nghttp2/src/shrpx_connection.cc

720 lines
18 KiB
C++

/*
* nghttp2 - HTTP/2 C Library
*
* Copyright (c) 2015 Tatsuhiro Tsujikawa
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
* LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
* OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
* WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include "shrpx_connection.h"
#ifdef HAVE_UNISTD_H
#include <unistd.h>
#endif // HAVE_UNISTD_H
#include <limits>
#include <openssl/err.h>
#include "shrpx_ssl.h"
#include "shrpx_memcached_request.h"
#include "memchunk.h"
#include "util.h"
using namespace nghttp2;
namespace shrpx {
Connection::Connection(struct ev_loop *loop, int fd, SSL *ssl,
MemchunkPool *mcpool, ev_tstamp write_timeout,
ev_tstamp read_timeout, size_t write_rate,
size_t write_burst, size_t read_rate, size_t read_burst,
IOCb writecb, IOCb readcb, TimerCb timeoutcb, void *data,
size_t tls_dyn_rec_warmup_threshold,
ev_tstamp tls_dyn_rec_idle_timeout)
: tls{DefaultMemchunks(mcpool), DefaultPeekMemchunks(mcpool)},
wlimit(loop, &wev, write_rate, write_burst),
rlimit(loop, &rev, read_rate, read_burst, this), writecb(writecb),
readcb(readcb), timeoutcb(timeoutcb), loop(loop), data(data), fd(fd),
tls_dyn_rec_warmup_threshold(tls_dyn_rec_warmup_threshold),
tls_dyn_rec_idle_timeout(tls_dyn_rec_idle_timeout) {
ev_io_init(&wev, writecb, fd, EV_WRITE);
ev_io_init(&rev, readcb, fd, EV_READ);
wev.data = this;
rev.data = this;
ev_timer_init(&wt, timeoutcb, 0., write_timeout);
ev_timer_init(&rt, timeoutcb, 0., read_timeout);
wt.data = this;
rt.data = this;
// set 0. to double field explicitly just in case
tls.last_write_idle = 0.;
if (ssl) {
set_ssl(ssl);
}
}
Connection::~Connection() {
disconnect();
if (tls.ssl) {
SSL_free(tls.ssl);
}
}
void Connection::disconnect() {
if (tls.ssl) {
SSL_set_shutdown(tls.ssl, SSL_RECEIVED_SHUTDOWN);
ERR_clear_error();
if (tls.cached_session) {
SSL_SESSION_free(tls.cached_session);
tls.cached_session = nullptr;
}
if (tls.cached_session_lookup_req) {
tls.cached_session_lookup_req->canceled = true;
tls.cached_session_lookup_req = nullptr;
}
// To reuse SSL/TLS session, we have to shutdown, and don't free
// tls.ssl.
if (SSL_shutdown(tls.ssl) != 1) {
SSL_free(tls.ssl);
tls.ssl = nullptr;
}
tls.wbuf.reset();
tls.rbuf.reset();
tls.last_write_idle = 0.;
tls.warmup_writelen = 0;
tls.last_writelen = 0;
tls.last_readlen = 0;
tls.handshake_state = 0;
tls.initial_handshake_done = false;
tls.reneg_started = false;
}
if (fd != -1) {
shutdown(fd, SHUT_WR);
close(fd);
fd = -1;
}
// Stop watchers here because they could be activated in
// SSL_shutdown().
ev_timer_stop(loop, &rt);
ev_timer_stop(loop, &wt);
rlimit.stopw();
wlimit.stopw();
}
void Connection::prepare_client_handshake() { SSL_set_connect_state(tls.ssl); }
void Connection::prepare_server_handshake() { SSL_set_accept_state(tls.ssl); }
// BIO implementation is inspired by openldap implementation:
// http://www.openldap.org/devel/cvsweb.cgi/~checkout~/libraries/libldap/tls_o.c
namespace {
int shrpx_bio_write(BIO *b, const char *buf, int len) {
if (buf == nullptr || len <= 0) {
return 0;
}
auto conn = static_cast<Connection *>(b->ptr);
auto &wbuf = conn->tls.wbuf;
BIO_clear_retry_flags(b);
if (conn->tls.initial_handshake_done) {
// After handshake finished, send |buf| of length |len| to the
// socket directly.
