nghttp2/src/shrpx_client_handler.cc

1345 lines
35 KiB
C++

/*
* nghttp2 - HTTP/2 C Library
*
* Copyright (c) 2012 Tatsuhiro Tsujikawa
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
* LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
* OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
* WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include "shrpx_client_handler.h"
#ifdef HAVE_UNISTD_H
#include <unistd.h>
#endif // HAVE_UNISTD_H
#ifdef HAVE_SYS_SOCKET_H
#include <sys/socket.h>
#endif // HAVE_SYS_SOCKET_H
#ifdef HAVE_NETDB_H
#include <netdb.h>
#endif // HAVE_NETDB_H
#include <cerrno>
#include "shrpx_upstream.h"
#include "shrpx_http2_upstream.h"
#include "shrpx_https_upstream.h"
#include "shrpx_config.h"
#include "shrpx_http_downstream_connection.h"
#include "shrpx_http2_downstream_connection.h"
#include "shrpx_ssl.h"
#include "shrpx_worker.h"
#include "shrpx_downstream_connection_pool.h"
#include "shrpx_downstream.h"
#include "shrpx_http2_session.h"
#include "shrpx_connect_blocker.h"
#ifdef HAVE_SPDYLAY
#include "shrpx_spdy_upstream.h"
#endif // HAVE_SPDYLAY
#include "util.h"
#include "template.h"
#include "ssl.h"
using namespace nghttp2;
namespace shrpx {
namespace {
void timeoutcb(struct ev_loop *loop, ev_timer *w, int revents) {
auto conn = static_cast<Connection *>(w->data);
auto handler = static_cast<ClientHandler *>(conn->data);
if (LOG_ENABLED(INFO)) {
CLOG(INFO, handler) << "Time out";
}
delete handler;
}
} // namespace
namespace {
void shutdowncb(struct ev_loop *loop, ev_timer *w, int revents) {
auto handler = static_cast<ClientHandler *>(w->data);
if (LOG_ENABLED(INFO)) {
CLOG(INFO, handler) << "Close connection due to TLS renegotiation";
}
delete handler;
}
} // namespace
namespace {
void readcb(struct ev_loop *loop, ev_io *w, int revents) {
auto conn = static_cast<Connection *>(w->data);
auto handler = static_cast<ClientHandler *>(conn->data);
if (handler->do_read() != 0) {
delete handler;
return;
}
if (handler->do_write() != 0) {
delete handler;
return;
}
}
} // namespace
namespace {
void writecb(struct ev_loop *loop, ev_io *w, int revents) {
auto conn = static_cast<Connection *>(w->data);
auto handler = static_cast<ClientHandler *>(conn->data);
if (handler->do_write() != 0) {
delete handler;
return;
}
}
} // namespace
int ClientHandler::noop() { return 0; }
int ClientHandler::read_clear() {
for (;;) {
if (rb_.rleft() && on_read() != 0) {
return -1;
}
if (rb_.rleft() == 0) {
rb_.reset();
} else if (rb_.wleft() == 0) {
conn_.rlimit.stopw();
if (reset_conn_rtimer_required_) {
reset_conn_rtimer_required_ = false;
ev_timer_again(conn_.loop, &conn_.rt);
}
return 0;
}
if (!ev_is_active(&conn_.rev)) {
return 0;
}
auto nread = conn_.read_clear(rb_.last, rb_.wleft());
if (nread == 0) {
if (reset_conn_rtimer_required_) {
reset_conn_rtimer_required_ = false;
ev_timer_again(conn_.loop, &conn_.rt);
}
return 0;
}
if (nread < 0) {
return -1;
}
rb_.write(nread);
}
}
int ClientHandler::write_clear() {
std::array<iovec, 2> iov;
ev_timer_again(conn_.loop, &conn_.rt);
for (;;) {
if (on_write() != 0) {
return -1;
}
auto iovcnt = upstream_->response_riovec(iov.data(), iov.size());
if (iovcnt == 0) {
break;
}
auto nwrite = conn_.writev_clear(iov.data(), iovcnt);
if (nwrite < 0) {
return -1;
}
if (nwrite == 0) {
return 0;
}
upstream_->response_drain(nwrite);
}
conn_.wlimit.stopw();
ev_timer_stop(conn_.loop, &conn_.wt);
return 0;
}
int ClientHandler::tls_handshake() {
ev_timer_again(conn_.loop, &conn_.rt);
ERR_clear_error();
auto rv = conn_.tls_handshake();
if (rv == SHRPX_ERR_INPROGRESS) {
return 0;
}
if (rv < 0) {
return -1;
}
if (LOG_ENABLED(INFO)) {
CLOG(INFO, this) << "SSL/TLS handshake completed";
}
if (validate_next_proto() != 0) {
return -1;
}
read_ = &ClientHandler::read_tls;
write_ = &ClientHandler::write_tls;
return 0;
}
int ClientHandler::read_tls() {
ERR_clear_error();
for (;;) {
// we should process buffered data first before we read EOF.
