nghttp2/src/h2load.h

510 lines
16 KiB
C++

/*
* nghttp2 - HTTP/2 C Library
*
* Copyright (c) 2014 Tatsuhiro Tsujikawa
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
* LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
* OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
* WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#ifndef H2LOAD_H
#define H2LOAD_H
#include "nghttp2_config.h"
#include <sys/types.h>
#ifdef HAVE_SYS_SOCKET_H
# include <sys/socket.h>
#endif // HAVE_SYS_SOCKET_H
#ifdef HAVE_NETDB_H
# include <netdb.h>
#endif // HAVE_NETDB_H
#include <sys/un.h>
#include <vector>
#include <string>
#include <unordered_map>
#include <memory>
#include <chrono>
#include <array>
#include <nghttp2/nghttp2.h>
#ifdef ENABLE_HTTP3
# include <ngtcp2/ngtcp2.h>
# include <ngtcp2/ngtcp2_crypto.h>
#endif // ENABLE_HTTP3
#include <ev.h>
#include <openssl/ssl.h>
#include "http2.h"
#ifdef ENABLE_HTTP3
# include "quic.h"
#endif // ENABLE_HTTP3
#include "memchunk.h"
#include "template.h"
using namespace nghttp2;
namespace h2load {
constexpr auto BACKOFF_WRITE_BUFFER_THRES = 16_k;
class Session;
struct Worker;
struct Config {
std::vector<std::vector<nghttp2_nv>> nva;
std::vector<std::string> h1reqs;
std::vector<ev_tstamp> timings;
nghttp2::Headers custom_headers;
std::string scheme;
std::string host;
std::string connect_to_host;
std::string ifile;
std::string ciphers;
std::string tls13_ciphers;
// supported groups (or curves).
std::string groups;
// length of upload data
int64_t data_length;
// memory mapped upload data
uint8_t *data;
addrinfo *addrs;
size_t nreqs;
size_t nclients;
size_t nthreads;
// The maximum number of concurrent streams per session.
ssize_t max_concurrent_streams;
size_t window_bits;
size_t connection_window_bits;
size_t max_frame_size;
// rate at which connections should be made
size_t rate;
ev_tstamp rate_period;
// amount of time for main measurements in timing-based test
ev_tstamp duration;
// amount of time to wait before starting measurements in timing-based test
ev_tstamp warm_up_time;
// amount of time to wait for activity on a given connection
ev_tstamp conn_active_timeout;
// amount of time to wait after the last request is made on a connection
ev_tstamp conn_inactivity_timeout;
enum { PROTO_HTTP2, PROTO_HTTP1_1 } no_tls_proto;
uint32_t header_table_size;
uint32_t encoder_header_table_size;
// file descriptor for upload data
int data_fd;
// file descriptor to write per-request stats to.
int log_fd;
// base file name of qlog output files
std::string qlog_file_base;
uint16_t port;
uint16_t default_port;
uint16_t connect_to_port;
bool verbose;
bool timing_script;
std::string base_uri;
// true if UNIX domain socket is used. In this case, base_uri is
// not used in usual way.
bool base_uri_unix;
// used when UNIX domain socket is used (base_uri_unix is true).
sockaddr_un unix_addr;
// list of supported NPN/ALPN protocol strings in the order of
// preference.
std::vector<std::string> npn_list;
// The number of request per second for each client.
double rps;
// Disables GSO for UDP connections.
bool no_udp_gso;
// The maximum UDP datagram payload size to send.
size_t max_udp_payload_size;
// Enable ktls.
bool ktls;
Config();
~Config();
bool is_rate_mode() const;
bool is_timing_based_mode() const;
bool has_base_uri() const;
bool rps_enabled() const;
bool is_quic() const;
};
struct RequestStat {
// time point when request was sent
std::chrono::steady_clock::time_point request_time;
// same, but in wall clock reference frame
std::chrono::system_clock::time_point request_wall_time;
// time point when stream was closed
std::chrono::steady_clock::time_point stream_close_time;
// upload data length sent so far
int64_t data_offset;
// HTTP status code
int status;
// true if stream was successfully closed. This means stream was
// not reset, but it does not mean HTTP level error (e.g., 404).
bool completed;
};
struct ClientStat {
// time client started (i.e., first connect starts)
std::chrono::steady_clock::time_point client_start_time;
// time client end (i.e., client somehow processed all requests it
// is responsible for, and disconnected)
std::chrono::steady_clock::time_point client_end_time;
// The number of requests completed successful, but not necessarily
// means successful HTTP status code.
size_t req_success;
// The following 3 numbers are overwritten each time when connection
// is made.
