/* * nghttp2 - HTTP/2 C Library * * Copyright (c) 2012 Tatsuhiro Tsujikawa * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sublicense, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE * LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION * OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ #include "shrpx_tls.h" #ifdef HAVE_SYS_SOCKET_H # include #endif // HAVE_SYS_SOCKET_H #ifdef HAVE_NETDB_H # include #endif // HAVE_NETDB_H #include #include #include #include #include #include #include #include #include #include #include #include #ifndef OPENSSL_NO_OCSP # include #endif // OPENSSL_NO_OCSP #include #include "shrpx_log.h" #include "shrpx_client_handler.h" #include "shrpx_config.h" #include "shrpx_worker.h" #include "shrpx_downstream_connection_pool.h" #include "shrpx_http2_session.h" #include "shrpx_memcached_request.h" #include "shrpx_memcached_dispatcher.h" #include "shrpx_connection_handler.h" #include "util.h" #include "tls.h" #include "template.h" #include "ssl_compat.h" #include "timegm.h" using namespace nghttp2; namespace shrpx { namespace tls { #if !OPENSSL_1_1_API namespace { const unsigned char *ASN1_STRING_get0_data(ASN1_STRING *x) { return ASN1_STRING_data(x); } } // namespace #endif // !OPENSSL_1_1_API #ifndef OPENSSL_NO_NEXTPROTONEG namespace { int next_proto_cb(SSL *s, const unsigned char **data, unsigned int *len, void *arg) { auto &prefs = get_config()->tls.alpn_prefs; *data = prefs.data(); *len = prefs.size(); return SSL_TLSEXT_ERR_OK; } } // namespace #endif // !OPENSSL_NO_NEXTPROTONEG namespace { int verify_callback(int preverify_ok, X509_STORE_CTX *ctx) { if (!preverify_ok) { int err = X509_STORE_CTX_get_error(ctx); int depth = X509_STORE_CTX_get_error_depth(ctx); if (err == X509_V_ERR_CERT_HAS_EXPIRED && depth == 0 && get_config()->tls.client_verify.tolerate_expired) { LOG(INFO) << "The client certificate has expired, but is accepted by " "configuration"; return 1; } LOG(ERROR) << "client certificate verify error:num=" << err << ":" << X509_verify_cert_error_string(err) << ":depth=" << depth; } return preverify_ok; } } // namespace int set_alpn_prefs(std::vector &out, const std::vector &protos) { size_t len = 0; for (const auto &proto : protos) { if (proto.size() > 255) { LOG(FATAL) << "Too long ALPN identifier: " << proto.size(); return -1; } len += 1 + proto.size(); } if (len > (1 << 16) - 1) { LOG(FATAL) << "Too long ALPN identifier list: " << len; return -1; } out.resize(len); auto ptr = out.data(); for (const auto &proto : protos) { *ptr++ = proto.size(); ptr = std::copy(std::begin(proto), std::end(proto), ptr); } return 0; } namespace { int ssl_pem_passwd_cb(char *buf, int size, int rwflag, void *user_data) { auto config = static_cast(user_data); auto len = static_cast(config->tls.private_key_passwd.size()); if (size < len + 1) { LOG(ERROR) << "ssl_pem_passwd_cb: buf is too small " << size; return 0; } // Copy string including last '\0'. memcpy(buf, config->tls.private_key_passwd.c_str(), len + 1); return len; } } // namespace namespace { // *al is set to SSL_AD_UNRECOGNIZED_NAME by openssl, so we don't have // to set it explicitly. int servername_callback(SSL *ssl, int *al, void *arg) { auto conn = static_cast(SSL_get_app_data(ssl)); auto handler = static_cast(conn->data); auto worker = handler->get_worker(); auto rawhost = SSL_get_servername(ssl, TLSEXT_NAMETYPE_host_name); if (rawhost == nullptr) { return SSL_TLSEXT_ERR_NOACK; } auto len = strlen(rawhost); // NI_MAXHOST includes terminal NULL. if (len == 0 || len + 1 > NI_MAXHOST) { return SSL_TLSEXT_ERR_NOACK; } std::array buf; auto end_buf = std::copy_n(rawhost, len, std::begin(buf)); util::inp_strlower(std::begin(buf), end_buf); auto hostname = StringRef{std::begin(buf), end_buf}; auto cert_tree = worker->get_cert_lookup_tree(); auto idx = cert_tree->lookup(hostname); if (idx == -1) { return SSL_TLSEXT_ERR_NOACK; } handler->set_tls_sni(hostname); auto conn_handler = worker->get_connection_handler(); const auto &ssl_ctx_list = conn_handler->get_indexed_ssl_ctx(idx); assert(!ssl_ctx_list.empty()); #if !defined(OPENSSL_IS_BORINGSSL) && !LIBRESSL_IN_USE && \ OPENSSL_VERSION_NUMBER >= 0x10002000L auto num_sigalgs = SSL_get_sigalgs(ssl, 0, nullptr, nullptr, nullptr, nullptr, nullptr); for (idx = 0; idx < num_sigalgs; ++idx) { int signhash; SSL_get_sigalgs(ssl, idx, nullptr, nullptr, &signhash, nullptr, nullptr); switch (signhash) { case NID_ecdsa_with_SHA256: case NID_ecdsa_with_SHA384: case NID_ecdsa_with_SHA512: break; default: continue; } break; } if (idx == num_sigalgs) { SSL_set_SSL_CTX(ssl, ssl_ctx_list[0]); return SSL_TLSEXT_ERR_OK; } auto num_shared_curves = SSL_get_shared_curve(ssl, -1); for (auto i = 0; i < num_shared_curves; ++i) { auto shared_curve = SSL_get_shared_curve(ssl, i); for (auto ssl_ctx : ssl_ctx_list) { auto cert = SSL_CTX_get0_certificate(ssl_ctx); # if OPENSSL_1_1_API auto pubkey = X509_get0_pubkey(cert); # else // !OPENSSL_1_1_API auto pubkey = X509_get_pubkey(cert); # endif // !OPENSSL_1_1_API if (EVP_PKEY_base_id(pubkey) != EVP_PKEY_EC) { continue; } # if OPENSSL_1_1_API auto eckey = EVP_PKEY_get0_EC_KEY(pubkey); # else // !OPENSSL_1_1_API auto eckey = EVP_PKEY_get1_EC_KEY(pubkey); # endif // !OPENSSL_1_1_API if (eckey == nullptr) { continue; } auto ecgroup = EC_KEY_get0_group(eckey); auto cert_curve = EC_GROUP_get_curve_name(ecgroup); # if !OPENSSL_1_1_API EC_KEY_free(eckey); EVP_PKEY_free(pubkey); # endif // !OPENSSL_1_1_API if (shared_curve == cert_curve) { SSL_set_SSL_CTX(ssl, ssl_ctx); return SSL_TLSEXT_ERR_OK; } } } #endif // !defined(OPENSSL_IS_BORINGSSL) && !LIBRESSL_IN_USE && // OPENSSL_VERSION_NUMBER >= 0x10002000L SSL_set_SSL_CTX(ssl, ssl_ctx_list[0]); return SSL_TLSEXT_ERR_OK; } } // namespace #ifndef OPENSSL_IS_BORINGSSL namespace { std::shared_ptr> get_ocsp_data(TLSContextData *tls_ctx_data) { # ifdef HAVE_ATOMIC_STD_SHARED_PTR return std::atomic_load_explicit(&tls_ctx_data->ocsp_data, std::memory_order_acquire); # else // !HAVE_ATOMIC_STD_SHARED_PTR std::lock_guard g(tls_ctx_data->mu); return tls_ctx_data->ocsp_data; # endif // !HAVE_ATOMIC_STD_SHARED_PTR } } // namespace namespace { int ocsp_resp_cb(SSL *ssl, void *arg) { auto ssl_ctx = SSL_get_SSL_CTX(ssl); auto tls_ctx_data = static_cast(SSL_CTX_get_app_data(ssl_ctx)); auto data = get_ocsp_data(tls_ctx_data); if (!data) { return SSL_TLSEXT_ERR_OK; } auto buf = static_cast(CRYPTO_malloc(data->size(), __FILE__, __LINE__)); if (!buf) { return SSL_TLSEXT_ERR_OK; } std::copy(std::begin(*data), std::end(*data), buf); SSL_set_tlsext_status_ocsp_resp(ssl, buf, data->size()); return SSL_TLSEXT_ERR_OK; } } // namespace #endif // OPENSSL_IS_BORINGSSL constexpr auto MEMCACHED_SESSION_CACHE_KEY_PREFIX = StringRef::from_lit("nghttpx:tls-session-cache:"); namespace { int tls_session_client_new_cb(SSL *ssl, SSL_SESSION *session) { auto conn = static_cast(SSL_get_app_data(ssl)); if (conn->tls.client_session_cache == nullptr) { return 0; } try_cache_tls_session(conn->tls.client_session_cache, session, ev_now(conn->loop)); return 0; } } // namespace namespace { int tls_session_new_cb(SSL *ssl, SSL_SESSION *session) { auto conn = static_cast(SSL_get_app_data(ssl)); auto handler = static_cast(conn->data); auto worker = handler->get_worker(); auto dispatcher = worker->get_session_cache_memcached_dispatcher(); auto &balloc = handler->get_block_allocator(); #ifdef TLS1_3_VERSION if (SSL_version(ssl) == TLS1_3_VERSION) { return 0; } #endif // TLS1_3_VERSION const unsigned char *id; unsigned int idlen; id = SSL_SESSION_get_id(session, &idlen); if (LOG_ENABLED(INFO)) { LOG(INFO) << "Memcached: cache session, id=" << util::format_hex(id, idlen); } auto req = std::make_unique(); req->op = MemcachedOp::ADD; req->key = MEMCACHED_SESSION_CACHE_KEY_PREFIX.str(); req->key += util::format_hex(balloc, StringRef{id, static_cast(idlen)}); auto sessionlen = i2d_SSL_SESSION(session, nullptr); req->value.resize(sessionlen); auto buf = &req->value[0]; i2d_SSL_SESSION(session, &buf); req->expiry = 12_h; req->cb = [](MemcachedRequest *req, MemcachedResult res) { if (LOG_ENABLED(INFO)) { LOG(INFO) << "Memcached: session cache done. key=" << req->key << ", status_code=" << static_cast(res.status_code) << ", value=" << std::string(std::begin(res.value), std::end(res.value)); } if (res.status_code != MemcachedStatusCode::NO_ERROR) { LOG(WARN) << "Memcached: failed to cache session key=" << req->key << ", status_code=" << static_cast(res.status_code) << ", value=" << std::string(std::begin(res.value), std::end(res.value)); } }; assert(!req->canceled); dispatcher->add_request(std::move(req)); return 0; } } // namespace namespace { SSL_SESSION *tls_session_get_cb(SSL *ssl, #if OPENSSL_1_1_API || LIBRESSL_2_7_API const unsigned char *id, #else // !(OPENSSL_1_1_API || LIBRESSL_2_7_API) unsigned char *id, #endif // !(OPENSSL_1_1_API || LIBRESSL_2_7_API) int idlen, int *copy) { auto conn = static_cast(SSL_get_app_data(ssl)); auto handler = static_cast(conn->data); auto worker = handler->get_worker(); auto dispatcher = worker->get_session_cache_memcached_dispatcher(); auto &balloc = handler->get_block_allocator(); if (idlen == 0) { return nullptr; } if (conn->tls.cached_session) { if (LOG_ENABLED(INFO)) { LOG(INFO) << "Memcached: found cached session, id=" << util::format_hex(id, idlen); } // This is required, without this, memory leak occurs. *copy = 0; auto session = conn->tls.cached_session; conn->tls.cached_session = nullptr; return session; } if (LOG_ENABLED(INFO)) { LOG(INFO) << "Memcached: get cached session, id=" << util::format_hex(id, idlen); } auto req = std::make_unique(); req->op = MemcachedOp::GET; req->key = MEMCACHED_SESSION_CACHE_KEY_PREFIX.str(); req->key += util::format_hex(balloc, StringRef{id, static_cast(idlen)}); req->cb = [conn](MemcachedRequest *, MemcachedResult res) { if (LOG_ENABLED(INFO)) { LOG(INFO) << "Memcached: returned status code " << static_cast(res.status_code); } // We might stop reading, so start it again conn->rlimit.startw(); ev_timer_again(conn->loop, &conn->rt); conn->wlimit.startw(); ev_timer_again(conn->loop, &conn->wt); conn->tls.cached_session_lookup_req = nullptr; if (res.status_code != MemcachedStatusCode::NO_ERROR) { conn->tls.handshake_state = TLSHandshakeState::CANCEL_SESSION_CACHE; return; } const uint8_t *p = res.value.data(); auto session = d2i_SSL_SESSION(nullptr, &p, res.value.size()); if (!session) { if (LOG_ENABLED(INFO)) { LOG(INFO) << "cannot materialize session"; } conn->tls.handshake_state = TLSHandshakeState::CANCEL_SESSION_CACHE; return; } conn->tls.cached_session = session; conn->tls.handshake_state = TLSHandshakeState::GOT_SESSION_CACHE; }; conn->tls.handshake_state = TLSHandshakeState::WAIT_FOR_SESSION_CACHE; conn->tls.cached_session_lookup_req = req.get(); dispatcher->add_request(std::move(req)); return nullptr; } } // namespace namespace { int ticket_key_cb(SSL *ssl, unsigned char *key_name, unsigned char *iv, EVP_CIPHER_CTX *ctx, HMAC_CTX *hctx, int enc) { auto conn = static_cast(SSL_get_app_data(ssl)); auto handler = static_cast(conn->data); auto worker = handler->get_worker(); auto ticket_keys = worker->get_ticket_keys(); if (!ticket_keys) { // No ticket keys available. return -1; } auto &keys = ticket_keys->keys; assert(!keys.empty()); if (enc) { if (RAND_bytes(iv, EVP_MAX_IV_LENGTH) == 0) { if (LOG_ENABLED(INFO)) { CLOG(INFO, handler) << "session ticket key: RAND_bytes failed"; } return -1; } auto &key = keys[0]; if (LOG_ENABLED(INFO)) { CLOG(INFO, handler) << "encrypt session ticket key: " << util::format_hex(key.data.name); } std::copy(std::begin(key.data.name), std::end(key.data.name), key_name); EVP_EncryptInit_ex(ctx, get_config()->tls.ticket.cipher, nullptr, key.data.enc_key.data(), iv); HMAC_Init_ex(hctx, key.data.hmac_key.data(), key.hmac_keylen, key.hmac, nullptr); return 1; } size_t i; for (i = 0; i < keys.size(); ++i) { auto &key = keys[i]; if (std::equal(std::begin(key.data.name), std::end(key.data.name), key_name)) { break; } } if (i == keys.size()) { if (LOG_ENABLED(INFO)) { CLOG(INFO, handler) << "session ticket key " << util::format_hex(key_name, 16) << " not found"; } return 0; } if (LOG_ENABLED(INFO)) { CLOG(INFO, handler) << "decrypt session ticket key: " << util::format_hex(key_name, 16); } auto &key = keys[i]; HMAC_Init_ex(hctx, key.data.hmac_key.data(), key.hmac_keylen, key.hmac, nullptr); EVP_DecryptInit_ex(ctx, key.cipher, nullptr, key.data.enc_key.data(), iv); return i == 0 ? 