// Only when TLS session was prematurely ended before server sent
// all handshake message, this condition is true. This could be
// alert from SSL_shutdown(). Since connection is already down,
// just return error.
if (wbuf.rleft()) {
return -1;
}
auto nwrite = conn->write_clear(buf, len);
if (nwrite < 0) {
return -1;
}
if (nwrite == 0) {
BIO_set_retry_write(b);
return -1;
}
return nwrite;
}
wbuf.append(buf, len);
return len;
}
} // namespace
namespace {
int shrpx_bio_read(BIO *b, char *buf, int len) {
if (buf == nullptr || len <= 0) {
return 0;
}
auto conn = static_cast<Connection *>(b->ptr);
auto &rbuf = conn->tls.rbuf;
BIO_clear_retry_flags(b);
if (conn->tls.initial_handshake_done && rbuf.rleft() == 0) {
auto nread = conn->read_clear(buf, len);
if (nread < 0) {
return -1;
}
if (nread == 0) {
BIO_set_retry_read(b);
return -1;
}
return nread;
}
if (rbuf.rleft() == 0) {
BIO_set_retry_read(b);
return -1;
}
return rbuf.remove(buf, len);
}
} // namespace
namespace {
int shrpx_bio_puts(BIO *b, const char *str) {
return shrpx_bio_write(b, str, strlen(str));
}
} // namespace
namespace {
int shrpx_bio_gets(BIO *b, char *buf, int len) { return -1; }
} // namespace
namespace {
long shrpx_bio_ctrl(BIO *b, int cmd, long num, void *ptr) {
switch (cmd) {
case BIO_CTRL_FLUSH:
return 1;
}
return 0;
}
} // namespace
namespace {
int shrpx_bio_create(BIO *b) {
b->init = 1;
b->num = 0;
b->ptr = nullptr;
b->flags = 0;
return 1;
}
} // namespace
namespace {
int shrpx_bio_destroy(BIO *b) {
if (b == nullptr) {
return 0;
}
b->ptr = nullptr;
b->init = 0;
b->flags = 0;
return 1;
}
} // namespace
namespace {
BIO_METHOD shrpx_bio_method = {
BIO_TYPE_FD, "nghttpx-bio", shrpx_bio_write,
shrpx_bio_read, shrpx_bio_puts, shrpx_bio_gets,
shrpx_bio_ctrl, shrpx_bio_create, shrpx_bio_destroy,
};
} // namespace
void Connection::set_ssl(SSL *ssl) {
tls.ssl = ssl;
auto bio = BIO_new(&shrpx_bio_method);
bio->ptr = this;
SSL_set_bio(tls.ssl, bio, bio);
SSL_set_app_data(tls.ssl, this);
}
namespace {
// We should buffer at least full encrypted TLS record here.
// Theoretically, peer can send client hello in several TLS records,
// which could exeed this limit, but it is not portable, and we don't
// have to handle such exotic behaviour.
bool read_buffer_full(DefaultPeekMemchunks &rbuf) {
return rbuf.rleft_buffered() >= 20_k;
}
} // namespace
int Connection::tls_handshake() {
wlimit.stopw();
ev_timer_stop(loop, &wt);
if (ev_is_active(&rev)) {
std::array<uint8_t, 8_k> buf;
auto nread = read_clear(buf.data(), buf.size());
if (nread < 0) {
if (LOG_ENABLED(INFO)) {
LOG(INFO) << "tls: handshake read error";
}
return -1;
}
tls.rbuf.append(buf.data(), nread);
if (read_buffer_full(tls.rbuf)) {
rlimit.stopw();
}
}
if (tls.initial_handshake_done) {
return write_tls_pending_handshake();
}
switch (tls.handshake_state) {
case TLS_CONN_WAIT_FOR_SESSION_CACHE:
return SHRPX_ERR_INPROGRESS;
case TLS_CONN_GOT_SESSION_CACHE: {
// Use the same trick invented by @kazuho in h2o project.
