nghttp2/src/shrpx_client_handler.cc

1715 lines
44 KiB
C++

/*
* nghttp2 - HTTP/2 C Library
*
* Copyright (c) 2012 Tatsuhiro Tsujikawa
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
* LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
* OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
* WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include "shrpx_client_handler.h"
#ifdef HAVE_UNISTD_H
# include <unistd.h>
#endif // HAVE_UNISTD_H
#ifdef HAVE_SYS_SOCKET_H
# include <sys/socket.h>
#endif // HAVE_SYS_SOCKET_H
#ifdef HAVE_NETDB_H
# include <netdb.h>
#endif // HAVE_NETDB_H
#include <cerrno>
#include "shrpx_upstream.h"
#include "shrpx_http2_upstream.h"
#include "shrpx_https_upstream.h"
#include "shrpx_config.h"
#include "shrpx_http_downstream_connection.h"
#include "shrpx_http2_downstream_connection.h"
#include "shrpx_tls.h"
#include "shrpx_worker.h"
#include "shrpx_downstream_connection_pool.h"
#include "shrpx_downstream.h"
#include "shrpx_http2_session.h"
#include "shrpx_connect_blocker.h"
#include "shrpx_api_downstream_connection.h"
#include "shrpx_health_monitor_downstream_connection.h"
#include "shrpx_null_downstream_connection.h"
#ifdef ENABLE_HTTP3
# include "shrpx_http3_upstream.h"
#endif // ENABLE_HTTP3
#include "shrpx_log.h"
#include "util.h"
#include "template.h"
#include "tls.h"
using namespace nghttp2;
namespace shrpx {
namespace {
void timeoutcb(struct ev_loop *loop, ev_timer *w, int revents) {
auto conn = static_cast<Connection *>(w->data);
auto handler = static_cast<ClientHandler *>(conn->data);
if (LOG_ENABLED(INFO)) {
CLOG(INFO, handler) << "Time out";
}
delete handler;
}
} // namespace
namespace {
void shutdowncb(struct ev_loop *loop, ev_timer *w, int revents) {
auto handler = static_cast<ClientHandler *>(w->data);
if (LOG_ENABLED(INFO)) {
CLOG(INFO, handler) << "Close connection due to TLS renegotiation";
}
delete handler;
}
} // namespace
namespace {
void readcb(struct ev_loop *loop, ev_io *w, int revents) {
auto conn = static_cast<Connection *>(w->data);
auto handler = static_cast<ClientHandler *>(conn->data);
if (handler->do_read() != 0) {
delete handler;
return;
}
}
} // namespace
namespace {
void writecb(struct ev_loop *loop, ev_io *w, int revents) {
auto conn = static_cast<Connection *>(w->data);
auto handler = static_cast<ClientHandler *>(conn->data);
if (handler->do_write() != 0) {
delete handler;
return;
}
}
} // namespace
int ClientHandler::noop() { return 0; }
int ClientHandler::read_clear() {
auto should_break = false;
rb_.ensure_chunk();
for (;;) {
if (rb_.rleft() && on_read() != 0) {
return -1;
}
if (rb_.rleft() == 0) {
rb_.reset();
} else if (rb_.wleft() == 0) {
conn_.rlimit.stopw();
return 0;
}
if (!ev_is_active(&conn_.rev) || should_break) {
return 0;
}
auto nread = conn_.read_clear(rb_.last(), rb_.wleft());
if (nread == 0) {
if (rb_.rleft() == 0) {
rb_.release_chunk();
}
return 0;
}
if (nread < 0) {
return -1;
}
rb_.write(nread);
should_break = true;
}
}
int ClientHandler::write_clear() {
std::array<iovec, 2> iov;
for (;;) {
if (on_write() != 0) {
return -1;
}
auto iovcnt = upstream_->response_riovec(iov.data(), iov.size());
if (iovcnt == 0) {
break;
}
auto nwrite = conn_.writev_clear(iov.data(), iovcnt);
if (nwrite < 0) {
return -1;
}
if (nwrite == 0) {
return 0;
}
upstream_->response_drain(nwrite);
}
conn_.wlimit.stopw();
ev_timer_stop(conn_.loop, &conn_.wt);
return 0;
}
int ClientHandler::proxy_protocol_peek_clear() {
rb_.ensure_chunk();
assert(rb_.rleft() == 0);
auto nread = conn_.peek_clear(rb_.last(), rb_.wleft());
if (nread < 0) {
return -1;
}
if (nread == 0) {
return 0;
}
if (LOG_ENABLED(INFO)) {
CLOG(INFO, this) << "PROXY-protocol: Peek " << nread
<< " bytes from socket";
}
rb_.write(nread);
if (on_read() != 0) {
return -1;
}
rb_.reset();
return 0;
}
int ClientHandler::tls_handshake() {
ev_timer_again(conn_.loop, &conn_.rt);
ERR_clear_error();
auto rv = conn_.tls_handshake();
if (rv == SHRPX_ERR_INPROGRESS) {
return 0;
}
if (rv < 0) {
return -1;
}
if (LOG_ENABLED(INFO)) {
CLOG(INFO, this) << "SSL/TLS handshake completed";
}
if (validate_next_proto() != 0) {
return -1;
}
read_ = &ClientHandler::read_tls;
write_ = &ClientHandler::write_tls;
return 0;
}
int ClientHandler::read_tls() {
auto should_break = false;
ERR_clear_error();
rb_.ensure_chunk();
for (;;) {
// we should process buffered data first before we read EOF.