// time connect starts
std::chrono::steady_clock::time_point connect_start_time;
// time to connect
std::chrono::steady_clock::time_point connect_time;
// time to first byte (TTFB)
std::chrono::steady_clock::time_point ttfb;
};
struct SDStat {
// min, max, mean and sd (standard deviation)
double min, max, mean, sd;
// percentage of samples inside mean -/+ sd
double within_sd;
};
struct SDStats {
// time for request
SDStat request;
// time for connect
SDStat connect;
// time to first byte (TTFB)
SDStat ttfb;
// request per second for each client
SDStat rps;
};
struct Stats {
Stats(size_t req_todo, size_t nclients);
// The total number of requests
size_t req_todo;
// The number of requests issued so far
size_t req_started;
// The number of requests finished
size_t req_done;
// The number of requests completed successful, but not necessarily
// means successful HTTP status code.
size_t req_success;
// The number of requests marked as success. HTTP status code is
// also considered as success. This is subset of req_done.
size_t req_status_success;
// The number of requests failed. This is subset of req_done.
size_t req_failed;
// The number of requests failed due to network errors. This is
// subset of req_failed.
size_t req_error;
// The number of requests that failed due to timeout.
size_t req_timedout;
// The number of bytes received on the "wire". If SSL/TLS is used,
// this is the number of decrypted bytes the application received.
int64_t bytes_total;
// The number of bytes received for header fields. This is
// compressed version.
int64_t bytes_head;
// The number of bytes received for header fields after they are
// decompressed.
int64_t bytes_head_decomp;
// The number of bytes received in DATA frame.
int64_t bytes_body;
// The number of each HTTP status category, status[i] is status code
// in the range [i*100, (i+1)*100).
std::array<size_t, 6> status;
// The statistics per request
std::vector<RequestStat> req_stats;
// The statistics per client
std::vector<ClientStat> client_stats;
// The number of UDP datagrams received.
size_t udp_dgram_recv;
// The number of UDP datagrams sent.
size_t udp_dgram_sent;
};
enum ClientState { CLIENT_IDLE, CLIENT_CONNECTED };
// This type tells whether the client is in warmup phase or not or is over
enum class Phase {
INITIAL_IDLE, // Initial idle state before warm-up phase
WARM_UP, // Warm up phase when no measurements are done
MAIN_DURATION, // Main measurement phase; if timing-based
// test is not run, this is the default phase
DURATION_OVER // This phase occurs after the measurements are over
};
struct Client;
// We use reservoir sampling method
struct Sampling {
// maximum number of samples
size_t max_samples;
// number of samples seen, including discarded samples.
size_t n;
};
struct Worker {
MemchunkPool mcpool;
std::mt19937 randgen;
Stats stats;
Sampling request_times_smp;
Sampling client_smp;
struct ev_loop *loop;
SSL_CTX *ssl_ctx;
Config *config;
size_t progress_interval;
uint32_t id;
bool tls_info_report_done;
bool app_info_report_done;
size_t nconns_made;
// number of clients this worker handles
size_t nclients;
// number of requests each client issues
size_t nreqs_per_client;
// at most nreqs_rem clients get an extra request
size_t nreqs_rem;
size_t rate;
// maximum number of samples in this worker thread
size_t max_samples;
ev_timer timeout_watcher;
// The next client ID this worker assigns
uint32_t next_client_id;
// Keeps track of the current phase (for timing-based experiment) for the
// worker
Phase current_phase;
// We need to keep track of the clients in order to stop them when needed
std::vector<Client *> clients;
// This is only active when there is not a bounded number of requests
// specified
ev_timer duration_watcher;
ev_timer warmup_watcher;
Worker(uint32_t id, SSL_CTX *ssl_ctx, size_t nreq_todo, size_t nclients,
size_t rate, size_t max_samples, Config *config);
~Worker();
Worker(Worker &&o) = default;
void run();
void sample_req_stat(RequestStat *req_stat);
void sample_client_stat(ClientStat *cstat);
void report_progress();
void report_rate_progress();
// This function calls the destructors of all the clients.
void stop_all_clients();
// This function frees a client from the list of clients for this Worker.
void free_client(Client *);
};
struct Stream {
RequestStat req_stat;
int status_success;
Stream();
};
struct Client {
DefaultMemchunks wb;
std::unordered_map<int32_t, Stream> streams;
ClientStat cstat;
std::unique_ptr<Session> session;
ev_io wev;
ev_io rev;
std::function<int(Client &)> readfn, writefn;
Worker *worker;
SSL *ssl;
#ifdef ENABLE_HTTP3
struct {
ngtcp2_crypto_conn_ref conn_ref;
ev_timer pkt_timer;
ngtcp2_conn *conn;
ngtcp2_connection_close_error last_error;
bool close_requested;
FILE *qlog_file;
struct {
bool send_blocked;
size_t num_blocked;
size_t num_blocked_sent;
struct {
Address remote_addr;
const uint8_t *data;
size_t datalen;
size_t gso_size;
} blocked[2];
std::unique_ptr<uint8_t[]> data;
} tx;
} quic;
#endif // ENABLE_HTTP3
ev_timer request_timeout_watcher;
addrinfo *next_addr;
// Address for the current address. When try_new_connection() is
// used and current_addr is not nullptr, it is used instead of
// trying next address though next_addr. To try new address, set
// nullptr to current_addr before calling connect().
