nghttp2/src/shrpx_connection_handler.cc

909 lines
23 KiB
C++

/*
* nghttp2 - HTTP/2 C Library
*
* Copyright (c) 2012 Tatsuhiro Tsujikawa
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
* LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
* OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
* WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include "shrpx_connection_handler.h"
#ifdef HAVE_UNISTD_H
#include <unistd.h>
#endif // HAVE_UNISTD_H
#include <sys/types.h>
#include <sys/wait.h>
#include <cerrno>
#include <thread>
#include <random>
#include "shrpx_client_handler.h"
#include "shrpx_tls.h"
#include "shrpx_worker.h"
#include "shrpx_config.h"
#include "shrpx_http2_session.h"
#include "shrpx_connect_blocker.h"
#include "shrpx_downstream_connection.h"
#include "shrpx_accept_handler.h"
#include "shrpx_memcached_dispatcher.h"
#include "shrpx_signal.h"
#include "shrpx_log.h"
#include "util.h"
#include "template.h"
using namespace nghttp2;
namespace shrpx {
namespace {
void acceptor_disable_cb(struct ev_loop *loop, ev_timer *w, int revent) {
auto h = static_cast<ConnectionHandler *>(w->data);
// If we are in graceful shutdown period, we must not enable
// acceptors again.
if (h->get_graceful_shutdown()) {
return;
}
h->enable_acceptor();
}
} // namespace
namespace {
void ocsp_cb(struct ev_loop *loop, ev_timer *w, int revent) {
auto h = static_cast<ConnectionHandler *>(w->data);
// If we are in graceful shutdown period, we won't do ocsp query.
if (h->get_graceful_shutdown()) {
return;
}
LOG(NOTICE) << "Start ocsp update";
h->proceed_next_cert_ocsp();
}
} // namespace
namespace {
void ocsp_read_cb(struct ev_loop *loop, ev_io *w, int revent) {
auto h = static_cast<ConnectionHandler *>(w->data);
h->read_ocsp_chunk();
}
} // namespace
namespace {
void ocsp_chld_cb(struct ev_loop *loop, ev_child *w, int revent) {
auto h = static_cast<ConnectionHandler *>(w->data);
h->handle_ocsp_complete();
}
} // namespace
namespace {
void thread_join_async_cb(struct ev_loop *loop, ev_async *w, int revent) {
ev_break(loop);
}
} // namespace
namespace {
void serial_event_async_cb(struct ev_loop *loop, ev_async *w, int revent) {
auto h = static_cast<ConnectionHandler *>(w->data);
h->handle_serial_event();
}
} // namespace
ConnectionHandler::ConnectionHandler(struct ev_loop *loop, std::mt19937 &gen)
: gen_(gen),
single_worker_(nullptr),
loop_(loop),
tls_ticket_key_memcached_get_retry_count_(0),
tls_ticket_key_memcached_fail_count_(0),
worker_round_robin_cnt_(get_config()->api.enabled ? 1 : 0),
graceful_shutdown_(false),
enable_acceptor_on_ocsp_completion_(false) {
ev_timer_init(&disable_acceptor_timer_, acceptor_disable_cb, 0., 0.);
disable_acceptor_timer_.data = this;
ev_timer_init(&ocsp_timer_, ocsp_cb, 0., 0.);
ocsp_timer_.data = this;
ev_io_init(&ocsp_.rev, ocsp_read_cb, -1, EV_READ);
ocsp_.rev.data = this;
ev_async_init(&thread_join_asyncev_, thread_join_async_cb);
ev_async_init(&serial_event_asyncev_, serial_event_async_cb);
serial_event_asyncev_.data = this;
ev_async_start(loop_, &serial_event_asyncev_);
ev_child_init(&ocsp_.chldev, ocsp_chld_cb, 0, 0);
ocsp_.chldev.data = this;
ocsp_.next = 0;
ocsp_.proc.rfd = -1;
reset_ocsp();
}
ConnectionHandler::~ConnectionHandler() {
ev_child_stop(loop_, &ocsp_.chldev);