if (rb_.rleft() && on_read() != 0) {
return -1;
}
if (rb_.rleft() == 0) {
rb_.reset();
} else if (rb_.wleft() == 0) {
conn_.rlimit.stopw();
return 0;
}
if (!ev_is_active(&conn_.rev) || should_break) {
return 0;
}
auto nread = conn_.read_tls(rb_.last(), rb_.wleft());
if (nread == 0) {
if (rb_.rleft() == 0) {
rb_.release_chunk();
}
return 0;
}
if (nread < 0) {
return -1;
}
rb_.write(nread);
should_break = true;
}
}
int ClientHandler::write_tls() {
struct iovec iov;
ERR_clear_error();
if (on_write() != 0) {
return -1;
}
auto iovcnt = upstream_->response_riovec(&iov, 1);
if (iovcnt == 0) {
conn_.start_tls_write_idle();
conn_.wlimit.stopw();
ev_timer_stop(conn_.loop, &conn_.wt);
return 0;
}
for (;;) {
auto nwrite = conn_.write_tls(iov.iov_base, iov.iov_len);
if (nwrite < 0) {
return -1;
}
if (nwrite == 0) {
return 0;
}
upstream_->response_drain(nwrite);
iovcnt = upstream_->response_riovec(&iov, 1);
if (iovcnt == 0) {
return 0;
}
}
}
#ifdef ENABLE_HTTP3
int ClientHandler::read_quic(const UpstreamAddr *faddr,
const Address &remote_addr,
const Address &local_addr,
const ngtcp2_pkt_info &pi, const uint8_t *data,
size_t datalen) {
auto upstream = static_cast<Http3Upstream *>(upstream_.get());
return upstream->on_read(faddr, remote_addr, local_addr, pi, data, datalen);
}
int ClientHandler::write_quic() { return upstream_->on_write(); }
#endif // ENABLE_HTTP3
int ClientHandler::upstream_noop() { return 0; }
int ClientHandler::upstream_read() {
assert(upstream_);
if (upstream_->on_read() != 0) {
return -1;
}
return 0;
}
int ClientHandler::upstream_write() {
assert(upstream_);
if (upstream_->on_write() != 0) {
return -1;
}
if (get_should_close_after_write() && upstream_->response_empty()) {
return -1;
}
return 0;
}
int ClientHandler::upstream_http2_connhd_read() {
auto nread = std::min(left_connhd_len_, rb_.rleft());
if (memcmp(&NGHTTP2_CLIENT_MAGIC[NGHTTP2_CLIENT_MAGIC_LEN - left_connhd_len_],
rb_.pos(), nread) != 0) {
// There is no downgrade path here. Just drop the connection.
if (LOG_ENABLED(INFO)) {
CLOG(INFO, this) << "invalid client connection header";
}
return -1;
}
left_connhd_len_ -= nread;
rb_.drain(nread);
conn_.rlimit.startw();
if (left_connhd_len_ == 0) {
on_read_ = &ClientHandler::upstream_read;
// Run on_read to process data left in buffer since they are not
// notified further
if (on_read() != 0) {
return -1;
}
return 0;
}
return 0;
}
int ClientHandler::upstream_http1_connhd_read() {
auto nread = std::min(left_connhd_len_, rb_.rleft());
if (memcmp(&NGHTTP2_CLIENT_MAGIC[NGHTTP2_CLIENT_MAGIC_LEN - left_connhd_len_],
rb_.pos(), nread) != 0) {
if (LOG_ENABLED(INFO)) {
CLOG(INFO, this) << "This is HTTP/1.1 connection, "
<< "but may be upgraded to HTTP/2 later.";
}
// Reset header length for later HTTP/2 upgrade
left_connhd_len_ = NGHTTP2_CLIENT_MAGIC_LEN;
on_read_ = &ClientHandler::upstream_read;
on_write_ = &ClientHandler::upstream_write;
if (on_read() != 0) {
return -1;
}
return 0;
}
left_connhd_len_ -= nread;
rb_.drain(nread);
conn_.rlimit.startw();
if (left_connhd_len_ == 0) {
if (LOG_ENABLED(INFO)) {
CLOG(INFO, this) << "direct HTTP/2 connection";
}
direct_http2_upgrade();
on_read_ = &ClientHandler::upstream_read;
on_write_ = &ClientHandler::upstream_write;
// Run on_read to process data left in buffer since they are not
// notified further
if (on_read() != 0) {
return -1;
}
return 0;
}
return 0;
}
ClientHandler::ClientHandler(Worker *worker, int fd, SSL *ssl,
const StringRef &ipaddr, const StringRef &port,
int family, const UpstreamAddr *faddr)
: // We use balloc_ for TLS session ID (64), ipaddr (IPv6) (39),
// port (5), forwarded-for (IPv6) (41), alpn (5), proxyproto
// ipaddr (15), proxyproto port (5), sni (32, estimated). we
// need terminal NULL byte for each. We also require 8 bytes
// header for each allocation. We align at 16 bytes boundary,
// so the required space is 64 + 48 + 16 + 48 + 16 + 16 + 16 +
// 32 + 8 + 8 * 8 = 328.
balloc_(512, 512),
rb_(worker->get_mcpool()),
conn_(worker->get_loop(), fd, ssl, worker->get_mcpool(),
get_config()->conn.upstream.timeout.write,
get_config()->conn.upstream.timeout.read,
get_config()->conn.upstream.ratelimit.write,
get_config()->conn.upstream.ratelimit.read, writecb, readcb,
timeoutcb, this, get_config()->tls.dyn_rec.warmup_threshold,
get_config()->tls.dyn_rec.idle_timeout,
faddr->quic ? Proto::HTTP3 : Proto::NONE),
ipaddr_(make_string_ref(balloc_, ipaddr)),
port_(make_string_ref(balloc_, port)),
faddr_(faddr),
worker_(worker),
left_connhd_len_(NGHTTP2_CLIENT_MAGIC_LEN),
affinity_hash_(0),
should_close_after_write_(false),
affinity_hash_computed_(false) {
++worker_->get_worker_stat()->num_connections;
ev_timer_init(&reneg_shutdown_timer_, shutdowncb, 0., 0.);
reneg_shutdown_timer_.data = this;
if (!faddr->quic) {
conn_.rlimit.startw();
}
ev_timer_again(conn_.loop, &conn_.rt);
auto config = get_config();
if (!faddr->quic) {
if (faddr_->accept_proxy_protocol ||
config->conn.upstream.accept_proxy_protocol) {
read_ = &ClientHandler::proxy_protocol_peek_clear;
write_ = &ClientHandler::noop;
on_read_ = &ClientHandler::proxy_protocol_read;
on_write_ = &ClientHandler::upstream_noop;
} else {
setup_upstream_io_callback();
}
}
auto &fwdconf = config->http.forwarded;
if (fwdconf.params & FORWARDED_FOR) {
if (fwdconf.for_node_type == ForwardedNode::OBFUSCATED) {
// 1 for '_'
auto len = SHRPX_OBFUSCATED_NODE_LENGTH + 1;
// 1 for terminating NUL.