1 : 2; } } // namespace namespace { void info_callback(const SSL *ssl, int where, int ret) { #ifdef TLS1_3_VERSION // TLSv1.3 has no renegotiation. if (SSL_version(ssl) == TLS1_3_VERSION) { return; } #endif // TLS1_3_VERSION // To mitigate possible DOS attack using lots of renegotiations, we // disable renegotiation. Since OpenSSL does not provide an easy way // to disable it, we check that renegotiation is started in this // callback. if (where & SSL_CB_HANDSHAKE_START) { auto conn = static_cast(SSL_get_app_data(ssl)); if (conn && conn->tls.initial_handshake_done) { auto handler = static_cast(conn->data); if (LOG_ENABLED(INFO)) { CLOG(INFO, handler) << "TLS renegotiation started"; } handler->start_immediate_shutdown(); } } } } // namespace #if OPENSSL_VERSION_NUMBER >= 0x10002000L namespace { int alpn_select_proto_cb(SSL *ssl, const unsigned char **out, unsigned char *outlen, const unsigned char *in, unsigned int inlen, void *arg) { // We assume that get_config()->npn_list contains ALPN protocol // identifier sorted by preference order. So we just break when we // found the first overlap. for (const auto &target_proto_id : get_config()->tls.npn_list) { for (auto p = in, end = in + inlen; p < end;) { auto proto_id = p + 1; auto proto_len = *p; if (proto_id + proto_len <= end && util::streq(target_proto_id, StringRef{proto_id, proto_len})) { *out = reinterpret_cast(proto_id); *outlen = proto_len; return SSL_TLSEXT_ERR_OK; } p += 1 + proto_len; } } return SSL_TLSEXT_ERR_NOACK; } } // namespace #endif // OPENSSL_VERSION_NUMBER >= 0x10002000L #if !LIBRESSL_IN_USE && OPENSSL_VERSION_NUMBER >= 0x10002000L # ifndef TLSEXT_TYPE_signed_certificate_timestamp # define TLSEXT_TYPE_signed_certificate_timestamp 18 # endif // !TLSEXT_TYPE_signed_certificate_timestamp namespace { int sct_add_cb(SSL *ssl, unsigned int ext_type, unsigned int context, const unsigned char **out, size_t *outlen, X509 *x, size_t chainidx, int *al, void *add_arg) { assert(ext_type == TLSEXT_TYPE_signed_certificate_timestamp); auto conn = static_cast(SSL_get_app_data(ssl)); if (!conn->tls.sct_requested) { return 0; } if (LOG_ENABLED(INFO)) { LOG(INFO) << "sct_add_cb is called, chainidx=" << chainidx << ", x=" << x << ", context=" << log::hex << context; } // We only have SCTs for leaf certificate. if (chainidx != 0) { return 0; } auto ssl_ctx = SSL_get_SSL_CTX(ssl); auto tls_ctx_data = static_cast(SSL_CTX_get_app_data(ssl_ctx)); *out = tls_ctx_data->sct_data.data(); *outlen = tls_ctx_data->sct_data.size(); return 1; } } // namespace namespace { void sct_free_cb(SSL *ssl, unsigned int ext_type, unsigned int context, const unsigned char *out, void *add_arg) { assert(ext_type == TLSEXT_TYPE_signed_certificate_timestamp); } } // namespace namespace { int sct_parse_cb(SSL *ssl, unsigned int ext_type, unsigned int context, const unsigned char *in, size_t inlen, X509 *x, size_t chainidx, int *al, void *parse_arg) { assert(ext_type == TLSEXT_TYPE_signed_certificate_timestamp); // client SHOULD send 0 length extension_data, but it is still // SHOULD, and not MUST. // For TLSv1.3 Certificate message, sct_add_cb is called even if // client has not sent signed_certificate_timestamp extension in its // ClientHello. Explicitly remember that client has included it // here. auto conn = static_cast(SSL_get_app_data(ssl)); conn->tls.sct_requested = true; return 1; } } // namespace # if !OPENSSL_1_1_1_API namespace { int legacy_sct_add_cb(SSL *ssl, unsigned int ext_type, const unsigned char **out, size_t *outlen, int *al, void *add_arg) { return sct_add_cb(ssl, ext_type, 0, out, outlen, nullptr, 0, al, add_arg); } } // namespace namespace { void legacy_sct_free_cb(SSL *ssl, unsigned int ext_type, const unsigned char *out, void *add_arg) { sct_free_cb(ssl, ext_type, 0, out, add_arg); } } // namespace namespace { int legacy_sct_parse_cb(SSL *ssl, unsigned int ext_type, const unsigned char *in, size_t inlen, int *al, void *parse_arg) { return sct_parse_cb(ssl, ext_type, 0, in, inlen, nullptr, 0, al, parse_arg); } } // namespace # endif // !OPENSSL_1_1_1_API #endif // !LIBRESSL_IN_USE && OPENSSL_VERSION_NUMBER >= 0x10002000L #ifndef OPENSSL_NO_PSK namespace { unsigned int psk_server_cb(SSL *ssl, const char *identity, unsigned char *psk, unsigned int max_psk_len) { auto config = get_config(); auto &tlsconf = config->tls; auto it = tlsconf.psk_secrets.find(StringRef{identity}); if (it == std::end(tlsconf.psk_secrets)) { return 0; } auto &secret = (*it).second; if (secret.size() > max_psk_len) { LOG(ERROR) << "The size of PSK secret is " << secret.size() << ", but the acceptable maximum size is" << max_psk_len; return 0; } std::copy(std::begin(secret), std::end(secret), psk); return static_cast(secret.size()); } } // namespace #endif // !OPENSSL_NO_PSK #ifndef OPENSSL_NO_PSK namespace { unsigned int psk_client_cb(SSL *ssl, const char *hint, char *identity_out, unsigned int max_identity_len, unsigned char *psk, unsigned int max_psk_len) { auto config = get_config(); auto &tlsconf = config->tls; auto &identity = tlsconf.client.psk.identity; auto &secret = tlsconf.client.psk.secret; if (identity.empty()) { return 0; } if (identity.size() + 1 > max_identity_len) { LOG(ERROR) << "The size of PSK identity is " << identity.size() << ", but the acceptable maximum size is " << max_identity_len; return 0; } if (secret.size() > max_psk_len) { LOG(ERROR) << "The size of PSK secret is " << secret.size() << ", but the acceptable maximum size is " << max_psk_len; return 0; } *std::copy(std::begin(identity), std::end(identity), identity_out) = '\0'; std::copy(std::begin(secret), std::end(secret), psk); return static_cast(secret.size()); } } // namespace #endif // !OPENSSL_NO_PSK struct TLSProtocol { StringRef name; long int mask; }; constexpr TLSProtocol TLS_PROTOS[] = { TLSProtocol{StringRef::from_lit("TLSv1.2"), SSL_OP_NO_TLSv1_2}, TLSProtocol{StringRef::from_lit("TLSv1.1"), SSL_OP_NO_TLSv1_1}, TLSProtocol{StringRef::from_lit("TLSv1.0"), SSL_OP_NO_TLSv1}}; long int create_tls_proto_mask(const std::vector &tls_proto_list) { long int res = 0; for (auto &supported : TLS_PROTOS) { auto ok = false; for (auto &name : tls_proto_list) { if (util::strieq(supported.name, name)) { ok = true; break; } } if (!ok) { res |= supported.mask; } } return res; } SSL_CTX *create_ssl_context(const char *private_key_file, const char *cert_file, const std::vector &sct_data #ifdef HAVE_NEVERBLEED , neverbleed_t *nb #endif // HAVE_NEVERBLEED ) { auto ssl_ctx = SSL_CTX_new(SSLv23_server_method()); if (!ssl_ctx) { LOG(FATAL) << ERR_error_string(ERR_get_error(), nullptr); DIE(); } constexpr auto ssl_opts = (SSL_OP_ALL & ~SSL_OP_DONT_INSERT_EMPTY_FRAGMENTS) | SSL_OP_NO_SSLv2 | SSL_OP_NO_SSLv3 | SSL_OP_NO_COMPRESSION | SSL_OP_NO_SESSION_RESUMPTION_ON_RENEGOTIATION | SSL_OP_SINGLE_ECDH_USE | SSL_OP_SINGLE_DH_USE | SSL_OP_CIPHER_SERVER_PREFERENCE #if OPENSSL_1_1_1_API // The reason for disabling built-in anti-replay in OpenSSL is // that it only works if client gets back to the same server. // The freshness check described in // https://tools.ietf.org/html/rfc8446#section-8.3 is still // performed. | SSL_OP_NO_ANTI_REPLAY #endif // OPENSSL_1_1_1_API ; auto config = mod_config(); auto &tlsconf = config->tls; SSL_CTX_set_options(ssl_ctx, ssl_opts | tlsconf.tls_proto_mask); if (nghttp2::tls::ssl_ctx_set_proto_versions( ssl_ctx, tlsconf.min_proto_version, tlsconf.max_proto_version) != 0) { LOG(FATAL) << "Could not set TLS