nghttp2/src/memchunk.h

570 lines
13 KiB
C++

/*
* nghttp2 - HTTP/2 C Library
*
* Copyright (c) 2014 Tatsuhiro Tsujikawa
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
* LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
* OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
* WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#ifndef MEMCHUNK_H
#define MEMCHUNK_H
#include "nghttp2_config.h"
#include <limits.h>
#ifdef _WIN32
/* Structure for scatter/gather I/O. */
struct iovec {
void *iov_base; /* Pointer to data. */
size_t iov_len; /* Length of data. */
};
#else // !_WIN32
# include <sys/uio.h>
#endif // !_WIN32
#include <cassert>
#include <cstring>
#include <memory>
#include <array>
#include <algorithm>
#include <string>
#include "template.h"
namespace nghttp2 {
#define DEFAULT_WR_IOVCNT 16
#if defined(IOV_MAX) && IOV_MAX < DEFAULT_WR_IOVCNT
# define MAX_WR_IOVCNT IOV_MAX
#else // !defined(IOV_MAX) || IOV_MAX >= DEFAULT_WR_IOVCNT
# define MAX_WR_IOVCNT DEFAULT_WR_IOVCNT
#endif // !defined(IOV_MAX) || IOV_MAX >= DEFAULT_WR_IOVCNT
template <size_t N> struct Memchunk {
Memchunk(Memchunk *next_chunk)
: pos(std::begin(buf)), last(pos), knext(next_chunk), next(nullptr) {}
size_t len() const { return last - pos; }
size_t left() const { return std::end(buf) - last; }
void reset() { pos = last = std::begin(buf); }
std::array<uint8_t, N> buf;
uint8_t *pos, *last;
Memchunk *knext;
Memchunk *next;
static const size_t size = N;
};
template <typename T> struct Pool {
Pool() : pool(nullptr), freelist(nullptr), poolsize(0) {}
~Pool() { clear(); }
T *get() {
if (freelist) {
auto m = freelist;
freelist = freelist->next;
m->next = nullptr;
m->reset();
return m;
}
pool = new T{pool};
poolsize += T::size;
return pool;
}
void recycle(T *m) {
m->next = freelist;
freelist = m;
}
void clear() {
freelist = nullptr;
for (auto p = pool; p;) {
auto knext = p->knext;
delete p;
p = knext;
}
pool = nullptr;
poolsize = 0;
}
using value_type = T;
T *pool;
T *freelist;
size_t poolsize;
};
template <typename Memchunk> struct Memchunks {
Memchunks(Pool<Memchunk> *pool)
: pool(pool), head(nullptr), tail(nullptr), len(0) {}
Memchunks(const Memchunks &) = delete;
Memchunks(Memchunks &&other) noexcept
: pool(other.pool), head(other.head), tail(other.tail), len(other.len) {
// keep other.pool
other.head = other.tail = nullptr;
other.len = 0;
}
Memchunks &operator=(const Memchunks &) = delete;
Memchunks &operator=(Memchunks &&other) noexcept {
if (this == &other) {
return *this;
}
reset();
pool = other.pool;
head = other.head;
tail = other.tail;
len = other.len;
other.head = other.tail = nullptr;
other.len = 0;
return *this;
}
~Memchunks() {
if (!pool) {
return;
}
for (auto m = head; m;) {
auto next = m->next;
pool->recycle(m);
m = next;
}
}
size_t append(char c) {
if (!tail) {
head = tail = pool->get();
} else if (tail->left() == 0) {
tail->next = pool->get();
tail = tail->next;
}
*tail->last++ = c;
++len;
return 1;
}
size_t append(const void *src, size_t count) {
if (count == 0) {
return 0;
}
auto first = static_cast<const uint8_t *>(src);
auto last = first + count;
if (!tail) {
head = tail = pool->get();
}
for (;;) {
auto n = std::min(static_cast<size_t>(last - first), tail->left());
tail->last = std::copy_n(first, n, tail->last);
first += n;
len += n;
if (first == last) {
break;
}
tail->next = pool->get();
tail = tail->next;
}
return count;
}
template <size_t N> size_t append(const char (&s)[N]) {
return append(s, N - 1);
}
size_t append(const std::string &s) { return append(s.c_str(), s.size()); }
size_t append(const StringRef &s) { return append(s.c_str(), s.size()); }
size_t append(const ImmutableString &s) {
return append(s.c_str(), s.size());
}
size_t remove(void *dest, size_t count) {
if (!tail || count == 0) {
return 0;
}
auto first = static_cast<uint8_t *>(dest);
auto last = first + count;
auto m = head;
while (m) {
auto next = m->next;