auto buf = make_byte_ref(balloc_, len + 1);
auto p = buf.base;
*p++ = '_';
p = util::random_alpha_digit(p, p + SHRPX_OBFUSCATED_NODE_LENGTH,
worker_->get_randgen());
*p = '\0';
forwarded_for_ = StringRef{buf.base, p};
} else {
init_forwarded_for(family, ipaddr_);
}
}
}
void ClientHandler::init_forwarded_for(int family, const StringRef &ipaddr) {
if (family == AF_INET6) {
// 2 for '[' and ']'
auto len = 2 + ipaddr.size();
// 1 for terminating NUL.
auto buf = make_byte_ref(balloc_, len + 1);
auto p = buf.base;
*p++ = '[';
p = std::copy(std::begin(ipaddr), std::end(ipaddr), p);
*p++ = ']';
*p = '\0';
forwarded_for_ = StringRef{buf.base, p};
} else {
// family == AF_INET or family == AF_UNIX
forwarded_for_ = ipaddr;
}
}
void ClientHandler::setup_upstream_io_callback() {
if (conn_.tls.ssl) {
conn_.prepare_server_handshake();
read_ = write_ = &ClientHandler::tls_handshake;
on_read_ = &ClientHandler::upstream_noop;
on_write_ = &ClientHandler::upstream_write;
} else {
// For non-TLS version, first create HttpsUpstream. It may be
// upgraded to HTTP/2 through HTTP Upgrade or direct HTTP/2
// connection.
upstream_ = std::make_unique<HttpsUpstream>(this);
alpn_ = StringRef::from_lit("http/1.1");
read_ = &ClientHandler::read_clear;
write_ = &ClientHandler::write_clear;
on_read_ = &ClientHandler::upstream_http1_connhd_read;
on_write_ = &ClientHandler::upstream_noop;
}
}
#ifdef ENABLE_HTTP3
void ClientHandler::setup_http3_upstream(
std::unique_ptr<Http3Upstream> &&upstream) {
upstream_ = std::move(upstream);
write_ = &ClientHandler::write_quic;
auto config = get_config();
reset_upstream_read_timeout(config->conn.upstream.timeout.http3_read);
}
#endif // ENABLE_HTTP3
ClientHandler::~ClientHandler() {
if (LOG_ENABLED(INFO)) {
CLOG(INFO, this) << "Deleting";
}
if (upstream_) {
upstream_->on_handler_delete();
}
auto worker_stat = worker_->get_worker_stat();
--worker_stat->num_connections;
if (worker_stat->num_connections == 0) {
worker_->schedule_clear_mcpool();
}
ev_timer_stop(conn_.loop, &reneg_shutdown_timer_);
// TODO If backend is http/2, and it is in CONNECTED state, signal
// it and make it loopbreak when output is zero.
if (worker_->get_graceful_shutdown() && worker_stat->num_connections == 0 &&
worker_stat->num_close_waits == 0) {
ev_break(conn_.loop);
}
if (LOG_ENABLED(INFO)) {
CLOG(INFO, this) << "Deleted";
}
}
Upstream *ClientHandler::get_upstream() { return upstream_.get(); }
struct ev_loop *ClientHandler::get_loop() const {
return conn_.loop;
}
void ClientHandler::reset_upstream_read_timeout(ev_tstamp t) {
conn_.rt.repeat = t;
if (ev_is_active(&conn_.rt)) {
ev_timer_again(conn_.loop, &conn_.rt);
}
}
void ClientHandler::reset_upstream_write_timeout(ev_tstamp t) {
conn_.wt.repeat = t;
if (ev_is_active(&conn_.wt)) {
ev_timer_again(conn_.loop, &conn_.wt);
}
}
void ClientHandler::repeat_read_timer() {
ev_timer_again(conn_.loop, &conn_.rt);
}
void ClientHandler::stop_read_timer() { ev_timer_stop(conn_.loop, &conn_.rt); }
int ClientHandler::validate_next_proto() {
const unsigned char *next_proto = nullptr;
unsigned int next_proto_len = 0;
// First set callback for catch all cases
on_read_ = &ClientHandler::upstream_read;
#ifndef OPENSSL_NO_NEXTPROTONEG
SSL_get0_next_proto_negotiated(conn_.tls.ssl, &next_proto, &next_proto_len);
#endif // !OPENSSL_NO_NEXTPROTONEG
#if OPENSSL_VERSION_NUMBER >= 0x10002000L
if (next_proto == nullptr) {
SSL_get0_alpn_selected(conn_.tls.ssl, &next_proto, &next_proto_len);
}
#endif // OPENSSL_VERSION_NUMBER >= 0x10002000L
StringRef proto;
if (next_proto) {
proto = StringRef{next_proto, next_proto_len};
if (LOG_ENABLED(INFO)) {
CLOG(INFO, this) << "The negotiated next protocol: " << proto;
}
} else {
if (LOG_ENABLED(INFO)) {
CLOG(INFO, this) << "No protocol negotiated. Fallback to HTTP/1.1";
}
proto = StringRef::from_lit("http/1.1");
}
if (!tls::in_proto_list(get_config()->tls.npn_list, proto)) {
if (LOG_ENABLED(INFO)) {
CLOG(INFO, this) << "The negotiated protocol is not supported: " << proto;
}
return -1;
}
if (util::check_h2_is_selected(proto)) {
on_read_ = &ClientHandler::upstream_http2_connhd_read;
auto http2_upstream = std::make_unique<Http2Upstream>(this);
upstream_ = std::move(http2_upstream);
alpn_ = make_string_ref(balloc_, proto);
// At this point, input buffer is already filled with some bytes.
// The read callback is not called until new data come. So consume
// input buffer here.
if (on_read() != 0) {
return -1;
}
return 0;
}
if (proto == StringRef::from_lit("http/1.1")) {
upstream_ = std::make_unique<HttpsUpstream>(this);
alpn_ = StringRef::from_lit("http/1.1");
// At this point, input buffer is already filled with some bytes.