if (rb_.rleft() && on_read() != 0) {
return -1;
}
if (rb_.rleft() == 0) {
rb_.reset();
} else if (rb_.wleft() == 0) {
conn_.rlimit.stopw();
if (reset_conn_rtimer_required_) {
reset_conn_rtimer_required_ = false;
ev_timer_again(conn_.loop, &conn_.rt);
}
return 0;
}
if (!ev_is_active(&conn_.rev)) {
return 0;
}
auto nread = conn_.read_tls(rb_.last, rb_.wleft());
if (nread == 0) {
if (reset_conn_rtimer_required_) {
reset_conn_rtimer_required_ = false;
ev_timer_again(conn_.loop, &conn_.rt);
}
return 0;
}
if (nread < 0) {
return -1;
}
rb_.write(nread);
}
}
int ClientHandler::write_tls() {
struct iovec iov;
ev_timer_again(conn_.loop, &conn_.rt);
ERR_clear_error();
for (;;) {
if (on_write() != 0) {
return -1;
}
auto iovcnt = upstream_->response_riovec(&iov, 1);
if (iovcnt == 0) {
conn_.start_tls_write_idle();
break;
}
auto nwrite = conn_.write_tls(iov.iov_base, iov.iov_len);
if (nwrite < 0) {
return -1;
}
if (nwrite == 0) {
return 0;
}
upstream_->response_drain(nwrite);
}
conn_.wlimit.stopw();
ev_timer_stop(conn_.loop, &conn_.wt);
return 0;
}
int ClientHandler::upstream_noop() { return 0; }
int ClientHandler::upstream_read() {
assert(upstream_);
if (upstream_->on_read() != 0) {
return -1;
}
return 0;
}
int ClientHandler::upstream_write() {
assert(upstream_);
if (upstream_->on_write() != 0) {
return -1;
}
if (get_should_close_after_write() && upstream_->response_empty()) {
return -1;
}
return 0;
}
int ClientHandler::upstream_http2_connhd_read() {
auto nread = std::min(left_connhd_len_, rb_.rleft());
if (memcmp(NGHTTP2_CLIENT_MAGIC + NGHTTP2_CLIENT_MAGIC_LEN - left_connhd_len_,
rb_.pos, nread) != 0) {
// There is no downgrade path here. Just drop the connection.
if (LOG_ENABLED(INFO)) {
CLOG(INFO, this) << "invalid client connection header";
}
return -1;
}
left_connhd_len_ -= nread;
rb_.drain(nread);
conn_.rlimit.startw();
if (left_connhd_len_ == 0) {
on_read_ = &ClientHandler::upstream_read;
// Run on_read to process data left in buffer since they are not
// notified further
if (on_read() != 0) {
return -1;
}
return 0;
}
return 0;
}
int ClientHandler::upstream_http1_connhd_read() {
auto nread = std::min(left_connhd_len_, rb_.rleft());
if (memcmp(NGHTTP2_CLIENT_MAGIC + NGHTTP2_CLIENT_MAGIC_LEN - left_connhd_len_,
rb_.pos, nread) != 0) {
if (LOG_ENABLED(INFO)) {
CLOG(INFO, this) << "This is HTTP/1.1 connection, "
<< "but may be upgraded to HTTP/2 later.";
}
// Reset header length for later HTTP/2 upgrade
left_connhd_len_ = NGHTTP2_CLIENT_MAGIC_LEN;
on_read_ = &ClientHandler::upstream_read;
on_write_ = &ClientHandler::upstream_write;
if (on_read() != 0) {
return -1;
}
return 0;
}
left_connhd_len_ -= nread;
rb_.drain(nread);
conn_.rlimit.startw();
if (left_connhd_len_ == 0) {
if (LOG_ENABLED(INFO)) {
CLOG(INFO, this) << "direct HTTP/2 connection";
}
direct_http2_upgrade();
on_read_ = &ClientHandler::upstream_read;
on_write_ = &ClientHandler::upstream_write;
// Run on_read to process data left in buffer since they are not
// notified further
if (on_read() != 0) {
return -1;
}
return 0;
}
return 0;
}
ClientHandler::ClientHandler(Worker *worker, int fd, SSL *ssl,
const char *ipaddr, const char *port, int family,
const UpstreamAddr *faddr)
: conn_(worker->get_loop(), fd, ssl, worker->get_mcpool(),
get_config()->conn.upstream.timeout.write,
get_config()->conn.upstream.timeout.read,
get_config()->conn.upstream.ratelimit.write,
get_config()->conn.upstream.ratelimit.read, writecb, readcb,
timeoutcb, this, get_config()->tls.dyn_rec.warmup_threshold,
get_config()->tls.dyn_rec.idle_timeout, PROTO_NONE),
ipaddr_(ipaddr),
port_(port),