ev_async_stop(loop_, &serial_event_asyncev_);
ev_async_stop(loop_, &thread_join_asyncev_);
ev_io_stop(loop_, &ocsp_.rev);
ev_timer_stop(loop_, &ocsp_timer_);
ev_timer_stop(loop_, &disable_acceptor_timer_);
for (auto ssl_ctx : all_ssl_ctx_) {
auto tls_ctx_data =
static_cast<tls::TLSContextData *>(SSL_CTX_get_app_data(ssl_ctx));
if (tls_ctx_data) {
delete tls_ctx_data;
}
SSL_CTX_free(ssl_ctx);
}
// Free workers before destroying ev_loop
workers_.clear();
for (auto loop : worker_loops_) {
ev_loop_destroy(loop);
}
}
void ConnectionHandler::set_ticket_keys_to_worker(
const std::shared_ptr<TicketKeys> &ticket_keys) {
for (auto &worker : workers_) {
worker->set_ticket_keys(ticket_keys);
}
}
void ConnectionHandler::worker_reopen_log_files() {
WorkerEvent wev{};
wev.type = REOPEN_LOG;
for (auto &worker : workers_) {
worker->send(wev);
}
}
void ConnectionHandler::worker_replace_downstream(
std::shared_ptr<DownstreamConfig> downstreamconf) {
WorkerEvent wev{};
wev.type = REPLACE_DOWNSTREAM;
wev.downstreamconf = std::move(downstreamconf);
for (auto &worker : workers_) {
worker->send(wev);
}
}
int ConnectionHandler::create_single_worker() {
cert_tree_ = tls::create_cert_lookup_tree();
auto sv_ssl_ctx = tls::setup_server_ssl_context(
all_ssl_ctx_, indexed_ssl_ctx_, cert_tree_.get()
#ifdef HAVE_NEVERBLEED
,
nb_.get()
#endif // HAVE_NEVERBLEED
);
auto cl_ssl_ctx = tls::setup_downstream_client_ssl_context(
#ifdef HAVE_NEVERBLEED
nb_.get()
#endif // HAVE_NEVERBLEED
);
if (cl_ssl_ctx) {
all_ssl_ctx_.push_back(cl_ssl_ctx);
}
auto config = get_config();
auto &tlsconf = config->tls;
SSL_CTX *session_cache_ssl_ctx = nullptr;
{
auto &memcachedconf = config->tls.session_cache.memcached;
if (memcachedconf.tls) {
session_cache_ssl_ctx = tls::create_ssl_client_context(
#ifdef HAVE_NEVERBLEED
nb_.get(),
#endif // HAVE_NEVERBLEED
tlsconf.cacert, memcachedconf.cert_file,
memcachedconf.private_key_file, nullptr);
all_ssl_ctx_.push_back(session_cache_ssl_ctx);
}
}
SSL_CTX *anti_replay_ssl_ctx = nullptr;
{
auto &memcachedconf = config->tls.anti_replay.memcached;
if (memcachedconf.tls) {
anti_replay_ssl_ctx = tls::create_ssl_client_context(
#ifdef HAVE_NEVERBLEED
nb_.get(),
#endif // HAVE_NEVERBLEED
tlsconf.cacert, memcachedconf.cert_file,
memcachedconf.private_key_file, nullptr);
all_ssl_ctx_.push_back(anti_replay_ssl_ctx);
}
}
single_worker_ = make_unique<Worker>(
loop_, sv_ssl_ctx, cl_ssl_ctx, session_cache_ssl_ctx, anti_replay_ssl_ctx,
cert_tree_.get(), ticket_keys_, this, config->conn.downstream);
#ifdef HAVE_MRUBY
if (single_worker_->create_mruby_context() != 0) {
return -1;
}
#endif // HAVE_MRUBY
return 0;
}
int ConnectionHandler::create_worker_thread(size_t num) {
#ifndef NOTHREADS
assert(workers_.size() == 0);
cert_tree_ = tls::create_cert_lookup_tree();
auto sv_ssl_ctx = tls::setup_server_ssl_context(
all_ssl_ctx_, indexed_ssl_ctx_, cert_tree_.get()
#ifdef HAVE_NEVERBLEED
,
nb_.get()
#endif // HAVE_NEVERBLEED
);
auto cl_ssl_ctx = tls::setup_downstream_client_ssl_context(
#ifdef HAVE_NEVERBLEED
nb_.get()
#endif // HAVE_NEVERBLEED
);
if (cl_ssl_ctx) {
all_ssl_ctx_.push_back(cl_ssl_ctx);
}
auto config = get_config();
auto &tlsconf = config->tls;
auto &apiconf = config->api;
// We have dedicated worker for API request processing.