// The read callback is not called until new data come. So consume
// input buffer here.
if (on_read() != 0) {
return -1;
}
return 0;
}
if (LOG_ENABLED(INFO)) {
CLOG(INFO, this) << "The negotiated protocol is not supported";
}
return -1;
}
int ClientHandler::do_read() { return read_(*this); }
int ClientHandler::do_write() { return write_(*this); }
int ClientHandler::on_read() {
if (rb_.chunk_avail()) {
auto rv = on_read_(*this);
if (rv != 0) {
return rv;
}
}
conn_.handle_tls_pending_read();
return 0;
}
int ClientHandler::on_write() { return on_write_(*this); }
const StringRef &ClientHandler::get_ipaddr() const { return ipaddr_; }
bool ClientHandler::get_should_close_after_write() const {
return should_close_after_write_;
}
void ClientHandler::set_should_close_after_write(bool f) {
should_close_after_write_ = f;
}
void ClientHandler::pool_downstream_connection(
std::unique_ptr<DownstreamConnection> dconn) {
if (!dconn->poolable()) {
return;
}
dconn->set_client_handler(nullptr);
auto &group = dconn->get_downstream_addr_group();
if (LOG_ENABLED(INFO)) {
CLOG(INFO, this) << "Pooling downstream connection DCONN:" << dconn.get()
<< " in group " << group;
}
auto addr = dconn->get_addr();
auto &dconn_pool = addr->dconn_pool;
dconn_pool->add_downstream_connection(std::move(dconn));
}
namespace {
// Computes 32bits hash for session affinity for IP address |ip|.
uint32_t compute_affinity_from_ip(const StringRef &ip) {
int rv;
std::array<uint8_t, 32> buf;
rv = util::sha256(buf.data(), ip);
if (rv != 0) {
// Not sure when sha256 failed. Just fall back to another
// function.
return util::hash32(ip);
}
return (static_cast<uint32_t>(buf[0]) << 24) |
(static_cast<uint32_t>(buf[1]) << 16) |
(static_cast<uint32_t>(buf[2]) << 8) | static_cast<uint32_t>(buf[3]);
}
} // namespace
Http2Session *ClientHandler::get_http2_session(
const std::shared_ptr<DownstreamAddrGroup> &group, DownstreamAddr *addr) {
auto &shared_addr = group->shared_addr;
if (LOG_ENABLED(INFO)) {
CLOG(INFO, this) << "Selected DownstreamAddr=" << addr
<< ", index=" << (addr - shared_addr->addrs.data());
}
for (auto session = addr->http2_extra_freelist.head; session;) {
auto next = session->dlnext;
if (session->max_concurrency_reached(0)) {
if (LOG_ENABLED(INFO)) {
CLOG(INFO, this)
<< "Maximum streams have been reached for Http2Session(" << session
<< "). Skip it";
}
session->remove_from_freelist();
session = next;
continue;
}
if (LOG_ENABLED(INFO)) {
CLOG(INFO, this) << "Use Http2Session " << session
<< " from http2_extra_freelist";
}
if (session->max_concurrency_reached(1)) {
if (LOG_ENABLED(INFO)) {
CLOG(INFO, this) << "Maximum streams are reached for Http2Session("
<< session << ").";
}
session->remove_from_freelist();
}
return session;
}
auto session = new Http2Session(conn_.loop, worker_->get_cl_ssl_ctx(),
worker_, group, addr);
if (LOG_ENABLED(INFO)) {
CLOG(INFO, this) << "Create new Http2Session " << session;
}
session->add_to_extra_freelist();
return session;
}
uint32_t ClientHandler::get_affinity_cookie(Downstream *downstream,
const StringRef &cookie_name) {
auto h = downstream->find_affinity_cookie(cookie_name);
if (h) {
return h;
}
auto d = std::uniform_int_distribution<uint32_t>(
1, std::numeric_limits<uint32_t>::max());
auto rh = d(worker_->get_randgen());
h = util::hash32(StringRef{reinterpret_cast<uint8_t *>(&rh),
reinterpret_cast<uint8_t *>(&rh) + sizeof(rh)});
downstream->renew_affinity_cookie(h);
return h;
}
namespace {
void reschedule_addr(
std::priority_queue<DownstreamAddrEntry, std::vector<DownstreamAddrEntry>,
DownstreamAddrEntryGreater> &pq,
DownstreamAddr *addr) {
auto penalty = MAX_DOWNSTREAM_ADDR_WEIGHT + addr->pending_penalty;
addr->cycle += penalty / addr->weight;
addr->pending_penalty = penalty % addr->weight;
pq.push(DownstreamAddrEntry{addr, addr->seq, addr->cycle});
addr->queued = true;
}
} // namespace
namespace {
void reschedule_wg(
std::priority_queue<WeightGroupEntry, std::vector<WeightGroupEntry>,
WeightGroupEntryGreater> &pq,
WeightGroup *wg) {
auto penalty = MAX_DOWNSTREAM_ADDR_WEIGHT + wg->pending_penalty;
wg->cycle += penalty / wg->weight;
wg->pending_penalty = penalty % wg->weight;
pq.push(WeightGroupEntry{wg, wg->seq, wg->cycle});
wg->queued = true;
}
} // namespace
DownstreamAddr *ClientHandler::get_downstream_addr(int &err,
DownstreamAddrGroup *group,
Downstream *downstream) {
err = 0;
switch (faddr_->alt_mode) {
case UpstreamAltMode::API:
case UpstreamAltMode::HEALTHMON:
assert(0);
default:
break;
}
auto &shared_addr = group->shared_addr;
if (shared_addr->affinity.type != SessionAffinity::NONE) {
uint32_t hash;
switch (shared_addr->affinity.type) {
case SessionAffinity::IP:
if (!affinity_hash_computed_) {
affinity_hash_ = compute_affinity_from_ip(ipaddr_);
affinity_hash_computed_ = true;
}
hash = affinity_hash_;
break;
case SessionAffinity::COOKIE:
if (shared_addr->affinity.cookie.stickiness ==
SessionAffinityCookieStickiness::STRICT) {
return get_downstream_addr_strict_affinity(err, shared_addr,
downstream);
}
hash = get_affinity_cookie(downstream, shared_addr->affinity.cookie.name);
break;
default:
assert(0);
}
const auto &affinity_hash = shared_addr->affinity_hash;
auto it = std::lower_bound(
std::begin(affinity_hash), std::end(affinity_hash), hash,
[](const AffinityHash &lhs, uint32_t rhs) { return lhs.hash < rhs; });
if (it == std::end(affinity_hash)) {
it = std::begin(affinity_hash);
}
auto aff_idx =
static_cast<size_t>(std::distance(std::begin(affinity_hash), it));
auto idx = (*it).idx;
auto addr = &shared_addr->addrs[idx];
if (addr->connect_blocker->blocked()) {
size_t i;
for (i = aff_idx + 1; i != aff_idx; ++i) {
if (i == shared_addr->affinity_hash.size()) {
i = 0;
}
addr = &shared_addr->addrs[shared_addr->affinity_hash[i].idx];
if (addr->connect_blocker->blocked()) {
continue;
}
break;
}
if (i == aff_idx) {
err = -1;
return nullptr;
}
}
return addr;
}
auto &wgpq = shared_addr->pq;
for (;;) {
if (wgpq.empty()) {
CLOG(INFO, this) << "No working downstream address found";
err = -1;
return nullptr;
}
auto wg = wgpq.top().wg;
wgpq.pop();
wg->queued = false;
for (;;) {
if (wg->pq.empty()) {
break;
}
auto addr = wg->pq.top().addr;
wg->pq.pop();
addr->queued = false;
if (addr->connect_blocker->blocked()) {
continue;
}
reschedule_addr(wg->pq, addr);
reschedule_wg(wgpq, wg);
return addr;
}
}
}
DownstreamAddr *ClientHandler::get_downstream_addr_strict_affinity(
int &err, const std::shared_ptr<SharedDownstreamAddr> &shared_addr,
Downstream *downstream) {
const auto &affinity_hash = shared_addr->affinity_hash;
auto h = downstream->find_affinity_cookie(shared_addr->affinity.cookie.name);
if (h) {
auto it = shared_addr->affinity_hash_map.find(h);
if (it != std::end(shared_addr->affinity_hash_map)) {
auto addr = &shared_addr->addrs[(*it).second];
if (!addr->connect_blocker->blocked()) {
return addr;
}
}
} else {
auto d = std::uniform_int_distribution<uint32_t>(
1, std::numeric_limits<uint32_t>::max());
auto rh = d(worker_->get_randgen());
h = util::hash32(StringRef{reinterpret_cast<uint8_t *>(&rh),
reinterpret_cast<uint8_t *>(&rh) + sizeof(rh)});
}
// Client is not bound to a particular backend, or the bound backend
// is not found, or is blocked. Find new backend using h. Using
// existing h allows us to find new server in a deterministic way.
// It is preferable because multiple concurrent requests with the
// stale cookie might be in-flight.
auto it = std::lower_bound(
std::begin(affinity_hash), std::end(affinity_hash), h,
[](const AffinityHash &lhs, uint32_t rhs) { return lhs.hash < rhs; });
if (it == std::end(affinity_hash)) {
it = std::begin(affinity_hash);
}
auto aff_idx =
static_cast<size_t>(std::distance(std::begin(affinity_hash), it));
auto idx = (*it).idx;
auto addr = &shared_addr->addrs[idx];
if (addr->connect_blocker->blocked()) {
size_t i;
for (i = aff_idx + 1; i != aff_idx; ++i) {
if (i == shared_addr->affinity_hash.size()) {
i = 0;
}
addr = &shared_addr->addrs[shared_addr->affinity_hash[i].idx];
if (addr->connect_blocker->blocked()) {
continue;
}
break;
}
if (i == aff_idx) {
err = -1;
return nullptr;
}
}
downstream->renew_affinity_cookie(addr->affinity_hash);
return addr;
}
std::unique_ptr<DownstreamConnection>
ClientHandler::get_downstream_connection(int &err, Downstream *downstream) {
size_t group_idx;
auto &downstreamconf = *worker_->get_downstream_config();
auto &routerconf = downstreamconf.router;
auto catch_all = downstreamconf.addr_group_catch_all;
auto &groups = worker_->get_downstream_addr_groups();
auto &req = downstream->request();
err = 0;
switch (faddr_->alt_mode) {
case UpstreamAltMode::API: {
auto dconn = std::make_unique<APIDownstreamConnection>(worker_);
dconn->set_client_handler(this);
return dconn;
}
case UpstreamAltMode::HEALTHMON: {
auto dconn = std::make_unique<HealthMonitorDownstreamConnection>();
dconn->set_client_handler(this);
return dconn;
}
default:
break;
}
auto &balloc = downstream->get_block_allocator();
StringRef authority, path;
if (req.forwarded_once) {
if (groups.size() != 1) {
authority = req.orig_authority;
path = req.orig_path;
}
} else {
if (faddr_->sni_fwd) {
authority = sni_;
} else if (!req.authority.empty()) {
authority = req.authority;
} else {
auto h = req.fs.header(http2::HD_HOST);
if (h) {
authority = h->value;
}
}
// CONNECT method does not have path. But we requires path in
// host-path mapping. As workaround, we assume that path is
// "/".
if (!req.regular_connect_method()) {
path = req.path;
}
// Cache the authority and path used for the first-time backend
// selection because per-pattern mruby script can change them.
req.orig_authority = authority;
req.orig_path = path;
req.forwarded_once = true;
}
// Fast path. If we have one group, it must be catch-all group.