faddr_(faddr),
worker_(worker),
left_connhd_len_(NGHTTP2_CLIENT_MAGIC_LEN),
should_close_after_write_(false),
reset_conn_rtimer_required_(false) {
++worker_->get_worker_stat()->num_connections;
ev_timer_init(&reneg_shutdown_timer_, shutdowncb, 0., 0.);
reneg_shutdown_timer_.data = this;
conn_.rlimit.startw();
ev_timer_again(conn_.loop, &conn_.rt);
if (get_config()->conn.upstream.accept_proxy_protocol) {
read_ = &ClientHandler::read_clear;
write_ = &ClientHandler::noop;
on_read_ = &ClientHandler::proxy_protocol_read;
on_write_ = &ClientHandler::upstream_noop;
} else {
setup_upstream_io_callback();
}
auto &fwdconf = get_config()->http.forwarded;
if (fwdconf.params & FORWARDED_FOR) {
if (fwdconf.for_node_type == FORWARDED_NODE_OBFUSCATED) {
forwarded_for_ = "_";
forwarded_for_ += util::random_alpha_digit(worker_->get_randgen(),
SHRPX_OBFUSCATED_NODE_LENGTH);
} else if (family == AF_INET6) {
forwarded_for_ = "[";
forwarded_for_ += ipaddr_;
forwarded_for_ += ']';
} else {
// family == AF_INET or family == AF_UNIX
forwarded_for_ = ipaddr_;
}
}
}
void ClientHandler::setup_upstream_io_callback() {
if (conn_.tls.ssl) {
conn_.prepare_server_handshake();
read_ = write_ = &ClientHandler::tls_handshake;
on_read_ = &ClientHandler::upstream_noop;
on_write_ = &ClientHandler::upstream_write;
} else {
// For non-TLS version, first create HttpsUpstream. It may be
// upgraded to HTTP/2 through HTTP Upgrade or direct HTTP/2
// connection.
upstream_ = make_unique<HttpsUpstream>(this);
alpn_ = "http/1.1";
read_ = &ClientHandler::read_clear;
write_ = &ClientHandler::write_clear;
on_read_ = &ClientHandler::upstream_http1_connhd_read;
on_write_ = &ClientHandler::upstream_noop;
}
}
ClientHandler::~ClientHandler() {
if (LOG_ENABLED(INFO)) {
CLOG(INFO, this) << "Deleting";
}
if (upstream_) {
upstream_->on_handler_delete();
}
auto worker_stat = worker_->get_worker_stat();
--worker_stat->num_connections;
if (worker_stat->num_connections == 0) {
worker_->schedule_clear_mcpool();
}
ev_timer_stop(conn_.loop, &reneg_shutdown_timer_);
// TODO If backend is http/2, and it is in CONNECTED state, signal
// it and make it loopbreak when output is zero.
if (worker_->get_graceful_shutdown() && worker_stat->num_connections == 0) {
ev_break(conn_.loop);
}
if (LOG_ENABLED(INFO)) {
CLOG(INFO, this) << "Deleted";
}
}
Upstream *ClientHandler::get_upstream() { return upstream_.get(); }
struct ev_loop *ClientHandler::get_loop() const {
return conn_.loop;
}
void ClientHandler::reset_upstream_read_timeout(ev_tstamp t) {
conn_.rt.repeat = t;
if (ev_is_active(&conn_.rt)) {
ev_timer_again(conn_.loop, &conn_.rt);
}
}
void ClientHandler::reset_upstream_write_timeout(ev_tstamp t) {
conn_.wt.repeat = t;
if (ev_is_active(&conn_.wt)) {
ev_timer_again(conn_.loop, &conn_.wt);
}
}
void ClientHandler::signal_reset_upstream_conn_rtimer() {
reset_conn_rtimer_required_ = true;
}
int ClientHandler::validate_next_proto() {
const unsigned char *next_proto = nullptr;
unsigned int next_proto_len = 0;
// First set callback for catch all cases
on_read_ = &ClientHandler::upstream_read;
SSL_get0_next_proto_negotiated(conn_.tls.ssl, &next_proto, &next_proto_len);
#if OPENSSL_VERSION_NUMBER >= 0x10002000L
if (next_proto == nullptr) {
SSL_get0_alpn_selected(conn_.tls.ssl, &next_proto, &next_proto_len);
}
#endif // OPENSSL_VERSION_NUMBER >= 0x10002000L
if (next_proto == nullptr) {
if (LOG_ENABLED(INFO)) {
CLOG(INFO, this) << "No protocol negotiated. Fallback to HTTP/1.1";
}
upstream_ = make_unique<HttpsUpstream>(this);
alpn_ = "http/1.1";
// At this point, input buffer is already filled with some bytes.