// Discard all outgoing data.
tls.wbuf.reset();
// Rewind buffered incoming data to replay client hello.
tls.rbuf.disable_peek(false);
auto ssl_ctx = SSL_get_SSL_CTX(tls.ssl);
auto ssl_opts = SSL_get_options(tls.ssl);
SSL_free(tls.ssl);
auto ssl = ssl::create_ssl(ssl_ctx);
if (!ssl) {
return -1;
}
if (ssl_opts & SSL_OP_NO_TICKET) {
SSL_set_options(ssl, SSL_OP_NO_TICKET);
}
set_ssl(ssl);
SSL_set_accept_state(tls.ssl);
tls.handshake_state = TLS_CONN_NORMAL;
break;
}
case TLS_CONN_CANCEL_SESSION_CACHE:
tls.handshake_state = TLS_CONN_NORMAL;
break;
}
auto rv = SSL_do_handshake(tls.ssl);
if (rv <= 0) {
auto err = SSL_get_error(tls.ssl, rv);
switch (err) {
case SSL_ERROR_WANT_READ:
if (read_buffer_full(tls.rbuf)) {
if (LOG_ENABLED(INFO)) {
LOG(INFO) << "tls: handshake message is too large";
}
return -1;
}
break;
case SSL_ERROR_WANT_WRITE:
break;
case SSL_ERROR_SSL:
if (LOG_ENABLED(INFO)) {
LOG(INFO) << "tls: handshake libssl error: "
<< ERR_error_string(ERR_get_error(), nullptr);
}
return SHRPX_ERR_NETWORK;
default:
if (LOG_ENABLED(INFO)) {
LOG(INFO) << "tls: handshake libssl error " << err;
}
return SHRPX_ERR_NETWORK;
}
}
if (tls.handshake_state == TLS_CONN_WAIT_FOR_SESSION_CACHE) {
if (LOG_ENABLED(INFO)) {
LOG(INFO) << "tls: handshake is still in progress";
}
return SHRPX_ERR_INPROGRESS;
}
// Don't send handshake data if handshake was completed in OpenSSL
// routine. We have to check HTTP/2 requirement if HTTP/2 was
// negotiated before sending finished message to the peer.
if (rv != 1 && tls.wbuf.rleft()) {
// First write indicates that resumption stuff has done.
if (tls.handshake_state != TLS_CONN_WRITE_STARTED) {
tls.handshake_state = TLS_CONN_WRITE_STARTED;
// If peek has already disabled, this is noop.
tls.rbuf.disable_peek(true);
}
std::array<struct iovec, 4> iov;
auto iovcnt = tls.wbuf.riovec(iov.data(), iov.size());
auto nwrite = writev_clear(iov.data(), iovcnt);
if (nwrite < 0) {
if (LOG_ENABLED(INFO)) {
LOG(INFO) << "tls: handshake write error";
}
return -1;
}
tls.wbuf.drain(nwrite);
if (tls.wbuf.rleft()) {
wlimit.startw();
ev_timer_again(loop, &wt);
}
}
if (!read_buffer_full(tls.rbuf)) {
// We may have stopped reading
rlimit.startw();
}
if (rv != 1) {
if (LOG_ENABLED(INFO)) {
LOG(INFO) << "tls: handshake is still in progress";
}
return SHRPX_ERR_INPROGRESS;
}
// Handshake was done
rv = check_http2_requirement();
if (rv != 0) {
return -1;
}
// Just in case
tls.rbuf.disable_peek(true);
tls.initial_handshake_done = true;
return write_tls_pending_handshake();
}
int Connection::write_tls_pending_handshake() {
// Send handshake data left in the buffer
while (tls.wbuf.rleft()) {
std::array<struct iovec, 4> iov;
auto iovcnt = tls.wbuf.riovec(iov.data(), iov.size());
auto nwrite = writev_clear(iov.data(), iovcnt);
if (nwrite < 0) {
if (LOG_ENABLED(INFO)) {
LOG(INFO) << "tls: handshake write error";
}
return -1;
}
if (nwrite == 0) {
wlimit.startw();
ev_timer_again(loop, &wt);
return SHRPX_ERR_INPROGRESS;
}
tls.wbuf.drain(nwrite);
}
// We have to start read watcher, since later stage of code expects
// this.