if (groups.size() == 1) {
group_idx = 0;
} else {
group_idx = match_downstream_addr_group(routerconf, authority, path, groups,
catch_all, balloc);
}
if (LOG_ENABLED(INFO)) {
CLOG(INFO, this) << "Downstream address group_idx: " << group_idx;
}
if (groups[group_idx]->shared_addr->redirect_if_not_tls && !conn_.tls.ssl) {
if (LOG_ENABLED(INFO)) {
CLOG(INFO, this) << "Downstream address group " << group_idx
<< " requires frontend TLS connection.";
}
err = SHRPX_ERR_TLS_REQUIRED;
return nullptr;
}
auto &group = groups[group_idx];
if (group->shared_addr->dnf) {
auto dconn = std::make_unique<NullDownstreamConnection>(group);
dconn->set_client_handler(this);
return dconn;
}
auto addr = get_downstream_addr(err, group.get(), downstream);
if (addr == nullptr) {
return nullptr;
}
if (addr->proto == Proto::HTTP1) {
auto dconn = addr->dconn_pool->pop_downstream_connection();
if (dconn) {
dconn->set_client_handler(this);
return dconn;
}
if (worker_->get_connect_blocker()->blocked()) {
if (LOG_ENABLED(INFO)) {
DCLOG(INFO, this)
<< "Worker wide backend connection was blocked temporarily";
}
return nullptr;
}
if (LOG_ENABLED(INFO)) {
CLOG(INFO, this) << "Downstream connection pool is empty."
<< " Create new one";
}
dconn = std::make_unique<HttpDownstreamConnection>(group, addr, conn_.loop,
worker_);
dconn->set_client_handler(this);
return dconn;
}
if (LOG_ENABLED(INFO)) {
CLOG(INFO, this) << "Downstream connection pool is empty."
<< " Create new one";
}
auto http2session = get_http2_session(group, addr);
auto dconn = std::make_unique<Http2DownstreamConnection>(http2session);
dconn->set_client_handler(this);
return dconn;
}
MemchunkPool *ClientHandler::get_mcpool() { return worker_->get_mcpool(); }
SSL *ClientHandler::get_ssl() const { return conn_.tls.ssl; }
void ClientHandler::direct_http2_upgrade() {
upstream_ = std::make_unique<Http2Upstream>(this);
alpn_ = StringRef::from_lit(NGHTTP2_CLEARTEXT_PROTO_VERSION_ID);
on_read_ = &ClientHandler::upstream_read;
write_ = &ClientHandler::write_clear;
}
int ClientHandler::perform_http2_upgrade(HttpsUpstream *http) {
auto upstream = std::make_unique<Http2Upstream>(this);
auto output = upstream->get_response_buf();
// We might have written non-final header in response_buf, in this
// case, response_state is still INITIAL. If this non-final header
// and upgrade header fit in output buffer, do upgrade. Otherwise,
// to avoid to send this non-final header as response body in HTTP/2
// upstream, fail upgrade.
auto downstream = http->get_downstream();
auto input = downstream->get_response_buf();
if (upstream->upgrade_upstream(http) != 0) {
return -1;
}
// http pointer is now owned by upstream.
upstream_.release();
// TODO We might get other version id in HTTP2-settings, if we
// support aliasing for h2, but we just use library default for now.
alpn_ = StringRef::from_lit(NGHTTP2_CLEARTEXT_PROTO_VERSION_ID);
on_read_ = &ClientHandler::upstream_http2_connhd_read;
write_ = &ClientHandler::write_clear;
input->remove(*output, input->rleft());
constexpr auto res =
StringRef::from_lit("HTTP/1.1 101 Switching Protocols\r\n"
"Connection: Upgrade\r\n"
"Upgrade: " NGHTTP2_CLEARTEXT_PROTO_VERSION_ID "\r\n"
"\r\n");
output->append(res);
upstream_ = std::move(upstream);
signal_write();
return 0;
}
bool ClientHandler::get_http2_upgrade_allowed() const { return !conn_.tls.ssl; }
StringRef ClientHandler::get_upstream_scheme() const {
if (conn_.tls.ssl) {
return StringRef::from_lit("https");
} else {
return StringRef::from_lit("http");
}
}
void ClientHandler::start_immediate_shutdown() {
ev_timer_start(conn_.loop, &reneg_shutdown_timer_);
}
void ClientHandler::write_accesslog(Downstream *downstream) {
auto &req = downstream->request();
auto config = get_config();
if (!req.tstamp) {
auto lgconf = log_config();
lgconf->update_tstamp(std::chrono::system_clock::now());
req.tstamp = lgconf->tstamp;
}
upstream_accesslog(
config->logging.access.format,
LogSpec{
downstream,
ipaddr_,
alpn_,
sni_,
conn_.tls.ssl,
std::chrono::high_resolution_clock::now(), // request_end_time
port_,
faddr_->port,
config->pid,
});
}
ClientHandler::ReadBuf *ClientHandler::get_rb() { return &rb_; }
void ClientHandler::signal_write() { conn_.wlimit.startw(); }
RateLimit *ClientHandler::get_rlimit() { return &conn_.rlimit; }
RateLimit *ClientHandler::get_wlimit() { return &conn_.wlimit; }
ev_io *ClientHandler::get_wev() { return &conn_.wev; }
Worker *ClientHandler::get_worker() const { return worker_; }
namespace {
ssize_t parse_proxy_line_port(const uint8_t *first, const uint8_t *last) {
auto p = first;
int32_t port = 0;
if (p == last) {
return -1;
}
if (*p == '0') {
if (p + 1 != last && util::is_digit(*(p + 1))) {
return -1;
}
return 1;
}
for (; p != last && util::is_digit(*p); ++p) {
port *= 10;
port += *p - '0';
if (port > 65535) {
return -1;
}
}
return p - first;
}
} // namespace
int ClientHandler::on_proxy_protocol_finish() {
auto len = rb_.pos() - rb_.begin();
assert(len);
if (LOG_ENABLED(INFO)) {
CLOG(INFO, this) << "PROXY-protocol: Draining " << len
<< " bytes from socket";
}
rb_.reset();
if (conn_.read_nolim_clear(rb_.pos(), len) < 0) {
return -1;
}
rb_.reset();
setup_upstream_io_callback();
return 0;
}
namespace {
// PROXY-protocol v2 header signature
constexpr uint8_t PROXY_PROTO_V2_SIG[] =
"\x0D\x0A\x0D\x0A\x00\x0D\x0A\x51\x55\x49\x54\x0A";
// PROXY-protocol v2 header length
constexpr size_t PROXY_PROTO_V2_HDLEN =
str_size(PROXY_PROTO_V2_SIG) + /* ver_cmd(1) + fam(1) + len(2) = */ 4;
} // namespace
// http://www.haproxy.org/download/1.5/doc/proxy-protocol.txt
int ClientHandler::proxy_protocol_read() {
if (LOG_ENABLED(INFO)) {
CLOG(INFO, this) << "PROXY-protocol: Started";
}
auto first = rb_.pos();
if (rb_.rleft() >= PROXY_PROTO_V2_HDLEN &&
(*(first + str_size(PROXY_PROTO_V2_SIG)) & 0xf0) == 0x20) {
if (LOG_ENABLED(INFO)) {
CLOG(INFO, this) << "PROXY-protocol: Detected v2 header signature";
}
return proxy_protocol_v2_read();
}
// NULL character really destroys functions which expects NULL
// terminated string. We won't expect it in PROXY protocol line, so
// find it here.