auto n = std::min(static_cast<size_t>(last - first), m->len());
assert(m->len());
first = std::copy_n(m->pos, n, first);
m->pos += n;
len -= n;
if (m->len() > 0) {
break;
}
pool->recycle(m);
m = next;
}
head = m;
if (head == nullptr) {
tail = nullptr;
}
return first - static_cast<uint8_t *>(dest);
}
size_t remove(Memchunks &dest, size_t count) {
if (!tail || count == 0) {
return 0;
}
auto left = count;
auto m = head;
while (m) {
auto next = m->next;
auto n = std::min(left, m->len());
assert(m->len());
dest.append(m->pos, n);
m->pos += n;
len -= n;
left -= n;
if (m->len() > 0) {
break;
}
pool->recycle(m);
m = next;
}
head = m;
if (head == nullptr) {
tail = nullptr;
}
return count - left;
}
size_t remove(Memchunks &dest) {
assert(pool == dest.pool);
if (head == nullptr) {
return 0;
}
auto n = len;
if (dest.tail == nullptr) {
dest.head = head;
} else {
dest.tail->next = head;
}
dest.tail = tail;
dest.len += len;
head = tail = nullptr;
len = 0;
return n;
}
size_t drain(size_t count) {
auto ndata = count;
auto m = head;
while (m) {
auto next = m->next;
auto n = std::min(count, m->len());
m->pos += n;
count -= n;
len -= n;
if (m->len() > 0) {
break;
}
pool->recycle(m);
m = next;
}
head = m;
if (head == nullptr) {
tail = nullptr;
}
return ndata - count;
}
int riovec(struct iovec *iov, int iovcnt) const {
if (!head) {
return 0;
}
auto m = head;
int i;
for (i = 0; i < iovcnt && m; ++i, m = m->next) {
iov[i].iov_base = m->pos;
iov[i].iov_len = m->len();
}
return i;
}
size_t rleft() const { return len; }
void reset() {
for (auto m = head; m;) {
auto next = m->next;
pool->recycle(m);
m = next;
}
len = 0;
head = tail = nullptr;
}
Pool<Memchunk> *pool;
Memchunk *head, *tail;
size_t len;
};
// Wrapper around Memchunks to offer "peeking" functionality.
template <typename Memchunk> struct PeekMemchunks {
PeekMemchunks(Pool<Memchunk> *pool)
: memchunks(pool),
cur(nullptr),
cur_pos(nullptr),
cur_last(nullptr),
len(0),
peeking(true) {}
PeekMemchunks(const PeekMemchunks &) = delete;
PeekMemchunks(PeekMemchunks &&other) noexcept
: memchunks(std::move(other.memchunks)),
cur(other.cur),
cur_pos(other.cur_pos),
cur_last(other.cur_last),
len(other.len),
peeking(other.peeking) {
other.reset();
}
PeekMemchunks &operator=(const PeekMemchunks &) = delete;
PeekMemchunks &operator=(PeekMemchunks &&other) noexcept {
if (this == &other) {
return *this;
}
memchunks = std::move(other.memchunks);
cur = other.cur;
cur_pos = other.cur_pos;
cur_last = other.cur_last;
len = other.len;
peeking = other.peeking;
other.reset();
return *this;
}
size_t append(const void *src, size_t count) {
count = memchunks.append(src, count);
len += count;
return count;
}
size_t remove(void *dest, size_t count) {
if (!peeking) {
count = memchunks.remove(dest, count);
len -= count;
return count;
}
if (count == 0 || len == 0) {
return 0;
}
if (!cur) {
cur = memchunks.head;
cur_pos = cur->pos;
}
// cur_last could be updated in append
cur_last = cur->last;
if (cur_pos == cur_last) {
assert(cur->next);
cur = cur->next;
}
auto first = static_cast<uint8_t *>(dest);
auto last = first + count;
for (;;) {
auto n = std::min(last - first, cur_last - cur_pos);
first = std::copy_n(cur_pos, n, first);
cur_pos += n;
len -= n;
if (first == last) {
break;
}
assert(cur_pos == cur_last);
if (!cur->next) {
break;
}
cur = cur->next;
cur_pos = cur->pos;
cur_last = cur->last;
}
return first - static_cast<uint8_t *>(dest);
}
size_t rleft() const { return len; }
size_t rleft_buffered() const { return memchunks.rleft(); }
void disable_peek(bool drain) {
if (!peeking) {
return;
}
if (drain) {
auto n = rleft_buffered() - rleft();
memchunks.drain(n);
assert(len == memchunks.rleft());
} else {
len = memchunks.rleft();
}
cur = nullptr;
cur_pos = cur_last = nullptr;
peeking = false;
}
void reset() {
memchunks.reset();
cur = nullptr;
cur_pos = cur_last = nullptr;
len = 0;
peeking = true;
}
Memchunks<Memchunk> memchunks;
// Pointer to the Memchunk currently we are reading/writing.