rlimit.startw();
// We may have whole request in tls.rbuf. This means that we don't
// get notified further read event. This is especially true for
// HTTP/1.1.
handle_tls_pending_read();
if (LOG_ENABLED(INFO)) {
LOG(INFO) << "SSL/TLS handshake completed";
if (SSL_session_reused(tls.ssl)) {
LOG(INFO) << "SSL/TLS session reused";
}
}
return 0;
}
int Connection::check_http2_requirement() {
const unsigned char *next_proto = nullptr;
unsigned int next_proto_len;
SSL_get0_next_proto_negotiated(tls.ssl, &next_proto, &next_proto_len);
#if OPENSSL_VERSION_NUMBER >= 0x10002000L
if (next_proto == nullptr) {
SSL_get0_alpn_selected(tls.ssl, &next_proto, &next_proto_len);
}
#endif // OPENSSL_VERSION_NUMBER >= 0x10002000L
if (next_proto == nullptr ||
!util::check_h2_is_selected(next_proto, next_proto_len)) {
return 0;
}
if (!nghttp2::ssl::check_http2_requirement(tls.ssl)) {
if (LOG_ENABLED(INFO)) {
LOG(INFO) << "TLSv1.2 and/or black listed cipher suite was negotiated. "
"HTTP/2 must not be used.";
}
return -1;
}
return 0;
}
namespace {
const size_t SHRPX_SMALL_WRITE_LIMIT = 1300;
} // namespace
size_t Connection::get_tls_write_limit() {
if (tls_dyn_rec_warmup_threshold == 0) {
return std::numeric_limits<ssize_t>::max();
}
auto t = ev_now(loop);
if (tls.last_write_idle >= 0. &&
t - tls.last_write_idle > tls_dyn_rec_idle_timeout) {
// Time out, use small record size
tls.warmup_writelen = 0;
return SHRPX_SMALL_WRITE_LIMIT;
}
if (tls.warmup_writelen >= tls_dyn_rec_warmup_threshold) {
return std::numeric_limits<ssize_t>::max();
}
return SHRPX_SMALL_WRITE_LIMIT;
}
void Connection::update_tls_warmup_writelen(size_t n) {
if (tls.warmup_writelen < tls_dyn_rec_warmup_threshold) {
tls.warmup_writelen += n;
}
}
void Connection::start_tls_write_idle() {
if (tls.last_write_idle < 0.) {
tls.last_write_idle = ev_now(loop);
}
}
ssize_t Connection::write_tls(const void *data, size_t len) {
// SSL_write requires the same arguments (buf pointer and its
// length) on SSL_ERROR_WANT_READ or SSL_ERROR_WANT_WRITE.
// get_write_limit() may return smaller length than previously
// passed to SSL_write, which violates OpenSSL assumption. To avoid
// this, we keep last legnth passed to SSL_write to
// tls.last_writelen if SSL_write indicated I/O blocking.
if (tls.last_writelen == 0) {
len = std::min(len, wlimit.avail());
len = std::min(len, get_tls_write_limit());
if (len == 0) {
return 0;
}
} else {
len = tls.last_writelen;
tls.last_writelen = 0;
}
tls.last_write_idle = -1.;
auto rv = SSL_write(tls.ssl, data, len);
if (rv <= 0) {
auto err = SSL_get_error(tls.ssl, rv);
switch (err) {
case SSL_ERROR_WANT_READ:
if (LOG_ENABLED(INFO)) {
LOG(INFO) << "Close connection due to TLS renegotiation";
}
return SHRPX_ERR_NETWORK;
case SSL_ERROR_WANT_WRITE:
tls.last_writelen = len;
// starting write watcher and timer is done in write_clear via
// bio.