auto chrs = std::array<char, 2>{'\n', '\0'};
constexpr size_t MAX_PROXY_LINELEN = 107;
auto bufend = rb_.pos() + std::min(MAX_PROXY_LINELEN, rb_.rleft());
auto end =
std::find_first_of(rb_.pos(), bufend, std::begin(chrs), std::end(chrs));
if (end == bufend || *end == '\0' || end == rb_.pos() || *(end - 1) != '\r') {
if (LOG_ENABLED(INFO)) {
CLOG(INFO, this) << "PROXY-protocol-v1: No ending CR LF sequence found";
}
return -1;
}
--end;
constexpr auto HEADER = StringRef::from_lit("PROXY ");
if (static_cast<size_t>(end - rb_.pos()) < HEADER.size()) {
if (LOG_ENABLED(INFO)) {
CLOG(INFO, this) << "PROXY-protocol-v1: PROXY version 1 ID not found";
}
return -1;
}
if (!util::streq(HEADER, StringRef{rb_.pos(), HEADER.size()})) {
if (LOG_ENABLED(INFO)) {
CLOG(INFO, this) << "PROXY-protocol-v1: Bad PROXY protocol version 1 ID";
}
return -1;
}
rb_.drain(HEADER.size());
int family;
if (rb_.pos()[0] == 'T') {
if (end - rb_.pos() < 5) {
if (LOG_ENABLED(INFO)) {
CLOG(INFO, this) << "PROXY-protocol-v1: INET protocol family not found";
}
return -1;
}
if (rb_.pos()[1] != 'C' || rb_.pos()[2] != 'P') {
if (LOG_ENABLED(INFO)) {
CLOG(INFO, this) << "PROXY-protocol-v1: Unknown INET protocol family";
}
return -1;
}
switch (rb_.pos()[3]) {
case '4':
family = AF_INET;
break;
case '6':
family = AF_INET6;
break;
default:
if (LOG_ENABLED(INFO)) {
CLOG(INFO, this) << "PROXY-protocol-v1: Unknown INET protocol family";
}
return -1;
}
rb_.drain(5);
} else {
if (end - rb_.pos() < 7) {
if (LOG_ENABLED(INFO)) {
CLOG(INFO, this) << "PROXY-protocol-v1: INET protocol family not found";
}
return -1;
}
if (!util::streq_l("UNKNOWN", rb_.pos(), 7)) {
if (LOG_ENABLED(INFO)) {
CLOG(INFO, this) << "PROXY-protocol-v1: Unknown INET protocol family";
}
return -1;
}
rb_.drain(end + 2 - rb_.pos());
return on_proxy_protocol_finish();
}
// source address
auto token_end = std::find(rb_.pos(), end, ' ');
if (token_end == end) {
if (LOG_ENABLED(INFO)) {
CLOG(INFO, this) << "PROXY-protocol-v1: Source address not found";
}
return -1;
}
*token_end = '\0';
if (!util::numeric_host(reinterpret_cast<const char *>(rb_.pos()), family)) {
if (LOG_ENABLED(INFO)) {
CLOG(INFO, this) << "PROXY-protocol-v1: Invalid source address";
}
return -1;
}
auto src_addr = rb_.pos();
auto src_addrlen = token_end - rb_.pos();
rb_.drain(token_end - rb_.pos() + 1);
// destination address
token_end = std::find(rb_.pos(), end, ' ');
if (token_end == end) {
if (LOG_ENABLED(INFO)) {
CLOG(INFO, this) << "PROXY-protocol-v1: Destination address not found";
}
return -1;
}
*token_end = '\0';
if (!util::numeric_host(reinterpret_cast<const char *>(rb_.pos()), family)) {
if (LOG_ENABLED(INFO)) {
CLOG(INFO, this) << "PROXY-protocol-v1: Invalid destination address";
}
return -1;
}
// Currently we don't use destination address
rb_.drain(token_end - rb_.pos() + 1);
// source port
auto n = parse_proxy_line_port(rb_.pos(), end);
if (n <= 0 || *(rb_.pos() + n) != ' ') {
if (LOG_ENABLED(INFO)) {
CLOG(INFO, this) << "PROXY-protocol-v1: Invalid source port";
}
return -1;
}
rb_.pos()[n] = '\0';
auto src_port = rb_.pos();
auto src_portlen = n;
rb_.drain(n + 1);
// destination port
n = parse_proxy_line_port(rb_.pos(), end);
if (n <= 0 || rb_.pos() + n != end) {
if (LOG_ENABLED(INFO)) {
CLOG(INFO, this) << "PROXY-protocol-v1: Invalid destination port";
}
return -1;
}
// Currently we don't use destination port
rb_.drain(end + 2 - rb_.pos());
ipaddr_ =
make_string_ref(balloc_, StringRef{src_addr, src_addr + src_addrlen});
port_ = make_string_ref(balloc_, StringRef{src_port, src_port + src_portlen});
if (LOG_ENABLED(INFO)) {
CLOG(INFO, this) << "PROXY-protocol-v1: Finished, " << (rb_.pos() - first)
<< " bytes read";
}
auto config = get_config();
auto &fwdconf = config->http.forwarded;
if ((fwdconf.params & FORWARDED_FOR) &&
fwdconf.for_node_type == ForwardedNode::IP) {
init_forwarded_for(family, ipaddr_);
}
return on_proxy_protocol_finish();
}
int ClientHandler::proxy_protocol_v2_read() {
// Assume that first str_size(PROXY_PROTO_V2_SIG) octets match v2
// protocol signature and followed by the bytes which indicates v2.