protocol version"; DIE(); } const unsigned char sid_ctx[] = "shrpx"; SSL_CTX_set_session_id_context(ssl_ctx, sid_ctx, sizeof(sid_ctx) - 1); SSL_CTX_set_session_cache_mode(ssl_ctx, SSL_SESS_CACHE_SERVER); if (!tlsconf.session_cache.memcached.host.empty()) { SSL_CTX_sess_set_new_cb(ssl_ctx, tls_session_new_cb); SSL_CTX_sess_set_get_cb(ssl_ctx, tls_session_get_cb); } SSL_CTX_set_timeout(ssl_ctx, tlsconf.session_timeout.count()); if (SSL_CTX_set_cipher_list(ssl_ctx, tlsconf.ciphers.c_str()) == 0) { LOG(FATAL) << "SSL_CTX_set_cipher_list " << tlsconf.ciphers << " failed: " << ERR_error_string(ERR_get_error(), nullptr); DIE(); } #if OPENSSL_1_1_1_API if (SSL_CTX_set_ciphersuites(ssl_ctx, tlsconf.tls13_ciphers.c_str()) == 0) { LOG(FATAL) << "SSL_CTX_set_ciphersuites " << tlsconf.tls13_ciphers << " failed: " << ERR_error_string(ERR_get_error(), nullptr); DIE(); } #endif // OPENSSL_1_1_1_API #ifndef OPENSSL_NO_EC # if !LIBRESSL_LEGACY_API && OPENSSL_VERSION_NUMBER >= 0x10002000L if (SSL_CTX_set1_curves_list(ssl_ctx, tlsconf.ecdh_curves.c_str()) != 1) { LOG(FATAL) << "SSL_CTX_set1_curves_list " << tlsconf.ecdh_curves << " failed"; DIE(); } # if !defined(OPENSSL_IS_BORINGSSL) && !OPENSSL_1_1_API // It looks like we need this function call for OpenSSL 1.0.2. This // function was deprecated in OpenSSL 1.1.0 and BoringSSL. SSL_CTX_set_ecdh_auto(ssl_ctx, 1); # endif // !defined(OPENSSL_IS_BORINGSSL) && !OPENSSL_1_1_API # else // LIBRESSL_LEGACY_API || OPENSSL_VERSION_NUBMER < 0x10002000L // Use P-256, which is sufficiently secure at the time of this // writing. auto ecdh = EC_KEY_new_by_curve_name(NID_X9_62_prime256v1); if (ecdh == nullptr) { LOG(FATAL) << "EC_KEY_new_by_curv_name failed: " << ERR_error_string(ERR_get_error(), nullptr); DIE(); } SSL_CTX_set_tmp_ecdh(ssl_ctx, ecdh); EC_KEY_free(ecdh); # endif // LIBRESSL_LEGACY_API || OPENSSL_VERSION_NUBMER < 0x10002000L #endif // OPENSSL_NO_EC if (!tlsconf.dh_param_file.empty()) { // Read DH parameters from file auto bio = BIO_new_file(tlsconf.dh_param_file.c_str(), "r"); if (bio == nullptr) { LOG(FATAL) << "BIO_new_file() failed: " << ERR_error_string(ERR_get_error(), nullptr); DIE(); } auto dh = PEM_read_bio_DHparams(bio, nullptr, nullptr, nullptr); if (dh == nullptr) { LOG(FATAL) << "PEM_read_bio_DHparams() failed: " << ERR_error_string(ERR_get_error(), nullptr); DIE(); } SSL_CTX_set_tmp_dh(ssl_ctx, dh); DH_free(dh); BIO_free(bio); } SSL_CTX_set_mode(ssl_ctx, SSL_MODE_RELEASE_BUFFERS); if (SSL_CTX_set_default_verify_paths(ssl_ctx) != 1) { LOG(WARN) << "Could not load system trusted ca certificates: " << ERR_error_string(ERR_get_error(), nullptr); } if (!tlsconf.cacert.empty()) { if (SSL_CTX_load_verify_locations(ssl_ctx, tlsconf.cacert.c_str(), nullptr) != 1) { LOG(FATAL) << "Could not load trusted ca certificates from " << tlsconf.cacert << ": " << ERR_error_string(ERR_get_error(), nullptr); DIE(); } } if (!tlsconf.private_key_passwd.empty()) { SSL_CTX_set_default_passwd_cb(ssl_ctx, ssl_pem_passwd_cb); SSL_CTX_set_default_passwd_cb_userdata(ssl_ctx, config); } #ifndef HAVE_NEVERBLEED if (SSL_CTX_use_PrivateKey_file(ssl_ctx, private_key_file, SSL_FILETYPE_PEM) != 1) { LOG(FATAL) << "SSL_CTX_use_PrivateKey_file failed: " << ERR_error_string(ERR_get_error(), nullptr); } #else // HAVE_NEVERBLEED std::array errbuf; if (neverbleed_load_private_key_file(nb, ssl_ctx, private_key_file, errbuf.data()) != 1) { LOG(FATAL) << "neverbleed_load_private_key_file failed: " << errbuf.data(); DIE(); } #endif // HAVE_NEVERBLEED if (SSL_CTX_use_certificate_chain_file(ssl_ctx, cert_file) != 1) { LOG(FATAL) << "SSL_CTX_use_certificate_file failed: " << ERR_error_string(ERR_get_error(), nullptr); DIE(); } if (SSL_CTX_check_private_key(ssl_ctx) != 1) { LOG(FATAL) << "SSL_CTX_check_private_key failed: " << ERR_error_string(ERR_get_error(), nullptr); DIE(); } if (tlsconf.client_verify.enabled) { if (!tlsconf.client_verify.cacert.empty()) { if (SSL_CTX_load_verify_locations( ssl_ctx, tlsconf.client_verify.cacert.c_str(), nullptr) != 1) { LOG(FATAL) << "Could not load trusted ca certificates from " << tlsconf.client_verify.cacert << ": " << ERR_error_string(ERR_get_error(), nullptr); DIE(); } // It is heard that SSL_CTX_load_verify_locations() may leave // error even though it returns success. See // http://forum.nginx.org/read.php?29,242540 ERR_clear_error(); auto list = SSL_load_client_CA_file(tlsconf.client_verify.cacert.c_str()); if (!list) { LOG(FATAL) << "Could not load ca certificates from " << tlsconf.client_verify.cacert << ": " << ERR_error_string(ERR_get_error(), nullptr); DIE(); } SSL_CTX_set_client_CA_list(ssl_ctx, list); } SSL_CTX_set_verify(ssl_ctx, SSL_VERIFY_PEER | SSL_VERIFY_CLIENT_ONCE | SSL_VERIFY_FAIL_IF_NO_PEER_CERT, verify_callback); } SSL_CTX_set_tlsext_servername_callback(ssl_ctx, servername_callback); SSL_CTX_set_tlsext_ticket_key_cb(ssl_ctx, ticket_key_cb); #ifndef OPENSSL_IS_BORINGSSL SSL_CTX_set_tlsext_status_cb(ssl_ctx, ocsp_resp_cb); #endif // OPENSSL_IS_BORINGSSL SSL_CTX_set_info_callback(ssl_ctx, info_callback); #ifdef OPENSSL_IS_BORINGSSL SSL_CTX_set_early_data_enabled(ssl_ctx, 1); #endif // OPENSSL_IS_BORINGSSL // NPN advertisement #ifndef OPENSSL_NO_NEXTPROTONEG SSL_CTX_set_next_protos_advertised_cb(ssl_ctx, next_proto_cb, nullptr); #endif // !OPENSSL_NO_NEXTPROTONEG #if OPENSSL_VERSION_NUMBER >= 0x10002000L // ALPN selection callback SSL_CTX_set_alpn_select_cb(ssl_ctx, alpn_select_proto_cb, nullptr); #endif // OPENSSL_VERSION_NUMBER >= 0x10002000L #if !LIBRESSL_IN_USE && OPENSSL_VERSION_NUMBER >= 0x10002000L && \ !defined(OPENSSL_IS_BORINGSSL) // SSL_extension_supported(TLSEXT_TYPE_signed_certificate_timestamp) // returns 1, which means OpenSSL internally handles it. But // OpenSSL handles signed_certificate_timestamp extension specially, // and it lets custom handler to process the extension. if (!sct_data.empty()) { # if OPENSSL_1_1_1_API // It is not entirely clear to me that SSL_EXT_CLIENT_HELLO is // required here. sct_parse_cb is called without // SSL_EXT_CLIENT_HELLO being set. But the passed context value // is SSL_EXT_CLIENT_HELLO. if (SSL_CTX_add_custom_ext( ssl_ctx, TLSEXT_TYPE_signed_certificate_timestamp, SSL_EXT_CLIENT_HELLO | SSL_EXT_TLS1_2_SERVER_HELLO | SSL_EXT_TLS1_3_CERTIFICATE | SSL_EXT_IGNORE_ON_RESUMPTION, sct_add_cb, sct_free_cb, nullptr, sct_parse_cb, nullptr) != 1) { LOG(FATAL) << "SSL_CTX_add_custom_ext failed: " << ERR_error_string(ERR_get_error(), nullptr); DIE(); } # else // !OPENSSL_1_1_1_API if (SSL_CTX_add_server_custom_ext( ssl_ctx, TLSEXT_TYPE_signed_certificate_timestamp, legacy_sct_add_cb, legacy_sct_free_cb, nullptr, legacy_sct_parse_cb, nullptr) != 