nghttp2/src/shrpx_quic_connection_handl...

775 lines
24 KiB
C++

/*
* nghttp2 - HTTP/2 C Library
*
* Copyright (c) 2021 Tatsuhiro Tsujikawa
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
* LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
* OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
* WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include "shrpx_quic_connection_handler.h"
#include <openssl/rand.h>
#include <ngtcp2/ngtcp2.h>
#include <ngtcp2/ngtcp2_crypto.h>
#include "shrpx_worker.h"
#include "shrpx_client_handler.h"
#include "shrpx_log.h"
#include "shrpx_http3_upstream.h"
#include "shrpx_connection_handler.h"
namespace shrpx {
namespace {
void stateless_reset_bucket_regen_timercb(struct ev_loop *loop, ev_timer *w,
int revents) {
auto quic_conn_handler = static_cast<QUICConnectionHandler *>(w->data);
quic_conn_handler->on_stateless_reset_bucket_regen();
}
} // namespace
QUICConnectionHandler::QUICConnectionHandler(Worker *worker)
: worker_{worker},
stateless_reset_bucket_{SHRPX_QUIC_STATELESS_RESET_BURST} {
ev_timer_init(&stateless_reset_bucket_regen_timer_,
stateless_reset_bucket_regen_timercb, 0., 1.);
stateless_reset_bucket_regen_timer_.data = this;
}
QUICConnectionHandler::~QUICConnectionHandler() {
ev_timer_stop(worker_->get_loop(), &stateless_reset_bucket_regen_timer_);
}
int QUICConnectionHandler::handle_packet(const UpstreamAddr *faddr,
const Address &remote_addr,
const Address &local_addr,
const ngtcp2_pkt_info &pi,
const uint8_t *data, size_t datalen) {
int rv;
ngtcp2_version_cid vc;
rv = ngtcp2_pkt_decode_version_cid(&vc, data, datalen, SHRPX_QUIC_SCIDLEN);
switch (rv) {
case 0:
break;
case NGTCP2_ERR_VERSION_NEGOTIATION:
send_version_negotiation(faddr, vc.version, vc.dcid, vc.dcidlen, vc.scid,
vc.scidlen, remote_addr, local_addr);
return 0;
default:
return 0;
}
auto config = get_config();
ngtcp2_cid dcid_key;
ngtcp2_cid_init(&dcid_key, vc.dcid, vc.dcidlen);
auto conn_handler = worker_->get_connection_handler();
ClientHandler *handler;
auto &quicconf = config->quic;
auto it = connections_.find(dcid_key);
if (it == std::end(connections_)) {
auto cwit = close_waits_.find(dcid_key);
if (cwit != std::end(close_waits_)) {
auto cw = (*cwit).second;
cw->handle_packet(faddr, remote_addr, local_addr, pi, data, datalen);
return 0;
}
if (data[0] & 0x80) {
if (generate_quic_hashed_connection_id(dcid_key, remote_addr, local_addr,
dcid_key) != 0) {
return 0;
}
it = connections_.find(dcid_key);
if (it == std::end(connections_)) {
auto cwit = close_waits_.find(dcid_key);
if (cwit != std::end(close_waits_)) {
auto cw = (*cwit).second;
cw->handle_packet(faddr, remote_addr, local_addr, pi, data, datalen);
return 0;
}
}
}
}
if (it == std::end(connections_)) {
std::array<uint8_t, SHRPX_QUIC_DECRYPTED_DCIDLEN> decrypted_dcid;
auto &qkms = conn_handler->get_quic_keying_materials();
const QUICKeyingMaterial *qkm = nullptr;
if (vc.dcidlen == SHRPX_QUIC_SCIDLEN) {
qkm = select_quic_keying_material(
*qkms.get(), vc.dcid[0] & SHRPX_QUIC_DCID_KM_ID_MASK);
if (decrypt_quic_connection_id(decrypted_dcid.data(),
vc.dcid + SHRPX_QUIC_CID_PREFIX_OFFSET,
qkm->cid_encryption_key.data()) != 0) {
return 0;
}
if (qkm != &qkms->keying_materials.front() ||
!std::equal(std::begin(decrypted_dcid),
std::begin(decrypted_dcid) + SHRPX_QUIC_CID_PREFIXLEN,
worker_->get_cid_prefix())) {
auto quic_lwp =
conn_handler->match_quic_lingering_worker_process_cid_prefix(
decrypted_dcid.data(), decrypted_dcid.size());
if (quic_lwp) {
if (conn_handler->forward_quic_packet_to_lingering_worker_process(
quic_lwp, remote_addr, local_addr, pi, data, datalen) == 0) {
return 0;
}
return 0;
}
}
}
// new connection
auto &upstreamconf = config->conn.upstream;
if (worker_->get_worker_stat()->num_connections >=
upstreamconf.worker_connections) {
if (LOG_ENABLED(INFO)) {
LOG(INFO) << "Too many connections >="
<< upstreamconf.worker_connections;
}
return 0;
}
ngtcp2_pkt_hd hd;
ngtcp2_cid odcid, *podcid = nullptr;
const uint8_t *token = nullptr;
size_t tokenlen = 0;
switch (ngtcp2_accept(&hd, data, datalen)) {
case 0: {
// If we get Initial and it has the CID prefix of this worker,
// it is likely that client is intentionally use the prefix.