if (apiconf.enabled) {
++num;
}
SSL_CTX *session_cache_ssl_ctx = nullptr;
{
auto &memcachedconf = config->tls.session_cache.memcached;
if (memcachedconf.tls) {
session_cache_ssl_ctx = tls::create_ssl_client_context(
#ifdef HAVE_NEVERBLEED
nb_.get(),
#endif // HAVE_NEVERBLEED
tlsconf.cacert, memcachedconf.cert_file,
memcachedconf.private_key_file, nullptr);
all_ssl_ctx_.push_back(session_cache_ssl_ctx);
}
}
SSL_CTX *anti_replay_ssl_ctx = nullptr;
{
auto &memcachedconf = config->tls.anti_replay.memcached;
if (memcachedconf.tls) {
anti_replay_ssl_ctx = tls::create_ssl_client_context(
#ifdef HAVE_NEVERBLEED
nb_.get(),
#endif // HAVE_NEVERBLEED
tlsconf.cacert, memcachedconf.cert_file,
memcachedconf.private_key_file, nullptr);
all_ssl_ctx_.push_back(anti_replay_ssl_ctx);
}
}
for (size_t i = 0; i < num; ++i) {
auto loop = ev_loop_new(config->ev_loop_flags);
auto worker =
make_unique<Worker>(loop, sv_ssl_ctx, cl_ssl_ctx, session_cache_ssl_ctx,
anti_replay_ssl_ctx, cert_tree_.get(), ticket_keys_,
this, config->conn.downstream);
#ifdef HAVE_MRUBY
if (worker->create_mruby_context() != 0) {
return -1;
}
#endif // HAVE_MRUBY
workers_.push_back(std::move(worker));
worker_loops_.push_back(loop);
LLOG(NOTICE, this) << "Created worker thread #" << workers_.size() - 1;
}
for (auto &worker : workers_) {
worker->run_async();
}
#endif // NOTHREADS
return 0;
}
void ConnectionHandler::join_worker() {
#ifndef NOTHREADS
int n = 0;
if (LOG_ENABLED(INFO)) {
LLOG(INFO, this) << "Waiting for worker thread to join: n="
<< workers_.size();
}
for (auto &worker : workers_) {
worker->wait();
if (LOG_ENABLED(INFO)) {
LLOG(INFO, this) << "Thread #" << n << " joined";
}
++n;
}
#endif // NOTHREADS
}
void ConnectionHandler::graceful_shutdown_worker() {
if (single_worker_) {
return;
}
WorkerEvent wev{};
wev.type = GRACEFUL_SHUTDOWN;
if (LOG_ENABLED(INFO)) {
LLOG(INFO, this) << "Sending graceful shutdown signal to worker";
}
for (auto &worker : workers_) {
worker->send(wev);
}
#ifndef NOTHREADS
ev_async_start(loop_, &thread_join_asyncev_);
thread_join_fut_ = std::async(std::launch::async, [this]() {
(void)reopen_log_files(get_config()->logging);
join_worker();
ev_async_send(get_loop(), &thread_join_asyncev_);
delete_log_config();
});
#endif // NOTHREADS
}
int ConnectionHandler::handle_connection(int fd, sockaddr *addr, int addrlen,
const UpstreamAddr *faddr) {
if (LOG_ENABLED(INFO)) {
LLOG(INFO, this) << "Accepted connection from "
<< util::numeric_name(addr, addrlen) << ", fd=" << fd;
}
auto config = get_config();
if (single_worker_) {
auto &upstreamconf = config->conn.upstream;
if (single_worker_->get_worker_stat()->num_connections >=
upstreamconf.worker_connections) {
if (LOG_ENABLED(INFO)) {
LLOG(INFO, this) << "Too many connections >="
<< upstreamconf.worker_connections;
}
close(fd);
return -1;
}
auto client =
tls::accept_connection(single_worker_.get(), fd, addr, addrlen, faddr);
if (!client) {