// The read callback is not called until new data come. So consume
// input buffer here.
if (on_read() != 0) {
return -1;
}
return 0;
}
auto proto = StringRef{next_proto, next_proto_len};
if (LOG_ENABLED(INFO)) {
CLOG(INFO, this) << "The negotiated next protocol: " << proto;
}
if (!ssl::in_proto_list(get_config()->tls.npn_list, proto)) {
if (LOG_ENABLED(INFO)) {
CLOG(INFO, this) << "The negotiated protocol is not supported: " << proto;
}
return -1;
}
if (util::check_h2_is_selected(proto)) {
on_read_ = &ClientHandler::upstream_http2_connhd_read;
auto http2_upstream = make_unique<Http2Upstream>(this);
upstream_ = std::move(http2_upstream);
alpn_.assign(std::begin(proto), std::end(proto));
// At this point, input buffer is already filled with some bytes.
// The read callback is not called until new data come. So consume
// input buffer here.
if (on_read() != 0) {
return -1;
}
return 0;
}
#ifdef HAVE_SPDYLAY
auto spdy_version = spdylay_npn_get_version(proto.byte(), proto.size());
if (spdy_version) {
upstream_ = make_unique<SpdyUpstream>(spdy_version, this);
switch (spdy_version) {
case SPDYLAY_PROTO_SPDY2:
alpn_ = "spdy/2";
break;
case SPDYLAY_PROTO_SPDY3:
alpn_ = "spdy/3";
break;
case SPDYLAY_PROTO_SPDY3_1:
alpn_ = "spdy/3.1";
break;
default:
alpn_ = "spdy/unknown";
}
// At this point, input buffer is already filled with some bytes.
// The read callback is not called until new data come. So consume
// input buffer here.
if (on_read() != 0) {
return -1;
}
return 0;
}
#endif // HAVE_SPDYLAY
if (proto == StringRef::from_lit("http/1.1")) {
upstream_ = make_unique<HttpsUpstream>(this);
alpn_ = proto.str();
// At this point, input buffer is already filled with some bytes.
// The read callback is not called until new data come. So consume
// input buffer here.
if (on_read() != 0) {
return -1;
}
return 0;
}
if (LOG_ENABLED(INFO)) {
CLOG(INFO, this) << "The negotiated protocol is not supported";
}
return -1;
}
int ClientHandler::do_read() { return read_(*this); }
int ClientHandler::do_write() { return write_(*this); }
int ClientHandler::on_read() {
auto rv = on_read_(*this);
if (rv != 0) {
return rv;
}
conn_.handle_tls_pending_read();
return 0;
}
int ClientHandler::on_write() { return on_write_(*this); }
const std::string &ClientHandler::get_ipaddr() const { return ipaddr_; }
bool ClientHandler::get_should_close_after_write() const {
return should_close_after_write_;
}
void ClientHandler::set_should_close_after_write(bool f) {
should_close_after_write_ = f;
}
void ClientHandler::pool_downstream_connection(
std::unique_ptr<DownstreamConnection> dconn) {
if (!dconn->poolable()) {
return;
}
dconn->set_client_handler(nullptr);
auto group = dconn->get_downstream_addr_group();
if (LOG_ENABLED(INFO)) {
CLOG(INFO, this) << "Pooling downstream connection DCONN:" << dconn.get()
<< " in group " << group;
}
auto &dconn_pool = group->shared_addr->dconn_pool;
dconn_pool.add_downstream_connection(std::move(dconn));
}
void ClientHandler::remove_downstream_connection(DownstreamConnection *dconn) {
if (LOG_ENABLED(INFO)) {
CLOG(INFO, this) << "Removing downstream connection DCONN:" << dconn
<< " from pool";
}
auto &dconn_pool =
dconn->get_downstream_addr_group()->shared_addr->dconn_pool;
dconn_pool.remove_downstream_connection(dconn);
}
namespace {
// Returns true if load of |lhs| is lighter than that of |rhs|.