// Just drop it.
if (vc.dcidlen == SHRPX_QUIC_SCIDLEN) {
if (qkm != &qkms->keying_materials.front()) {
qkm = &qkms->keying_materials.front();
if (decrypt_quic_connection_id(decrypted_dcid.data(),
vc.dcid + SHRPX_QUIC_CID_PREFIX_OFFSET,
qkm->cid_encryption_key.data()) != 0) {
return 0;
}
}
if (std::equal(std::begin(decrypted_dcid),
std::begin(decrypted_dcid) + SHRPX_QUIC_CID_PREFIXLEN,
worker_->get_cid_prefix())) {
return 0;
}
}
if (worker_->get_graceful_shutdown()) {
send_connection_close(faddr, hd.version, hd.dcid, hd.scid, remote_addr,
local_addr, NGTCP2_CONNECTION_REFUSED,
datalen * 3);
return 0;
}
if (hd.token.len == 0) {
if (quicconf.upstream.require_token) {
send_retry(faddr, vc.version, vc.dcid, vc.dcidlen, vc.scid,
vc.scidlen, remote_addr, local_addr, datalen * 3);
return 0;
}
break;
}
switch (hd.token.base[0]) {
case NGTCP2_CRYPTO_TOKEN_MAGIC_RETRY: {
if (vc.dcidlen != SHRPX_QUIC_SCIDLEN) {
// Initial packets with Retry token must have DCID chosen by
// server.
return 0;
}
auto qkm = select_quic_keying_material(
*qkms.get(), vc.dcid[0] & SHRPX_QUIC_DCID_KM_ID_MASK);
if (verify_retry_token(odcid, hd.token.base, hd.token.len, hd.version,
hd.dcid, &remote_addr.su.sa, remote_addr.len,
qkm->secret.data(), qkm->secret.size()) != 0) {
if (LOG_ENABLED(INFO)) {
LOG(INFO) << "Failed to validate Retry token from remote="
<< util::to_numeric_addr(&remote_addr);
}
// 2nd Retry packet is not allowed, so send CONNECTION_CLOSE
// with INVALID_TOKEN.
send_connection_close(faddr, hd.version, hd.dcid, hd.scid,
remote_addr, local_addr, NGTCP2_INVALID_TOKEN,
datalen * 3);
return 0;
}
if (LOG_ENABLED(INFO)) {
LOG(INFO) << "Successfully validated Retry token from remote="
<< util::to_numeric_addr(&remote_addr);
}
podcid = &odcid;
token = hd.token.base;
tokenlen = hd.token.len;
break;
}
case NGTCP2_CRYPTO_TOKEN_MAGIC_REGULAR: {
// If a token is a regular token, it must be at least
// NGTCP2_MIN_INITIAL_DCIDLEN bytes long.