addrinfo *current_addr;
size_t reqidx;
ClientState state;
// The number of requests this client has to issue.
size_t req_todo;
// The number of requests left to issue
size_t req_left;
// The number of requests currently have started, but not abandoned
// or finished.
size_t req_inflight;
// The number of requests this client has issued so far.
size_t req_started;
// The number of requests this client has done so far.
size_t req_done;
// The client id per worker
uint32_t id;
int fd;
Address local_addr;
ev_timer conn_active_watcher;
ev_timer conn_inactivity_watcher;
std::string selected_proto;
bool new_connection_requested;
// true if the current connection will be closed, and no more new
// request cannot be processed.
bool final;
// rps_watcher is a timer to invoke callback periodically to
// generate a new request.
ev_timer rps_watcher;
// The timestamp that starts the period which contributes to the
// next request generation.
ev_tstamp rps_duration_started;
// The number of requests allowed by rps, but limited by stream
// concurrency.
size_t rps_req_pending;
// The number of in-flight streams. req_inflight has similar value
// but it only measures requests made during Phase::MAIN_DURATION.
// rps_req_inflight measures the number of requests in all phases,
// and it is only used if --rps is given.
size_t rps_req_inflight;
enum { ERR_CONNECT_FAIL = -100 };
Client(uint32_t id, Worker *worker, size_t req_todo);
~Client();
int make_socket(addrinfo *addr);
int connect();
void disconnect();
void fail();
// Call this function when do_read() returns -1. This function
// tries to connect to the remote host again if it is requested. If
// so, this function returns 0, and this object should be retained.
// Otherwise, this function returns -1, and this object should be
// deleted.
int try_again_or_fail();
void timeout();
void restart_timeout();
int submit_request();
void process_request_failure();
void process_timedout_streams();
void process_abandoned_streams();
void report_tls_info();
void report_app_info();
void terminate_session();
// Asks client to create new connection, instead of just fail.
void try_new_connection();
int do_read();
int do_write();
// low-level I/O callback functions called by do_read/do_write
int connected();
int read_clear();
int write_clear();
int tls_handshake();
int read_tls();
int write_tls();
int on_read(const uint8_t *data, size_t len);
int on_write();
int connection_made();
void on_request(int32_t stream_id);
void on_header(int32_t stream_id, const uint8_t *name, size_t namelen,
const uint8_t *value, size_t valuelen);
void on_status_code(int32_t stream_id, uint16_t status);
// |success| == true means that the request/response was exchanged
// |successfully, but it does not mean response carried successful
// |HTTP status code.
void on_stream_close(int32_t stream_id, bool success, bool final = false);
// Returns RequestStat for |stream_id|. This function must be
// called after on_request(stream_id), and before
// on_stream_close(stream_id, ...). Otherwise, this will return
// nullptr.
RequestStat *get_req_stat(int32_t stream_id);
void record_request_time(RequestStat *req_stat);
void record_connect_start_time();
void record_connect_time();
void record_ttfb();
void clear_connect_times();
void record_client_start_time();
void record_client_end_time();
void signal_write();
#ifdef ENABLE_HTTP3
// QUIC
int quic_init(const sockaddr *local_addr, socklen_t local_addrlen,
const sockaddr *remote_addr, socklen_t remote_addrlen);
void quic_free();
int read_quic();
int write_quic();
int write_udp(const sockaddr *addr, socklen_t addrlen, const uint8_t *data,
size_t datalen, size_t gso_size);
void on_send_blocked(const ngtcp2_addr &remote_addr, const uint8_t *data,
size_t datalen, size_t gso_size);
int send_blocked_packet();
void quic_close_connection();
int quic_handshake_completed();
int quic_recv_stream_data(uint32_t flags, int64_t stream_id,
const uint8_t *data, size_t datalen);
int quic_acked_stream_data_offset(int64_t stream_id, size_t datalen);
int quic_stream_close(int64_t stream_id, uint64_t app_error_code);
int quic_stream_reset(int64_t stream_id, uint64_t app_error_code);
int quic_stream_stop_sending(int64_t stream_id, uint64_t app_error_code);
int quic_extend_max_local_streams();
int quic_write_client_handshake(ngtcp2_crypto_level level,
const uint8_t *data, size_t datalen);
int quic_pkt_timeout();
void quic_restart_pkt_timer();
void quic_write_qlog(const void *data, size_t datalen);
int quic_make_http3_session();
#endif // ENABLE_HTTP3
};
} // namespace h2load
#endif // H2LOAD_H