LLOG(ERROR, this) << "ClientHandler creation failed";
close(fd);
return -1;
}
return 0;
}
Worker *worker;
if (faddr->alt_mode == ALTMODE_API) {
worker = workers_[0].get();
if (LOG_ENABLED(INFO)) {
LOG(INFO) << "Dispatch connection to API worker #0";
}
} else {
worker = workers_[worker_round_robin_cnt_].get();
if (LOG_ENABLED(INFO)) {
LOG(INFO) << "Dispatch connection to worker #" << worker_round_robin_cnt_;
}
if (++worker_round_robin_cnt_ == workers_.size()) {
auto &apiconf = config->api;
if (apiconf.enabled) {
worker_round_robin_cnt_ = 1;
} else {
worker_round_robin_cnt_ = 0;
}
}
}
WorkerEvent wev{};
wev.type = NEW_CONNECTION;
wev.client_fd = fd;
memcpy(&wev.client_addr, addr, addrlen);
wev.client_addrlen = addrlen;
wev.faddr = faddr;
worker->send(wev);
return 0;
}
struct ev_loop *ConnectionHandler::get_loop() const {
return loop_;
}
Worker *ConnectionHandler::get_single_worker() const {
return single_worker_.get();
}
void ConnectionHandler::add_acceptor(std::unique_ptr<AcceptHandler> h) {
acceptors_.push_back(std::move(h));
}
void ConnectionHandler::enable_acceptor() {
for (auto &a : acceptors_) {
a->enable();
}
}
void ConnectionHandler::disable_acceptor() {
for (auto &a : acceptors_) {
a->disable();
}
}
void ConnectionHandler::sleep_acceptor(ev_tstamp t) {
if (t == 0. || ev_is_active(&disable_acceptor_timer_)) {
return;
}
disable_acceptor();
ev_timer_set(&disable_acceptor_timer_, t, 0.);
ev_timer_start(loop_, &disable_acceptor_timer_);
}
void ConnectionHandler::accept_pending_connection() {
for (auto &a : acceptors_) {
a->accept_connection();
}
}
void ConnectionHandler::set_ticket_keys(
std::shared_ptr<TicketKeys> ticket_keys) {
ticket_keys_ = std::move(ticket_keys);
if (single_worker_) {
single_worker_->set_ticket_keys(ticket_keys_);
}
}
const std::shared_ptr<TicketKeys> &ConnectionHandler::get_ticket_keys() const {
return ticket_keys_;
}
void ConnectionHandler::set_graceful_shutdown(bool f) {
graceful_shutdown_ = f;
if (single_worker_) {
single_worker_->set_graceful_shutdown(f);
}
}
bool ConnectionHandler::get_graceful_shutdown() const {
return graceful_shutdown_;
}
void ConnectionHandler::cancel_ocsp_update() {
enable_acceptor_on_ocsp_completion_ = false;
ev_timer_stop(loop_, &ocsp_timer_);
if (ocsp_.proc.pid == 0) {
return;
}
int rv;
rv = kill(ocsp_.proc.pid, SIGTERM);
if (rv != 0) {
auto error = errno;
LOG(ERROR) << "Could not send signal to OCSP query process: errno="
<< error;
}
while ((rv = waitpid(ocsp_.proc.pid, nullptr, 0)) == -1 && errno == EINTR)
;
if (rv == -1) {
auto error = errno;
LOG(ERROR) << "Error occurred while we were waiting for the completion of "
"OCSP query process: errno="
<< error;
}
}
// inspired by h2o_read_command function from h2o project:
// https://github.com/h2o/h2o
int ConnectionHandler::start_ocsp_update(const char *cert_file) {
int rv;
if (LOG_ENABLED(INFO)) {
LOG(INFO) << "Start ocsp update for " << cert_file;