if (vc.dcidlen < NGTCP2_MIN_INITIAL_DCIDLEN) {
return 0;
}
if (hd.token.len != NGTCP2_CRYPTO_MAX_REGULAR_TOKENLEN + 1) {
if (LOG_ENABLED(INFO)) {
LOG(INFO) << "Failed to validate token from remote="
<< util::to_numeric_addr(&remote_addr);
}
if (quicconf.upstream.require_token) {
send_retry(faddr, vc.version, vc.dcid, vc.dcidlen, vc.scid,
vc.scidlen, remote_addr, local_addr, datalen * 3);
return 0;
}
break;
}
auto qkm = select_quic_keying_material(
*qkms.get(), hd.token.base[NGTCP2_CRYPTO_MAX_REGULAR_TOKENLEN]);
if (verify_token(hd.token.base, hd.token.len - 1, &remote_addr.su.sa,
remote_addr.len, qkm->secret.data(),
qkm->secret.size()) != 0) {
if (LOG_ENABLED(INFO)) {
LOG(INFO) << "Failed to validate token from remote="
<< util::to_numeric_addr(&remote_addr);
}
if (quicconf.upstream.require_token) {
send_retry(faddr, vc.version, vc.dcid, vc.dcidlen, vc.scid,
vc.scidlen, remote_addr, local_addr, datalen * 3);
return 0;
}
break;
}
if (LOG_ENABLED(INFO)) {
LOG(INFO) << "Successfully validated token from remote="
<< util::to_numeric_addr(&remote_addr);
}
token = hd.token.base;
tokenlen = hd.token.len;
break;
}
default:
if (quicconf.upstream.require_token) {
send_retry(faddr, vc.version, vc.dcid, vc.dcidlen, vc.scid,
vc.scidlen, remote_addr, local_addr, datalen * 3);
return 0;
}
break;
}
break;
}
case NGTCP2_ERR_RETRY:
if (worker_->get_graceful_shutdown()) {
send_connection_close(faddr, hd.version, hd.dcid, hd.scid, remote_addr,
local_addr, NGTCP2_CONNECTION_REFUSED,
datalen * 3);
return 0;
}
send_retry(faddr, vc.version, vc.dcid, vc.dcidlen, vc.scid, vc.scidlen,
remote_addr, local_addr, datalen * 3);
return 0;
case NGTCP2_ERR_VERSION_NEGOTIATION:
send_version_negotiation(faddr, vc.version, vc.dcid, vc.dcidlen, vc.scid,
vc.scidlen, remote_addr, local_addr);
return 0;
default:
if (!config->single_thread && !(data[0] & 0x80) &&
vc.dcidlen == SHRPX_QUIC_SCIDLEN &&
!std::equal(std::begin(decrypted_dcid),
std::begin(decrypted_dcid) + SHRPX_QUIC_CID_PREFIXLEN,
worker_->get_cid_prefix())) {
if (conn_handler->forward_quic_packet(faddr, remote_addr, local_addr,
pi, decrypted_dcid.data(), data,
datalen) == 0) {
return 0;
}
}
if (!(data[0] & 0x80)) {
// TODO Must be rate limited
send_stateless_reset(faddr, vc.dcid, vc.dcidlen, remote_addr,
local_addr);
}
return 0;
}
handler = handle_new_connection(faddr, remote_addr, local_addr, hd, podcid,
token, tokenlen);
if (handler == nullptr) {
return 0;
}
} else {
handler = (*it).second;
}
if (handler->read_quic(faddr, remote_addr, local_addr, pi, data, datalen) !=
0) {
delete handler;
return 0;
}
handler->signal_write();
return 0;
}
ClientHandler *QUICConnectionHandler::handle_new_connection(
const UpstreamAddr *faddr, const Address &remote_addr,
const Address &local_addr, const ngtcp2_pkt_hd &hd, const ngtcp2_cid *odcid,
const uint8_t *token, size_t tokenlen) {
std::array<char, NI_MAXHOST> host;
std::array<char, NI_MAXSERV> service;
int rv;
rv = getnameinfo(&remote_addr.su.sa, remote_addr.len, host.data(),
host.size(), service.data(), service.size(),
NI_NUMERICHOST | NI_NUMERICSERV);
if (rv != 0) {
LOG(ERROR) << "getnameinfo() failed: " << gai_strerror(rv);
return nullptr;
}
auto ssl_ctx = worker_->get_quic_sv_ssl_ctx();
assert(ssl_ctx);
auto ssl = tls::create_ssl(ssl_ctx);
if (ssl == nullptr) {
return nullptr;
}
#if OPENSSL_1_1_1_API && !defined(OPENSSL_IS_BORINGSSL)
assert(SSL_is_quic(ssl));
#endif // OPENSSL_1_1_1_API && !defined(OPENSSL_IS_BORINGSSL)
SSL_set_accept_state(ssl);
auto config = get_config();
auto &quicconf = config->quic;
if (quicconf.upstream.early_data) {
#if OPENSSL_1_1_1_API && !defined(OPENSSL_IS_BORINGSSL)
SSL_set_quic_early_data_enabled(ssl, 1);
#else // !(OPENSSL_1_1_1_API && !defined(OPENSSL_IS_BORINGSSL))
SSL_set_early_data_enabled(ssl, 1);
#endif // !(OPENSSL_1_1_1_API && !defined(OPENSSL_IS_BORINGSSL))
}
// Disable TLS session ticket if we don't have working ticket
// keys.