// Currently, we assume that lesser streams means lesser load.
bool load_lighter(const DownstreamAddr *lhs, const DownstreamAddr *rhs) {
return lhs->num_dconn < rhs->num_dconn;
}
} // namespace
Http2Session *ClientHandler::select_http2_session(DownstreamAddrGroup &group) {
auto &shared_addr = group.shared_addr;
// First count the working backend addresses.
size_t min = 0;
for (const auto &addr : shared_addr->addrs) {
if (addr.proto != PROTO_HTTP2 || addr.connect_blocker->blocked()) {
continue;
}
++min;
}
if (min == 0) {
if (LOG_ENABLED(INFO)) {
CLOG(INFO, this) << "No working backend address found";
}
return nullptr;
}
auto &http2_avail_freelist = shared_addr->http2_avail_freelist;
if (http2_avail_freelist.size() >= min) {
auto session = http2_avail_freelist.head;
session->remove_from_freelist();
if (LOG_ENABLED(INFO)) {
CLOG(INFO, this) << "Use Http2Session " << session
<< " from http2_avail_freelist";
}
if (session->max_concurrency_reached(1)) {
if (LOG_ENABLED(INFO)) {
CLOG(INFO, this) << "Maximum streams are reached for Http2Session("
<< session << ").";
}
} else {
session->add_to_avail_freelist();
}
return session;
}
DownstreamAddr *selected_addr = nullptr;
for (auto &addr : shared_addr->addrs) {
if (addr.proto != PROTO_HTTP2 || (addr.http2_extra_freelist.size() == 0 &&
addr.connect_blocker->blocked())) {
continue;
}
if (addr.in_avail) {
continue;
}
if (selected_addr == nullptr || load_lighter(&addr, selected_addr)) {
selected_addr = &addr;
}
}
assert(selected_addr);
if (LOG_ENABLED(INFO)) {
CLOG(INFO, this) << "Selected DownstreamAddr=" << selected_addr
<< ", index="
<< (selected_addr - shared_addr->addrs.data());
}
if (selected_addr->http2_extra_freelist.size()) {
auto session = selected_addr->http2_extra_freelist.head;
session->remove_from_freelist();
if (LOG_ENABLED(INFO)) {
CLOG(INFO, this) << "Use Http2Session " << session
<< " from http2_extra_freelist";
}
if (session->max_concurrency_reached(1)) {
if (LOG_ENABLED(INFO)) {
CLOG(INFO, this) << "Maximum streams are reached for Http2Session("
<< session << ").";
}
} else {
session->add_to_avail_freelist();
}
return session;
}
auto session = new Http2Session(conn_.loop, worker_->get_cl_ssl_ctx(),
worker_, &group, selected_addr);
if (LOG_ENABLED(INFO)) {
CLOG(INFO, this) << "Create new Http2Session " << session;
}
session->add_to_avail_freelist();
return session;
}
namespace {
// The chosen value is small enough for uint32_t, and large enough for
// the number of backend.
constexpr uint32_t WEIGHT_MAX = 65536;
} // namespace
namespace {
bool pri_less(const WeightedPri &lhs, const WeightedPri &rhs) {
if (lhs.cycle < rhs.cycle) {
return rhs.cycle - lhs.cycle <= WEIGHT_MAX;
}
return lhs.cycle - rhs.cycle > WEIGHT_MAX;
}
} // namespace
namespace {
uint32_t next_cycle(const WeightedPri &pri) {
return pri.cycle + WEIGHT_MAX / std::min(WEIGHT_MAX, pri.weight);
}
} // namespace
std::unique_ptr<DownstreamConnection>
ClientHandler::get_downstream_connection(Downstream *downstream) {
size_t group_idx;
auto &downstreamconf = get_config()->conn.downstream;
auto catch_all = downstreamconf.addr_group_catch_all;
auto &groups = worker_->get_downstream_addr_groups();
const auto &req = downstream->request();
// Fast path. If we have one group, it must be catch-all group.
// proxy mode falls in this case.
if (groups.size() == 1) {
group_idx = 0;
} else if (req.method_token == HTTP_CONNECT) {
// We don't know how to treat CONNECT request in host-path
// mapping. It most likely appears in proxy scenario. Since we
// have dealt with proxy case already, just use catch-all group.
group_idx = catch_all;
} else {
auto &router = get_config()->router;
auto &wildcard_patterns = get_config()->wildcard_patterns;
if (!req.authority.empty()) {
group_idx =
match_downstream_addr_group(router, wildcard_patterns, req.authority,
req.path, groups, catch_all);
} else {
auto h = req.fs.header(http2::HD_HOST);
if (h) {
group_idx = match_downstream_addr_group(
router, wildcard_patterns, h->value, req.path, groups, catch_all);
} else {
group_idx =
match_downstream_addr_group(router, wildcard_patterns, StringRef{},
req.path, groups, catch_all);
}
}
}
if (LOG_ENABLED(INFO)) {
CLOG(INFO, this) << "Downstream address group_idx: " << group_idx;
}
auto &group = worker_->get_downstream_addr_groups()[group_idx];
auto &shared_addr = group.shared_addr;
auto proto = PROTO_NONE;
auto http1_weight = shared_addr->http1_pri.weight;
auto http2_weight = shared_addr->http2_pri.weight;
if (http1_weight > 0 && http2_weight > 0) {
// We only advance cycle if both weight has nonzero to keep its
// distance under WEIGHT_MAX.
