_field_buffer(downstream, httpconf, len) != 0) { return -1; } if (downstream->get_response_state() == DownstreamState::INITIAL) { resp.fs.append_last_header_value(data, len); } else { resp.fs.append_last_trailer_value(data, len); } return 0; } } // namespace namespace { int htp_bodycb(llhttp_t *htp, const char *data, size_t len) { auto downstream = static_cast(htp->data); auto &resp = downstream->response(); resp.recv_body_length += len; return downstream->get_upstream()->on_downstream_body( downstream, reinterpret_cast(data), len, true); } } // namespace namespace { int htp_msg_completecb(llhttp_t *htp) { auto downstream = static_cast(htp->data); // llhttp does not treat "200 connection established" response // against CONNECT request, and in that case, this function is not // called. But if HTTP Upgrade is made (e.g., WebSocket), this // function is called, and llhttp_execute() returns just after that. if (downstream->get_upgraded()) { return 0; } if (downstream->get_non_final_response()) { downstream->reset_response(); return 0; } downstream->set_response_state(DownstreamState::MSG_COMPLETE); // Block reading another response message from (broken?) // server. This callback is not called if the connection is // tunneled. downstream->pause_read(SHRPX_MSG_BLOCK); return downstream->get_upstream()->on_downstream_body_complete(downstream); } } // namespace int HttpDownstreamConnection::write_first() { int rv; process_blocked_request_buf(); if (conn_.tls.ssl) { rv = write_tls(); } else { rv = write_clear(); } if (rv != 0) { return SHRPX_ERR_RETRY; } if (conn_.tls.ssl) { on_write_ = &HttpDownstreamConnection::write_tls; } else { on_write_ = &HttpDownstreamConnection::write_clear; } first_write_done_ = true; downstream_->set_request_header_sent(true); auto buf = downstream_->get_blocked_request_buf(); buf->reset(); // upstream->resume_read() might be called in // write_tls()/write_clear(), but before blocked_request_buf_ is // reset. So upstream read might still be blocked. Let's do it // again here. auto input = downstream_->get_request_buf(); if (input->rleft() == 0) { auto upstream = downstream_->get_upstream(); auto &req = downstream_->request(); upstream->resume_read(SHRPX_NO_BUFFER, downstream_, req.unconsumed_body_length); } return 0; } int HttpDownstreamConnection::read_clear() { conn_.last_read = ev_now(conn_.loop); std::array buf; int rv; for (;;) { auto nread = conn_.read_clear(buf.data(), buf.size()); if (nread == 0) { return 0; } if (nread < 0) { return nread; } rv = process_input(buf.data(), nread); if (rv != 0) { return rv; } if (!ev_is_active(&conn_.rev)) { return 0; } } } int HttpDownstreamConnection::write_clear() { conn_.last_read = ev_now(conn_.loop); auto upstream = downstream_->get_upstream(); auto input = downstream_->get_request_buf(); std::array iov; while (input->rleft() > 0) { auto iovcnt = input->riovec(iov.data(), iov.size()); auto nwrite = conn_.writev_clear(iov.data(), iovcnt); if (nwrite == 0) { return 0; } if (nwrite < 0) { if (!first_write_done_) { return nwrite; } // We may have pending data in receive buffer which may contain // part of response body. So keep reading. Invoke read event // to get read(2) error just in case. ev_feed_event(conn_.loop, &conn_.rev, EV_READ); on_write_ = &HttpDownstreamConnection::noop; reusable_ = false; break; } input->drain(nwrite); } conn_.wlimit.stopw(); ev_timer_stop(conn_.loop, &conn_.wt); if (input->rleft() == 0) { auto &req = downstream_->request(); upstream->resume_read(SHRPX_NO_BUFFER, downstream_, req.unconsumed_body_length); } return 0; } int HttpDownstreamConnection::tls_handshake() { ERR_clear_error(); conn_.last_read = ev_now(conn_.loop); auto rv = conn_.tls_handshake(); if (rv == SHRPX_ERR_INPROGRESS) { return 0; } if (rv < 0) { downstream_failure(addr_, raddr_); return rv; } if (LOG_ENABLED(INFO)) { DCLOG(INFO, this) << "SSL/TLS handshake completed"; } if (!get_config()->tls.insecure && tls::check_cert(conn_.tls.ssl, addr_, raddr_) != 0) { downstream_failure(addr_, raddr_); return -1; } auto &connect_blocker = addr_->connect_blocker; signal_write_ = &HttpDownstreamConnection::actual_signal_write; connect_blocker->on_success(); ev_set_cb(&conn_.rt, timeoutcb); ev_set_cb(&conn_.wt, timeoutcb); on_read_ = &HttpDownstreamConnection::read_tls; on_write_ = &HttpDownstreamConnection::write_first; // TODO Check negotiated ALPN return on_write(); } int HttpDownstreamConnection::read_tls() { conn_.last_read = ev_now(conn_.loop); ERR_clear_error(); std::array buf; int rv; for (;;) { auto nread = conn_.read_tls(buf.data(), buf.size()); if (nread == 0) { return 0; } if (nread < 0) { return nread; } rv = process_input(buf.data(), nread); if (rv != 0) { return rv; } if (!ev_is_active(&conn_.rev)) { return 0; } } } int HttpDownstreamConnection::write_tls() { conn_.last_read = ev_now(conn_.loop); ERR_clear_error(); auto upstream = downstream_->get_upstream(); auto input = downstream_->get_request_buf(); struct iovec iov; while (input->rleft() > 0) { auto iovcnt = input->riovec(&iov, 1); if (iovcnt != 1) { assert(0); return -1; } auto nwrite = conn_.write_tls(iov.iov_base, iov.iov_len); if (nwrite == 0) { return 0; } if (nwrite < 0) { if (!first_write_done_) { return nwrite; } // We may have pending data in receive buffer which may contain // part of response body. So keep reading. Invoke read event // to get read(2) error just in case. ev_feed_event(conn_.loop, &conn_.rev, EV_READ); on_write_ = &HttpDownstreamConnection::noop; reusable_ = false; break; } input->drain(nwrite); } conn_.wlimit.stopw(); ev_timer_stop(conn_.loop, &conn_.wt); if (input->rleft() == 0) { auto &req = downstream_->request(); upstream->resume_read(SHRPX_NO_BUFFER, downstream_, req.unconsumed_body_length); } return 0; } int HttpDownstreamConnection::process_input(const uint8_t *data, size_t datalen) { int rv; if (downstream_->get_upgraded()) { // For upgraded connection, just pass data to the upstream. rv = downstream_->get_upstream()->on_downstream_body(downstream_, data, datalen, true); if (rv != 0) { return rv; } if (downstream_->response_buf_full()) { downstream_->pause_read(SHRPX_NO_BUFFER); return 0; } return 0; } auto htperr = llhttp_execute(&response_htp_, reinterpret_cast(data), datalen); auto nproc = htperr == HPE_OK ? datalen : static_cast(reinterpret_cast( llhttp_get_error_pos(&response_htp_)) - data); if (htperr != HPE_OK && (!downstream_->get_upgraded() || htperr != HPE_PAUSED_UPGRADE)) { // Handling early return (in other words, response was hijacked by // mruby scripting). if (downstream_->get_response_state() == DownstreamState::MSG_COMPLETE) { return SHRPX_ERR_DCONN_CANCELED; } if (LOG_ENABLED(INFO)) { DCLOG(INFO, this) << "HTTP parser failure: " << "(" << llhttp_errno_name(htperr) << ") " << llhttp_get_error_reason(&response_htp_); } return -1; } if (downstream_->get_upgraded()) { if (nproc < datalen) { // Data from data + nproc are for upgraded protocol. rv = downstream_->get_upstream()->on_downstream_body( downstream_, data + nproc, datalen - nproc, true); if (rv != 0) { return rv; } if (downstream_->response_buf_full()) { downstream_->pause_read(SHRPX_NO_BUFFER); return 0; } } return 0; } if (downstream_->response_buf_full()) { downstream_->pause_read(SHRPX_NO_BUFFER); return 0; } return 0; } int HttpDownstreamConnection::connected() { auto &connect_blocker = addr_->connect_blocker; auto sock_error = util::get_socket_error(conn_.fd); if (sock_error != 0) { conn_.wlimit.stopw(); DCLOG(WARN, this) << "Backend connect failed; addr=" << util::to_numeric_addr(raddr_) << ": errno=" << sock_error; downstream_failure(addr_, raddr_); return -1; } if (LOG_ENABLED(INFO)) { DCLOG(INFO, this) << "Connected to downstream host"; } // Reset timeout for write. Previously, we set timeout for connect. conn_.wt.repeat = group_->shared_addr->timeout.write; ev_timer_again(conn_.loop, &conn_.wt); conn_.rlimit.startw(); conn_.again_rt(); ev_set_cb(&conn_.wev, writecb); if (conn_.tls.ssl) { on_read_ = &HttpDownstreamConnection::tls_handshake; on_write_ = &HttpDownstreamConnection::tls_handshake; return 0; } signal_write_ = &HttpDownstreamConnection::actual_signal_write; connect_blocker->on_success(); ev_set_cb(&conn_.rt, timeoutcb); ev_set_cb(&conn_.wt, timeoutcb); on_read_ = &HttpDownstreamConnection::read_clear; on_write_ = &HttpDownstreamConnection::write_first; return 0; } int HttpDownstreamConnection::on_read() { return on_read_(*this); } int HttpDownstreamConnection::on_write() { return on_write_(*this); } void HttpDownstreamConnection::on_upstream_change(Upstream *upstream) {} void HttpDownstreamConnection::signal_write() { signal_write_(*this); } int HttpDownstreamConnection::actual_signal_write() { ev_feed_event(conn_.loop, &conn_.wev, EV_WRITE); return 0; } int HttpDownstreamConnection::noop() { return 0; } const std::shared_ptr & HttpDownstreamConnection::get_downstream_addr_group() const { return group_; } DownstreamAddr *HttpDownstreamConnection::get_addr() const { return addr_; } bool HttpDownstreamConnection::poolable() const { return !group_->retired && reusable_; } const Address *HttpDownstreamConnection::get_raddr() const { return raddr_; } } // namespace shrpx