if (!worker_->get_ticket_keys()) {
SSL_set_options(ssl, SSL_OP_NO_TICKET);
}
auto handler = std::make_unique<ClientHandler>(
worker_, faddr->fd, ssl, StringRef{host.data()},
StringRef{service.data()}, remote_addr.su.sa.sa_family, faddr);
auto upstream = std::make_unique<Http3Upstream>(handler.get());
if (upstream->init(faddr, remote_addr, local_addr, hd, odcid, token,
tokenlen) != 0) {
return nullptr;
}
handler->setup_http3_upstream(std::move(upstream));
return handler.release();
}
namespace {
uint32_t generate_reserved_version(const Address &addr, uint32_t version) {
uint32_t h = 0x811C9DC5u;
const uint8_t *p = reinterpret_cast<const uint8_t *>(&addr.su.sa);
const uint8_t *ep = p + addr.len;
for (; p != ep; ++p) {
h ^= *p;
h *= 0x01000193u;
}
version = htonl(version);
p = (const uint8_t *)&version;
ep = p + sizeof(version);
for (; p != ep; ++p) {
h ^= *p;
h *= 0x01000193u;
}
h &= 0xf0f0f0f0u;
h |= 0x0a0a0a0au;
return h;
}
} // namespace
int QUICConnectionHandler::send_retry(
const UpstreamAddr *faddr, uint32_t version, const uint8_t *ini_dcid,
size_t ini_dcidlen, const uint8_t *ini_scid, size_t ini_scidlen,
const Address &remote_addr, const Address &local_addr, size_t max_pktlen) {
std::array<char, NI_MAXHOST> host;
std::array<char, NI_MAXSERV> port;
if (getnameinfo(&remote_addr.su.sa, remote_addr.len, host.data(), host.size(),
port.data(), port.size(),
NI_NUMERICHOST | NI_NUMERICSERV) != 0) {
return -1;
}
auto config = get_config();
auto &quicconf = config->quic;
auto conn_handler = worker_->get_connection_handler();
auto &qkms = conn_handler->get_quic_keying_materials();
auto &qkm = qkms->keying_materials.front();
ngtcp2_cid retry_scid;
if (generate_quic_retry_connection_id(retry_scid, SHRPX_QUIC_SCIDLEN,
quicconf.server_id.data(), qkm.id,
qkm.cid_encryption_key.data()) != 0) {
return -1;
}
std::array<uint8_t, NGTCP2_CRYPTO_MAX_RETRY_TOKENLEN> token;
size_t tokenlen;
ngtcp2_cid idcid, iscid;
ngtcp2_cid_init(&idcid, ini_dcid, ini_dcidlen);
ngtcp2_cid_init(&iscid, ini_scid, ini_scidlen);
if (generate_retry_token(token.data(), tokenlen, version, &remote_addr.su.sa,
remote_addr.len, retry_scid, idcid,
qkm.secret.data(), qkm.secret.size()) != 0) {
return -1;
}
std::vector<uint8_t> buf;
buf.resize(std::min(max_pktlen, static_cast<size_t>(256)));
auto nwrite =
ngtcp2_crypto_write_retry(buf.data(), buf.size(), version, &iscid,
&retry_scid, &idcid, token.data(), tokenlen);
if (nwrite < 0) {
LOG(ERROR) << "ngtcp2_crypto_write_retry: " << ngtcp2_strerror(nwrite);
return -1;
}
buf.resize(nwrite);
quic_send_packet(faddr, &remote_addr.su.sa, remote_addr.len,
&local_addr.su.sa, local_addr.len, ngtcp2_pkt_info{},
buf.data(), buf.size(), 0);
if (generate_quic_hashed_connection_id(idcid, remote_addr, local_addr,
idcid) != 0) {
return -1;
}
auto d =
static_cast<ev_tstamp>(NGTCP2_DEFAULT_INITIAL_RTT * 3) / NGTCP2_SECONDS;
if (LOG_ENABLED(INFO)) {
LOG(INFO) << "Enter close-wait period " << d << "s with " << buf.size()
<< " bytes sentinel packet";
}
auto cw = std::make_unique<CloseWait>(worker_, std::vector<ngtcp2_cid>{idcid},