if (pri_less(shared_addr->http1_pri, shared_addr->http2_pri)) {
proto = PROTO_HTTP1;
shared_addr->http1_pri.cycle = next_cycle(shared_addr->http1_pri);
} else {
proto = PROTO_HTTP2;
shared_addr->http2_pri.cycle = next_cycle(shared_addr->http2_pri);
}
} else if (http1_weight > 0) {
proto = PROTO_HTTP1;
} else if (http2_weight > 0) {
proto = PROTO_HTTP2;
}
if (proto == PROTO_NONE) {
if (LOG_ENABLED(INFO)) {
CLOG(INFO, this) << "No working downstream address found";
}
return nullptr;
}
if (proto == PROTO_HTTP2) {
if (LOG_ENABLED(INFO)) {
CLOG(INFO, this) << "Downstream connection pool is empty."
<< " Create new one";
}
auto http2session = select_http2_session(group);
if (http2session == nullptr) {
return nullptr;
}
auto dconn = make_unique<Http2DownstreamConnection>(http2session);
dconn->set_client_handler(this);
return std::move(dconn);
}
auto &dconn_pool = shared_addr->dconn_pool;
// pool connection must be HTTP/1.1 connection
auto dconn = dconn_pool.pop_downstream_connection();
if (dconn) {
if (LOG_ENABLED(INFO)) {
CLOG(INFO, this) << "Reuse downstream connection DCONN:" << dconn.get()
<< " from pool";
}
} else {
if (LOG_ENABLED(INFO)) {
CLOG(INFO, this) << "Downstream connection pool is empty."
<< " Create new one";
}
dconn = make_unique<HttpDownstreamConnection>(&group, conn_.loop, worker_);
}
dconn->set_client_handler(this);
return dconn;
}
MemchunkPool *ClientHandler::get_mcpool() { return worker_->get_mcpool(); }
SSL *ClientHandler::get_ssl() const { return conn_.tls.ssl; }
void ClientHandler::direct_http2_upgrade() {
upstream_ = make_unique<Http2Upstream>(this);
alpn_ = NGHTTP2_CLEARTEXT_PROTO_VERSION_ID;
on_read_ = &ClientHandler::upstream_read;
write_ = &ClientHandler::write_clear;
}
int ClientHandler::perform_http2_upgrade(HttpsUpstream *http) {
auto upstream = make_unique<Http2Upstream>(this);
auto output = upstream->get_response_buf();
// We might have written non-final header in response_buf, in this
// case, response_state is still INITIAL. If this non-final header
// and upgrade header fit in output buffer, do upgrade. Otherwise,
// to avoid to send this non-final header as response body in HTTP/2
// upstream, fail upgrade.
auto downstream = http->get_downstream();
auto input = downstream->get_response_buf();
if (upstream->upgrade_upstream(http) != 0) {
return -1;
}
// http pointer is now owned by upstream.
upstream_.release();
// TODO We might get other version id in HTTP2-settings, if we
// support aliasing for h2, but we just use library default for now.
alpn_ = NGHTTP2_CLEARTEXT_PROTO_VERSION_ID;
on_read_ = &ClientHandler::upstream_http2_connhd_read;
write_ = &ClientHandler::write_clear;
input->remove(*output, input->rleft());
constexpr auto res =
StringRef::from_lit("HTTP/1.1 101 Switching Protocols\r\n"
"Connection: Upgrade\r\n"
"Upgrade: " NGHTTP2_CLEARTEXT_PROTO_VERSION_ID "\r\n"
"\r\n");
output->append(res);
upstream_ = std::move(upstream);
signal_write();
return 0;
}
bool ClientHandler::get_http2_upgrade_allowed() const { return !conn_.tls.ssl; }
StringRef ClientHandler::get_upstream_scheme() const {
if (conn_.tls.ssl) {
return StringRef::from_lit("https");
} else {
return StringRef::from_lit("http");
}
}
void ClientHandler::start_immediate_shutdown() {
ev_timer_start(conn_.loop, &reneg_shutdown_timer_);
}
namespace {
// Construct absolute request URI from |Request|, mainly to log
// request URI for proxy request (HTTP/2 proxy or client proxy). This
// is mostly same routine found in
// HttpDownstreamConnection::push_request_headers(), but vastly
// simplified since we only care about absolute URI.