}
assert(!ev_is_active(&ocsp_.rev));
assert(!ev_is_active(&ocsp_.chldev));
char *const argv[] = {
const_cast<char *>(
get_config()->tls.ocsp.fetch_ocsp_response_file.c_str()),
const_cast<char *>(cert_file), nullptr};
Process proc;
rv = exec_read_command(proc, argv);
if (rv != 0) {
return -1;
}
ocsp_.proc = proc;
ev_io_set(&ocsp_.rev, ocsp_.proc.rfd, EV_READ);
ev_io_start(loop_, &ocsp_.rev);
ev_child_set(&ocsp_.chldev, ocsp_.proc.pid, 0);
ev_child_start(loop_, &ocsp_.chldev);
return 0;
}
void ConnectionHandler::read_ocsp_chunk() {
std::array<uint8_t, 4_k> buf;
for (;;) {
ssize_t n;
while ((n = read(ocsp_.proc.rfd, buf.data(), buf.size())) == -1 &&
errno == EINTR)
;
if (n == -1) {
if (errno == EAGAIN || errno == EWOULDBLOCK) {
return;
}
auto error = errno;
LOG(WARN) << "Reading from ocsp query command failed: errno=" << error;
ocsp_.error = error;
break;
}
if (n == 0) {
break;
}
std::copy_n(std::begin(buf), n, std::back_inserter(ocsp_.resp));
}
ev_io_stop(loop_, &ocsp_.rev);
}
void ConnectionHandler::handle_ocsp_complete() {
ev_io_stop(loop_, &ocsp_.rev);
ev_child_stop(loop_, &ocsp_.chldev);
assert(ocsp_.next < all_ssl_ctx_.size());
auto ssl_ctx = all_ssl_ctx_[ocsp_.next];
auto tls_ctx_data =
static_cast<tls::TLSContextData *>(SSL_CTX_get_app_data(ssl_ctx));
auto rstatus = ocsp_.chldev.rstatus;
auto status = WEXITSTATUS(rstatus);
if (ocsp_.error || !WIFEXITED(rstatus) || status != 0) {
LOG(WARN) << "ocsp query command for " << tls_ctx_data->cert_file
<< " failed: error=" << ocsp_.error << ", rstatus=" << std::hex
<< rstatus << std::dec << ", status=" << status;
++ocsp_.next;
proceed_next_cert_ocsp();
return;
}
if (LOG_ENABLED(INFO)) {
LOG(INFO) << "ocsp update for " << tls_ctx_data->cert_file
<< " finished successfully";
}
auto config = get_config();
auto &tlsconf = config->tls;
if (tlsconf.ocsp.no_verify ||
tls::verify_ocsp_response(ssl_ctx, ocsp_.resp.data(),
ocsp_.resp.size()) == 0) {
#ifndef OPENSSL_IS_BORINGSSL
#ifdef HAVE_ATOMIC_STD_SHARED_PTR
std::atomic_store_explicit(
&tls_ctx_data->ocsp_data,
std::make_shared<std::vector<uint8_t>>(std::move(ocsp_.resp)),
std::memory_order_release);
#else // !HAVE_ATOMIC_STD_SHARED_PTR
std::lock_guard<std::mutex> g(tls_ctx_data->mu);
tls_ctx_data->ocsp_data =
std::make_shared<std::vector<uint8_t>>(std::move(ocsp_.resp));
#endif // !HAVE_ATOMIC_STD_SHARED_PTR
#else // OPENSSL_IS_BORINGSSL
SSL_CTX_set_ocsp_response(ssl_ctx, ocsp_.resp.data(), ocsp_.resp.size());
#endif // OPENSSL_IS_BORINGSSL
}
++ocsp_.next;
proceed_next_cert_ocsp();
}
void ConnectionHandler::reset_ocsp() {
if (ocsp_.proc.rfd != -1) {
close(ocsp_.proc.rfd);
}
ocsp_.proc.rfd = -1;
ocsp_.proc.pid = 0;
ocsp_.error = 0;
ocsp_.resp = std::vector<uint8_t>();
}
void ConnectionHandler::proceed_next_cert_ocsp() {
for (;;) {
reset_ocsp();
if (ocsp_.next == all_ssl_ctx_.size()) {
ocsp_.next = 0;
// We have updated all ocsp response, and schedule next update.