return 0;
case SSL_ERROR_SSL:
if (LOG_ENABLED(INFO)) {
LOG(INFO) << "SSL_write: " << ERR_error_string(ERR_get_error(),
nullptr);
}
return SHRPX_ERR_NETWORK;
default:
if (LOG_ENABLED(INFO)) {
LOG(INFO) << "SSL_write: SSL_get_error returned " << err;
}
return SHRPX_ERR_NETWORK;
}
}
wlimit.drain(rv);
update_tls_warmup_writelen(rv);
return rv;
}
ssize_t Connection::read_tls(void *data, size_t len) {
// SSL_read requires the same arguments (buf pointer and its
// length) on SSL_ERROR_WANT_READ or SSL_ERROR_WANT_WRITE.
// rlimit_.avail() or rlimit_.avail() may return different length
// than the length previously passed to SSL_read, which violates
// OpenSSL assumption. To avoid this, we keep last legnth passed
// to SSL_read to tls_last_readlen_ if SSL_read indicated I/O
// blocking.
if (tls.last_readlen == 0) {
len = std::min(len, rlimit.avail());
if (len == 0) {
return 0;
}
} else {
len = tls.last_readlen;
tls.last_readlen = 0;
}
auto rv = SSL_read(tls.ssl, data, len);
if (rv <= 0) {
auto err = SSL_get_error(tls.ssl, rv);
switch (err) {
case SSL_ERROR_WANT_READ:
tls.last_readlen = len;
return 0;
case SSL_ERROR_WANT_WRITE:
if (LOG_ENABLED(INFO)) {
LOG(INFO) << "Close connection due to TLS renegotiation";
}
return SHRPX_ERR_NETWORK;
case SSL_ERROR_ZERO_RETURN:
return SHRPX_ERR_EOF;
case SSL_ERROR_SSL:
if (LOG_ENABLED(INFO)) {
LOG(INFO) << "SSL_read: " << ERR_error_string(ERR_get_error(), nullptr);
}
return SHRPX_ERR_NETWORK;
default:
if (LOG_ENABLED(INFO)) {
LOG(INFO) << "SSL_read: SSL_get_error returned " << err;
}
return SHRPX_ERR_NETWORK;
}
}
rlimit.drain(rv);
return rv;
}
ssize_t Connection::write_clear(const void *data, size_t len) {
len = std::min(len, wlimit.avail());
if (len == 0) {
return 0;
}
ssize_t nwrite;
while ((nwrite = write(fd, data, len)) == -1 && errno == EINTR)
;
if (nwrite == -1) {
if (errno == EAGAIN || errno == EWOULDBLOCK) {
wlimit.startw();
ev_timer_again(loop, &wt);
return 0;
}
return SHRPX_ERR_NETWORK;
}
wlimit.drain(nwrite);
return nwrite;
}
ssize_t Connection::writev_clear(struct iovec *iov, int iovcnt) {
iovcnt = limit_iovec(iov, iovcnt, wlimit.avail());
if (iovcnt == 0) {
return 0;
}
ssize_t nwrite;
while ((nwrite = writev(fd, iov, iovcnt)) == -1 && errno == EINTR)
;
if (nwrite == -1) {
if (errno == EAGAIN || errno == EWOULDBLOCK) {
wlimit.startw();
ev_timer_again(loop, &wt);
return 0;
}
return SHRPX_ERR_NETWORK;
}
wlimit.drain(nwrite);
return nwrite;
}
ssize_t Connection::read_clear(void *data, size_t len) {
len = std::min(len, rlimit.avail());
if (len == 0) {
return 0;
}
ssize_t nread;
while ((nread = read(fd, data, len)) == -1 && errno == EINTR)
;
if (nread == -1) {
if (errno == EAGAIN || errno == EWOULDBLOCK) {
return 0;
}
return SHRPX_ERR_NETWORK;
}
if (nread == 0) {
return SHRPX_ERR_EOF;
}
rlimit.drain(nread);
return nread;
}
void Connection::handle_tls_pending_read() {
if (!ev_is_active(&rev)) {
return;
}
rlimit.handle_tls_pending_read();
}
} // namespace shrpx