StringRef construct_absolute_request_uri(BlockAllocator &balloc,
const Request &req) {
if (req.authority.empty()) {
return req.path;
}
auto len = req.authority.size() + req.path.size();
if (req.scheme.empty()) {
len += str_size("http://");
} else {
len += req.scheme.size() + str_size("://");
}
auto iov = make_byte_ref(balloc, len + 1);
auto p = iov.base;
if (req.scheme.empty()) {
// We may have to log the request which lacks scheme (e.g.,
// http/1.1 with origin form).
p = util::copy_lit(p, "http://");
} else {
p = std::copy(std::begin(req.scheme), std::end(req.scheme), p);
p = util::copy_lit(p, "://");
}
p = std::copy(std::begin(req.authority), std::end(req.authority), p);
p = std::copy(std::begin(req.path), std::end(req.path), p);
*p = '\0';
return StringRef{iov.base, p};
}
} // namespace
void ClientHandler::write_accesslog(Downstream *downstream) {
nghttp2::ssl::TLSSessionInfo tls_info;
const auto &req = downstream->request();
const auto &resp = downstream->response();
auto &balloc = downstream->get_block_allocator();
upstream_accesslog(
get_config()->logging.access.format,
LogSpec{
downstream, StringRef{ipaddr_}, req.method,
req.method_token == HTTP_CONNECT
? StringRef(req.authority)
: get_config()->http2_proxy
? StringRef(construct_absolute_request_uri(balloc, req))
: req.path.empty()
? req.method_token == HTTP_OPTIONS
? StringRef::from_lit("*")
: StringRef::from_lit("-")
: StringRef(req.path),
StringRef(alpn_),
nghttp2::ssl::get_tls_session_info(&tls_info, conn_.tls.ssl),
std::chrono::system_clock::now(), // time_now
downstream->get_request_start_time(), // request_start_time
std::chrono::high_resolution_clock::now(), // request_end_time
req.http_major, req.http_minor, resp.http_status,
downstream->response_sent_body_length, StringRef(port_), faddr_->port,
get_config()->pid,
});
}
void ClientHandler::write_accesslog(int major, int minor, unsigned int status,
int64_t body_bytes_sent) {
auto time_now = std::chrono::system_clock::now();
auto highres_now = std::chrono::high_resolution_clock::now();
nghttp2::ssl::TLSSessionInfo tls_info;
upstream_accesslog(get_config()->logging.access.format,
LogSpec{
nullptr, StringRef(ipaddr_),
StringRef::from_lit("-"), // method
StringRef::from_lit("-"), // path,
StringRef(alpn_), nghttp2::ssl::get_tls_session_info(
&tls_info, conn_.tls.ssl),
time_now,
highres_now, // request_start_time TODO is
// there a better value?
highres_now, // request_end_time
major, minor, // major, minor
status, body_bytes_sent, StringRef(port_),
faddr_->port, get_config()->pid,
});
}
ClientHandler::ReadBuf *ClientHandler::get_rb() { return &rb_; }
void ClientHandler::signal_write() { conn_.wlimit.startw(); }
RateLimit *ClientHandler::get_rlimit() { return &conn_.rlimit; }
RateLimit *ClientHandler::get_wlimit() { return &conn_.wlimit; }
ev_io *ClientHandler::get_wev() { return &conn_.wev; }
Worker *ClientHandler::get_worker() const { return worker_; }
namespace {
ssize_t parse_proxy_line_port(const uint8_t *first, const uint8_t *last) {
auto p = first;
int32_t port = 0;
if (p == last) {
return -1;
}
if (*p == '0') {
if (p + 1 != last && util::is_digit(*(p + 1))) {
return -1;
}
return 1;
}
for (; p != last && util::is_digit(*p); ++p) {
port *= 10;
port += *p - '0';
if (port > 65535) {
return -1;
}
}
return p - first;
}
} // namespace
int ClientHandler::on_proxy_protocol_finish() {
if (conn_.tls.ssl) {
conn_.tls.rbuf.append(rb_.pos, rb_.rleft());
rb_.reset();
}
setup_upstream_io_callback();
// Run on_read to process data left in buffer since they are not
// notified further
if (on_read() != 0) {
return -1;
}
return 0;
}
// http://www.haproxy.org/download/1.5/doc/proxy-protocol.txt
int ClientHandler::proxy_protocol_read() {
if (LOG_ENABLED(INFO)) {
CLOG(INFO, this) << "PROXY-protocol: Started";
}
auto first = rb_.pos;
// NULL character really destroys functions which expects NULL
// terminated string. We won't expect it in PROXY protocol line, so
// find it here.