Memchunk *cur;
// Region inside cur, we have processed to cur_pos.
uint8_t *cur_pos, *cur_last;
// This is the length we have left unprocessed. len <=
// memchunk.rleft() must hold.
size_t len;
// true if peeking is enabled. Initially it is true.
bool peeking;
};
using Memchunk16K = Memchunk<16_k>;
using MemchunkPool = Pool<Memchunk16K>;
using DefaultMemchunks = Memchunks<Memchunk16K>;
using DefaultPeekMemchunks = PeekMemchunks<Memchunk16K>;
inline int limit_iovec(struct iovec *iov, int iovcnt, size_t max) {
if (max == 0) {
return 0;
}
for (int i = 0; i < iovcnt; ++i) {
auto d = std::min(max, iov[i].iov_len);
iov[i].iov_len = d;
max -= d;
if (max == 0) {
return i + 1;
}
}
return iovcnt;
}
// MemchunkBuffer is similar to Buffer, but it uses pooled Memchunk
// for its underlying buffer.
template <typename Memchunk> struct MemchunkBuffer {
MemchunkBuffer(Pool<Memchunk> *pool) : pool(pool), chunk(nullptr) {}
MemchunkBuffer(const MemchunkBuffer &) = delete;
MemchunkBuffer(MemchunkBuffer &&other) noexcept
: pool(other.pool), chunk(other.chunk) {
other.chunk = nullptr;
}
MemchunkBuffer &operator=(const MemchunkBuffer &) = delete;
MemchunkBuffer &operator=(MemchunkBuffer &&other) noexcept {
if (this == &other) {
return *this;
}
pool = other.pool;
chunk = other.chunk;
other.chunk = nullptr;
return *this;
}
~MemchunkBuffer() {
if (!pool || !chunk) {
return;
}
pool->recycle(chunk);
}
// Ensures that the underlying buffer is allocated.
void ensure_chunk() {
if (chunk) {
return;
}
chunk = pool->get();
}
// Releases the underlying buffer.
void release_chunk() {
if (!chunk) {
return;
}
pool->recycle(chunk);
chunk = nullptr;
}
// Returns true if the underlying buffer is allocated.
bool chunk_avail() const { return chunk != nullptr; }
// The functions below must be called after the underlying buffer is
// allocated (use ensure_chunk).
// MemchunkBuffer provides the same interface functions with Buffer.
// Since we has chunk as a member variable, pos and last are
// implemented as wrapper functions.
uint8_t *pos() const { return chunk->pos; }
uint8_t *last() const { return chunk->last; }
size_t rleft() const { return chunk->len(); }
size_t wleft() const { return chunk->left(); }
size_t write(const void *src, size_t count) {
count = std::min(count, wleft());
auto p = static_cast<const uint8_t *>(src);
chunk->last = std::copy_n(p, count, chunk->last);
return count;
}
size_t write(size_t count) {
count = std::min(count, wleft());
chunk->last += count;
return count;
}
size_t drain(size_t count) {
count = std::min(count, rleft());
chunk->pos += count;
return count;
}
size_t drain_reset(size_t count) {
count = std::min(count, rleft());
std::copy(chunk->pos + count, chunk->last, std::begin(chunk->buf));
chunk->last = std::begin(chunk->buf) + (chunk->last - (chunk->pos + count));
chunk->pos = std::begin(chunk->buf);
return count;
}
void reset() { chunk->reset(); }
uint8_t *begin() { return std::begin(chunk->buf); }
uint8_t &operator[](size_t n) { return chunk->buf[n]; }
const uint8_t &operator[](size_t n) const { return chunk->buf[n]; }
Pool<Memchunk> *pool;
Memchunk *chunk;
};
using DefaultMemchunkBuffer = MemchunkBuffer<Memchunk16K>;
} // namespace nghttp2
#endif // MEMCHUNK_H