std::move(buf), d);
add_close_wait(cw.get());
cw.release();
return 0;
}
int QUICConnectionHandler::send_version_negotiation(
const UpstreamAddr *faddr, uint32_t version, const uint8_t *ini_dcid,
size_t ini_dcidlen, const uint8_t *ini_scid, size_t ini_scidlen,
const Address &remote_addr, const Address &local_addr) {
std::array<uint32_t, 2> sv;
sv[0] = generate_reserved_version(remote_addr, version);
sv[1] = NGTCP2_PROTO_VER_V1;
std::array<uint8_t, NGTCP2_MAX_UDP_PAYLOAD_SIZE> buf;
uint8_t rand_byte;
util::random_bytes(&rand_byte, &rand_byte + 1, worker_->get_randgen());
auto nwrite = ngtcp2_pkt_write_version_negotiation(
buf.data(), buf.size(), rand_byte, ini_scid, ini_scidlen, ini_dcid,
ini_dcidlen, sv.data(), sv.size());
if (nwrite < 0) {
LOG(ERROR) << "ngtcp2_pkt_write_version_negotiation: "
<< ngtcp2_strerror(nwrite);
return -1;
}
return quic_send_packet(faddr, &remote_addr.su.sa, remote_addr.len,
&local_addr.su.sa, local_addr.len, ngtcp2_pkt_info{},
buf.data(), nwrite, 0);
}
int QUICConnectionHandler::send_stateless_reset(const UpstreamAddr *faddr,
const uint8_t *dcid,
size_t dcidlen,
const Address &remote_addr,
const Address &local_addr) {
if (stateless_reset_bucket_ == 0) {
if (LOG_ENABLED(INFO)) {
LOG(INFO) << "Stateless Reset bucket has been depleted";
}
return 0;
}
--stateless_reset_bucket_;
if (!ev_is_active(&stateless_reset_bucket_regen_timer_)) {
ev_timer_again(worker_->get_loop(), &stateless_reset_bucket_regen_timer_);
}
int rv;
std::array<uint8_t, NGTCP2_STATELESS_RESET_TOKENLEN> token;
ngtcp2_cid cid;
ngtcp2_cid_init(&cid, dcid, dcidlen);
auto conn_handler = worker_->get_connection_handler();
auto &qkms = conn_handler->get_quic_keying_materials();
auto &qkm = qkms->keying_materials.front();
rv = generate_quic_stateless_reset_token(token.data(), cid, qkm.secret.data(),
qkm.secret.size());
if (rv != 0) {
return -1;
}
std::array<uint8_t, NGTCP2_MIN_STATELESS_RESET_RANDLEN> rand_bytes;
if (RAND_bytes(rand_bytes.data(), rand_bytes.size()) != 1) {
return -1;
}
std::array<uint8_t, NGTCP2_MAX_UDP_PAYLOAD_SIZE> buf;
auto nwrite =
ngtcp2_pkt_write_stateless_reset(buf.data(), buf.size(), token.data(),
rand_bytes.data(), rand_bytes.size());
if (nwrite < 0) {
LOG(ERROR) << "ngtcp2_pkt_write_stateless_reset: "
<< ngtcp2_strerror(nwrite);
return -1;
}
if (LOG_ENABLED(INFO)) {
LOG(INFO) << "Send stateless_reset to remote="
<< util::to_numeric_addr(&remote_addr)
<< " dcid=" << util::format_hex(dcid, dcidlen);
}
return quic_send_packet(faddr, &remote_addr.su.sa, remote_addr.len,
&local_addr.su.sa, local_addr.len, ngtcp2_pkt_info{},
buf.data(), nwrite, 0);
}
int QUICConnectionHandler::send_connection_close(
const UpstreamAddr *faddr, uint32_t version, const ngtcp2_cid &ini_dcid,
const ngtcp2_cid &ini_scid, const Address &remote_addr,
const Address &local_addr, uint64_t error_code, size_t max_pktlen) {
std::array<uint8_t, NGTCP2_MAX_UDP_PAYLOAD_SIZE> buf;
max_pktlen = std::min(max_pktlen, buf.size());
auto nwrite = ngtcp2_crypto_write_connection_close(