auto chrs = std::array<char, 2>{{'\n', '\0'}};
constexpr size_t MAX_PROXY_LINELEN = 107;
auto bufend = rb_.pos + std::min(MAX_PROXY_LINELEN, rb_.rleft());
auto end =
std::find_first_of(rb_.pos, bufend, std::begin(chrs), std::end(chrs));
if (end == bufend || *end == '\0' || end == rb_.pos || *(end - 1) != '\r') {
if (LOG_ENABLED(INFO)) {
CLOG(INFO, this) << "PROXY-protocol-v1: No ending CR LF sequence found";
}
return -1;
}
--end;
constexpr auto HEADER = StringRef::from_lit("PROXY ");
if (static_cast<size_t>(end - rb_.pos) < HEADER.size()) {
if (LOG_ENABLED(INFO)) {
CLOG(INFO, this) << "PROXY-protocol-v1: PROXY version 1 ID not found";
}
return -1;
}
if (!util::streq(HEADER, StringRef{rb_.pos, HEADER.size()})) {
if (LOG_ENABLED(INFO)) {
CLOG(INFO, this) << "PROXY-protocol-v1: Bad PROXY protocol version 1 ID";
}
return -1;
}
rb_.drain(HEADER.size());
int family;
if (rb_.pos[0] == 'T') {
if (end - rb_.pos < 5) {
if (LOG_ENABLED(INFO)) {
CLOG(INFO, this) << "PROXY-protocol-v1: INET protocol family not found";
}
return -1;
}
if (rb_.pos[1] != 'C' || rb_.pos[2] != 'P') {
if (LOG_ENABLED(INFO)) {
CLOG(INFO, this) << "PROXY-protocol-v1: Unknown INET protocol family";
}
return -1;
}
switch (rb_.pos[3]) {
case '4':
family = AF_INET;
break;
case '6':
family = AF_INET6;
break;
default:
if (LOG_ENABLED(INFO)) {
CLOG(INFO, this) << "PROXY-protocol-v1: Unknown INET protocol family";
}
return -1;
}
rb_.drain(5);
} else {
if (end - rb_.pos < 7) {
if (LOG_ENABLED(INFO)) {
CLOG(INFO, this) << "PROXY-protocol-v1: INET protocol family not found";
}
return -1;
}
if (!util::streq_l("UNKNOWN", rb_.pos, 7)) {
if (LOG_ENABLED(INFO)) {
CLOG(INFO, this) << "PROXY-protocol-v1: Unknown INET protocol family";
}
return -1;
}
rb_.drain(end + 2 - rb_.pos);
return on_proxy_protocol_finish();
}
// source address
auto token_end = std::find(rb_.pos, end, ' ');
if (token_end == end) {
if (LOG_ENABLED(INFO)) {
CLOG(INFO, this) << "PROXY-protocol-v1: Source address not found";
}
return -1;
}
*token_end = '\0';
if (!util::numeric_host(reinterpret_cast<const char *>(rb_.pos), family)) {
if (LOG_ENABLED(INFO)) {
CLOG(INFO, this) << "PROXY-protocol-v1: Invalid source address";
}
return -1;
}
auto src_addr = rb_.pos;
auto src_addrlen = token_end - rb_.pos;
rb_.drain(token_end - rb_.pos + 1);
// destination address
token_end = std::find(rb_.pos, end, ' ');
if (token_end == end) {
if (LOG_ENABLED(INFO)) {
CLOG(INFO, this) << "PROXY-protocol-v1: Destination address not found";
}
return -1;
}
*token_end = '\0';
if (!util::numeric_host(reinterpret_cast<const char *>(rb_.pos), family)) {
if (LOG_ENABLED(INFO)) {
CLOG(INFO, this) << "PROXY-protocol-v1: Invalid destination address";
}
return -1;
}
// Currently we don't use destination address
rb_.drain(token_end - rb_.pos + 1);
// source port
auto n = parse_proxy_line_port(rb_.pos, end);
if (n <= 0 || *(rb_.pos + n) != ' ') {
if (LOG_ENABLED(INFO)) {
CLOG(INFO, this) << "PROXY-protocol-v1: Invalid source port";
}
return -1;
}
rb_.pos[n] = '\0';
auto src_port = rb_.pos;
auto src_portlen = n;
rb_.drain(n + 1);
// destination port
n = parse_proxy_line_port(rb_.pos, end);
if (n <= 0 || rb_.pos + n != end) {
if (LOG_ENABLED(INFO)) {
CLOG(INFO, this) << "PROXY-protocol-v1: Invalid destination port";
}
return -1;
}
// Currently we don't use destination port
rb_.drain(end + 2 - rb_.pos);
ipaddr_.assign(src_addr, src_addr + src_addrlen);
port_.assign(src_port, src_port + src_portlen);
if (LOG_ENABLED(INFO)) {
CLOG(INFO, this) << "PROXY-protocol-v1: Finished, " << (rb_.pos - first)
<< " bytes read";
}
return on_proxy_protocol_finish();
}
StringRef ClientHandler::get_forwarded_by() const {
auto &fwdconf = get_config()->http.forwarded;
if (fwdconf.by_node_type == FORWARDED_NODE_OBFUSCATED) {
return StringRef(fwdconf.by_obfuscated);
}
return StringRef{faddr_->hostport};
}
StringRef ClientHandler::get_forwarded_for() const {
return StringRef{forwarded_for_};
}
const UpstreamAddr *ClientHandler::get_upstream_addr() const { return faddr_; }
} // namespace shrpx