ev_timer_set(&ocsp_timer_, get_config()->tls.ocsp.update_interval, 0.);
ev_timer_start(loop_, &ocsp_timer_);
if (enable_acceptor_on_ocsp_completion_) {
enable_acceptor_on_ocsp_completion_ = false;
enable_acceptor();
}
return;
}
auto ssl_ctx = all_ssl_ctx_[ocsp_.next];
auto tls_ctx_data =
static_cast<tls::TLSContextData *>(SSL_CTX_get_app_data(ssl_ctx));
// client SSL_CTX is also included in all_ssl_ctx_, but has no
// tls_ctx_data.
if (!tls_ctx_data) {
++ocsp_.next;
continue;
}
auto cert_file = tls_ctx_data->cert_file;
if (start_ocsp_update(cert_file) != 0) {
++ocsp_.next;
continue;
}
break;
}
}
void ConnectionHandler::set_tls_ticket_key_memcached_dispatcher(
std::unique_ptr<MemcachedDispatcher> dispatcher) {
tls_ticket_key_memcached_dispatcher_ = std::move(dispatcher);
}
MemcachedDispatcher *
ConnectionHandler::get_tls_ticket_key_memcached_dispatcher() const {
return tls_ticket_key_memcached_dispatcher_.get();
}
// Use the similar backoff algorithm described in
// https://github.com/grpc/grpc/blob/master/doc/connection-backoff.md
namespace {
constexpr size_t MAX_BACKOFF_EXP = 10;
constexpr auto MULTIPLIER = 3.2;
constexpr auto JITTER = 0.2;
} // namespace
void ConnectionHandler::on_tls_ticket_key_network_error(ev_timer *w) {
if (++tls_ticket_key_memcached_get_retry_count_ >=
get_config()->tls.ticket.memcached.max_retry) {
LOG(WARN) << "Memcached: tls ticket get retry all failed "
<< tls_ticket_key_memcached_get_retry_count_ << " times.";
on_tls_ticket_key_not_found(w);
return;
}
auto base_backoff = util::int_pow(
MULTIPLIER,
std::min(MAX_BACKOFF_EXP, tls_ticket_key_memcached_get_retry_count_));
auto dist = std::uniform_real_distribution<>(-JITTER * base_backoff,
JITTER * base_backoff);
auto backoff = base_backoff + dist(gen_);
LOG(WARN)
<< "Memcached: tls ticket get failed due to network error, retrying in "
<< backoff << " seconds";
ev_timer_set(w, backoff, 0.);
ev_timer_start(loop_, w);
}
void ConnectionHandler::on_tls_ticket_key_not_found(ev_timer *w) {
tls_ticket_key_memcached_get_retry_count_ = 0;
if (++tls_ticket_key_memcached_fail_count_ >=
get_config()->tls.ticket.memcached.max_fail) {
LOG(WARN) << "Memcached: could not get tls ticket; disable tls ticket";
tls_ticket_key_memcached_fail_count_ = 0;
set_ticket_keys(nullptr);
set_ticket_keys_to_worker(nullptr);
}
LOG(WARN) << "Memcached: tls ticket get failed, schedule next";
schedule_next_tls_ticket_key_memcached_get(w);
}
void ConnectionHandler::on_tls_ticket_key_get_success(
const std::shared_ptr<TicketKeys> &ticket_keys, ev_timer *w) {
LOG(NOTICE) << "Memcached: tls ticket get success";
tls_ticket_key_memcached_get_retry_count_ = 0;
tls_ticket_key_memcached_fail_count_ = 0;