assert(rb_.rleft() >= PROXY_PROTO_V2_HDLEN);
auto p = rb_.pos() + str_size(PROXY_PROTO_V2_SIG);
assert(((*p) & 0xf0) == 0x20);
enum { LOCAL, PROXY } cmd;
auto cmd_bits = (*p++) & 0xf;
switch (cmd_bits) {
case 0x0:
cmd = LOCAL;
break;
case 0x01:
cmd = PROXY;
break;
default:
if (LOG_ENABLED(INFO)) {
CLOG(INFO, this) << "PROXY-protocol-v2: Unknown command " << log::hex
<< cmd_bits;
}
return -1;
}
auto fam = *p++;
uint16_t len;
memcpy(&len, p, sizeof(len));
len = ntohs(len);
p += sizeof(len);
if (LOG_ENABLED(INFO)) {
CLOG(INFO, this) << "PROXY-protocol-v2: Detected family=" << log::hex << fam
<< ", len=" << log::dec << len;
}
if (rb_.last() - p < len) {
if (LOG_ENABLED(INFO)) {
CLOG(INFO, this)
<< "PROXY-protocol-v2: Prematurely truncated header block; require "
<< len << " bytes, " << rb_.last() - p << " bytes left";
}
return -1;
}
int family;
std::array<char, std::max(INET_ADDRSTRLEN, INET6_ADDRSTRLEN)> src_addr,
dst_addr;
size_t addrlen;
switch (fam) {
case 0x11:
case 0x12:
if (len < 12) {
if (LOG_ENABLED(INFO)) {
CLOG(INFO, this) << "PROXY-protocol-v2: Too short AF_INET addresses";
}
return -1;
}
family = AF_INET;
addrlen = 4;
break;
case 0x21:
case 0x22:
if (len < 36) {
if (LOG_ENABLED(INFO)) {
CLOG(INFO, this) << "PROXY-protocol-v2: Too short AF_INET6 addresses";
}
return -1;
}
family = AF_INET6;
addrlen = 16;
break;
case 0x31:
case 0x32:
if (len < 216) {
if (LOG_ENABLED(INFO)) {
CLOG(INFO, this) << "PROXY-protocol-v2: Too short AF_UNIX addresses";
}
return -1;
}
// fall through
case 0x00: {
// UNSPEC and UNIX are just ignored.
if (LOG_ENABLED(INFO)) {
CLOG(INFO, this) << "PROXY-protocol-v2: Ignore combination of address "
"family and protocol "
<< log::hex << fam;
}
rb_.drain(PROXY_PROTO_V2_HDLEN + len);
return on_proxy_protocol_finish();
}
default:
if (LOG_ENABLED(INFO)) {
CLOG(INFO, this) << "PROXY-protocol-v2: Unknown combination of address "
"family and protocol "
<< log::hex << fam;
}
return -1;
}
if (cmd != PROXY) {
if (LOG_ENABLED(INFO)) {
CLOG(INFO, this) << "PROXY-protocol-v2: Ignore non-PROXY command";
}
rb_.drain(PROXY_PROTO_V2_HDLEN + len);
return on_proxy_protocol_finish();
}
if (inet_ntop(family, p, src_addr.data(), src_addr.size()) == nullptr) {
if (LOG_ENABLED(INFO)) {
CLOG(INFO, this) << "PROXY-protocol-v2: Unable to parse source address";
}
return -1;
}
p += addrlen;
if (inet_ntop(family, p, dst_addr.data(), dst_addr.size()) == nullptr) {
if (LOG_ENABLED(INFO)) {
CLOG(INFO, this)
<< "PROXY-protocol-v2: Unable to parse destination address";
}
return -1;
}
p += addrlen;
uint16_t src_port;
memcpy(&src_port, p, sizeof(src_port));
src_port = ntohs(src_port);
// We don't use destination port.
p += 4;
ipaddr_ = make_string_ref(balloc_, StringRef{src_addr.data()});
port_ = util::make_string_ref_uint(balloc_, src_port);
if (LOG_ENABLED(INFO)) {
CLOG(INFO, this) << "PROXY-protocol-v2: Finished reading proxy addresses, "
<< p - rb_.pos() << " bytes read, "
<< PROXY_PROTO_V2_HDLEN + len - (p - rb_.pos())
<< " bytes left";
}
auto config = get_config();
auto &fwdconf = config->http.forwarded;
if ((fwdconf.params & FORWARDED_FOR) &&
fwdconf.for_node_type == ForwardedNode::IP) {
init_forwarded_for(family, ipaddr_);
}
rb_.drain(PROXY_PROTO_V2_HDLEN + len);
return on_proxy_protocol_finish();
}
StringRef ClientHandler::get_forwarded_by() const {
auto &fwdconf = get_config()->http.forwarded;
if (fwdconf.by_node_type == ForwardedNode::OBFUSCATED) {
return fwdconf.by_obfuscated;
}
return faddr_->hostport;
}
StringRef ClientHandler::get_forwarded_for() const { return forwarded_for_; }
const UpstreamAddr *ClientHandler::get_upstream_addr() const { return faddr_; }
Connection *ClientHandler::get_connection() { return &conn_; };
void ClientHandler::set_tls_sni(const StringRef &sni) {
sni_ = make_string_ref(balloc_, sni);
}
StringRef ClientHandler::get_tls_sni() const { return sni_; }
StringRef ClientHandler::get_alpn() const { return alpn_; }
BlockAllocator &ClientHandler::get_block_allocator() { return balloc_; }
void ClientHandler::set_alpn_from_conn() {
const unsigned char *alpn;
unsigned int alpnlen;
SSL_get0_alpn_selected(conn_.tls.ssl, &alpn, &alpnlen);
alpn_ = make_string_ref(balloc_, StringRef{alpn, alpnlen});
}
} // namespace shrpx