1) { LOG(FATAL) << "SSL_CTX_add_server_custom_ext failed: " << ERR_error_string(ERR_get_error(), nullptr); DIE(); } # endif // !OPENSSL_1_1_1_API } #endif // !LIBRESSL_IN_USE && OPENSSL_VERSION_NUMBER >= 0x10002000L && // !defined(OPENSSL_IS_BORINGSSL) #if OPENSSL_1_1_1_API if (SSL_CTX_set_max_early_data(ssl_ctx, tlsconf.max_early_data) != 1) { LOG(FATAL) << "SSL_CTX_set_max_early_data failed: " << ERR_error_string(ERR_get_error(), nullptr); DIE(); } #endif // OPENSSL_1_1_1_API #ifndef OPENSSL_NO_PSK SSL_CTX_set_psk_server_callback(ssl_ctx, psk_server_cb); #endif // !LIBRESSL_NO_PSK auto tls_ctx_data = new TLSContextData(); tls_ctx_data->cert_file = cert_file; tls_ctx_data->sct_data = sct_data; SSL_CTX_set_app_data(ssl_ctx, tls_ctx_data); return ssl_ctx; } namespace { int select_h2_next_proto_cb(SSL *ssl, unsigned char **out, unsigned char *outlen, const unsigned char *in, unsigned int inlen, void *arg) { if (!util::select_h2(const_cast(out), outlen, in, inlen)) { return SSL_TLSEXT_ERR_NOACK; } return SSL_TLSEXT_ERR_OK; } } // namespace namespace { int select_h1_next_proto_cb(SSL *ssl, unsigned char **out, unsigned char *outlen, const unsigned char *in, unsigned int inlen, void *arg) { auto end = in + inlen; for (; in < end;) { if (util::streq(NGHTTP2_H1_1_ALPN, StringRef{in, in + (in[0] + 1)})) { *out = const_cast(in) + 1; *outlen = in[0]; return SSL_TLSEXT_ERR_OK; } in += in[0] + 1; } return SSL_TLSEXT_ERR_NOACK; } } // namespace namespace { int select_next_proto_cb(SSL *ssl, unsigned char **out, unsigned char *outlen, const unsigned char *in, unsigned int inlen, void *arg) { auto conn = static_cast(SSL_get_app_data(ssl)); switch (conn->proto) { case Proto::HTTP1: return select_h1_next_proto_cb(ssl, out, outlen, in, inlen, arg); case Proto::HTTP2: return select_h2_next_proto_cb(ssl, out, outlen, in, inlen, arg); default: return SSL_TLSEXT_ERR_NOACK; } } } // namespace SSL_CTX *create_ssl_client_context( #ifdef HAVE_NEVERBLEED neverbleed_t *nb, #endif // HAVE_NEVERBLEED const StringRef &cacert, const StringRef &cert_file, const StringRef &private_key_file, int (*next_proto_select_cb)(SSL *s, unsigned char **out, unsigned char *outlen, const unsigned char *in, unsigned int inlen, void *arg)) { auto ssl_ctx = SSL_CTX_new(SSLv23_client_method()); if (!ssl_ctx) { LOG(FATAL) << ERR_error_string(ERR_get_error(), nullptr); DIE(); } constexpr auto ssl_opts = (SSL_OP_ALL & ~SSL_OP_DONT_INSERT_EMPTY_FRAGMENTS) | SSL_OP_NO_SSLv2 | SSL_OP_NO_SSLv3 | SSL_OP_NO_COMPRESSION | SSL_OP_NO_SESSION_RESUMPTION_ON_RENEGOTIATION; auto &tlsconf = get_config()->tls; SSL_CTX_set_options(ssl_ctx, ssl_opts | tlsconf.tls_proto_mask); SSL_CTX_set_session_cache_mode(ssl_ctx, SSL_SESS_CACHE_CLIENT | SSL_SESS_CACHE_NO_INTERNAL_STORE); SSL_CTX_sess_set_new_cb(ssl_ctx, tls_session_client_new_cb); if (nghttp2::tls::ssl_ctx_set_proto_versions( ssl_ctx, tlsconf.min_proto_version, tlsconf.max_proto_version) != 0) { LOG(FATAL) << "Could not set TLS protocol version"; DIE(); } if (SSL_CTX_set_cipher_list(ssl_ctx, tlsconf.client.ciphers.c_str()) == 0) { LOG(FATAL) << "SSL_CTX_set_cipher_list " << tlsconf.client.ciphers << " failed: " << ERR_error_string(ERR_get_error(), nullptr); DIE(); } #if OPENSSL_1_1_1_API if (SSL_CTX_set_ciphersuites(ssl_ctx, tlsconf.client.tls13_ciphers.c_str()) == 0) { LOG(FATAL) << "SSL_CTX_set_ciphersuites " << tlsconf.client.tls13_ciphers << " failed: " << ERR_error_string(ERR_get_error(), nullptr); DIE(); } #endif // OPENSSL_1_1_1_API SSL_CTX_set_mode(ssl_ctx, SSL_MODE_RELEASE_BUFFERS); if (SSL_CTX_set_default_verify_paths(ssl_ctx) != 1) { LOG(WARN) << "Could not load system trusted ca certificates: " << ERR_error_string(ERR_get_error(), nullptr); } if (!cacert.empty()) { if (SSL_CTX_load_verify_locations(ssl_ctx, cacert.c_str(), nullptr) != 1) { LOG(FATAL) << "Could not load trusted ca certificates from " << cacert << ": " << ERR_error_string(ERR_get_error(), nullptr); DIE(); } } if (!tlsconf.insecure) { SSL_CTX_set_verify(ssl_ctx, SSL_VERIFY_PEER, nullptr); } if (!cert_file.empty()) { if (SSL_CTX_use_certificate_chain_file(ssl_ctx, cert_file.c_str()) != 1) { LOG(FATAL) << "Could not load client certificate from " << cert_file << ": " << ERR_error_string(ERR_get_error(), nullptr); DIE(); } } if (!private_key_file.empty()) { #ifndef HAVE_NEVERBLEED if (SSL_CTX_use_PrivateKey_file(ssl_ctx, private_key_file.c_str(), SSL_FILETYPE_PEM) != 1) { LOG(FATAL) << "Could not load client private key from " << private_key_file << ": " << ERR_error_string(ERR_get_error(), nullptr); DIE(); } #else // HAVE_NEVERBLEED std::array errbuf; if (neverbleed_load_private_key_file(nb, ssl_ctx, private_key_file.c_str(), errbuf.data()) != 1) { LOG(FATAL) << "neverbleed_load_private_key_file: could not load client " "private key from " << private_key_file << ": " << errbuf.data(); DIE(); } #endif // HAVE_NEVERBLEED } #ifndef OPENSSL_NO_PSK SSL_CTX_set_psk_client_callback(ssl_ctx, psk_client_cb); #endif // !OPENSSL_NO_PSK // NPN selection callback. This is required to set SSL_CTX because // OpenSSL does not offer SSL_set_next_proto_select_cb. #ifndef OPENSSL_NO_NEXTPROTONEG SSL_CTX_set_next_proto_select_cb(ssl_ctx, next_proto_select_cb, nullptr); #endif // !OPENSSL_NO_NEXTPROTONEG return ssl_ctx; } SSL *create_ssl(SSL_CTX *ssl_ctx) { auto ssl = SSL_new(ssl_ctx); if (!ssl) { LOG(ERROR) << "SSL_new() failed: " << ERR_error_string(ERR_get_error(), nullptr); return nullptr; } return ssl; } ClientHandler *accept_connection(Worker *worker, int fd, sockaddr *addr, int addrlen, const UpstreamAddr *faddr) { std::array host; std::array service; int rv; if (addr->sa_family == AF_UNIX) { std::copy_n("localhost", sizeof("localhost"), std::begin(host)); service[0] = '\0'; } else { rv = getnameinfo(addr, addrlen, host.data(), host.size(), service.data(), service.size(), NI_NUMERICHOST | NI_NUMERICSERV); if (rv != 0) { LOG(ERROR) << "getnameinfo() failed: " << gai_strerror(rv); return nullptr; } rv = util::make_socket_nodelay(fd); if (rv == -1) { LOG(WARN) << "Setting option TCP_NODELAY failed: errno=" << errno; } } SSL *ssl = nullptr; if (faddr->tls) { auto ssl_ctx = worker->get_sv_ssl_ctx(); assert(ssl_ctx); ssl = create_ssl(ssl_ctx); if (!ssl) { return nullptr; } // Disable TLS session ticket if we don't have working ticket // keys. if (!worker->get_ticket_keys()) { SSL_set_options(ssl, SSL_OP_NO_TICKET); } } return new ClientHandler(worker, fd, ssl, StringRef{host.data()}, StringRef{service.data()}, addr->sa_family, faddr); } bool tls_hostname_match(const StringRef &pattern, const StringRef &hostname) { auto ptWildcard = std::find(std::begin(pattern), std::end(pattern), '*'); if (ptWildcard == std::end(pattern)) { return util::strieq(pattern, hostname); } auto ptLeftLabelEnd = std::find(std::begin(pattern), std::end(pattern), '.'); auto wildcardEnabled = true; // Do case-insensitive match. At least 2 dots are required to enable // wildcard match. Also wildcard must be in the left-most label. // Don't attempt to match a presented identifier where the wildcard // character is embedded within an A-label. if (ptLeftLabelEnd == std::end(pattern) || std::find(ptLeftLabelEnd + 1, std::end(pattern), '.') == std::end(pattern) || ptLeftLabelEnd < ptWildcard || util::istarts_with_l(pattern, "xn--")) { wildcardEnabled = false; } if (!wildcardEnabled) { return util::strieq(pattern, hostname); } auto hnLeftLabelEnd = std::find(std::begin(hostname), std::end(hostname), '.'); if (hnLeftLabelEnd == std::end(hostname) || !util::strieq(StringRef{ptLeftLabelEnd, std::end(pattern)}, StringRef{hnLeftLabelEnd, std::end(hostname)})) { return false; } // Perform wildcard match. Here '*' must match at least one // character. if (hnLeftLabelEnd - std::begin(hostname) < ptLeftLabelEnd - std::begin(pattern)) { return false; } return util::istarts_with(StringRef{std::begin(hostname), hnLeftLabelEnd}, StringRef{std::begin(pattern), ptWildcard}) && util::iends_with(StringRef{std::begin(hostname), hnLeftLabelEnd}, StringRef{ptWildcard + 1, ptLeftLabelEnd}); } namespace { // if return value is not empty, StringRef.c_str() must be freed using // OPENSSL_free(). StringRef get_common_name(X509 *cert) { auto subjectname = X509_get_subject_name(cert); if (!subjectname) { LOG(WARN) << "Could not get X509 name object from the certificate."; return StringRef{}; } int lastpos = -1; for (;;) { lastpos = X509_NAME_get_index_by_NID(subjectname, NID_commonName, lastpos); if (lastpos == -1) { break; } auto entry = X509_NAME_get_entry(subjectname, lastpos); unsigned char *p; auto plen = ASN1_STRING_to_UTF8(&p, X509_NAME_ENTRY_get_data(entry)); if (plen < 0) { continue; } if (std::find(p, p + plen, '\0') != p + plen) { // Embedded NULL is not permitted. continue; } if (plen == 0) { LOG(WARN) << "X509 name is empty"; OPENSSL_free(p); continue; } return StringRef{p, static_cast(plen)}; } return StringRef{}; } } // namespace namespace { int verify_numeric_hostname(X509 *cert, const StringRef &hostname, const Address *addr) { const void *saddr; switch (addr->su.storage.ss_family) { case AF_INET: saddr = &addr->su.in.sin_addr; break; case AF_INET6: saddr = &addr->su.in6.sin6_addr; break; default: return -1; } auto altnames = static_cast( X509_get_ext_d2i(cert, NID_subject_alt_name, nullptr, nullptr)); if (altnames) { auto altnames_deleter = defer(GENERAL_NAMES_free, altnames); size_t n = sk_GENERAL_NAME_num(altnames); auto ip_found = false; for (size_t i = 0; i < n; ++i) { auto altname = sk_GENERAL_NAME_value(altnames, i); if (altname->type != GEN_IPADD) { continue; } auto ip_addr = altname->d.iPAddress->data; if (!ip_addr) { continue; } size_t ip_addrlen = altname->d.iPAddress->length; ip_found = true; if (addr->len == ip_addrlen && memcmp(saddr, ip_addr, ip_addrlen) == 0) { return 0; } } if (ip_found) { return -1; } } auto cn = get_common_name(cert); if (cn.empty()) { return -1; } // cn is not NULL terminated auto rv = util::streq(hostname, cn); OPENSSL_free(const_cast(cn.c_str())); if (rv) { return 0; } return -1; } } // namespace namespace { int verify_hostname(X509 *cert, const StringRef &hostname, const Address *addr) { if (util::numeric_host(hostname.c_str())) { return verify_numeric_hostname(cert, hostname, addr); } auto altnames = static_cast( X509_get_ext_d2i(cert, NID_subject_alt_name, nullptr, nullptr)); if (altnames) { auto dns_found = false; auto altnames_deleter = defer(GENERAL_NAMES_free, altnames); size_t n = sk_GENERAL_NAME_num(altnames); for (size_t i = 0; i < n; ++i) { auto altname = sk_GENERAL_NAME_value(altnames, i); if (altname->type != GEN_DNS) { continue; } auto name = ASN1_STRING_get0_data(altname->d.ia5); if (!name) { continue; } auto len = ASN1_STRING_length(altname->d.ia5); if (len == 0) { continue; } if (std::find(name, name + len, '\0') != name + len) { // Embedded NULL is not permitted. continue; } if (name[len - 1] == '.') { --len; if (len == 0) { continue; } } dns_found = true; if (tls_hostname_match(StringRef{name, static_cast(len)}, hostname)) { return 0; } } // RFC 6125, section 6.4.4. says that client MUST not seek a match // for CN if a dns dNSName is found. if (dns_found) { return -1; } } auto cn = get_common_name(cert); if (cn.empty()) { return -1; } if (cn[cn.size() - 1] == '.') { if (cn.size() == 1) { OPENSSL_free(const_cast(cn.c_str())); return -1; } cn = StringRef{cn.c_str(), cn.size() - 1}; } auto rv = tls_hostname_match(cn, hostname); OPENSSL_free(const_cast(cn.c_str())); return rv ? 0 : -1; } } // namespace int check_cert(SSL *ssl, const Address *addr, const StringRef &host) { auto cert = SSL_get_peer_certificate(ssl); if (!cert) { // By the protocol definition, TLS server always sends certificate // if it has. If certificate cannot be retrieved, authentication // without certificate is used, such as PSK. return 0; } auto cert_deleter = defer(X509_free, cert); if (verify_hostname(cert, host, addr) != 0) { LOG(ERROR) << "Certificate verification failed: hostname does not match"; return -1; } return 0; } int check_cert(SSL *ssl, const DownstreamAddr *addr, const Address *raddr) { auto hostname = addr->sni.empty() ? StringRef{addr->host} : StringRef{addr->sni}; return check_cert(ssl, raddr, hostname); } CertLookupTree::CertLookupTree() {} ssize_t CertLookupTree::add_cert(const StringRef &hostname, size_t idx) { std::array buf; // NI_MAXHOST includes terminal NULL byte if (hostname.empty() || hostname.size() + 1 > buf.size()) { return -1; } auto wildcard_it = std::find(std::begin(hostname), std::end(hostname), '*'); if (wildcard_it != std::end(hostname) && wildcard_it + 1 != std::end(hostname)) { auto wildcard_prefix = StringRef{std::begin(hostname), wildcard_it}; auto wildcard_suffix = StringRef{wildcard_it + 1, std::end(hostname)}; auto rev_suffix = StringRef{std::begin(buf), std::reverse_copy(std::begin(wildcard_suffix), std::end(wildcard_suffix), std::begin(buf))}; WildcardPattern *wpat; if (wildcard_patterns_.size() != rev_wildcard_router_.add_route(rev_suffix, wildcard_patterns_.size())) { auto wcidx = rev_wildcard_router_.match(rev_suffix); assert(wcidx != -1); wpat = &wildcard_patterns_[wcidx]; } else { wildcard_patterns_.emplace_back(); wpat = &wildcard_patterns_.back(); } auto rev_prefix = StringRef{std::begin(buf), std::reverse_copy(std::begin(wildcard_prefix), std::end(wildcard_prefix), std::begin(buf))}; for (auto &p : wpat->rev_prefix) { if (p.prefix == rev_prefix) { return p.idx; } } wpat->rev_prefix.emplace_back(rev_prefix, idx); return idx; } return router_.add_route(hostname, idx); } ssize_t CertLookupTree::lookup(const StringRef &hostname) { std::array buf; // NI_MAXHOST includes terminal NULL byte if (hostname.empty() || hostname.size() + 1 > buf.size()) { return -1; } // Always prefer exact match auto idx = router_.match(hostname); if (idx != -1) { return idx; } if (wildcard_patterns_.empty()) { return -1; } ssize_t best_idx = -1; size_t best_prefixlen = 0; const RNode *last_node = nullptr; auto rev_host = StringRef{ std::begin(buf), std::reverse_copy(std::begin(hostname), std::end(hostname), std::begin(buf))}; for (;;) { size_t nread = 0; auto wcidx = rev_wildcard_router_.match_prefix(&nread, &last_node, rev_host); if (wcidx == -1) { return best_idx; } // '*' must match at least one byte if (nread == rev_host.size()) { return best_idx; } rev_host = StringRef{std::begin(rev_host) + nread, std::end(rev_host)}; auto rev_prefix = StringRef{std::begin(rev_host) + 1, std::end(rev_host)}; auto &wpat = wildcard_patterns_[wcidx]; for (auto &wprefix : wpat.rev_prefix) { if (!util::ends_with(rev_prefix, wprefix.prefix)) { continue; } auto prefixlen = wprefix.prefix.size() + (reinterpret_cast(&rev_host[0]) - &buf[0]); // Breaking a tie with longer suffix if (prefixlen < best_prefixlen) { continue; } best_idx = wprefix.idx; best_prefixlen = prefixlen; } } } void CertLookupTree::dump() const { std::cerr << "exact:" << std::endl; router_.dump(); std::cerr << "wildcard suffix (reversed):" << std::endl; rev_wildcard_router_.dump(); } int cert_lookup_tree_add_ssl_ctx( CertLookupTree *lt, std::vector> &indexed_ssl_ctx, SSL_CTX *ssl_ctx) { std::array buf; #if LIBRESSL_2_7_API || \ (!LIBRESSL_IN_USE && OPENSSL_VERSION_NUMBER >= 0x10002000L) auto cert = SSL_CTX_get0_certificate(ssl_ctx); #else // !LIBRESSL_2_7_API && OPENSSL_VERSION_NUMBER < 0x10002000L auto tls_ctx_data = static_cast(SSL_CTX_get_app_data(ssl_ctx)); auto cert = load_certificate(tls_ctx_data->cert_file); auto cert_deleter = defer(X509_free, cert); #endif // !LIBRESSL_2_7_API && OPENSSL_VERSION_NUMBER < 0x10002000L auto altnames = static_cast( X509_get_ext_d2i(cert, NID_subject_alt_name, nullptr, nullptr)); if (altnames) { auto altnames_deleter = defer(GENERAL_NAMES_free, altnames); size_t n = sk_GENERAL_NAME_num(altnames); auto dns_found = false; for (size_t i = 0; i < n; ++i) { auto altname = sk_GENERAL_NAME_value(altnames, i); if (altname->type != GEN_DNS) { continue; } auto name = ASN1_STRING_get0_data(altname->d.ia5); if (!name) { continue; } auto len = ASN1_STRING_length(altname->d.ia5); if (len == 0) { continue; } if (std::find(name, name + len, '\0') != name + len) { // Embedded NULL is not permitted. continue; } if (name[len - 1] == '.') { --len; if (len == 0) { continue; } } dns_found = true; if (static_cast(len) + 1 > buf.size()) { continue; } auto end_buf = std::copy_n(name, len, std::begin(buf)); util::inp_strlower(std::begin(buf), end_buf); auto idx = lt->add_cert(StringRef{std::begin(buf), end_buf}, indexed_ssl_ctx.size()); if (idx == -1) { continue; } if (static_cast(idx) < indexed_ssl_ctx.size()) { indexed_ssl_ctx[idx].push_back(ssl_ctx); } else { assert(static_cast(idx) == indexed_ssl_ctx.size()); indexed_ssl_ctx.emplace_back(std::vector{ssl_ctx}); } } // Don't bother CN if we have dNSName. if (dns_found) { return 0; } } auto cn = get_common_name(cert); if (cn.empty()) { return 0; } if (cn[cn.size() - 1] == '.') { if (cn.size() == 1) { OPENSSL_free(const_cast(cn.c_str())); return 0; } cn = StringRef{cn.c_str(), cn.size() - 1}; } auto end_buf = std::copy(std::begin(cn), std::end(cn), std::begin(buf)); OPENSSL_free(const_cast(cn.c_str())); util::inp_strlower(std::begin(buf), end_buf); auto idx = lt->add_cert(StringRef{std::begin(buf), end_buf}, indexed_ssl_ctx.size()); if (idx == -1) { return 0; } if (static_cast(idx) < indexed_ssl_ctx.size()) { indexed_ssl_ctx[idx].push_back(ssl_ctx); } else { assert(static_cast(idx) == indexed_ssl_ctx.size()); indexed_ssl_ctx.emplace_back(std::vector{ssl_ctx}); } return 0; } bool in_proto_list(const std::vector &protos, const StringRef &needle) { for (auto &proto : protos) { if (util::streq(proto, needle)) { return true; } } return false; } bool upstream_tls_enabled(const ConnectionConfig &connconf) { const auto &faddrs = connconf.listener.addrs; return std::any_of(std::begin(faddrs), std::end(faddrs), [](const UpstreamAddr &faddr) { return faddr.tls; }); } X509 *load_certificate(const char *filename) { auto bio = BIO_new(BIO_s_file()); if (!bio) { fprintf(stderr, "BIO_new() failed\n"); return nullptr; } auto bio_deleter = defer(BIO_vfree, bio); if (!BIO_read_filename(bio, filename)) { fprintf(stderr, "Could not read certificate file '%s'\n", filename); return nullptr; } auto cert = PEM_read_bio_X509(bio, nullptr, nullptr, nullptr); if (!cert) { fprintf(stderr, "Could not read X509 structure from file '%s'\n", filename); return nullptr; } return cert; } SSL_CTX * setup_server_ssl_context(std::vector &all_ssl_ctx, std::vector> &indexed_ssl_ctx, CertLookupTree *cert_tree #ifdef HAVE_NEVERBLEED , neverbleed_t *nb #endif // HAVE_NEVERBLEED ) { auto config = get_config(); if (!upstream_tls_enabled(config->conn)) { return nullptr; } auto &tlsconf = config->tls; auto ssl_ctx = create_ssl_context(tlsconf.private_key_file.c_str(), tlsconf.cert_file.c_str(), tlsconf.sct_data #ifdef HAVE_NEVERBLEED , nb #endif // HAVE_NEVERBLEED ); all_ssl_ctx.push_back(ssl_ctx); assert(cert_tree); if (cert_lookup_tree_add_ssl_ctx(cert_tree, indexed_ssl_ctx, ssl_ctx) == -1) { LOG(FATAL) << "Failed to add default certificate."; DIE(); } for (auto &c : tlsconf.subcerts) { auto ssl_ctx = create_ssl_context(c.private_key_file.c_str(), c.cert_file.c_str(), c.sct_data #ifdef HAVE_NEVERBLEED , nb #endif // HAVE_NEVERBLEED ); all_ssl_ctx.push_back(ssl_ctx); if (cert_lookup_tree_add_ssl_ctx(cert_tree, indexed_ssl_ctx, ssl_ctx) == -1) { LOG(FATAL) << "Failed to add sub certificate."; DIE(); } } return ssl_ctx; } SSL_CTX *setup_downstream_client_ssl_context( #ifdef HAVE_NEVERBLEED neverbleed_t *nb #endif // HAVE_NEVERBLEED ) { auto &tlsconf = get_config()->tls; return create_ssl_client_context( #ifdef HAVE_NEVERBLEED nb, #endif // HAVE_NEVERBLEED tlsconf.cacert, tlsconf.client.cert_file, tlsconf.client.private_key_file, select_next_proto_cb); } void setup_downstream_http2_alpn(SSL *ssl) { #if OPENSSL_VERSION_NUMBER >= 0x10002000L // ALPN advertisement auto alpn = util::get_default_alpn(); SSL_set_alpn_protos(ssl, alpn.data(), alpn.size()); #endif // OPENSSL_VERSION_NUMBER >= 0x10002000L } void setup_downstream_http1_alpn(SSL *ssl) { #if OPENSSL_VERSION_NUMBER >= 0x10002000L // ALPN advertisement SSL_set_alpn_protos(ssl, NGHTTP2_H1_1_ALPN.byte(), NGHTTP2_H1_1_ALPN.size()); #endif // OPENSSL_VERSION_NUMBER >= 0x10002000L } std::unique_ptr create_cert_lookup_tree() { auto config = get_config(); if (!upstream_tls_enabled(config->conn)) { return nullptr; } return std::make_unique(); } namespace { std::vector serialize_ssl_session(SSL_SESSION *session) { auto len = i2d_SSL_SESSION(session, nullptr); auto buf = std::vector(len); auto p = buf.data(); i2d_SSL_SESSION(session, &p); return buf; } } // namespace void try_cache_tls_session(TLSSessionCache *cache, SSL_SESSION *session, ev_tstamp t) { if (cache->last_updated + 1_min > t) { if (LOG_ENABLED(INFO)) { LOG(INFO) << "Client session cache entry is still fresh."; } return; } if (LOG_ENABLED(INFO)) { LOG(INFO) << "Update client cache entry " << "timestamp = " << t; } cache->session_data = serialize_ssl_session(session); cache->last_updated = t; } SSL_SESSION *reuse_tls_session(const TLSSessionCache &cache) { if (cache.session_data.empty()) { return nullptr; } auto p = cache.session_data.data(); return d2i_SSL_SESSION(nullptr, &p, cache.session_data.size()); } int proto_version_from_string(const StringRef &v) { #ifdef TLS1_3_VERSION if (util::strieq_l("TLSv1.3", v)) { return TLS1_3_VERSION; } #endif // TLS1_3_VERSION if (util::strieq_l("TLSv1.2", v)) { return TLS1_2_VERSION; } if (util::strieq_l("TLSv1.1", v)) { return TLS1_1_VERSION; } if (util::strieq_l("TLSv1.0", v)) { return TLS1_VERSION; } return -1; } int verify_ocsp_response(SSL_CTX *ssl_ctx, const uint8_t *ocsp_resp, size_t ocsp_resplen) { #if !defined(OPENSSL_NO_OCSP) && !LIBRESSL_IN_USE && \ OPENSSL_VERSION_NUMBER >= 0x10002000L int rv; STACK_OF(X509) * chain_certs; SSL_CTX_get0_chain_certs(ssl_ctx, &chain_certs); auto resp = d2i_OCSP_RESPONSE(nullptr, &ocsp_resp, ocsp_resplen); if (resp == nullptr) { LOG(ERROR) << "d2i_OCSP_RESPONSE failed"; return -1; } auto resp_deleter = defer(OCSP_RESPONSE_free, resp); if (OCSP_response_status(resp) != OCSP_RESPONSE_STATUS_SUCCESSFUL) { LOG(ERROR) << "OCSP response status is not successful"; return -1; } ERR_clear_error(); auto bs = OCSP_response_get1_basic(resp); if (bs == nullptr) { LOG(ERROR) << "OCSP_response_get1_basic failed: " << ERR_error_string(ERR_get_error(), nullptr); return -1; } auto bs_deleter = defer(OCSP_BASICRESP_free, bs); auto store = SSL_CTX_get_cert_store(ssl_ctx); ERR_clear_error(); rv = OCSP_basic_verify(bs, chain_certs, store, 0); if (rv != 1) { LOG(ERROR) << "OCSP_basic_verify failed: " << ERR_error_string(ERR_get_error(), nullptr); return -1; } auto sresp = OCSP_resp_get0(bs, 0); if (sresp == nullptr) { LOG(ERROR) << "OCSP response verification failed: no single response"; return -1; } # if OPENSSL_1_1_API auto certid = OCSP_SINGLERESP_get0_id(sresp); # else // !OPENSSL_1_1_API auto certid = sresp->certId; # endif // !OPENSSL_1_1_API assert(certid != nullptr); ASN1_INTEGER *serial; rv = OCSP_id_get0_info(nullptr, nullptr, nullptr, &serial, const_cast(certid)); if (rv != 1) { LOG(ERROR) << "OCSP_id_get0_info failed"; return -1; } if (serial == nullptr) { LOG(ERROR) << "OCSP response does not contain serial number"; return -1; } auto cert = SSL_CTX_get0_certificate(ssl_ctx); auto cert_serial = X509_get_serialNumber(cert); if (ASN1_INTEGER_cmp(cert_serial, serial)) { LOG(ERROR) << "OCSP verification serial numbers do not match"; return -1; } if (LOG_ENABLED(INFO)) { LOG(INFO) << "OCSP verification succeeded"; } #endif // !defined(OPENSSL_NO_OCSP) && !LIBRESSL_IN_USE // && OPENSSL_VERSION_NUMBER >= 0x10002000L return 0; } ssize_t get_x509_fingerprint(uint8_t *dst, size_t dstlen, const X509 *x, const EVP_MD *md) { unsigned int len = dstlen; if (X509_digest(x, md, dst, &len) != 1) { return -1; } return len; } namespace { StringRef get_x509_name(BlockAllocator &balloc, X509_NAME *nm) { auto b = BIO_new(BIO_s_mem()); if (!b) { return StringRef{}; } auto b_deleter = defer(BIO_free, b); // Not documented, but it seems that X509_NAME_print_ex returns the // number of bytes written into b. auto slen = X509_NAME_print_ex(b, nm, 0, XN_FLAG_RFC2253); if (slen <= 0) { return StringRef{}; } auto iov = make_byte_ref(balloc, slen + 1); BIO_read(b, iov.base, slen); iov.base[slen] = '\0'; return StringRef{iov.base, static_cast(slen)}; } } // namespace StringRef get_x509_subject_name(BlockAllocator &balloc, X509 *x) { return get_x509_name(balloc, X509_get_subject_name(x)); } StringRef get_x509_issuer_name(BlockAllocator &balloc, X509 *x) { return get_x509_name(balloc, X509_get_issuer_name(x)); } #ifdef WORDS_BIGENDIAN # define bswap64(N) (N) #else /* !WORDS_BIGENDIAN */ # define bswap64(N) \ ((uint64_t)(ntohl((uint32_t)(N))) << 32 | ntohl((uint32_t)((N) >> 32))) #endif /* !WORDS_BIGENDIAN */ StringRef get_x509_serial(BlockAllocator &balloc, X509 *x) { auto sn = X509_get_serialNumber(x); auto bn = BN_new(); auto bn_d = defer(BN_free, bn); if (!ASN1_INTEGER_to_BN(sn, bn) || BN_num_bytes(bn) > 20) { return StringRef{}; } std::array b; auto n = BN_bn2bin(bn, b.data()); assert(n <= 20); return util::format_hex(balloc, StringRef{b.data(), static_cast(n)}); } namespace { // Performs conversion from |at| to time_t. The result is stored in // |t|. This function returns 0 if it succeeds, or -1. int time_t_from_asn1_time(time_t &t, const ASN1_TIME *at) { int rv; #if OPENSSL_1_1_1_API struct tm tm; rv = ASN1_TIME_to_tm(at, &tm); if (rv != 1) { return -1; } t = nghttp2_timegm(&tm); #else // !OPENSSL_1_1_1_API auto b = BIO_new(BIO_s_mem()); if (!b) { return -1; } auto bio_deleter = defer(BIO_free, b); rv = ASN1_TIME_print(b, at); if (rv != 1) { return -1; } # if defined(OPENSSL_IS_BORINGSSL) char *s; # else unsigned char *s; # endif auto slen = BIO_get_mem_data(b, &s); auto tt = util::parse_openssl_asn1_time_print( StringRef{s, static_cast(slen)}); if (tt == 0) { return -1; } t = tt; #endif // !OPENSSL_1_1_1_API return 0; } } // namespace int get_x509_not_before(time_t &t, X509 *x) { #if OPENSSL_1_1_API auto at = X509_get0_notBefore(x); #else // !OPENSSL_1_1_API auto at = X509_get_notBefore(x); #endif // !OPENSSL_1_1_API if (!at) { return -1; } return time_t_from_asn1_time(t, at); } int get_x509_not_after(time_t &t, X509 *x) { #if OPENSSL_1_1_API auto at = X509_get0_notAfter(x); #else // !OPENSSL_1_1_API auto at = X509_get_notAfter(x); #endif // !OPENSSL_1_1_API if (!at) { return -1; } return time_t_from_asn1_time(t, at); } } // namespace tls } // namespace shrpx