buf.data(), max_pktlen, version, &ini_scid, &ini_dcid, error_code,
nullptr, 0);
if (nwrite < 0) {
LOG(ERROR) << "ngtcp2_crypto_write_connection_close failed";
return -1;
}
if (LOG_ENABLED(INFO)) {
LOG(INFO) << "Send Initial CONNECTION_CLOSE with error_code=" << log::hex
<< error_code << log::dec
<< " to remote=" << util::to_numeric_addr(&remote_addr)
<< " dcid=" << util::format_hex(ini_scid.data, ini_scid.datalen)
<< " scid=" << util::format_hex(ini_dcid.data, ini_dcid.datalen);
}
return quic_send_packet(faddr, &remote_addr.su.sa, remote_addr.len,
&local_addr.su.sa, local_addr.len, ngtcp2_pkt_info{},
buf.data(), nwrite, 0);
}
void QUICConnectionHandler::add_connection_id(const ngtcp2_cid &cid,
ClientHandler *handler) {
connections_.emplace(cid, handler);
}
void QUICConnectionHandler::remove_connection_id(const ngtcp2_cid &cid) {
connections_.erase(cid);
}
void QUICConnectionHandler::add_close_wait(CloseWait *cw) {
for (auto &cid : cw->scids) {
close_waits_.emplace(cid, cw);
}
}
void QUICConnectionHandler::remove_close_wait(const CloseWait *cw) {
for (auto &cid : cw->scids) {
close_waits_.erase(cid);
}
}
void QUICConnectionHandler::on_stateless_reset_bucket_regen() {
assert(stateless_reset_bucket_ < SHRPX_QUIC_STATELESS_RESET_BURST);
if (++stateless_reset_bucket_ == SHRPX_QUIC_STATELESS_RESET_BURST) {
ev_timer_stop(worker_->get_loop(), &stateless_reset_bucket_regen_timer_);
}
}
static void close_wait_timeoutcb(struct ev_loop *loop, ev_timer *w,
int revents) {
auto cw = static_cast<CloseWait *>(w->data);
if (LOG_ENABLED(INFO)) {
LOG(INFO) << "close-wait period finished";
}
auto quic_conn_handler = cw->worker->get_quic_connection_handler();
quic_conn_handler->remove_close_wait(cw);
delete cw;
}
CloseWait::CloseWait(Worker *worker, std::vector<ngtcp2_cid> scids,
std::vector<uint8_t> pkt, ev_tstamp period)
: worker{worker},
scids{std::move(scids)},
pkt{std::move(pkt)},
bytes_recv{0},
bytes_sent{0},
num_pkts_recv{0},
next_pkts_recv{1} {
++worker->get_worker_stat()->num_close_waits;
ev_timer_init(&timer, close_wait_timeoutcb, period, 0.);
timer.data = this;
ev_timer_start(worker->get_loop(), &timer);
}
CloseWait::~CloseWait() {
auto loop = worker->get_loop();
ev_timer_stop(loop, &timer);
auto worker_stat = worker->get_worker_stat();
--worker_stat->num_close_waits;
if (worker->get_graceful_shutdown() && worker_stat->num_connections == 0 &&
worker_stat->num_close_waits == 0) {
ev_break(loop);
}
}
int CloseWait::handle_packet(const UpstreamAddr *faddr,
const Address &remote_addr,
const Address &local_addr,
const ngtcp2_pkt_info &pi, const uint8_t *data,
size_t datalen) {
if (pkt.empty()) {
return 0;
}
++num_pkts_recv;
bytes_recv += datalen;
if (bytes_sent + pkt.size() > 3 * bytes_recv ||
next_pkts_recv > num_pkts_recv) {
return 0;
}
if (quic_send_packet(faddr, &remote_addr.su.sa, remote_addr.len,
&local_addr.su.sa, local_addr.len, ngtcp2_pkt_info{},
pkt.data(), pkt.size(), 0) != 0) {
return -1;
}
next_pkts_recv *= 2;
bytes_sent += pkt.size();
return 0;
}
} // namespace shrpx