schedule_next_tls_ticket_key_memcached_get(w);
if (!ticket_keys || ticket_keys->keys.empty()) {
LOG(WARN) << "Memcached: tls ticket keys are empty; tls ticket disabled";
set_ticket_keys(nullptr);
set_ticket_keys_to_worker(nullptr);
return;
}
if (LOG_ENABLED(INFO)) {
LOG(INFO) << "ticket keys get done";
LOG(INFO) << 0 << " enc+dec: "
<< util::format_hex(ticket_keys->keys[0].data.name);
for (size_t i = 1; i < ticket_keys->keys.size(); ++i) {
auto &key = ticket_keys->keys[i];
LOG(INFO) << i << " dec: " << util::format_hex(key.data.name);
}
}
set_ticket_keys(ticket_keys);
set_ticket_keys_to_worker(ticket_keys);
}
void ConnectionHandler::schedule_next_tls_ticket_key_memcached_get(
ev_timer *w) {
ev_timer_set(w, get_config()->tls.ticket.memcached.interval, 0.);
ev_timer_start(loop_, w);
}
SSL_CTX *ConnectionHandler::create_tls_ticket_key_memcached_ssl_ctx() {
auto config = get_config();
auto &tlsconf = config->tls;
auto &memcachedconf = config->tls.ticket.memcached;
auto ssl_ctx = tls::create_ssl_client_context(
#ifdef HAVE_NEVERBLEED
nb_.get(),
#endif // HAVE_NEVERBLEED
tlsconf.cacert, memcachedconf.cert_file, memcachedconf.private_key_file,
nullptr);
all_ssl_ctx_.push_back(ssl_ctx);
return ssl_ctx;
}
#ifdef HAVE_NEVERBLEED
void ConnectionHandler::set_neverbleed(std::unique_ptr<neverbleed_t> nb) {
nb_ = std::move(nb);
}
neverbleed_t *ConnectionHandler::get_neverbleed() const { return nb_.get(); }
#endif // HAVE_NEVERBLEED
void ConnectionHandler::handle_serial_event() {
std::vector<SerialEvent> q;
{
std::lock_guard<std::mutex> g(serial_event_mu_);
q.swap(serial_events_);
}
for (auto &sev : q) {
switch (sev.type) {
case SEV_REPLACE_DOWNSTREAM:
// Mmake sure that none of worker uses
// get_config()->conn.downstream
mod_config()->conn.downstream = sev.downstreamconf;
if (single_worker_) {
single_worker_->replace_downstream_config(sev.downstreamconf);
break;
}
worker_replace_downstream(sev.downstreamconf);
break;
}
}
}
void ConnectionHandler::send_replace_downstream(
const std::shared_ptr<DownstreamConfig> &downstreamconf) {
send_serial_event(SerialEvent(SEV_REPLACE_DOWNSTREAM, downstreamconf));
}
void ConnectionHandler::send_serial_event(SerialEvent ev) {
{
std::lock_guard<std::mutex> g(serial_event_mu_);
serial_events_.push_back(std::move(ev));
}
ev_async_send(loop_, &serial_event_asyncev_);
}
SSL_CTX *ConnectionHandler::get_ssl_ctx(size_t idx) const {
return all_ssl_ctx_[idx];
}
const std::vector<SSL_CTX *> &
ConnectionHandler::get_indexed_ssl_ctx(size_t idx) const {
return indexed_ssl_ctx_[idx];
}
void ConnectionHandler::set_enable_acceptor_on_ocsp_completion(bool f) {
enable_acceptor_on_ocsp_completion_ = f;
}
} // namespace shrpx